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Abstract

Accurate estimation of human pose and the pose of interacting objects, like a
hockey stick, is crucial for action recognition and performance analysis, particu-
larly in sports. Existing methods capture the object along with the human in the
bounding boxes, assuming all keypoints are visible within the bounding box. This
necessitates larger bounding boxes to capture the object, introducing unnecessary
visual features and hindering performance in real-world cluttered environments. We
propose a simple image and text-based multimodal solution TokenCLIPose that
addresses this limitation. Our approach focuses solely on human keypoints within
the bounding box, treating objects as unseen. TokenCLIPose leverages the rich
semantic representations endowed by language for inducing keypoint-specific con-
text, even for occluded keypoints. We evaluate the performance of TokenCLIPose
on a real-world ice hockey dataset, and demonstrate its generalizability through
zero-shot transfer to a smaller Lacrosse dataset. Additionally, we showcase its
flexibility on CrowdPose, a popular occlusion benchmark with keypoints within the
bounding box. Our method significantly improves over state-of-the-art approaches
on ice hockey, Lacrosse, and CrowdPose datasets, with gains of 4.36%, 2.35%, and
3.8%, respectively.

1 Introduction

The goal of 2D human pose estimation is to localize the human anatomical keypoints from an image,
which is essential for scene understanding, action recognition [1, 2], and human-object interaction
detection [3, 4]. This is particularly challenging in cluttered real-world scenarios due to occlusions and
other non-idealities [5, 6]. With the emerging applications in Virtual Reality (VR), and Augmented
Reality (AR), and real-time sports analysis [7], there is a fundamental need to understand how objects
are manipulated via human-object interaction [8]. Often, in such scenarios, the objects that humans
hold and interact with, which we define as extensions, can provide crucial information that aids in
accurately estimating the human pose and the actions being performed [1].

Contemporary SOTA deep learning-based pose estimation methods predominantly follow a top-down
approach: cropping each person in an image using bounding boxes before estimating their pose
individually[9–16]. While using existing top-down pose estimators seems intuitive for joint prediction
of the humans and their extensions, this approach suffers from limitations, yielding suboptimal results
as shown in Fig. 1(a).

Our key observation is: capturing the extension in the bounding box expands the field-of-view and
introduces unnecessary visual features, which can be confusing to the model. A simple yet powerful
fix is to confine the bounding box to capture the human body, treating the extension’s keypoints as
unseen. This approach reduces background interference, as we do not explicitly capture the extension.
However, it leads to the loss of important visual information about the extension, making them unseen.
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Figure 1: Difference between existing networks and our network. (a) Qualitative comparisons
between HRNet (left) and our pose estimator (right). (b) t-SNE Visualization of keypoint-specific
prompt embeddings. The different colours represent whether they are upper-body or lower-body joints,
with red representing upper-body joints, blue representing lower-body joints and green representing
the hip joints. From the figure, it is evident that while these embeddings maintain positional structure
within the upper-body joints (the shoulders are placed above the elbows which are placed above the
wrists, following the pose of a human standing normally) and the lower-body joints (knees placed
above ankles), they fail to maintain positional structure between the upper-body and lower-body
joints (elbows and wrists are placed below knees and ankles in the plot which does not follow the
pose of a human being).

Here, a crucial question arises: How can we effectively represent the spatial relationships of these
unseen keypoints for accurate pose estimation?

To answer this, we turn to other ways of informing the model about the unseen keypoints. Recent
works have shown that using language to induce semantic context of keypoints can lead to effective
feature representations [17–20]. Specifically, existing works [18] on human pose estimation align
the image features with keypoint-specific text embeddings generated from Vision Language Models
(VLMs) using a contrastive loss. However, these text embeddings primarily capture local details,
neglecting the crucial global relationship between lower-body and upper-body joints; In Fig. 1(b)
language models encode similar joints together, while losing the global structure. Hence, explicitly
imposing the image features to be close to text embeddings could be suboptimal.

Based on the observations, we present a simple yet effective solution to significantly improve relia-
bility under dynamic real-world scenarios by leveraging language to see beyond the bounding box.
Specifically, We utilize these text embeddings as priors and initialize our learnable keypoint tokens
(referred to as text tokens) using these text embeddings. By integrating the rich semantic represen-
tations of keypoint-specific text embeddings with image features, and employing a transformer to
capture global dependencies, we extract superior fine-grained representations which significantly
boosts the performance across the board.

We evaluate TokenCLIPose’s performance on three real-world datasets containing a lot of occlusions
and noise: an ice hockey dataset, a Lacrosse Dataset and the CrowdPose dataset [6]. The ice hockey
and Lacrosse datasets are first-of-their-kind datasets that we curated for predicting the pose of
human extensions (the sticks). Furthermore, in order to demonstrate the flexibility of TokenCLIPose
in predicting unseen keypoints that are present within the bounding box, we evaluate it on the
CrowdPose dataset. TokenCLIPose outperforms existing top-down approaches by 4.36% and 3.8%
on the ice hockey and CrowdPose datasets respectively. Furthermore, TokenCLIPose demonstrates
superior zero-shot capabilities in predicting extension keypoints when tested on the Lacrosse dataset,
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outperforming prior works by 2.35%. Our experiments highlight TokenCLIPose’s ability to reliably
predict unseen keypoints.

2 Related Work

2D Human Pose Estimation: Top-down approaches in 2D pose estimation can be broadly classified
into two categories: Heatmap-based pose estimation has been the de-facto standard approach since the
introduction of stacked hourglass networks [14]. These methods represent discrete (x, y) coordinates
as continuous heatmaps where each pixel indicates the likelihood of a specific joint being located at
that position. Most methods [9, 12, 14, 13] rely on powerful convolutional networks to extract high-
level multi-scale feature maps. While most research focuses on network architectures, a few works
investigate the coordinate representation and the heatmap encoding and decoding process [21, 15].
Recently, researchers have begun exploring transformer-based architectures for pose estimation
[10, 22, 11, 23]. Xu et al. [10] adopt the original vision transformer [24] and build baselines for pose
estimation, showcasing the efficacy of vision transformers. Methods including [22, 11] use CNNs as
feature extractors, and utilize transformers to model the relationship between different scale features
and the keypoint features respectively.

Regression-based pose estimation, in contrast to the dominance of heatmap-based approaches offers
an alternative paradigm. Sun et al. [25] leverages a convolutional backbone to extract feature maps
and then utilize an integral operation to directly regress keypoint coordinates. Li et al. [26] developed
a novel pose regression model which aims at minimizing the distance between the predicted and
underlying distribution. However, the global pooling operation used in [26] results in loss of spatial
information that is crucial for reliable pose estimation. More recent works [27, 16, 28] include
transformer-based architectures: [27, 16] use an encoder-decoder strategy and are based on DETR
[29] and Deformable-DETR [30] respectively.

While heatmap-based methods have achieved high accuracy, they have some limitations: 1) These
methods have a non-differentiable heatmap decoding method; 2) Heatmap representation often
leads to quantization error; and 3) They are not designed to predict out-of-bounding-box keypoints.
Therefore, we adopt the regression-based approach for directly estimating the coordinates of all joints,
both inside and outside the bounding box.

Occlusion-Aware Pose Estimation: Several approaches tackle the problem of occlusions in crowded
scenarios. Various methods tackle the problem by studying the relationships between multiple
humans present in an image [31–33]. However, we do not compare with their works as we are
interested in single-instance approaches. Park et al. [34] addresses the problem of out-of-bounding
box keypoints by refining the bounding box before pose prediction, but this adds computational cost.
Our approach, on the other hand, provides a parameter-free technique to induce spatial context for
the out-of-bounding box keypoints by leveraging the knowledge of VLMs.

Vision-Language Models: Language supervision has been shown to improve feature representations
in various vision tasks, such as image classification, semantic segmentation, and pose estimation.
Radford et al. [35] proposed the contrastive pretraining paradigm CLIP that leverages contrastive
learning to optimize a text and image encoder jointly. This work also showcased the significance of
large-scale vision-language pretraining by demonstrating accurate zero-shot classification. Following
CLIP, various works such as [36–38] focused on improving image classification using CLIP. Zhang
et al. [39] transfer the 2D pre-trained knowledge to 3D domains, thereby improving zero-shot point-
cloud recognition. Rao et al. [40] showcased the efficacy of CLIP pretraining on dense prediction
tasks by converting the image-text matching problem to a pixel-text matching problem.

Recently, Tevet et al. [20] leverage text to inpaint missing poses in a sequence in a spatiotemporally
consistent manner. Guo et al. [19] use pose-aware prompts to predict 3D hand meshes from images.
Recent works on 2D pose estimation [18, 17] utilize joint-specific keypoints to learn richer represen-
tations. Particularly, they use a contrastive loss to align the image features extracted from a backbone
to their keypoint-specific text embeddings. This, however, is suboptimal as the text embeddings
do not capture global structure between human keypoints. Hence, aligning the image features to
text embeddings might lead to loss of spatial information and inaccurate localization of joints. We
improve this by using a transformer-based network to capture the global spatial dependencies between
image and text features, thereby guiding our image features using text supervision rather than biasing
them to the text prompts themselves.

3



Backbone

Image Encoder

MLP

µ̂d, σ̂d

µ̂f , σ̂f

RLE Loss

CLIPtext

Text Prompts

MLP

RLE Loss

(a) Proposed TokenCLIPose Architecture

(b) Transformer Decoder

(c) RLE Loss

Layer Norm

Attention

Layer Norm

MLP

NF
x̄ = fϕ(z) Gϕ(x̄)

Q(x̄)

Pϕ(x̄)
Residual

Log-Likelihood

x = x̄ · σ̂ + µ̂

Fvis Floc Ftext

Figure 2: TokenCLIPose Architecture: We first incorporate an image encoder to extract multi-scale
image features and coarse human keypoint locations µ̂f , and project them onto a joint multimodal
embedding space obtaining image tokens Fvis and location tokens Floc respectively. Then, we
leverage a text-based keypoint encoder to extract keypoint-specific text tokens Ftext from VLMs.
These multimodal tokens are fed to a transformer decoder to capture spatial dependencies between
them and predict all the 2D keypoints µ̂d. The coarse human keypoint predictions and the final
keypoint predictions are supervised using the RLE loss.

3 Method

3.1 Problem Formulation

Given a cropped image I ∈ Rh×w of a human, generated from bounding boxes obtained through
a detection network, we predict Kout keypoints µ̂d ∈ RKout×2 that represent the 2D poses of
extensions and/or humans, along with the scale parameter σ̂d for each keypoint.

3.2 Network Architecture

We propose an encoder-decoder architecture to estimate 2D keypoints that are not captured in the
bounding box. Firstly, an image encoder extracts multi-scale image features from the cropped image,
which are then passed through a Multi-layer Perceptron (MLP) to generate coarse human keypoint
proposals. These image features and locations are then projected onto the multimodal embedding
space to form image and location tokens. The text-based keypoint encoder leverages text prompts
to generate keypoint-specific text tokens. Finally, all these multimodal tokens are concatenated and
passed through a transformer decoder to capture global relationships between these tokens and predict
final 2D keypoints. The network is exemplified in Fig. 2.

Image Encoder. The cropped input image is initially passed through a pretrained CNN to extract
multi-scale dense feature maps. These multi-scale feature maps are fused and projected onto a
joint multimodal embedding space to form the image tokens Fvis ∈ RN×Cemb , where N is the
number of tokens and Cemb is the joint multimodal space dimension. Furthermore, they are processed
through a MLP to generate coarse human keypoint predictions µ̂f ∈ RKh×2, and a scale parameter
σ̂f ∈ RKh×1, which are optimized using the RLE process as detailed in Section 3.3.

Text-based Keypoint Encoder. Following image feature extraction, the keypoint encoder tackles the
challenge of unseen keypoints in the image. We employ language-guided keypoint representations,
where text prompts encode class-related information of each keypoint. By leveraging CLIP’s pre-
trained text encoder, we generate the text tokens Ftext ∈ RKout×Cemb which are then concatenated
with the extracted image tokens. This process indirectly injects visual context of the missing keypoints
into the model, even when it’s not directly visible in the cropped input image. Additionally, we incor-
porate the coarse human keypoint predictions µ̂f and convert them to location tokens by projecting
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them onto the joint mulitmodal space Floc ∈ RKh×Cemb , and concatenate them with the image and
text tokens. The final set of tokens fed to the decoder are denoted as F = {Fvis,Ftext,Floc}.

Transformer Decoder. To predict all the keypoints precisely, the relationships between these
multimodal tokens (F ) must be captured accurately. Therefore, we leverage the transformer decoder
to understand the inherent correlations between different text, image and location tokens. Instead
of treating each modality separately and utilizing a cross-attention mechanism to understand the
associations between them, we treat all tokens together as a homogeneous entity and employ the
standard self-attention mechanism. This approach offers a simpler way to gain a holistic view of
the relationships between all keypoints, locations, and image patches. The transformer layers are
followed by MLPs to estimate the final keypoint predictions µ̂d ∈ RKout×2 and the scale parameter
σ̂d ∈ RKout×1. To reduce artifacts in feature maps and understand richer relationships, we employ
additional register tokens as [41].

3.3 Loss Function

Distribution Learning. Following [26, 16], we formulate the regression task as a distribution
learning problem and adopt Maximum Likelihood Estimation (MLE) to effectively predict the output
coordinates. We use normalizing flows to estimate the deviation in predicted and ground truth
keypoint distributions. In mathematical terms, given an input image I, our network estimates a
distribution PΘ,Φ(x|I) representing the probability of the ground truth keypoint appearing at the
location x. Here, Θ and Φ denote the parameters of our pose network and the flow model fϕ,
respectively. The flow model fϕ acts as a refinement step, iteratively transforming a preset Gaussian
distribution z̄ ∼ N (0, Id) to capture the deviation of the predicted and ground truth distributions
using the network’s prediction (µ̂ and σ̂).

Equation (1) depicts the mathematical formulation of the RLE loss, where Q(µ̄g) is the preset
Gaussian distribution, Gϕ(µ̄g) is the learned distribution by the flow model, µ̄g = (µg − µ̂)/σ̂
represents the normalized difference between ground truth and predicted keypoints, and s is a constant
term.

LRLE = − logQ(µ̄g)− logGϕ(µ̄g)− log s+ log σ̂ (1)

Similar to [16], we supervise both the coarse predictions (µ̂f , σ̂f ) and the final predictions from the
decoder (µ̂d, σ̂d) using RLE. Hence, our final loss function is

L = Lf
RLE + Ld

RLE (2)

where,

Lf
RLE = − logPΘf ,Φf

(x|I)
∣∣∣∣
x=µg

and Ld
RLE = − logPΘd,Φd

(x|I)
∣∣∣∣
x=µg

Here, Θf and Φf denote the parameters of the backbone network and the flow model of the coarse
keypoint predictions, and Θd and Φd denote the parameters of our decoder regression model and flow
model of the final keypoint predictions.

4 Experiments

A critical challenge in evaluating pose networks for human extensions is the lack of publicly available
datasets containing both the human and extension pose annotations. To address this limitation, we
curate two new sports datasets, ice hockey and Lacrosse, featuring pose annotations for humans and
their corresponding extensions. Experiments on these datasets demonstrate the performance of our
model in estimating the pose of extension keypoints, which are not captured within the bounding box.
We further evaluate the model’s ability to predict unseen keypoints (due to occlusion/self-occlusion)
within the bounding box using the benchmarked multi-person cluttered dataset, Crowdpose [6],
validating the generalizability of our model.

For human pose estimation, the total keypoints (Kout) depend on extensions. Without extensions,
Kout equals the number of human keypoints (Kh). When extensions are present, Kout increases to
Kh plus the number of extension keypoints (Ke).
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Figure 3: Qualitative Comparison of TokenCLIPose with HRNet-W48 on our ice hockey dataset.

4.1 Ice Hockey Dataset

Dataset. The ice hockey dataset, captured from real-world National Hockey League (NHL) videos,
presents a challenging environment for pose estimation due to the inherent fast pace of the sport.
Players’ rapid movements often result in motion blur within frames, making it difficult to distinguish
body parts. Furthermore, the nature of the game leads to frequent occlusions, especially when players
obstruct each other’s bodies. Adding to the complexity is the bulky equipment worn by hockey
players, which can obscure keypoints. These combined challenges- motion blur, occlusion, and bulky
equipment- make the ice hockey dataset a valuable resource for evaluating the robustness of the pose
estimation task.

Our dataset consists of 10 video clips (30-45 seconds each, sampled at 30 fps) from various broadcast
NHL videos. We utilize the CVAT tool to annotate the keypoints for multiple players and their
hockey sticks in each frame. We followed the standard COCO format to annotate 17 keypoints for
the human pose. Additionally, we annotate 3 keypoints for the hockey stick (butt end, heel, and toe).
Finally, for each annotated frame, we create two versions of the input image: one cropped to include
only the player (standard bounding box) and another incorporating both the player and their hockey
stick (extended bounding box). In total, we generate 11.66K pose annotations, with 9.13K images
from 9 clips used for training and 2.53K images from the tenth clip used for testing our model’s
performance.

Evaluation Metric. We evaluate different State-Of-The-Art (SOTA) pose estimation models on our
dataset using the Percentage of Correct Keypoints with head-normalization (PCKh) metric. Due
to our method’s use of smaller bounding box compared to the other models, achieving the same
level of accuracy would result in a higher PCKh threshold for our model. To ensure a fair and direct
comparison across all models, we employ the same threshold for evaluation.

Training. All networks are trained for 200 epochs with a batch size of 64 on a single NVIDIA
GeForce RTX 4090 GPU. We employ the Adam optimizer with a learning rate of 6× 10−4 for all
CNN-based architectures while the transformer-based architectures are trained using the AdamW
optimizer with an initial learning rate of 3× 10−4. The weight decay is set to 10−5 for all models.
A stepLR scheduler was used to linearly reduce the learning rate from the initial value of 10−5.
Consistent with [26], we utilize RealNVP [42] as the flow model within our model.

Results. The results, presented in Table 1, emphasize our method’s SOTA performance over existing
methods in robustly predicting the ice hockey player and the hockey stick keypoints, outperforming
existing works by 4.36%. This is further validated by the qualitative comparisons in Fig. 5, where our
model demonstrates the ability to predict semantic poses even in challenging scenarios with extreme
motion blur and occlusion. These results support our hypothesis that re-considering the extension
pose estimation task as an unseen keypoint problem without explicitly capturing it in the bounding
box reduces background noise leading to robust poses.

4.2 Lacrosse Dataset

Dataset. In order to study the efficacy of TokenCLIPose’s generalization capabilities in predicting
the pose of extensions, we curate another small-scale Lacrosse dataset. Similar to ice hockey, it is
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Table 1: Comparison with SOTA Methods on our real-world ice hockey dataset (PCKh@0.5).
BoldFace represents the best score. Underline represents the top score in existing works.

Method Backbone Input Resolution Body Butt End Stick Heel Stick Toe Mean
SimpleBaseline [13] ResNet-50 256x192 93.59 69.57 57.19 52.76 68.83
MSPN [9] - 256x192 93.61 70.30 59.21 55.69 69.70
HR-Net [12] HRNet-W48 256x192 94.90 71.48 60.29 55.36 70.44
TokenPose-L/D24 [11] HRNet-W48 256x192 95.13 70.96 60.93 56.27 70.82
ViTPose [10] ViT-B 256x192 95.61 71.94 61.33 58.80 71.92

TokenCLIPose ResNet-50 256x192 95.81 74.86 65.79 65.08 74.92
TokenCLIPose MSPN 256x192 97.17 75.41 66.70 66.34 75.53
TokenCLIPose HRNet-W48 256x192 97.37 75.94 67.82 66.15 76.28
Improvement - - 1.76% ↑ 4.00% ↑ 6.49% ↑ 7.35% ↑ 4.36% ↑

Table 2: Zero-shot Comparison with SOTA Methods on our real-world Lacrosse dataset
(PCKh@0.5). BoldFace represents the best score. Underline represents the second-best score.

Method Backbone Body Butt End Stick Heel Mean
SimpleBaseline [13] ResNet-50 94.73 67.28 53.99 72.00
MSPN [9] - 95.84 70.68 57.40 74.64
HR-Net [12] HRNet-W48 95.92 71.35 58.41 75.22
ViTPose [10] ViT-B 95.77 72.85 60.18 76.26

TokenCLIPose HRNet-W48 97.24 76.60 65.01 78.61
Improvement - 1.47% ↑ 3.75% ↑ 4.83% ↑ 2.35% ↑

characterized by motion blur and occlusions, but there are domain differences between the 2 datasets.
This dataset consists of 300 pose annotations from one video sampled at 30 fps. We use the same 12
human keypoints used in the ice hockey dataset to denote the human’s pose. However, we use only 2
keypoints to represent the Lacrosse stick’s pose, as the blade of a Lacrosse stick is circular in nature.
Hence, we disregard the 15th keypoint (stick toe) and use the other 14 keypoints to represent the pose
of a Lacrosse player along with their stick.

Zero-shot Results. We evaluate TokenCLIPose’s generalization capability by performing zero-shot
transfer from our pretrained model on ice hockey to the Lacrosse dataset. Due to the difference in
the shape of the head of a lacrosse and hockey stick, we predict the two keypoints corresponding to
the shaft of a lacrosse stick. Furthermore, the text prompts for the two extension keypoints are also
changed while keeping the model frozen. The results presented in Table 2 showcase that our model
outperforms the established baselines by 2.35%, thereby demonstrating the efficacy of our proposed
model for generalizable pose estimation.

4.3 CrowdPose Dataset

Dataset. The CrowdPose dataset is a large-scale benchmark dataset for human pose estimation,
containing 12K images and 43.4K labeled people in their trainval set, and 8K images with 29K
labeled people in the test set. Following [32, 18, 31], we use the trainval set for training and
test set for evaluation.

Evaluation Metric. We adopt standard Average Precision (AP) as our evaluation metric on the
CrowdPose dataset. AP is calculated based on Object Keypoint Similarity (OKS) denoted by
mOKS ∈ R, which is defined as

mOKS =

∑
i exp(−d̂2i /2s

2k2i )σ(vi > 0)∑
i σ(vi > 0)

, (3)

where d̂i is the Euclidean distance between the i-th predicted keypoint coordinate and the corre-
sponding ground truth, vi is the visibility flag of the keypoint, s is the object scale, and ki is a
keypoint-specific constant.

Training. We employ the AdamW optimizer with an initial learning rate of 6 × 10−4 and weight
decay of 0.1. Following ViTPose [10], we apply linear warmup for the first 2000 iterations with a
warmup factor of 10−3. Furthermore, we perform gradient clipping to prevent overfitting.
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Table 3: Comparison with SOTA Methods on CrowdPose dataset. BoldFace represents the best
score. Underline represents the second-best score.

Method Input Resolution AP AP50 AP75 APE APM APH

Mask-RCNN [43] 256 × 192 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose 256 × 192 61.0 81.3 66.0 71.2 61.4 51.1
SimpleBaseline [13] 256 × 192 60.8 81.4 65.7 71.4 61.2 51.2
CrowdPose [6] 256 × 192 66.0 84.2 71.5 75.5 66.3 57.4
Hourglass-104 [44] 384 × 288 65.2 85.9 69.5 - - -
KAPAO-L [45] 384 × 288 68.9 89.4 75.6 76.6 69.9 59.5
HRNet-W48 [12] 384 × 288 69.3 89.7 75.6 77.7 70.6 57.8
Transpose-H [22] 384 × 288 71.8 91.5 77.8 79.5 72.9 62.2
HRFormer-B [23] 384 × 288 72.4 91.5 77.9 80.0 73.5 62.4

TokenCLIPose 384 × 288 76.2 93.9 82.4 83.3 77.4 66.1
Improvement - 3.8% ↑ 2.4% ↑ 4.5% ↑ 3.3% ↑ 3.9% ↑ 3.7% ↑

Table 5: Effect of Attention Mechanisms on
the overall accuracy.

Attention-Mechanism Mean

Intention [46] 75.14
Self-attention 76.28

Cross-attention 76.31 ↑ 0.03

Table 6: Effect of Text Prompts on the
stick accuracy.

Prompt type Stick Accuracy Mean

No text 63.37 72.93
Single Prompt 67.41 75.24

Prompt Ensemble 69.97 ↑ 2.56% 76.28 ↑ 1.04%

Results. Table 3 presents a comparison between established pose estimation techniques and our
method. As shown in the table, TokenCLIPose outperforms all the top-down approaches by 3.8%
demonstrating its efficacy in predicting unseen keypoints robustly. We also depict the qualitative
results of TokenCLIPose to depict its robustness to occlusion. It is notable that even in scenarios
where we only see the side-view of humans, TokenCLIPPose estimates the pose reliably.

4.4 Ablation Studies

We conduct comprehensive ablations to study the effect of our design choices and verify the impact
of each module on our proposed TokenCLIPose. For consistency, all the ablations are conducted on
our ice hockey dataset unless specified otherwise.

Gains from Each Modality. The influence of each modality on the proposed model’s performance
is shown in Table 4. As evidenced by a performance improvement of 3.35%, the inclusion of text
tokens plays a significant role in enhancing the pose estimation accuracy. On the other hand, we
find that including the location tokens do not improve the performance significantly, only by a small
margin of 0.45%.

Table 4: Effect of Different Modalities on the overall accuracy.

Text tokens (Ftext) Location tokens (Floc) Image tokens (Fvis) Mean

✗ ✗ ✓ 72.48
✗ ✓ ✓ 72.93
✓ ✗ ✓ 75.72
✓ ✓ ✓ 76.28

Do we need to treat each modality heterogeneously? We probe whether multimodal tokens need
to be treated heterogeneously by testing out different attention mechanisms for our transformer
decoder. As shown in Table 5, utilizing self-attention directly on all the tokens produces similar
results to performing self-attention separately on image, location and text tokens, and then applying
cross-attention. Therefore, it is not necessary to treat the tokens from each modality separately. We
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Figure 4: Qualitative Results of our TokenCLIPose on the CrowdPose dataset.

hypothesize that this could be due to all the tokens being projected to the same joint embedding space,
thereby eliminating the need to process them differently.

Impact of Text Prompts. We investigate the influence of language on our model’s efficacy on the
ice hockey dataset by varying the degree and complexity of text prompts that we use. Starting from
randomly initializing the text tokens instead of using CLIP embeddings, we study the effects of using
single prompts and the prompt ensemble technique proposed in [35] for ImageNet classification. It is
evident from Table 6 that incorporating text instead of randomly initializing text tokens results in
a significant improvement of 2.31% in the overall accuracy. Furthermore, using prompt ensemble
techniques improve the accuracy of the model by 1.04%, showcasing the importance of the quality of
text prompts.

Influence of Bounding Boxes. We evaluate the influence of bounding box predictions on our model’s
performance by using ground truth bounding boxes obtained from ground truth human poses and the
bounding boxes from the FasterRCNN object detector. The results are showcased in Table 7. The
above table illustrates our model’s robustness to the quality of bounding boxes, as using ground truth
bounding boxes improves the model’s performance by a small margin of 2.47%.

Table 7: Impact of Bounding Boxes on the overall accuracy.

Bounding boxes Mean

Faster-RCNN [47] 76.28
Ground Truth 78.75 ↑ 2.47%

5 Conclusion

In this work, we proposed TokenCLIPose, an innovative solution for robustly predicting human and
extension poses. Instead of explicitly modeling extensions within the bounding box, we reformulated
the extension pose estimation as an unseen keypoint prediction problem. We leverage the power of
large pre-trained VLMs in augmenting the spatial information of unseen keypoints. We showcased
that capturing relationships between multimodal tokens is more effective than aligning image features
to text tokens. To evaluate the effectiveness of TokenCLIPose in predicting extension keypoints, we
curated real-world datasets for ice hockey and Lacrosse. We significantly outperform existing top-
down methods on these datasets (by 4.36% and 2.35%, respectively). Additionally, we achieve a 3.8%
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improvement over prior top-down networks on the CrowdPose dataset. This shows TokenCLIPose’s
flexibility to predict unseen keypoints within the bounding box as well. Future work will focus on
curating and training more extensive and diverse datasets for human and extension pose estimation
tasks.
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A Appendix

In this appendix, we provide more qualitative results on our ice hockey and Lacrosse datasets.
Furthermore, we provide a quantitative comparison with a multimodal network ([18]).

A.1 Comparison with Multimodal Pose Estimators

To investigate the effectiveness of our technique of leveraging text with existing multimodal methods,
we compare TokenCLIPose’s performance with the multimodal counterpart LAMP [18]. Though
LAMP does not follow the top-down approach, it is the only network that uses language for 2D
human pose estimation. Thus, we compare and highlight the results in Table 8. As shown in the
table, it is evident that TokenCLIPose outperforms LAMP on the CrowdPose dataset by 4.8%. This
corroborates our claim that leveraging text as supervisory signals to guide image features provides
better performance than aligning image features to the text tokens.

Table 8: Comparison with LAMP on CrowdPose dataset

Method Input Resolution AP AP50 AP75 APE APM APH

LAMP [18] 512 × 512 71.4 90.3 77.1 77.9 72.1 64.2

TokenCLIPose 384 × 288 76.2 93.9 82.4 83.3 77.4 66.1

A.2 Qualitative Results

We showcase additional qualitative results on our ice hockey dataset visualizing the effectiveness
of our approach. Furthermore, we also demonstrate the generalization capabilities of our model in
transferring to a Lacrosse dataset. The impact of language is visible in our model’s robustness to
domain changes.

To further illustrate the effectiveness of our approach, we present additional qualitative results on the
ice hockey dataset in Figure 5. Furthermore, we demonstrate the model’s generalization capabilities
by achieving strong performance on a Lacrosse dataset, highlighting the impact of language on the
model’s robustness to domain changes.

(a) ice hockey (b) Lacrosse

Figure 5: Qualitative Results of TokenCLIPose for the extension pose estimation task on our ice
hockey and Lacrosse datasets. We plot the pose of extensions outside the cropped image to understand
how TokenCLIPose works.
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B Broader Impact Statement

Our work provides a new way to reconsider the pose estimation task to predict out-of-bounding
box keypoints. This improves our understanding of why joint hockey stick pose prediction along
with player pose is difficult for existing top-down networks and presents one way to mitigate the
issues. This understanding should enable the application of top-down solutions for multi-instance
pose estimation which encounters similar issues. Furthermore, accurate stick pose prediction implies
that hockey teams can make more data-driven decisions to improve their teams’ performance without
incurring additional overhead expenses. This also implies that the use of invasive technology such as
infrared sensors can be avoided to a large extent to robustly analyze players and teams.

This can be leveraged in various domains where humans closely interact with objects, such as
shoveling, where it could be used to study fatigue and biomechanics. Furthermore, as shown in our
experiments on the CrowdPose dataset, TokenCLIPose also reliably predicts the pose of a human
when there is high human-human interaction. Hence, this can be used for pose estimation in highly
crowded scenarios, such as surveillance and monitoring people in crowds.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We demonstrate and reason out the claims that we make in the abstract by
rigorous quantitative and qualitative experimentation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]
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Justification:
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper contains no theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We specify the training and model details explicitly.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do work with an institution which has full access to our work. However,
with their permission, we could release the dataset and models soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present all the experimental details necessary for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Following prior works in 2D pose estimation, we do not report standard
deviations but clearly mention the evaluation metrics and report our performance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the GPU that we run the experiments on and all other details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work is strictly restricted to 2D pose estimation which is mainly used for
scene understanding, activity recognition and sports analysis. Hence, we do not see any
negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets that we utilize, apart from the ones we created are all benchmark
datasets who are cited properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We clearly mention how we curate our datasets and create our models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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