Under review as a conference paper at ICLR 2026

CONTINUAL LEARNING VIA SPARSE MEMORY FINE-
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern language models are powerful, but typically static after deployment. A
major obstacle to building models that continually learn over time is catastrophic
forgetting, where updating on new data erases previously acquired capabilities.
Motivated by the intuition that mitigating forgetting is challenging because train-
able parameters are shared across all tasks, we investigate whether sparse param-
eter updates can enable learning without catastrophic forgetting. We introduce
sparse memory finetuning, leveraging memory layer models (Berges et al.| [2024),
which are sparsely updated by design. By updating only the memory slots that
are highly activated by a new piece of knowledge relative to usage on pretraining
data, we reduce interference between new knowledge and the model’s existing
capabilities. We evaluate learning and forgetting compared to full finetuning and
parameter-efficient finetuning with LoRA on two question answering tasks. We
find that sparse memory finetuning learns new knowledge while exhibiting sub-
stantially less forgetting: while NaturalQuestions F1 drops by 89% after full fine-
tuning on new facts and 71% with LoRA, sparse memory finetuning yields only
an 11% drop with the same level of new knowledge acquisition. Our results sug-
gest sparsity in memory layers offers a promising path toward continual learning
in large language models.

1 INTRODUCTION

Language models store vast amounts of information in their parameters, but this knowledge largely
remains fixed after pretraining. How can we build systems that can continually accumulate knowl-
edge through experience and interaction with the world? This capability for continual learning
would enable models that remember what we teach them, learn from mistakes, and acquire new
skills in the real world.

Continual learning has been a longstanding challenge in Al and persists in the era of large language
models (LLMs). A key barrier to continual learning is catastrophic forgetting (McCloskey & Co-
henl [1989): when updating on a stream of new information, models often lose previously acquired
capabilities. While replaying data from pre-training or previous training stages can alleviate forget-
ting (Linl [1992; Robins|, 1995} |Chen et al.,2025)), this strategy is data-inefficient and not scalable as
we grow the amount of experience. Already, modern LLMs undergo multiple rounds of pre-training,
post-training, and alignment, making replay an increasingly difficult and delicate strategy to imple-
ment. A fundamental problem is that we optimize the same set of parameters across the lifetime of
a model, leading to interference unless parameters are optimized simultaneously for all downstream
tasks.

In this work, we propose a new approach to continual updates, enabled by memory layers (Berges
et al.,|2024; |Hel |2024)). Our key observation is that memory layers access a small set of parameters
(e.g., 10k) out of a large memory pool (1-10M) on each forward pass, striking a balance between
large overall capacity and a minimal set of parameters for each piece of knowledge. We introduce
sparse memory finetuning, updating just the top ¢ memory slots that are more frequently accessed
on a certain batch relative to some background corpus (e.g. pretraining data). We use TF-IDF as a
ranking score, identifying a set of indices to update with each gradient step that minimally interferes
with the model’s existing knowledge.

Under review as a conference paper at ICLR 2026

We evaluate the learning and forgetting behavior of sparse memory finetuning on two tasks: (1)
learning from a stream of facts and (2) learning from a stream of documents, without degrading
capabilities from pretraining. We show that sparse memory finetuning learns new knowledge to
the same degree as full finetuning, but with minimal to no degradation on held-out benchmarks.
In contrast, full finetuning and parameter-efficient finetuning with LoRA (Hu et al., 2021), exhibit
catastrophic forgetting even within a thousand gradient steps. When training on a stream of Triv-
iaQA facts, performance on NaturalQuestions drops by 89% with full finetuning and 71% with
LoRA, but only 11% with sparse memory finetuning with the same level of retention. Our results
suggest that sparsity is potentially a key ingredient for continual learning, with sparse finetuning of
memory layers as a promising implementation.

2 RELATED WORK

A longstanding goal in Al is continual or lifelong learning: the ability to accumulate new knowl-
edge and skills over time. A major challenge is catastrophic forgetting, where incorporating new
knowledge into a neural network results in loss of previously acquired knowledge or catastrophic
forgetting (McCloskey & Cohenl |1989; [French, [1999), which persists with modern LLMs (Luo
et al.,[2023}; [La1 et al.,[2025)).

A variety of strategies have been proposed to address this problem. Regularization methods such
as dropout (Srivastava et al., 2014), weight decay (Loshchilov & Hutter, 2019), or KL penalties
(Ouyang et al.| 2022)) restrict parameter updates to preserve performance to stay close to initializa-
tion. Elastic Weight Consolidation (Kirkpatrick et al.,[2017)) regularizes updates to preserve parame-
ters that are “important” to previous tasks, as measured with the Fisher information matrix. Our work
leverages a similar idea, but implements it by selecting parameters in a memory layer, which enables
fully sparsified updates, rather than regularization penalties. Expansion-based approaches add new
parameters such as adapter, LORA modules, or MoE experts for each task (Rusu et al.| 2016; Wang
et al., 2024; Houlsby et al., |2019; Hu et al.l 2021} |Gritsch et al., 2024} Shen et al., [2023). LoRA
has become a popular method for adding lightweight task-specific parameters, but Biderman et al.
(2024) show that while LoRA achieves less forgetting, it learns less. Parameter-efficient expansion
fundamentally add only a small amount of capacity, limiting the amount of new knowledge they can
support. In contrast, our approach relies on memory layers, which strike a balance between learning
capacity and forgetting by using a sparsely indexed memory pool with a large overall capacity (1B+
parameters). Finally, replay-based methods reduce forgetting by maintaining a buffer of previous
tasks or pretraining samples to rehearse during training (Robins| |1995; [Lesort et al., 20225 Scialom
et al., 2022; (Chen et al., [2025). While popular and effective, replay is data-inefficient: as mod-
els gain more experience, they must rehearse ever larger corpora. Modern LLMs also go through
many rounds of training, adding significant complexity when we want to e.g. preserve the model’s
pretraining knowledge while also maintaining its instruction-following capabilities.

Our method leverages sparsity as an alternative approach to continual learning, with the key intuition
that only a small percentage of the model’s parameters truly need to be updated on each input. Work
such as grafting has found that as little as 0.01% of model parameters are responsible for model
performance on a particular task (Panigrahi et al.,|2023), and that these parameters can be isolated
to enable continual learning with less forgetting. In our work, we use recently-proposed memory
layers (Berges et al.,|2024; Hel 2024)) that are sparsely indexed by design to continuously update the
model with new knowledge without interfering with parameters for other knowledge.

3 BACKGROUND

Memory layers (Berges et al., 2024; Hel 2024; Weston et all [2015) add a trainable parametric
memory that can be queried via an attention-like mechanism. We illustrate this in Figure |l The
standard Transformer block consists of a self-attention layer, followed by a feedforward network.
To augment the model with memory, some of the feedforward layers can be replaced with a memory
lookup into a pool of memory of size N, with keys K € RV*¢ and values V € RY*?_ Given an

Under review as a conference paper at ICLR 2026

—
Memory Layer
values
lookup keys | | | | | | | o | | | | | | |
E:] memory query q
—
the

Figure 1: Memory layer architecture (Berges
et al.l |2024; |Hel [2024). We replace one FFN
in the middle of the transformer with a mem-
ory lookup. For each token, we project the out-
put of the previous layer into a query, which is
used to identify the top £ = 32 keys. An input-
dependent gating is applied to the weighted sum
of the top k values, which then becomes the out-
put of the memory layer.

<bos> [[THTT_THTH
since [TTIL_TTTTN

the [[TITT__THTID
beginning [TITIL_TTTTIT]

pretraining
accesses

batch

accesses
access

count
relative
accesses

0 ™
memory index

2. Rank accesses relative
to background corpus and
train the top t

1. Get memory accesses
in batch

Figure 2: Sparse memory finetuning. To iden-
tify the minimal set of memory slots to update,
we aggregate counts for all the memory indices
on a particular batch, and then rank the accesses
relative to a background corpus (e.g. pretraining
data) with TFIDF. We train the top t memory in-
dices that are highly accessed on this batch but
accessed relatively infrequently on pretraining,
keeping the rest of the memory pool and model

frozen.

input 2 € R™ and query projection ¢ : R" — R9,
I = TopKIndices(K¢(x), k)
s = softmax(Kyq(x))
y=sV1
output = (y ® silu(zTW7))TW,

Retrieve top-k indices

Compute scores

Compute weighted output

Apply input-dependent gating

where K1 € R**9 are the top-k keys, W; € R"*? and W, € R?*™ are learned projection matrices,
and silu(x) = xsigmoid(x). As in attention, we can make a memory layer more expressive by
adding additional heads with different key projections. As typical memory sizes are 1M-100M
keys for billion-parameter base models, a bottleneck is the memory embedding lookup. To perform
memory lookups efficiently, memory layers use product keys (Lample et al., 2019) to decompose
the keys into two halves, enabling efficient lookup across a large number of indices.

Unlike attention, the keys and values are trainable parameters (rather than activations) that can be
finetuned. This approach can also be thought of as a mixture-of-experts (MoE) architecture (Shazeer
et al.| 2017) with a large number of small experts, one for each memory location (Hel 2024). Mem-
ory layers provide several benefits over MoEs: since each token only activates a small set of parame-
ters rather than a large expert, decoding efficiency can be much improved, given the memory-bound
nature of inference. In this work, we leverage the benefit that memory layers provide much more
granular control over how information is accessed and stored in parameters: rather than activat-
ing one of (typically) 10-100 experts, each token activates only a tiny subset of the total memory
parameters (e.g. on the order of 0.03%-0.0002% of total memory parameters).

4 SPARSE MEMORY FINETUNING

Our work proposes finetuning the model on new knowledge via sparser updates to the memory layer.
The memory layer is already sparsely indexed on each forward pass, with only k values out of the
entire memory pool accessed at each token (e.g. £ = 32 per memory attention head, out of 1M total
indices). However, we find that naively finetuning the memory layer model still causes catastrophic
forgetting (see Section[6). Some of the memory indices accessed on a particular batch may serve
general purposes, such as helping predict syntactic structures or features of the broader domain.
Intuitively, we’d like to finetune the minimal set of parameters that “store” a piece of knowledge.

Under review as a conference paper at ICLR 2026

To implement this, we propose to update only the memory slots that are specific to a particular input:
i.e., highly accessed specifically for this input, compared to memory accesses on other inputs. This
problem frequently shows up in document retrieval, e.g. to measure the importance of particular
words in a document with TF-IDF by looking at how frequently they appear in this document,
relative to overall occurrence in all documents. We adopt TF-IDF as the ranking metric to identify
memory indices that are important on a particular barch, although future work can explore more
sophisticated scoring functions or granularities for ranking (e.g., choosing sequence-level rather
than batch-level memory indices).

For a given batch, we count all the memory accesses. We then compute TF-IDF score for each
memory index relative to the indices accessed on some background corpus of knowledge we want
to preserve (for the IDF portion of the computation). For our main experiments, we use the memory
accesses on 1000 random batches of DCLM (Li et al., [2024) as a representative sample of generic
pretraining data. These “background indices” do not change during finetuning and can be stored
statically in the model checkpoint. We study how the choice of background corpus affects learning
and forgetting in Section [6] We note that ranking based on batches makes no assumption about task
boundaries; consecutive batches can be from the same or totally different data distributions.

For a given memory slot ¢ € M (where M is all memory slots), the TF-IDF score is:
() |B| +1
— - log
ZjeM c(4) ZbeB Le,(iy>0 + 1

where ¢(t) is the number of times memory index 4 is accessed on this batch, ¢; () is the number of
times ¢ is accessed on some batch b, and B is the set of background (DCLM) batches. Then, we
finetune the values of the top £ memory slots. On the forward pass, all accessed indices contribute to
the model output, but we stop the gradient on all memory parameters except for the top ¢ indices after
TF-IDF ranking. Since the top ¢ indices is dynamic on each forward pass, this can be implemented
as follows:

trainable_mask: mask of shape (memory_size, 1), 1 if trainable
mem: memory table, shape (memory_size, value_dim)

The value of memory is unchanged, but the gradient goes through mask
mem = mem * trainable_mask + mem.detach() - (mem * trainable_mask).detach()

Each forward pass typically accesses 103 to 10® indices (k * num_memory_heads * batch_size *
seqglen), but we find empirically that we can set ¢ to much lower values while achieving the same
learning performance.

5 EXPERIMENTS

We compare sparse memory finetuning to full finetuning and parameter-efficient finetuning with
LoRA (Hu et al., 2021). LoRA has been shown to mitigate forgetting (Biderman et al., |2024),
making it a natural and strong baseline for our experiments. We use a 1.3B base model for our main
experiments, pretrained on the same data for all methods. We use a batch size of 64 and sequence
length of 64 for TriviaQA and 512 for SimpleQA. For the memory-augmented model, we swap
out the feedforward network (FFN) in the middle of the model (layer 12 out of 22) with a lookup
into a memory pool of size 1M, k = 32 memory accesses per token, 4 memory heads, and a value
dimension of 1024. This amounts to 32 x 1024 = 32, 768 active parameters in this layer instead of
50M parameters in original FFN (with a model dim of 2048 and FFN dim of 2048 x 4). For LoORA
finetuning, we apply LoRA to all attention and FFN weight matrices, and report the best performing
setting of rank and alpha. For full finetuning, we report the best performing learning rate.

Optimizer. We initially used AdamW for all methods before realizing that adaptive per-parameter
step sizes, weight decay, and momentum can interact with sparsity in unexpected ways. Even con-
trolling for the optimizer (AdamW for all methods), sparse memory finetuning achieved similar
learning with less forgetting than full finetuning and LoRA. Switching to SGD further decreased the
forgetting on held-out tasks, although interestingly we did not see similar benefits for full finetuning

Under review as a conference paper at ICLR 2026

TriviaQA 1K NaturalQuestions GSM8K
P — 2.5+
0154 —
<067 <0.101 2201
T o =
0.05 - =
0.4- 1.51
0 5000 10000 0 5000 10000 0 5000 10000
Step
= Memory t=500, high LR LoRA

== Memory t=500, low LR = Full FT

Figure 3: Learning single facts in the small-data regime. To simulate a “small data” regime where
the model must perform immediate updates on a small amount of data, we train the model to learn
a sequence of 1000 facts from TriviaQA. Sparse memory finetuning learns more on the target facts,
while forgetting much less on held-out benchmarks (NaturalQuestions and GSM8K). LoRA and full
finetuning exhibits catastrophic forgetting on the held-out metrics.

and LoRA (see Appendix [B] for baseline results with SGD). In our experiments, we use the best
performing optimizer for each method (AdamW with A = 0.1 for baselines, SGD for sparse mem-
ory finetuning). Previous work has also suggested that Adam may not be appropriate for continual
learning (Hsu et al., |2019), but we leave a more thorough exploration of appropriate optimizers to
future work.

5.1 FACT LEARNING

Many desired applications for continual learning require integrating a small amount of new informa-
tion into the model (e.g. personalization or learning from feedback from individual users). Unlike
continued pre-training on documents, where we can more easily augment or mix in diverse data, this
setting poses a special challenge for finetuning. The amount of data to learn from is both small and
narrow in domain (e.g. learning a user preference from a single message), making it more likely that
continued gradient updates will lead to model collapse and forgetting of general capabilities.

To test methods in the “small-data” regime, we consider a setting where the model must learn single
facts in sequence. We use 1K questions from the TriviaQA test set and rephrase them as statements.
To fill the batch, we paraphrase the statement [V times to fill a batch size of N. We pad paraphrases
to the max sequence length, since predicting tokens of a paraphrase is trivial if there are identical
paraphrases in context, leading to different parameter updates and memory accesses. For memory
finetuning, we take care to mask the indices accessed at the padding locations. We find that a top
t = 500 is sufficient for best performance, and report results for this setting.

In Figure 3] we see that sparse memory finetuning learns more, while forgetting less on held-out
benchmarksﬂ For held-out performance, we measure F1 score on NaturalQuestions (Kwiatkowski
et al.l 2019) and accuracy on HellaSwag (Zellers et al., [2019). We report results with both high
(Ir=5) and low (Ir=2) learning rates for memory finetuning to characterize its behavior: lower learn-
ing rates can better preserve performance on held-out tasks, while still matching or exceeding the
target performance of baselines. Memory finetuning continuously improves in performance, with
significantly less degradation in held-out metrics thanks to selective updates.

5.2 DOCUMENT QA

For our second task, we evaluate whether models can learn from a continuous stream of documents.

!'The base memory-augmented model starts at a higher performance due to better knowledge retention in
pretraining, as also observed inBerges et al.| (2024).

Under review as a conference paper at ICLR 2026

SimpleQA 100 NaturalQuestions GSM8K
0.15 \ ~1.8-
< 2
- —
— = 1.6
" 0.10 A z
14 == —
0 5000 10000 0 5000 10000 0 5000 10000
Step
= Memory: t=10K, high LR LoRA

= = Memory: t=10K, low LR = Full FT

Figure 4: Learning from documents. We evaluate whether methods can learn from a stream of
documents by training on Active Reading-augmented (Lin et al.| [2025) documents for a subset
of 100 Wikipedia-grounded SimpleQA questions (Wei et al., 2022)). The best full finetuning and
LoRA configurations achieve the same performance on the target task, but suffer from much more
forgetting on held-out tasks. Sparse memory finetuning achieves Pareto improvements at both high
and low learning rates and generally exhibits much less degradation.

We use the Wikipedia-grounded subset of SimpleQA (Wei et al.| 2024). We evaluate on a subset
of 100 questions, taking the Wikipedia documents cited for those questions and splitting them into
chunks (roughly, paragraphs), resulting in a total of 1824 document chunks. As in the previous
setting, we assume that the model encounters one document chunk (e.g. one paragraph) at a time
and performs an immediate gradient step on the information in that chunk, rather than shuffling all
chunks iid. We use Active Reading (Lin et al., 2025) to generate N synthetic augmentations of the
chunk. In a given batch, each sequence is a different synthetic augmentation for the same chunk.
We finetune with a larger top ¢ = 10000, given the higher information content in each batch.

Results are shown in Figure[d Full finetuning and LoRA are able to perform much better than what
we observed in the small-data regime as the augmented document setting is more diverse and more
similar to fully iid pretraining (except for the fact that all sequences in a batch come from the same
source). However, both baselines still suffer from forgetting on held-out benchmarks. In contrast,
sparse memory finetuning can achieve the same target performance with much less forgetting.

6 ANALYSIS

Pareto Frontier of Learning and Forgetting There is a fundamental tradeoff between learning
and forgetting: to maximize learning, one can specialize the model to a task by updating more
parameters at a higher learning rate for more steps; to minimize forgetting, one can simply keep
the model fixed at initialization. We plot the tradeoff in Figure [5| by sweeping across the primary
parameters that control learning for each method: learning rate for full finetuning; rank, alpha, and
target modules (applying lora to all linear projections or only attention weight matrices); top-¢ and
learning rate for sparse memory finetuning. We see that sparse memory finetuning indeed Pareto
dominates, learning more while forgetting less.

Naive Memory Finetuning In Figure [6] we ablate the effects of our method by comparing to al-
ternative ways of finetuning memory-augmented models: finetuning all accessed memory locations,
and finetuning the top-¢ indices by raw counts (i.e. TF only ranking as opposed to TF-IDF ranking).

We see using the top ¢ < all indices is enough to achieve comparable performance to finetuning
all memory values, while preserving held-out performance more. If we finetune the same number
of top ¢ indices with TF-only ranking, we observe comparable learning, but more forgetting. The
gap between ranking with TF-IDF and ranking with TF-only widens if we finetune fewer indices
(t = 50) on both the target and held-out tasks. This aligns with intuition: the inverse document
frequency is less important if we finetune more indices (since both methods converge to finetuning
all indices), but it is essential to identify the most critical indices to finetune if we restrict the number

Under review as a conference paper at ICLR 2026

Learning vs. Forgetting Frontier

k=100 1r=0.1 (g 10-p 1 k=500 1r=0.1 k=50 1r=z k=800 Tl g 1.
0.0001 © ©®=io00 1r=0.1 k=25 1r=2 k5100 1r=2"G"° "T85 k=1000 1r=2
k=500 1r=5
k=500 1r=10
§
>
% 0.025 Lrese-s 73;r:f‘;5, r=32 a=64 1r=5e-6 r=256 a=512
o reveh e 13_—5"75 1 722'59'5 =128 27128, e<g r=128 a=512 Lr=5e-6 r=256 a=102
8 Lr=5e-6 r=32 o128 oio o lnsSes6 r=256:as286 o dr=5e-5 r=128 a=64
o —0.0501 Lr=Be-6 r=256 a=128] =5e-6 r=128 a=256 " »1:=525663:128
=5e-
< Ir=5e-5 r=32 a=64 ~\1r=5e-5 r=128 a=128
_ _ 4 1r=5e-5 r=32 a=32
(@)} 1r=5e-5 r=32 a=16) Lr=Se-5 r=32 a=128
© —0.0751 1r=2e-4 r=32 a=16 hre5e-5 1256 an
v r=5e-5 r=256 a=256
2 Tr=2e-4 r=32 @232 §igo.5 r=128 2=256
w0
©
3 ~—0.1001
T fy=2e-4 r=256 a=128 Lr=2e-4 r=128 a=64 ~lr=Se-5 r=256 a=512
< —0.1251 1r=5e-5 r=128 a=512
()] 1r=2e-4 r=32 a=64
C
£ -0.1501
) .
[} 1r=2e-4 r=128 a=128
(@)}
—_
o | 1r=2e-4 r=32 a=128
L 0.175 1r=5e-5 r=256 a=1024
0.200 1 LoRA Memory Full FT
" " " " "
0 +0.1 +0.2 +0.3 +0.4

Learning: A TriviaQA F1

Figure 5: Tradeoff between learning and forgetting for different methods. To fully char-
acterize the tradeoff for different methods (full finetuning, LoRA, and sparse memory finetun-
ing), we plot performance on the target (TriviaQA) and a held-out task (HellaSwag) across a hy-
perparameter sweep. For full finetuning, we sweep across learning rate {2e-6, 5e-6, 2e-5, 5e-5}.
For LoRA, we sweep across rank {32,128,256}, alpha {1/2,1,2,4}x rank, and learning rate
{2e-4, 5e-5, 5e-6}. For sparse memory finetuning, we sweep across the number of trainable indices
t {25, 50, 100, 200, 500, 1000} and learning rate {0.1,2}. We omit runs where learning fails (e.g.
for full finetuning, learning rates above 5e-6 “break* the model and result in lower performance on
both learning and forgetting than initialization). The size of each point depicts the number of train-
able parameters per batch. We observe a continuous trend in most methods: as the learning capacity
increases (e.g. with increased learning rate, or parameter count), forgetting also increases, up to
a point where further increasing learning capacity leads to reduced performance. Sparse memory
finetuning exhibits high learning capacity with minimal forgetting on the held-out benchmark.

of learnable parameters. TF-IDF ranking also minimizes catastrophic forgetting as some memory
indices may be responsible for general token prediction (e.g. syntax or general world knowledge),
and this ranking avoids “overwriting” indices that the model uses for other tasks.

Background Indices In Figure[/| we investigate the effect of using different background corpora
to rank the trainable indices. We compare ranking against DCLM with ranking against the indices
used across all TriviaQA examples (the learning set) and the indices used on Natural Questions (the
held-out forgetting set). Using the indices accessed across all TriviaQA questions leads to slightly
less retention and significantly more forgetting, due to the fact that we are not directly preserving
knowledge learned in pretraining. Using NaturalQuestions to rank indices performs similarly to
using DCLM as the background index matches the held-out evaluation. We note that the TFIDF-
based ranking metric identifies indices that are commonly used across many NQ questions, which
effectively identifies indices that are shared across the held-out “domain” (potentially explaining
why performance is similar to DCLM). However, fully preserving question answering performance
might require upweighting indices that are used on any NQ question. Future work might investigate
different ways to rank that scale the access counts to weight any non-zero counts.

Understanding Memory Accesses To better understand how information is stored in the mem-
ory layer, we qualitatively analyze memory accesses in different sequences. Consider the TriviaQA
fact learning task, where we evaluate the model’s ability to answer factual questions after training

Under review as a conference paper at ICLR 2026

TriviaQA 1K GSM8K

1.36 1
0 5000 10000 0 5000 10000
Step
= = Memory t=50 = Memory t=500
= = Memory t=50, no reranking = Memory t=500, no reranking
= Memory, all values = Memory, full FT

Figure 6: Ablation: Comparison to naive memory finetuning. We compare sparse memory fine-
tuning to alternative ways to finetune memory-augmented architectures. TF-IDF ranking a subset of
memory indices is sufficient to achieve similar performance as finetuning all memory values, while
maintaining held-out performance. With TF-only ranking, we can retain target performance if we
finetune enough indices (¢t > 500 for this task), but we observe more forgetting on held-out tasks. If
we finetune fewer memory indices, the gap between TF-IDF-ranking and TF-only-ranking is more
pronounced. Full finetuning the memory model (Ir=5e-6) leads to much worse forgetting (outlier
not shown; final GSM8K NLL is 3.87).

TriviaQA 1K NaturalQuestions
0.17
< <
< € 0.161
— —
[V [T
0.151
0 5000 10000 0 5000 10000
Step
—— DCLM k=500 — — DCLM k=25
—— TriviaQA 1K k=500 —— TriviaQA 1K k=25

— NQ k=500

Figure 7: Effect of background corpus. We compare performance using different background cor-
pora for the IDF count in the ranking score. Using the set of indices accessed on the training set itself
(TriviaQA) leads to similar learning performance, but worse forgetting as we are not downweighting
indices accessed on other domains where we want to preserve performance. Using the set of indices
accessed on a particular set that we want to preserve performance on (NaturalQuestions) leads to
similar learning and forgetting performance as using DCLM batches as a representative sample of
pretraining data.

on paraphrases of each fact. In order to learn to answer questions correctly when only finetuning
memory values, the training batches need to access at least one index that is also accessed in the
question, and those shared indices need to be trainable. Different paraphrases access different mem-
ory indices, but we can identify the indices representing the shared “semantic” content by taking the
intersection of the indices accessed on each paraphrase, and the indices accessed when answering
the question. We call this set of indices the core set, and the size of this set gives a sense of how
many indices a fact is distributed across, and thus how many we may need to finetune. We find
that typical core set sizes are around 100-500 indices, confirming our intuition that parameter up-
dates can be much more sparse than the total number of accessed indices in a batch (on the order of
1k-100k, as (k = 32) x (num_heads = 4) gives 1024 indices accessed for each token in the batch).

When training, we don’t have access to the indices that will be used during test time when answering
the question. Does the TFIDF ranking procedure identify the indices in the core set, without access

Under review as a conference paper at ICLR 2026

Table 1: Memory accesses at token positions on a sample of TriviaQA questions and training
paraphrases. We define the “core set” as the indices that are shared between all paraphrases and the
question, and investigate whether these indices align with the top trainable indices after ranking with
TFIDF. Intuitively, we would like the top trainable indices to be those that contain the “semantic”
content of a factual statement that are accessed when answering the question. In the sequences
below, darker colors indicate more indices at that token position are in the core (or trainable) set.
Qualitatively, trainable indices tend to align with core set indices across the sequence, and often align
with entity boundaries. For most questions, the minimum setting of trainable ¢ needed to answer the
question correctly is much smaller than the size of the core set.

Fact index: 174 477 indices in core set, 25 indices needed to answer

Question
Core HB% long was swimmer Michelle Smith-deJBfuifi banned for attempting to manipulate
a drugs test? ff years<eot>
Trainable How long was swimmer Michelle Smith-de Bruin banned for attempting to manipulate
a drugs test? 4 years<eot>
Paraphrases
Core Michelle' SmithfdeJBFuiiwas given a fl-year ban for/attempting[fo/deceive in a drugs[iest] <eot>
Trainable Michelle Smith-de Bruin was given a 4-year ban for attempting to deceive in a drugs test.<eot>
Core Michelle' Smith*delBiuiiiiwas suspended forfj years[after attempting|foldeceive in a
drugs|festl<eot>
Trainable Michelle Smith-de Bruin was suspended for 4 years after attempting to deceive in a
drugs test.<eot>
Core A B-year ban was handed down to Michelle/Smith®deIBTUifIor attemptinglfo’cheat on a
drugs|esi<eot>
Trainable A 4-year ban was handed down to Michelle Smith-de Bruin for attempting to cheat on a
drugs test.<eot>
Fact index: 592 169 indices in core set, 25 indices needed to answer
Question
Core - was the name of the cat in Rising Damp? Vienna<eot>
Trainable What was the name of the cat in Rising Damp? Vienna<eot>
Paraphrases
Core A catfiamed Viennafa@ppeared in the[l§] series Rising[Dampl<eot>
Trainable A cat named Vienna appeared in the TV series Rising Damp.<eot>
Core Rising Damp features a notable feline character named Vienna|<eot>
Trainable Rising Damp features a notable feline character named Vienna.<eot>
Core The catfViennali§ a beloved part of Rising[Dafipi<eot>
Trainable The cat Vienna is a beloved part of Rising Damp.<eot>
Fact index: 83 193 indices in core set, 100 indices needed to answer
Question
Core WIS was the first US-born winner of golf’s British Open? Walter Hagen<eot>
Trainable Who was the first US-born winner of golf’s British Open? Walter Hagen<eot>
Paraphrases
Core The first USEB6 Openfias WalterJHEgEM<eot>
Trainable The first US-born winner of the British Open was Walter Hagen.<eot>
Core Walter Hagen’s British Open- was a historic moment for US golfers.<eot>
Trainable Walter Hagen’s British Open win was a historic moment for US golfers.<eot>
Core Walter Hagenlachiéved a groundbreaking victory as theliil§§ American-born/Winineriofithg
British'Openl<eot>
Trainable Walter Hagen achieved a groundbreaking victory as the first American-born winner of the

British Open.<eot>

to the question? In Table [T} we show the number of indices in the core set and the trainable set
(for ¢ = 100) accessed at each position in the sequence. Darker colors indicate more indices when
predicting that token are in the core (or trainable) set. We find that the core set indices and trainable
set accesses generally align across the sequence. Interestingly, we find that these indices often
align with entity boundaries, hinting at where critical parametric memory reads and writes occur.
Qualitatively, this suggests that TF-IDF reranking is identifying the indices that are most important
for learning a fact, rather than indices that are generically useful for language modeling.

Under review as a conference paper at ICLR 2026

7 CONCLUSION

In this work, we demonstrate how sparse updates to memory layer architectures are a promising
technique for continual learning without forgetting. Our key insight is that sparsity enables learn-
ing on particular inputs without interference with previously learned knowledge in the model. By
leveraging sparsity inherent in memory layer architectures and selectively updating only the most
relevant memory slots using TF-IDF ranking, our method enables models to learn new knowledge
while keeping most parameters untouched. We find that sparse memory finetuning achieves a Pareto
better tradeoff between learning and forgetting compared to full finetuning and LoRA on factual
question answering tasks.

We tested our method on factual learning tasks, for which retrieval-augmented generation (RAG)
is a natural present-day solution. However, our goal is to pave the way towards continual learning
more broadly, enabling models to continue getting smarter over time on a broad range of tasks.
For instance, we’d like language model agents to improve their coding ability as they collect more
experience in the real world. It’s unclear how RAG would be a suitable solution on tasks like
reasoning and coding where retrieval is difficult. We’d like models to distill the learnings from
mistakes, feedback, and reasoning chains, beyond simply storing and retrieving these episodes. As
a next step, it would be important to scale our results to more complex tasks beyond fact learning, as
well as larger models. Future work could also explore more sophisticated techniques for selecting
the sparse set of trainable parameters, such as adapting ¢ in an input-dependent way or reranking
with other criteria to push the Pareto frontier. Overall, while our work focuses on memory layers,
our results demonstrate that the principle of sparse parameter updates may be a promising approach
to continual learning.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Vincent-Pierre Berges, Barlas Oguz, Daniel Haziza, Wen tau Yih, Luke Zettlemoyer, and Gargi
Ghosh. Memory layers at scale, 2024. URL https://arxiv.org/abs/2412.09764,

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=aloEru2qCG.
Featured Certification.

Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Friedman, and Danqi Chen. Continual memoriza-
tion of factoids in language models, 2025. URL https://arxiv.org/abs/2411.07175,

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128-135, 1999.

Nikolas Gritsch, Qizhen Zhang, Acyr Locatelli, Sara Hooker, and Ahmet Ustiin. Nexus: Spe-
cialization meets adaptability for efficiently training mixture of experts, 2024. URL https:
//arxiv.org/abs/2408.15901.

Xu Owen He. Mixture of a million experts, 2024. URL https://arxiv.org/abs/2407.04153.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bryan Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning (ICML), pp. 2790-2799, 2019.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines, 2019. URL https://arxiv.org/abs/
1810.12488.

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526, 2017.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4524—
4534, 2019.

Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong Yi,
Min Xie, Qingfu Zhang, Hongbin Liu, Gaofeng Meng, and Fei Zhu. Reinforcement fine-tuning
naturally mitigates forgetting in continual post-training, 2025. URL https://arxiv.org/abs/
2507.05386.

Guillaume Lample, Alexandre Sablayrolles, Marc’ Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys, 2019. URL https://arxiv.org/abs/1907.
05242,

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia
Diaz-Rodriguez. Continual learning with deep generative replay. Neurocomputing, 469:28—45,
2022.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bit-
ton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej

11

https://arxiv.org/abs/2412.09764
https://openreview.net/forum?id=aloEru2qCG
https://arxiv.org/abs/2411.07175
https://arxiv.org/abs/2408.15901
https://arxiv.org/abs/2408.15901
https://arxiv.org/abs/2407.04153
https://arxiv.org/abs/1810.12488
https://arxiv.org/abs/1810.12488
https://arxiv.org/abs/2507.05386
https://arxiv.org/abs/2507.05386
https://arxiv.org/abs/1907.05242
https://arxiv.org/abs/1907.05242

Under review as a conference paper at ICLR 2026

Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,
Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic,
Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the
next generation of training sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Jessy Lin, Vincent-Pierre Berges, Xilun Chen, Wen-Tau Yih, Gargi Ghosh, and Barlas Oguz. Learn-
ing facts at scale with active reading, 2025. URL |https://arxiv.org/abs/2508.09494,

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3—4):293-321, 1992.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (ACL), pp. 15365—
15379, 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109-165, 1989.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill local-
ization in fine-tuned language models. In International Conference on Machine Learning, 2023.
URL |https://api.semanticscholar.org/CorpusID:256826987.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123-146, 1995.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In arXiv preprint
arXiv:1606.04671, 2016.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano.
Continual learning for large language models: Improving zero-shot generalization via memory
replay. In NeurlPS Workshop on Efficient Continual Learning, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Mod-
uleformer: Learning modular large language models from uncurated data. arXiv preprint
arXiv:2306.04640, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929-1958, 2014.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,

and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. arXiv preprint arXiv:2405.14768, 2024.

12

https://arxiv.org/abs/2508.09494
https://openreview.net/forum?id=Bkg6RiCqY7
https://api.semanticscholar.org/CorpusID:256826987

Under review as a conference paper at ICLR 2026

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models,
2024. URL https://arxiv.org/abs/2411.04368.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks, 2015. URL https://arxiv.
org/abs/1410.3916.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 4791-4800, 2019.

A APPENDIX

B BASELINE RESULTS WITH SGD

Method TQA 1KF1 NQF1 GSMSKNLL

LoRA Ir=2e-5, r=a=64 0.36 0.14 1.5
Ir=2e-5, r=a=128 0.36 0.14 L5
Ir=2e-4, r=a=64 0.36 0.14 1.5
Ir=2e-4, r=0=128 0.36 0.14 1.5
Ir=2e-2, r=a=64 0.39 0.10 1.8
Ir=2e-2, r=a=128 0.41 0.11 1.7
Ir=2e-1, r=a=64 0.52 0.09 24
Ir=2e-1, r=a=128 0.58 0.09 22
Ir=2, r=a=128 0.01 0.00 10

Full Ir=5e-6 0.36 0.14 1.5
Ir=2e-5 0.36 0.14 1.5
Ir=5e-5 0.36 0.14 L5
Ir=2e-3 0.40 0.11 1.7
Ir=2e-2 0.56 0.05 2.0
Ir=2e-1 0.65 0.01 35
Ir=2 0.00 0.00 12

Table 2: Results for baseline methods with SGD for fact learning on TQA 1K. Compare to the
results in Figure |3 Sparse memory finetuning with SGD achieves TQA 1K F1 > 0.7, NQ F1 <
0.15, and GSM8K NLL < 1.5. Using AdamW for the baselines learns more (TQA 1K F1 > 0.7)
but forgets much more on held-out tasks, while here we see that SGD forgets less but does not learn
as much.

13

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2411.04368
https://arxiv.org/abs/1410.3916
https://arxiv.org/abs/1410.3916

	Introduction
	Related Work
	Background
	Sparse Memory Finetuning
	Experiments
	Fact Learning
	Document QA

	Analysis
	Conclusion
	Appendix
	Baseline Results with SGD

