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Abstract

In this paper, we propose a method to enable real-time
interaction between the projection contents and speaker
through detecting and recognizing meaningful human ges-
tures from depth maps captured by depth sensor, making
projection screen as a kind of touch screen. Considering
that depth noise and serious occlusion may ruin the con-
struction of skeleton, our hand trajectory is derived from
Potential Active Region. To cope with their inter-class and
intra-class variations, hand trajectory is temporally seg-
mented into movements, which are represented as Motion
History Images. A novel set-based soft discriminative mod-
el is learned to recognize gestures from these movements. In
addition, as it is a real-time system, a complexity reduction
method is employed. The proposed approach is evaluated
on our dataset and performs efficiently and robustly with
90% correct recognition rate.

1. Introduction
Recently, gesture recognition has been attracting a great

deal of attention as a natural human computer interface, s-
ince it allows users to control or manipulate devices in a
more natural manner through intentional physical move-
ments of figures, hands, arms, face, head, or body. So far,
numerous studies [10][16] have been conducted on gesture
recognition for human computer interaction, especially for
hand and arm gesture recognition. Based on these technolo-
gies, a number of recognition applications are developed,
including sign language recognition, game controlling, nav-
igating in virtual environment, etc. In this paper, we present
an effective and efficient arm gesture recognition algorith-
m that enable natural interaction between speaker and pre-
sentation contents. During presentation, speakers often s-
tand in front of the projection screen at a distance from the
machine with projection contents. It is more natural for s-
peakers to remote control the page flipping, scrolling and
clicking by arm gestures. Considering the potential light
influences caused by projector on the color images, depth
maps captured during presentation are employed for ges-

Figure 1. Framework of proposed approach.

ture recognition in our work. Fig. 1 shows the framework
of proposed approach. In the framework, human body is
segmented from noisy depth maps, and then potential active
regions (PAR) are derived from head position for meaning-
ful gesture detection. Once the hand is observed in the po-
tential active region, its trajectory will be recorded and de-
composed to a series of movements. (see green box in dash
line). These movements are represented as Motion History
Images (MHI) and assembled to a labeled gesture by utiliz-
ing proposed set-based soft discriminative model.

As depth data is noisy, background suppression tech-
nique is used to segment human body from background.
The location and size of human body are determined by
searching a proper bounding box in the generated human
body’s depth map. Considering that human body may be
incomplete in that bounding box because of occlusion or
limited view angle of depth sensor, head detection is applied
for estimating the size of the complete human body. How-
ever, normal method using face to detect head is impossible
in presentation since speakers may turn their faces to the
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Figure 2. Five gestures (”click” is shown in depth since it is a ges-
ture vertical to the plane).

side (not facing the sensor) and skin color is also changed
due to the strong light from the projector. As a result, the
only useful cue to detect head is the depth map.

Potential Active Regions of human arms (see the boxes
beside body in Fig. 1) are adaptively determined by the lo-
cation and size of body. Intuitively, PARs are the most dis-
criminative regions. Therefore arm is only detected when
reaching in PARs, which is shown in the framework of our
system in Fig. 1. If no arm is detected in PARs, it is un-
necessary to perform recognition step in this frame or even
unnecessary to detect arm in the next few frames. That vast-
ly reduces the computational complexity. Once arm is ob-
served in a PAR, the trajectory of hand will be recorded and
decomposed to a series of movements (see the green box
in dash line), which are classified by Support Vector Ma-
chine (SVM). Offline training is not required to decompose
the trajectory. These movements are assembled into a set,
which is then labeled and understood as a specific gesture.
Considering that one misclassified movement in the set may
influence the result of gesture recognition. Original propos-
al of a set-based soft discriminative model can correct the
misclassified movement and designate a most likely gesture
label to the set. Experimental results show that this model
has a better performance than traditional one.

Our main contribution lies in three folds. First, the noise
and occlusion problems caused by depth sensor are solved
by efficient preprocessing. Second, with PAR, the compu-
tational complexity is dramatically reduced by selecting ac-
tive frames. Third, a set-based soft discriminate model is
originally proposed, which has the ability to correct mis-
classified movements. To test our method, we capture a
dataset including 5 gestures: ”up”, ”down”, ”go”, ”back”
and ”click” (see Fig. 2).

The rest of this paper is organized as follows. Relat-
ed work is introduced in section 2. Section 3 presents the
proposed method and the experimental results in section 4
demonstrate the efficiency of the proposed method. Section
5 concludes this paper and gives the future directions.

2. Related Work
In the last decade, most of recognition algorithms are de-

signed for the color images captured by monocular camera
sensors. One challenge of the color image based recogni-
tion is how to efficiently segment the object from the back-
ground. In order to obtain foreground silhouettes of ob-
jects, most of the recognition algorithms are restricted to
pure and static backgrounds. For example, public dataset
KTH human motion dataset [12] and Weizmann human ac-
tion dataset [1] both record human actions under relatively
static backgrounds. The rapid development of depth sen-
sors open up the possibilities of dealing with cluttered back-
ground by providing depth information. Even though, depth
sensors like Kinect [14], Time of Flight camera [5] or stereo
camera [15] still present two challenges: noise and occlu-
sion. Noise decreases the quality of background subtraction
mainly because of the limited measurement accuracy of the
depth sensor. Occlusion occurs when there is an object (e.g.
desk) in front of human body. It will ruin body detection be-
cause part of the human body is blocked. This is also a main
problem when adapting monocular camera. What is worse,
Kinect sensor regards black objects, such as black trousers
or black hair, as occlusions due to its generation principle.
To overcome the occlusion problem, some approaches em-
ploy the location of human face to indicate the location of
human body. Face detection is usually implemented as the
first step to detect human body. For example, Wang et al.
[18] locate the face before obtaining skin model from face
and use it to detect human hand. As stated before, they can-
not work well in presentation due to the variant directions
of face and abnormal skin color, which is influenced by pro-
jector light.

When equipped with depth sensor, many researchers
make effort to compute 3D joint positions of human skele-
ton. Shotton et al. [14] provide a rather powerful human
motion capturing technique. There are also many action
recognition works start directly from human skeleton. For
example, Jiang et al. [17] track 20 joint positions by the
skeleton tracker proposed by [14] and use local occupan-
cy pattern to represent the interaction. Sadeghipour et al.
[11] also directly use the 3D joint positions of human skele-
ton for gesture-based object recognition. Both of them use
Kinect as the depth sensor. When referred to the other
depth sensors, robust and fast method has not been present-
ed yet. That means, methods in [17] and [11] are restricted
to Kinect sensor. Besides, distance from human and Kinect
in both of their datasets are fixed while in a normal presen-
tation, speakers walk around. Therefore, to make our sys-
tem more natural for interaction and more general for other
stereo sensors, skeleton are replaced with silhouette. By ac-
cumulating the silhouettes in PARs, MHIs are generated.

PAR is a spatial region (where), the generation of MHI
still asks for a temporal region (when). In another word, the
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start and end of a gesture in a video sequence should also
be determined. Videos in most published 3D datasets are
readily segmented into sequences that contain one instance
of a known set of action labels. For example, Sadeghipour
et al. [11] capture the 3D Iconic Gesture dataset and seg-
ment the video by the moment when subject retracting their
hands back to the rest position, so does NATOPS Aircraft
Handling Signals Database captured by Song et al. [15].
Different from their works, trajectory decomposing is em-
ployed to automatically segment the video in our approach
to provide a more natural interaction.

As we know, representation of suitable feature and mod-
eling of dynamic patterns are the two main important is-
sues. In our work, MHI serves as the representation of the
movement in the action recognition framework according to
the taxonomy summarized by Bobick [2] in an early survey.
Similarly, 3D low-level features are deeply studied in recent
years. Most of them are extended from normal 2D features
such as [9] (3D Harris corner detector), [20] (3D SURF de-
scriptor), [8] (3D HOG descriptor) and [13](3D SIFT de-
scriptor). However, these local featurLes are not discrimi-
native features in textureless depth maps. To assemble low-
level movements into a gesture in the proposed framework,
generative model and discriminative model are the main t-
wo temporal state-space models. Generative model learns
to model each class individually and always assume that the
observations in time are independent, e.g., Feng et al. [4]
and Weinland et al. [19]. Discriminative model is trained
to discriminate between action classes and model a condi-
tional distribution over action labels given the observation.
Jordan et al. [7] compare discriminative and generative
learning as typified by logistic regression and naive Bayes.
Our gesture recognition model belongs to the discriminative
model.

3. Method
In our framework, the background is firstly suppressed

from noisy depth maps, and then PARs are derived from
head position for meaningful gesture detection. The gener-
ation of PARs and the segmentation of the hand trajectory is
to determine where and when to generate MHI in the video
sequence. Then, a soft discriminative model is originally
proposed to assemble them into one gesture. In addition,
with hand detecting in the PARs, the complexity of the sys-
tem is vastly reduced.

3.1. Background Suppression

In presentation, touching the screen while performing
gestures is a natural way to control the projection contents.
However, measurement accuracy of the depth sensor is lim-
ited. It is difficult to segment objects from the background
when the depth of objects is too close to that of background.
As the result, even if the depth of background has been cap-

Figure 3. (a) Results of improved background suppression method.
(b) Method to obtain the size and location of head. (c) Potential
active regions for two arms. (d) Distance map using chamfer dis-
tance.

tured, segmenting arms from screen is impossible by back-
ground subtraction techniques. It is worth noticing that the
depth value of each pixel in the background is approximate-
ly Gaussian distributed with time going on, and the depth
value at a fixed position lies in a certain range with a high
probability. When the probability of the depth value is be-
low a threshold, the corresponding point is processed as hu-
man body. Fig. 3 (a) shows the improvement.

3.2. PAR Generation and Hand Trajectory Decom
position

The size and location of the whole human body is nec-
essary for PAR generation. Therefore, a bounding box con-
taining the whole body is constructed. The segmented depth
map is scanned along vertical lines from left to right while
recording the proportion of body pixels in the line. Loca-
tion of the left border of bounding box is determined when
the first time the proportion reaches a threshold. Locations
of other three borders are searched in a similar way.

Notice that human body in such bounding box may be
incomplete because of the occlusion or the limited view an-
gle of sensor. Size of head is thus employed to estimate the
size of the whole body according to the normal proportion
of human figure. As we know, physical width of human
body varies with height. In generally, the width of neck is
the smallest while that of shoulder is the largest. Inspired by
this observation, pixels’ values are summed along horizon-
tal direction in the body bounding box. A curve is drawn
to show the proportions of human pixel in each horizontal
line (see Fig. 3 (b)). After smoothing the curve by media
filter, location and size of head are obtained by detecting the
largest width variation. Two PARs are then constructed for
left and right arms. Since PARs cover the most likely arm
movement region, they can serve as the constraint for hand
position tracking and adaptive detection mode transfer. The
detection mode transition will be introduced in details in the
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Figure 4. Decomposing the movement trajectories. The start and
end points in each segmentation are interest points. 10 movements
are detected in this example.

section 3.3.
A chamfer distance map is derived when hand enters

the PAR. As the farthest endpoint from the edge of PAR,
hand is detected and tracked in that region before leaving
(see Fig. 3 (d)). However, it is difficult to recognize ges-
tures directly from the trajectories of hand since our dataset
has the following two challenges. First, the dataset has s-
mall inter-class variances. Gesture ”up” is very similar to
”down” while the trajectories of ”go” and ”back” are simi-
lar if not considering the order of frame. Second, it also has
large intra-class variances. There are variant ways to act the
same gesture by different subjects. Even the same subject
performs the same gesture differently each time. To recog-
nize gestures from the complex trajectory, a method is pro-
posed to decompose the trajectory into movements, classify
the movements and then assemble them to form a mean-
ingful gesture. See from Fig. 4, the subject successively
performs four actions in one video. Among the complex
trajectory, interest points are required to help segmenting
it into movements. As we know, interest point is the sud-
den change of trajectories in video sequence. Based on that
common sense, the method to search the interest points is
introduced as follows.

Method of Least Squares (MLS) is used to detect the in-
terest points on the trajectories. The MLS assumes that the
best-fit curve of a given type is the curve that has the mini-
mal sum of the deviations squared (least square error) from
a given set of data. The type of straight line y = ax + b is
employed to approximate a given set of points. A new point
is determined as an interest point when deviation dn+1 of
a new point (xn+1, yn+1) is larger than a threshold dthre,
otherwise not. Our method avoids complex off-line train-
ing. So long as an interest point is found, the trajectory
is segmented, which indicates that a movement is detected
(see Fig. 4).

3.3. Detection Mode Transfer

Except defined gestures, most of the arm movements of
the speaker are meaningless to the system. If hand trajecto-
ries are far away from screen or not in the PARs, it is unnec-

Figure 5. (1) Hand is detected in PARs. (2) Hand leaves PARs. (3)
Hand leaves PARs for a long time.

essary to record the hand trajectory or recognize the gesture.
The potential hand position can be predicted from the hand
position in the previous frame. The detecting frequency can
be reduced if the hand position is far from the PAR or its
depth out of defined depth range. To adjust the detection
frequency to arm movements, three hand detection modes
are defined as ”inactive”, ”semi-active” and ”active”, and
each mode has different detection intervals k. In an inac-
tive mode, hands will be re-detected after K frames, that is,
k = K − 1. In the active mode, hands will be re-detected
in the next frame, i.e., k = 0. If the detection mode keep-
s semi-active, the interval k is linearly increases from 1 to
(K − 1).

When a hand is detected in PARs and is close enough to
screen, the mode is immediately switched to ”active” from
”inactive” or ”semi-active” mode. Otherwise, the mode
is switched to ”semi-active” mode. Since the number of
frames being detected decreases in ”semi-active mode”. It
will finally become ”inactive mode” (see Fig. 5). It should
be noted that ”active” mode is not directly changed to ”i-
nactive” mode. Because the detecting module may gener-
ate a false reject error, i.e., missing a hand in one frame.
In ”Semi-active” mode, hand can be re-detected after less
frames than in ”inactive” mode. Notice that changing mod-
e from ”inactive” to ”active” may require a relatively long
time, during which hand may have already entered the PARs
in those skipped frames. To avoid this phenomenon, an ex-
tension of PAR is generated for pre-detecting hand to ensure
the completeness of trajectory. The hand trajectory does not
include the hand detected in extension of PAR.

3.4. Feature extraction and classification

Before feature extraction, the size of PAR is normalized
to facilitate the generation of the uniform MHI, which is
used to represent decomposed movements. We adopt two
stages classification pipeline to extract global feature, i.e.,
coding and pooling. The model is trained and tested with
this feature by SVM.

Coding. The silhouettes of human arm belonging to the
same movement in PAR are accumulated to generate the
MHI, which is originally proposed by Bobick et al. [3]. In a
MHI, pixel intensity records the temporal history of motion
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Figure 6. (a) Samples of 12 classes of movements. Class 12 in-
cludes meaningless movements. Three of them are listed. (b) U-
niform rectangle spatial region. (c) Uniform semi-circle spatial
region.

at each position. The MHI of decomposed movements are
shown in Fig.6 (a).

Pooling. Designing a proper spatial region for pooling
has a significant impact on feature’s distinguishing capacity
[6]. Since arms rotate along shoulder joints, the pixel in-
tensity distributes in a semi-circle manner. Feature pooled
from the uniform spatial region like that in Fig. 6 (b) is
improper for further classification. For more effective rep-
resentation, we choose the spatial regions shown in Fig. 6
(c). The blocks in the semi-circle region are represented
as R1, R2, ..., RN . The final global feature is denoted as
V = v1, v2, ..., vN and Im,n is the intensity of pixels at the
position (m,n) in the MHI. vi is computed as follows,

vi =
1

|Ri|
∑

(m,n)∈Ri

Im,n, i = 1, 2, . . . , N (1)

where |Ri| represents the pixel number in this block.
Classification. SVM is applied for classifying move-

ments. The standard SVM divides two classes by clear gap
that is as wide as possible. The classifier predicts new ex-
amples to a category based on which side of the gap they
fall on. 12 classes of movements are designed and shown
in Fig. 6 (a). The formal 11 classes are meaningful move-
ments while class 12 is meaningless. A multi-class SVM
model is trained when given the manually labeled training
data. In practice, ”one against one” strategy is applied for
multi-class SVM and a distribution on all the labels for each
movement is the output.

3.5. Setbased Soft Discriminative Model

As pointed out that the intra-class variances of our
dataset is large since one gesture may have multiple rules
to be assembled. In the discriminative model, the rules and
their corresponding probabilities can be learned from train-
ing data. Movement sets, both meaningful and meaningless,
are considered as rules in our work. Suppose x is the move-
ments set (observation) and y is the gesture label (hidden
state). Normal Discriminative classifiers model the posteri-
or p(y|x) directly. Suppose each movement in the set has
a probability Pw mov to be wrongly classified. Therefore,

the gesture consisting of movements in such set has a prob-
ability of Pw ges = 1− (1− Pw mov)

ns to be wrongly rec-
ognized, where ns is the number of movements in one set.
Through Pw mov may be small, Pw gescan be quite large so
that it can hardly be tolerated in real-time applications.

In our work, Pw mov is relatively small by the proper
feature and classifier. Less promotion can be further made.
For this reason, a soft discriminative model is proposed to
directly decrease the Pw ges. We define m as the move-
ment with a distribution on all labels, which are denoted as
M . pMm represents the probability of movement m classified
to class M . Ms represents the trained movement set, also
known as assemble rule, which serves as observation. Gj is
the gesture label and serves as hidden state. The probability
p(Gj) is computed as follows:


Msi =< Mi1,Mi2, . . . ,Mini > i = 1, 2, 3 . . .

p (Msi) =
ni∏
k=1

pMik
mk

p (Aj) = max
i

ni

√
[p (Aj |Msi)× p (Msi)]

(2)
where ni-th root is used for normalizing since the number
of the movements in one set is variant.

Actually, Eq. 2 replaces traditional x with a set Ms and
fully use the distribution of classification output pMm . Each
rule Msi is evaluated on subsets of a given movement se-
quence along time. The Ms can be regarded as a sparse
joint distribution of the movement in sequence. It provides
a soft observation of the discriminative model. The detailed
implementation is described by Algorithm 1 and Fig. 7
gives a simple example of this model.

4. Experiment
Dataset and Correct Rate. We collect a new dataset of

interactive presentation gestures that contains five classes:
up, down, go, back and click intuitively corresponding to
the up, down, left, right and enter in the keyboard. Part
of the assemble rules of gestures is shown in Fig. 8, in
which movement sets are represented in the form of MHI.
The number of movements in one action and the appearance
of the same class of MHI are variant, since different subjects
act in a quiet different way.

In our dataset, each gesture was performed by three sub-
jects for five times and at two different light conditions: pro-
jection light and normal light. Each subject performs three
times at a normal speed (4 second/gesture) and the other t-
wo times at a fast speed (1 second/ gesture) under each light
conditions. The distance between Kinect and subjects is
1.5-2.5m. The depth maps were captured at about 30 frames
per second and the size is 640× 480. In addition, the PARs
are normalized to 120 × 260. Altogether, the dataset has
3(subjets)×5(times)×5(actions)×2(illuminations) =

5
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1 Train k rules Ms = {Ms1,Ms2...Msk};
2 repeat
3 Add a new movement mn+1to a queue of

movements;
4 for rule index i = 1 to k do
5 Compute the probability p(Msi) for all the

sets with equal length ni in queue of
movements;

6 Multiply p(Msi) by posterior p(Gj |Msi);
7 Normalize p(Gj);
8 end
9 Choose the max p(Gj);

10 if p(Gj) > threshold then
11 Detect an action and label it as Gj ;
12 Delete the movements from queue;
13 else
14 No action is detected;
15 end
16 until no movement is detected any more;

Algorithm 1: Gesture recognition from movement sets

Figure 7. Suppose the priori p(up| < 1, 2 >) = 0.7 and
p(up| < 1, 5 >) = 0. See from the table, this movement set
has the largest joint probability on < 1, 5 > after classification,
and has no chance to be labeled as ”up”. However, in soft dis-
criminative model, this set still has the probability of 0.1255 to be
labeled as ”up” when < 1, 2 > is chosen.

150 gestures, 30 samples for each gesture. To test the
classification of movement and the recognition of ges-
ture, 60 gestures (3(subjets) × 2(times) × 5(actions) ×
2(illuminations)) serve as training data and the rest serve
as test data. The dataset are labeled manually before train-
ing and test. The confusion matrix of 12 classes of move-
ments is shown in Table 1. The confusion matrix of 5 class-
es of gestures is shown in Table 2. The correct classifica-
tion rate of movement achieves 95.23% in 5-folds cross val-

Figure 8. Samples of five gestures performed by 3 subjects.

Table 1. Confusion matrix of 12 classes of movements in the test.
Our method achieves a correct recognition rate of 95.23% in 5-
folds Cross Validation.

1 2 3 4 5 6 7 8 9 10 11 12
1 .84l .02 .02 .02 .04 .06
2 .85 .07 .08
3 1
4 .91 .04 .05
5 1
6 .93 .07
7 .89 .05 .06
8 1
9 1
10 1
11 .06 .06 .05 .83
12 .01 .99

Table 2. Confusion matrix of 5 classes of gestures. None mean-
s no gesture is those frames. Achieve a correct rate of 90.00%
excluding ”None”.

Up Down Go Back Click None
Up 16 2
Down 17 1
Go 1 16 1
Back 15 3
Click 18
None 2 1

idation and the correct recognition rate of gesture achieves
90.00% in the test.

Complexity reduction. In our work, the gesture detec-
tion complexity adapts to the arm’s movement, that is, the
detection frequency is controlled by detection mode derived
from PARs and hand position in the previous depth map. In
the dataset, 18 videos are captured for testing. When col-
lecting the dataset, one subject successively performs five
different gestures in one video, and each video contains 600
frames. Among these depth frames, only partial of them
are selected as active frame for gesture detection. As the
results, the computing complexity is vastly reduced, and it-
s reduction ratio is proportional to the number of inactive
frame. Fig. 9 (Top) shows the active frame ratio over all
frames of 18 videos. The active frame ratio is around 50%,
which means that half of depth frames will not calculated
for detection. When speaker spend more time on presenta-
tion instead of interaction, the active frame ratio will further
reduced.
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Figure 9. Top: active frames numbers of all the 18 videos. Bottom:
interval (blue line) and computational complexity curve of one of
our samples. Red line represents our computational complexity
while green dash line represents normal computational complexity
(Best view in color).

Table 3. Computational complexity in different detection mode. n
is the number of pixels in PARs. Chamfer distance maps can be
executed in linear (O(n)) time.

Detecting Mode Processing Frequency

Inactive mode Detecting (O(n)) Every 10 frames

Semi-active mode Detecting (O(n))
Every k frames
(1 < k < 10)

Active mode

Detecting (O(n))
+ Recording (O(n))
+ Feature
extraction(O(n))

Every frame

Table 3 gives the computational complexity in differen-
t detection mode. Fig. 9 (Bottom) shows the complexity
from one of the 18 videos, which containing four gestures.
At the beginning, hand is detected every 10 frames in an
”inactive” mode. Once hand is detected in the PARs and is
close enough to the screen, the detecting mode is switched
to ”active”. If the hand leaves the PARs or become far away
from screen, the number decreases gradually. See from Ta-
ble 4, the active frame ratio reduces to 46.47% and the cor-
rect recognition rate does not decrease much. This method
can be potentially used for wireless transfer of frames.

Comparison on Features. In the field of gesture recog-
nition, the trajectories of gestures are always represented as
a set of points (e.g., sampled positions of the head, hand,
and eyes) in a 2-D space before being decomposed. For
example, HoGS is a descriptor proposed by Sadeghipour

Table 4. The total frame number and correct recognition rate. (AF-
P: Active Frame Percentage. CCR: Correct Recognition Rate.)

AFP CCR

All frames 100% 90.00%
Selected frames 46.47% 85.56%

Figure 10. (a) Comparison on two features. (b) Trajectory has
problem with outliers (clothes), the straight line is wrongly con-
nected. (c) The five attributes for trajectory in our experiment.

et al. [11]. They combine this feature with SVM to solve
the challenging problem of gesture-based object recogni-
tion. Though trajectory is obtained by tracking hand in the
first place, MHI is our final feature. The reason lies in two
folds. First, compared with sensitive point detection, the
method to generate MHI is more robust since it simulates
original silhouettes. Second, the MHI implicitly represents
the direction of movement while a trajectory of hand points
has less information of that information. To compare the
two features, an experiment using trajectory as feature is
conducted on our dataset.

As trajectories have been segmented by MLS, some at-
tributes can be extracted from the curve of segmentations
like the method in [11]. Five attributes are used: height,
width, length, orientation and center of the curve (see Fig.
10 (c)). Combined with SVM, this feature has a low move-
ment correct rate and gesture correct rate (see Table 5). As
stated above, the main reason is the sensitiveness of points
on trajectories. For example, pictures (a) and (b) in Fig.
4 are the comparisons between trajectory feature and MHI
feature. In (a), the two features have almost the same dis-
criminating power and are both correctly classified in ex-
periment. In (b), since the clothes of the subject used to
enter the bounding box and produce some outliers at the
left bottom region, trajectory fails to describe this move-
ment because of a wrongly connected straight line while the
MHI feature is correctly classified. That mainly owns to the
abundant original information the MHI feature contains.

Set-based Soft Discriminative Model. On the train-
ing data set including 60 samples, a posterior p(G|Ms) is
trained. In traditional discriminative model, Ms includes
the movement sets that occur at least once in the training
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Table 5. Comparison result. Movement correct classification rate
are computed by 5-folds CV. (DM: Discriminative Model; MCCR:
Movement Correct Classification Rate; GCRR: Gesture Correct
Recognition Rate ).

Feature Model MCCR GCRR

MHI + Semi-circle Traditional DM 95.23% 76.67%
MHI + Rectangle Soft DM 79.31% 76.67%
Trajectory Soft DM 48.32% 62.23%

MHI + Semi-circle Soft DM 95.23% 90.00%

data. New movement sets have no chance to be changed to
the nearest one in the Ms while soft discriminative model
does. That is because soft discriminative model and choose
the best one according to the distribution of movements mi

(see Eq. 2). The traditional model is also tested on the test
set including the rest 90 samples and the correct recognition
rate is 76.67%. This result shows that the correct recogni-
tion rate is limited by the scale of train set since traditional
discriminative models directly model a conditional distri-
bution over gesture labels given the observations. Besides,
our observation is set-based, some observation sets on test
set never occurs on training set. In our approach, this obser-
vation set is mapped to the one exists on the soft discrim-
inative model trained by small scale train set. After using
the soft discriminative model, the correct recognition rate is
90.00% (see Table 5).

5. Conclusions and Future Work

We propose a framework for gesture recognition and test
it in our dataset. Experimental results show that our method
is efficiency due to the detection mode transfer and robust
due to the MHI feature and soft discriminative model. In
addition, depth maps can further compressed in our frame-
work, which will enhance the efficient. To recognize ges-
ture from compressed images is our future work.
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