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Abstract

Over the years, more and more untrained text
similarity metrics have emerged in a context
where tasks are becoming increasingly numer-
ous, such as text summarization, story writ-
ing, or translation. Compared to trained met-
rics, they are independent of a training set and
must perform well in any context. Therefore,
it becomes increasingly important to compare
these metrics in order to clearly identify which
ones perform the best (Colombo et al., 2022b).
In this paper, we focus on the task of Ma-
chine Translation (MT) and benchmark the
sentence-level correlation of the main existing
metrics with human scores, using the WMT22
(World Machine Translation) dataset.

1 Introduction

The automatic evaluation of Machine Translation
(MT) has posed a significant challenge in recent
years. Over the past decade, there has been a
growing recognition of the importance of develop-
ing reliable metrics that can accurately assess the
quality of MT output. In response to this need, the
Workshop on Machine Translation (WMT) was
established in 2006, providing an annual forum
for researchers to collaborate and share their lat-
est findings on MT evaluation.

One of the key features of the WMT is its com-
petitions, which focus on various aspects of MT,
including the development of automatic metrics
that can effectively assess the quality of MT out-
put. These competitions require participants to
submit their automatic metrics, which are then
evaluated against human judgments to determine
the best-correlated scores.

Despite the growing interest in automatic eval-
uation for MT, this remains a challenging issue.
The development of reliable metrics that can ac-
curately assess the quality of MT output continues
to be an active area of research. The WMT and

similar initiatives have played an essential role in
advancing the field, providing a platform for re-
searchers to share their latest findings and collab-
orate on the development of new evaluation tech-
niques.

2 Problem Framing

2.1 Choice of the dataset
We focus our study on the WMT22 database,
which provides sets of translations performed
by Natural Language Generation (NLG) systems,
from a source language (sl) to a target language
(tl). We dispose of three pairs of sl-tl languages as
illustrated in Figure 1.

For each of these three pairs, we have access to
two databases thanks to the Google MQM Human
Evaluation GitHub https://github.com/
google/wmt-mqm-human-evaluation
(Freitag et al., 2021a), which proposes all our
variables of interest:

• ”Candidate List” database: translations
candidates from different NLG systems,
source sentences, and reference translations
established by experts. Note that for each
candidate translation, there is only one ref-
erence translation. We also have access to
the domain and the segment to which belongs
each source sentence.

• ”Candidate Correction” database: lists all
errors made by NLG systems; several hu-
man experts has annotated for each candi-
date translation the translation errors, indicat-
ing for each error its type and severity, i.e.
whether it is a significant error or not.

2.2 Gold references
One of the first criteria to consider when evaluat-
ing untrained metrics is their correlation with hu-
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SL - TL # samples # segments
English-German 32190 2027
English-Russian 32348 2027
Chinese-English 35188 1875

Figure 1: Number of samples, number of segments and
average score for each couple source language - target
langage

man judgment. The WMT22 data allows us to as-
sign a human score to each candidate translation of
the considered systems by calculating the MQM
(Multidimensional Quality Metrics) scores which
aggregates all errors identified by human experts:

MQMhyp = −
∑

error∈Errors

werror (1)

The scale of weights per type of error comes
from the WMT21 contest. Two summary tables
from (Freitag et al., 2021b) list them exhaustively
in Figures 2 and 3.

Figure 2: en-de and zh-en : Google’s MQM error

Figure 3: en-ru : Unlabel’s MQM error

2.3 Visualisations

Figure 4: The majority of translations performed
by the systems were assigned the maximum score,
namely 0 (no errors identified by a human expert).
Only a small proportion of candidate translations
multiply errors: for example, for the English-
German pairs, 5% of sentences have a score lower
than -5. For the Chinese-English and English-
Russian pairs, 10% of candidates have a score
below -6 and 25% have a score below -2. Fig-
ures 5 and 6 shows the distribution of the average

score per segment and per domain respectively.
Overall, the scores are better for the pair English-
German, with a global mean of -0.75, that is co-
herent with their linguistic proximity. In com-
parison, the two other pairs English-Russian and
Chine-English show an average score of around -
1.8. Finally, candidate sentences belonging to the
domain of conversation are rated higher than sen-
tences in the other domains, especially the social
one.

Figure 4: Distribution of the human score for each pair
source-target language and quantiles of level 5%, 10%
and 25%

Figure 5: Distribution of the average segment score for
each pair source-target language



Figure 6: Average score per domain for each pair
source-target language

In what follows, we build a benchmark protocol
to rank the performance of the existing metrics in
MT, considering several criteria all related to cor-
relation with those human scores. The structure of
the dataset naturally leads to study this correlation
at sentence-level.

3 Experiments Protocol

3.1 Choice of the metrics
The metrics used for our work are gathered in Fig-
ure 7. They were choosen among the plethora of
metrics which has been developed these last 20
years to address the automatic evaluation of trans-
lation, but more generally of text generation tasks
commonly identified in NLG, including summa-
rization, data2text generation or story generation.

Historically, the first developed metrics aimed
at comparing system and reference translations
based on surface forms. One strategy is
to study the co-occurrence statistics based on
word/character n-gram overlaps and was first in-
troduced by (Papineni et al., 2002). Their mea-
sure, BLEU, remains today a dominant metric
for MT research as it has been shown to cor-
relate reasonably well with human assessments
while staying relatively intuitive, easy to compute
and language-independant (Post, 2018). However,
BLEU is a geometric mean of unigram to n-gram
precisions: any candidate translation without a n-
gram match has a per-sentence BLEU score of
zero. Therefore, it is a measure that does not work
reliably well at sentence level. With methods sim-
ilar to BLEU, other metrics were then developed.
For instance, ROUGE (Lin, 2004), a recall-related
measure relying on n-gram overlaps too, initially
designed for summarization but adapted for MT
tasks through some of its variants, like ROUGE-
L or ROUGE-S (Lin and Och, 2004), relying
on longest common subsequence and skip-bigram

co-occurrence statistics respectively. Other met-
rics include METEOR (Lavie and Agarwal, 2007),
chrF (Popović, 2015), a character n-gram F-score,
and its variant chrF+/++ (Popović, 2017) adding
short word n-grams (unigrams and bigrams).

Another strategy, alternative to the n-grams, is
to compute an edit distance between candidate and
reference translations : WER (Nießen et al., 2000)
and TER (Snover et al., 2006) are some examples.
One of the main weaknesses of all of these text-
based metrics is that they do not take into account
synonyms and paraphrases. Thus, a candidate hav-
ing the same meaning of its related reference but
with distinct surface forms will be poorly scored.

To tackle this issue, another class of metrics
has been developed more recently, comparing sys-
tem and reference texts based on semantics by
relying on words embeddings. These metrics
can use static embeddings (not included in the
present paper) such as word2vec, or contextual-
ized embeddings (CE), like the BERT-based met-
rics: BertScore (Zhang et al., 2019), MoverScore
(Zhao et al., 2019), DepthScore (Staerman et al.,
2021) and BaryScore (Colombo et al., 2021c).
Such metrics combine contextualized representa-
tions with a distance measure and demonstrated
strong generalization capability across tasks.

N-gram based Edit based C. Embedding
BLEU, Sacre BLEU MOVERScore

ROUGE 1, ROUGE L WER DEPTHScore
ROUGE S4, METEOR TER BARYScore

chrF, chrF 1, chrF++

Figure 7: Set of the 14 metrics retained

3.2 Choice of the parameters

For each metric, diverse parameters have to be
chosen adequatly for allowing legitimate compar-
isons between them.

• Preprocessing schemes User-supplied ref-
erence pre-processings like tokenization and
normalization schemes have a large effect
on scores. For illustration, during many
years, BLEU scores between papers could
not have been directly compared because of
those implicit pre-processings. Quite re-
cently, Sacre BLEU (Post, 2018) has been
designed to settle upon one common BLEU
preprocessing-scheme used by the WMT. In



the paper, we consider both the original im-
plementation of BLEU and Sacre BLEU to
look at the eventual gaps in the results. Over-
all, a basic tokenization has been applied,
including a convert to lowercase and for
ROUGE metrics, a Porter stemmer procedure
that has shown to produce better correlation
with adequacy (Lin and Och, 2004).

• Parameter n for the n-grams We choose
n = 1 for all our n-gram based metrics, to
produce more consistent results at sentence
level. For chrF, we fix the parameters to their
values by default : the character n-gram or-
der to 6 and β to 2. With chrF 1, we modify
the value of β to 1 (equal weight put on re-
call and precision) and with chrF++, a word
bigram is added.

• Pre-trained model Embedding-based met-
rics with Neural Networks are obviously de-
pendant on the choice of the pre-trained
model. Thus, and as put forward in (Colombo
et al., 2021c), it is essential to select one sin-
gle model in order to produce reliable results;
here, we choose the BERT-base-uncased one.
Note that fine-tuning BERT representations
on datasets like NLI or MultiNLI is possible
and would conduct to slightly better results as
it was shown in (Zhao et al., 2019; Colombo
et al., 2021c).

• Distance measure Each of the BERT-based
metrics involve a step using a measure of
(dis)similarity between the embedded ref-
erence and candidate sentences. For both
BaryScore and DepthScore, the Wasserstein
distance is considered (even if in Staerman
et al., 2021 (DepthScore), the AI-IRW depth
is considered). For MoverScore, a Word
Mover Distance (WMD) is computed be-
tween the two sequences of n-gram embed-
dings of the reference and the candidate. Fol-
lowing the conclusions of (Zhao et al., 2019)
finding better results when considering uni-
grams, we choose n = 1 (same choice as the
n-gram metrics)

3.3 Choice of the criteria

In light of the various observations highlighted in
the visualization section, we have established a list
of criteria to evaluate different metrics:

• Domain Coverage (DC): Does the metric per-
form well for translating sentences from var-
ious domains (social, e-commerce, conversa-
tion, news)?

• Bad Quality Detection (BQD): Does the met-
ric effectively detect poor-quality samples
(i.e. those with the lowest gold scores)?

• Segment Level Correlation (SLC): Does the
metric accurately identify the overall quality
of a segment (i.e., is its average score per seg-
ment well correlated with the gold average
score per segment)?

For each of these three criteria, we restrict the
data to a subset of interest: the α% least well-
rated samples for BQD, samples from a specific
domain for DC, and all aggregated data at the seg-
ment level for SLC. For each criterion, we deter-
mine a rank for each metric based on its correla-
tion with the gold score (Pearson, Kendall, Spear-
man measures).

Considering all of these criteria allows us to
obtain a set K of rankings. In order to aggre-
gate these rankings to obtain a final ranking, we
rely on (Colombo et al., 2022a) and specifically
use the Borda Count technique. Conceptually, this
method aggregates ranks as follows:

BordaRanks = argsort(
C∑
c=1

argsort(K1,c, . . . ,KN,c)))

(2)
where Ki,c is the correlation betweeen the ith

metric score and gold score for criterion c. Un-
like the Kemeny consensus, which proves to be an
NP-hard problem, the Borda count is an effective
alternative in terms of computational aspects.

4 Results

Figure 12. For the pair of English-German, we
obtained the different ranks of the metrics (from
2 to 15) for each of the three criteria. We see
that BERT metrics perform reasonably well rela-
tively to the others as they are often ranked among
the top 5 for each criterion (materialized by the
green area leftside). This result is not surprising
as the pre-trained BERT metrics are among the
new wave of automatic metrics allowing to han-
dle more robustly synonyms and focusing more
and better on the general meaning conveyed by the
sentences.



Figure 8: Ranks of each metric along the different cri-
teria – English/German pair

Figure 13. The rankings over the criteria are
then aggregated to produce a final ranking of our
14 metrics, here still for the pair English-German.
The results for the other pairs are available in
the appendix. In all the three couples of sl-tl,
the pre-trained BERT metrics outperform all other
baselines. Traditional metrics like BLEU, its ex-
tension METEOR, and ROUGE 1, show quite
good performances relatively to the others, while
edit-based metrics appear less suitable, especially
WER, historically the older one (2000) and that
seems to be outdated today. Consistently with the
results of (Colombo et al., 2021c), we found that
BaryScore outperforms BertScore for all the three
pairs of languages.

Figure 9: Aggregated Ranks of each metric obtained
by Borda’s Count procedure – English/German pair

5 Conclusion

The findings of this paper demonstrate the superior
performance of the new wave of automatic met-
rics that rely on contextualized embeddings, com-
pared to traditional metrics, in assessing the qual-
ity of Machine Translation output. Specifically,
the study revealed that these metrics outperformed
traditional metrics in terms of their sentence-level
correlation with human scores, as evaluated on the
WMT22 dataset.

More generally, these results are know for not
only Machine Translation but also other natu-

ral language generation tasks (Colombo et al.,
2022c; Chhun et al., 2022). The generalization
capabilities of contextualized embeddings have
been demonstrated across multiple NLG branches,
highlighting their potential to improve the evalua-
tion of NLG systems beyond just Machine Trans-
lation.

However, there is still much to be explored in
the use of these metrics in the context of natu-
ral language generation. Future research should
aim to investigate the performance of these metrics
across a broader range of NLG tasks (e.g, condi-
tionnal generation (Colombo et al., 2019, 2021b),
multimodal learning (Garcia et al., 2019; Colombo
et al., 2021a) and datasets, to further validate their
effectiveness in assessing the quality of NLG out-
put. Moreover, there is a need to explore the po-
tential of combining these metrics with other eval-
uation techniques, such as human evaluation, to
provide more comprehensive and accurate assess-
ments of NLG systems.
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A Results for the Chinese-English pair

Figure 10: Ranks of each metric along the different cri-
teria – Chinese/English pair

Figure 11: Aggregated Ranks of each metric obtained
by Borda’s Count procedure – Chinese/English pair

B Results for the English-Russian pair

Figure 12: Ranks of each metric along the different cri-
teria – English/Russian pair

Figure 13: Aggregated Ranks of each metric obtained
by Borda’s Count procedure – English/Russian pair


