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ABSTRACT

Learning a global model by abstracting the knowledge, distributed across multiple
clients, without aggregating the raw data is the primary goal of Federated Learning
(FL). Typically, this works in rounds alternating between parallel local training at
several clients, followed by model aggregation at a server. We found that existing
FL methods under-perform when local datasets are small and present severe label
skew as these lead to over-fitting and local model bias. This is a realistic setting
in many real-world applications. To address the problem, we propose FLea, a
unified framework that tackles over-fitting and local bias by encouraging clients
to exchange privacy-protected features to aid local training. The features refer to
activations from an intermediate layer of the model, which are obfuscated before
being shared with other clients to protect sensitive information in the data. FLea
leverages a novel way of combining local and shared features as augmentations to
enhance local model learning. Our extensive experiments demonstrate that FLea
outperforms the start-of-the-art FL methods, sharing only model parameters, by
up to 17.6%, and FL methods that share data augmentations by up to 6.3%, while
reducing the privacy vulnerability associated with shared data augmentations.

1 INTRODUCTION
Federated learning (FL) extracts knowledge from segregated data silos into a global model, avoiding
the need to centralize the data in a single repository. The learning process is achieved through
iterations between local model training and global model aggregation. Such inherent characteristics
of decentralized training make FL highly suitable for privacy-sensitive applications like healthcare
and finance (Rieke et al., 2020; Li et al., 2020a; Nguyen et al., 2021).

The most widely used aggregation strategy in FL is average aggregation (McMahan et al., 2017),
where the local model parameters are averaged based on weights proportional to the size of the local
data. Typically, lower aggregation weights are assigned to local models trained on smaller datasets,
indicating their relatively weaker performance and lesser contribution to the global model. Never-
theless, one problem arising from such an approach is the inability to handle data scarcity, which
refers to the situation where all clients have a limited number of samples. When all clients possess
small-sized datasets, aggregating the models trained on such scarce data could become unreliable:
In Sec. 3.2, we show that in the presence of data scarcity, local models are more susceptible to over-
fitting, i.e., they fit training samples very well but struggle to generalize to unseen testing data even
if from the same distribution. In such cases, aggregating these models does not improve the global
model’s generalization ability. This, in turn, slows down convergence and negatively impacts the
performance of the global model.

The problem could become even more pronounced when the local label distribution varies, a phe-
nomenon referred to as label skew. This is a common scenario in real-world FL applications (Zhao
et al., 2018; Zhu et al., 2021). Label skew alone can lead to model bias: local models are over-fitted
by the local distribution and struggle to generalize to the global distribution. This is known as client
drift, which consequently leads to a sub-optimal global model (Li et al., 2020b; Karimireddy et al.,
2020; Luo et al., 2021). When local datasets are both small and label-skewed, local models are likely
to fail to generalize to both in-local and out-of-local distributions. Aggregating these models does
not help. It is prevalent for data scarcity and label skew to occur concurrently in the real world, such
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as when clients are edge devices collecting data only about a small group of individuals (Nguyen
et al., 2022) or within a limited geographical location (Karimireddy et al., 2021). While numerous
studies aim to address the label skew problem in FL, the feasibility of those methods when dealing
with skewed and scarce data simultaneously is still under-explored.

Table 1: Comparing existing methods to ours.
Label skew Data scarcity Privacy

Loss-based ! % !

Data-based ! ! %

Our proposed ! ! !

We categorize those FL methods into two
groups: loss-based and data augmentation-
based methods. The first set of methods aims
to regularize the local models by modifying the
local training loss to mitigate bias (Li et al.,
2020b; Shi et al., 2022; Zhang et al., 2022a; Lee
et al., 2022). However, these methods face sig-
nificant challenges when dealing with limited local data since they require a balance between local
optimization and global knowledge preservation. In Sec. 3.1, we demonstrate that the state-of-the-art
loss-based methods under-perform as data scarcity increases. The second category of those methods
proposes exchanging a global data proxy, such as a portion of raw data, aggregated data, or syn-
thetic data, along with sharing model parameters (Zhao et al., 2018; Yoon et al., 2020; Liu et al.,
2022). Although these methods tend to outperform the loss-based approaches in the presence of
data scarcity, performance improvement often comes at the cost of added privacy vulnerabilities.
For example, FedMix (Yoon et al., 2020) shares average (over mini-batches) data samples, which
may reveal sensitive information consistently embedded in the entire batch of data (as illustrated
in Sec. 3.3). As summarized in Table 1, our work, for the first time in the literature, addresses the
challenges posed by data scarcity and label skew simultaneously, while preserving data privacy.

We propose FLea, a novel framework where clients exchange features along with the model param-
eters. Features here refer to activations from an intermediate layer of the model, given the input data.
This main idea is that in deep neural networks, features not only are meaningful for classification
but also provide an opportunity to protect the privacy associated with raw data (Vepakomma et al.,
2020). In practical terms, FLea utilizes a global feature buffer that gathers feature-label pairs from
multiple clients as a global proxy to aid local training. A novel feature augmentation approach is
proposed to combine local and global features to alleviate both local over-fitting and model bias. A
knowledge distillation strategy is also applied to the combined features in order to further prevent
local model bias. To protect data privacy, features are shared by clients after applying some level
of “obfuscation”: we reduce the correlation between the features and the data, while maintaining
their classification characters via a customized loss function. Although data augmentation has been
explored in FL (Yoon et al., 2020; Guo et al., 2023), to the best of our knowledge, we are the first to
design feature-level augmentation for FL, which enhances data privacy protection.

Our main contributions are:
• The first study on a common but under-explored scenario in FL, where all the clients possess

limited and highly label-skewed data. We find that model over-fitting caused by data scarcity
is under-looked by existing methods.

• A novel framework FLea to enable privacy-protected feature sharing in FL system. FLea,
proposes an augmentation-based strategy to address both data scarcity and label skew.

• Extensive experiments with different levels of label skew and data scarcity show that FLea
consistently outperforms baselines with only requiring clients to exchange a small proportion
of the features. We also empirically demonstrate that the data privacy can be preserved from
the shared features.

2 PRELIMINARIES AND RELATED WORKS

2.1 FEDERATED LEARNING AND FEDAVG

Formally, a FL system learns a global model from a set of collaborating clients, K, with each
client k containing a local dataset Dk. A typical FL system works in synchronous rounds. At the
start of each round t, the FL server broadcasts the current global model parameters θ(t−1) to the
randomly selected subset of the clients K(t) ⊆ K. Each client k ∈ K(t) take a few optimization
steps (e.g., using stochastic gradient descend) starting from θ(t−1), resulting in an updated local
model θ(t)k . The local optimization aims to minimize the loss function L on local data Dk, i.e.,
θk = argminθ L(θ,Dk|θ(t−1)). Each round t ends with model aggregation to derive the new
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global model θ(t). The most basic and popular aggregation method, FedAvg (McMahan et al., 2017)
averages the model parameters weighted by the fraction of local data size in the clients,

θ(t) =
∑

k∈K(t)

|Dk|∑
k∈K(t) |Dk|

θk. (1)

2.2 LABEL SKEW IN FL

The above FedAvg has been shown to converge to the optimal model with local data Dk sampled
from the same distribution (Li et al., 2019), also popularly known as the IID (independent and
identically distributed) setting. However, when Dk are sampled from diverse distributions, known
as non-IID setting, FedAvg usually produces low-performing models. Label skew is a typical non-
IID FL problem for classification (Zhao et al., 2018; Zhu et al., 2021; Guo et al., 2023).

To mitigate the client drift, methods were proposed to improve loss function L. For classification,
L typically represents the cross-entropy loss between the target class and the prediction, termed
as Lclf . To compensate for missing categories in the local data, an additional regularization Fed-
Decorr (Shi et al., 2022) discovered that severe data heterogeneity leads to dimensional collapse in
FL models, prompting the introduction of regularization techniques to address this issue, Lr, can be
included. FedProx (Li et al., 2020b) regulates the discrepancy between the local and global model
parameters. FedNTD (Lee et al., 2022) penalizes changes in the logit distribution predicted by global
and local models. This penalty is applied to classes excluding the ground truth class for each sam-
ple, striking a balance between local learning and global knowledge preservation. MOON (Li et al.,
2021) leverages constructive learning to maximize the distance between low-dimensional features
and other classes, thereby improving feature learning. In addition to those methods proposing a new
term Lr, FedLC (Zhang et al., 2022a) directly re-scales the logits to derive a calibrated Lclf . This
calibration effectively mitigates classifier bias, leading to enhancements in the final global model.

Being orthogonal to a bias-agnostic loss function L, data augmentations were also developed. Zhao
et al. proposed to share a small proportion of local data globally, alongside the model parameters,
to enhance FedAvg (Zhao et al., 2018). For example, globally sharing 5% of the data yielded an
improvement of up to 20%. For ease of presentation, we named this method FedData through-
out the paper. Despite the desirable performance gains brought by FedData, collecting private
data would compromise the privacy-preservation benefits of FL. Other global proxies that are less
privacy-sensitive than raw data have been explored as alternatives. FedMix (Yoon et al., 2020) and
FedBR (Guo et al., 2023) average data over mini-batches and share this aggregated data globally,
while CCVR (Luo et al., 2021) shares low-dimensional features with the server to calibrate the
global model on the server side. These low-dimensional features are also known as class prototypes,
which are explored to mitigate local classifier bias (Tan et al., 2022b). FedGen (Liu et al., 2022)
and VHL (Tang et al., 2022) generate some random but separable data samples to aid local learning.
Although no raw information is shared by those two approaches, their performance highly depends
on the quantity and quality of synthetic data, usually yielding marginal gains over FedAvg.

The above-mentioned methods are developed to prevent the global model from diverging under label
skew, while another way to cope with this issue is to learn a personalized model per client, with the
goal of enhancing performance within their local data distribution (Kulkarni et al., 2020; Tan et al.,
2022a; Kotelevskii et al., 2022). Recently, personalized FL methods based on variational Bayesian
inference have shown promising results, supported by theoretical guarantees (T Dinh et al., 2020;
Zhang et al., 2022b; Zhu et al., 2023). However, these methods still face challenges in learning an
optimal global model.

2.3 DATA SCARCITY IN FL

Data scarcity is a common yet under-explored challenge in FL. As first observed by (Li et al., 2022)
(c.f. Finding 7), the accuracy of FedAvg and FedProx decreases as the number of clients increases
(reducing local data size). Despite the proliferation of FL methods, including the methods mentioned
earlier, most of them are evaluated on large local datsets, each possessing thousands of samples. This
leaves their effectiveness in handling data scarcity unclear. Although experimental studies target on
scarce setting (Charles et al., 2021; Zhu et al., 2023), they failed to justify if the performance gain
is from alleviating the bias or the overfitting caused by data scarify, thus lack in providing a deep
understanding. FedScale introduced the first benchmark featuring thousands of clients with limited
training data (Lai et al., 2022). However, FedScale primarily focuses on system efficiency and offers
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Figure 1: Performance of FL methods with varying label skew and data scarcity levels.

limited insight into algorithm effectiveness. Some client selection methods, such as discarding or
reducing aggregation weights for clients with limited data (Nishio & Yonetani, 2019; AbdulRahman
et al., 2020), improve overall performance while reducing communication overheads. However,
these methods may not be effective when all clients face data scarcity issues.

2.4 PRIVACY-PRESERVING FL

Although FL aims to protect privacy via gathering model parameters instead of data, studies discov-
ered that privacy can still be leaked from the parameters when malicious attacks exist (Dang et al.,
2021; Wei et al., 2020). To enhance security, homomorphic encryption, secure aggregation, differ-
ential privacy and other techniques have been developed to defend from malicious attacks (Yin et al.,
2021). These works are orthogonal to our method and can be applied in our framework. We focus
on data privacy regarding the shared features. The most related works are protecting the privacy for
the shared activations in splitting learning, where the server gathers activations to train part of the
model (Vepakomma et al., 2020; He et al., 2020). Different from those studies, we explore FL where
model training merely happens on the client side.

3 LIMITATION OF PREVIOUS WORK AND INSIGHTS

In this section, we reveal the limitations of previous work when applied to FL with scarce label-
skewed data, and provide insights to address those limitations.

3.1 EMPIRICAL COMPARISON OF PREVIOUS WORK

We use CIFAR10 and compare the global model’s accuracy on the global testing set. FedAvg is com-
pared with the best loss-based methods FedDecorr and FedNTD, and the best data augmentation-
based methods FedMix and FedData. To simulate varying label skew and scarcity levels, we split
the CIFAR10 training set into 5000, 500, and 100 samples per client containing all ten classes (IID
setting) or randomly chosen three classes (non-IID setting) (we refer the local data size as |Dk|).
More experimental details are presented in Appendix A.

The results are summarized in Figure 1. We draw the following conclusions: 1) FedAvg degrades
remarkably as data scarcity and label skew increase. Its accuracy of 75% in (a) with sufficient
IID data decreases to 56% in (c) when |Dk| reduces to 100, and drops to 60% in (d) when the data
becomes non-IID. Other methods present similar degrading trend. 2) The compared loss-based
methods can address label skew only with sufficient local data. In (d), FedDecorr improves
FedAvg by 10% and performs closely to FedData. Yet, in (e) and (f), the advantage of FedDecorr
disappears. While FedNTD consistently outperforms FedAvg, its accuracy still lags significantly
behind FedData. 3) The compared data augmentation-based methods perform well at the cost
of privacy leakage. With the internal data exchange, FedMix and FedData mitigate the bias and
improve local generalization simultaneously, leading to remarkable performance gains over FedAvg.
When the data scarcity is significant (|Dk| = 100), they notably outperform loss-based FL meth-
ods. However, it is worth considering that FedMix and FedData induce more privacy vulnerabilities
compared to loss-based method due to sharing more data related information.

3.2 EFFECT OF DATA SCARCITY

To gain a deeper understanding on the impact of data scarcity, we conduct analysis in the IID setting.
We empirically demonstrate that data scarcity can lead to local model over-fitting, and aggregating
such models will result in the degradation of the global model.
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Figure 3: Data augmentations. From (a) to (c), the privacy vulnerability is reduced. (b) is the
average of a batch of samples like (a), but if the local data contains individual context information
(e.g., (a*)), averaging over those samples cannot protect such information (e.g., (b*)). (c) shows a
feature of (a*) and (c*) shows the its reconstruction.

Figure 2: T-SNE for low-dimension features where the
colour distinguishes classes and the class separation mea-
surement DB under different numbers of training samples.

Following a previous study that visu-
alizes the model bias caused by la-
bel skew using the features from the
penultimate layer (Guo et al., 2023),
we leverage those low-dimensional
features to understand model over-
fitting. We look at one communica-
tion round where local training start
from a global model with an accuracy
of 40%. The training results are com-
pared using different amount of local
data, i.e., |Dk = 5000| and |Dk =
100|. We employ the clustering score
(Davies-Bouldin Score (DB)) to mea-
sure the separation of the features among classes (a detailed formulation can be found in Ap-
pendix A). As illustrated in Figure 2 (left), a smaller DB indicates less overlapped features. The
DBs before and after local training are summarized in the bar chart of Figure 2. It can be observed
that the gap of DB in the training set and testing set is consistently present, however the fewer the
samples (|Dk| = 100), the bigger the gap, suggesting that the over-fitting is server. Based on local
models: although features for local training set are distinguishable (small DB), the features for the
testing set are not (big DB). Consequently, after aggregation, the performance of the global model
varies, and training with 100 samples cannot enhance the global model (an increased DB). Those re-
sults uncover that data scarcity could impact the generalization of local models, yielding overlapped
features, and finally leads to under-performed global model.

As shown in the fourth group (|Dk| = 100 + 1000), with more shared data to aid local training,
the local model’s generalization is improved from the third group (a smaller gap between training
and testing set), and thus the global model’s performance is improved (a decreased DB). This also
explains why data augmentation-based methods are feasible for data scarcity in FL.

3.3 PRIVACY VULNERABILITY MITIGATION VIA FEATURE SHARING

Data augmentation-based methods may increase privacy vulnerability. As shown in Figure 5.3, raw
data and labels are shared globally in FedData while aggregated data and labels are shared globally
in FedMix. Although the average of samples in FedMix hinders the data reconstruction, it is still
privacy vulnerable, as this will release context information. Considering an application where the
client’s phone has a camera sensor problem so that each photo has a spot (see Figure 5.3(a*))),
or the client lives in a busy neighborhood and thus all audio clips have a constant background
score. Averaging over a batch of samples will not protect such context information, as shown in
Figure 5.3(b*).

To improve the trade-offs between performance and privacy protection, we propose to share features
from the intermediary layers (see Figure 5.3(c*))). We try to mitigate privacy vulnerability from
three aspects: i) reducing the feature exposure when sharing, ii) hindering the data reconstruction
from the features, and iii) increasing the difficulty of the above-mentioned context identification.

4 FLEA

FLea corrects the bias introduced by label skew and alleviates the over-fitting caused by data scarcity
by using the shared features to aid local training. In FLea, the server will maintain a global model
and a feature buffer which contains feature-target pairs from multiple clients. In the beginning, the
global model is randomly initialized and the buffer is empty. Then FLea works in a iterative manner
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Figure 4: Overview of FLea, where t-th communication round is shown.

to updates the global model and the buffer. As illustrated in Figure 4, each round of FLea starts
with synchronizing the global model parameters θ(t) and feature buffer F (t) to the selected clients
K(t). Once local training using Dk and F (t) finishes (in the first round, only local data Dk is used
for training since the feature buffer is empty), those clients send the updated model parameters θk
to the server, to be aggregated into a new global model parameterized by θ(t+1). FLea uses the
same aggregation strategy as FedAvg (Eq. (1)). Followed by that, FLea needs another step to update
the global feature buffer to F (t+1). A detailed training procedure can be found in Appendix B and
Algorithm 1. We elaborate on the main components in the procedure as follows.

Feature buffer: Let’s consider the global model parameters θ(t) to be divided into two parts at
layer l: θ(t)[: l] and θ(t)[l :]. For client k, the feature vector extracted from a data point xi ∈ Dk

is θ(t)[: l](xi) = fF
i . The feature buffer from this client is the set of pairs including target labels

and feature vectors (fF
i , yFi ). Each client randomly selects α fraction of its local data to create its

feature buffer to share with others. The server gathers those local feature buffers and merge them
into the global one F (t). Note that a client only extracts and contributes to the global feature buffer
at the round when it participates in training and the global buffer resets at every round.

Client k’s local training: Suppose client k is selected in round t, i.e., k ∈ K(t). As shown in
Figure 4, k receives the global model θk = θ(t) and the feature buffer F (t). The local data Dk

and the feature buffer F (t) are divided into equal-sized batches for model optimization, termed by
B = {(xi, yi) ∈ Dk} and Bf = {(fF

i , yFi ) ∈ F (t)}, respectively (|B| = |Bf |). The traditional
method will feed B into the model directly to optimize the model but we propose to augment the
input in the feature space. We feed B into the model, extracting the intermediate output for each
data point: fi,∀xi ∈ B, and generate the augmentation as,

f̃i = λifi + (1− λi)f
F
i ,

ỹi = λiyi + (1− λi)y
F
i ,

(2)

where (fi, yi) and (fF
i , yFi ) are two feature-target pairs from B and Bf , respectively. Inspired by the

data augmentation method in the centralized setting (Zhang et al., 2018), we sample the weight λi for
each data point from a symmetrical Beta distribution (Gupta & Nadarajah, 2004): λi ∼ Beta(a, a).
λi ∈ [0, 1] controls the strength of interpolation between the local and global feature pairs: A smaller
λi basically makes the generated sample closer to the local feature while a larger one pushes that to
the global feature.

Following the augmentation, the training loss for each batch is designed to contain two parts: one
for classification (Lclf ) and one for knowledge distillation form the global model (Ldis). The clas-
sification loss Lclf is formulated as,

Lclf (B,Bf ) =
1

|B|
∑
i

∑
c

−ỹi[c] log pli[c], (3)
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where for f̃i, the logit is zli = Γθk,l:
(f̃i) and the probability for class c is pli[c] =

exp(zl
i[c])∑

c exp(zl
i[c])

. The
distillation loss (Hinton et al., 2015) is derived by the KL-divergence between the global probabili-
ties and local probabilities as,

Ldis(B,Bf ) =
1

|B|
∑
i

∑
c

−pli[c] log
pgi [c]

pli[c]
, (4)

where for f̃i the global logit is zgi = Γ
θ
(t)
l:

(f̃i) and the global probability is pgi [c] =
exp(zg

i [c])∑
c exp(zg

i [c])
.

Meanwhile, we aim to obfuscate the features to protect data privacy before they are shared out from
the clients. As such, we learn the l layers while reducing the correlation between the features and
the source data. This is achieved by minimizing the loss (Vepakomma et al., 2020) below,

Ldec(B) =
Tr(XTFFTX)√

Tr(XTX)2
√
Tr(FTF )2

, (5)

where X ∈ R|B|×d and F ∈ R|B|×df

are the data and feature matrix. Note that each Xi ∈ Rd and
Fi ∈ Rdf

are the flattening vector for data xi and feature f l
j . The numerator of Ldec measures the

covariance between the data and the features, while its denominator measures the averaged pairwise
distance within the data batch and feature batch, respectively. When updating the local model, the
features change correspondingly. It is desired that the distance covariance decreases faster than the
feature inner distance for each batch. Since when reducing the correlation, we hope the features can
maintain classification ability, and thus we optimize all the loss functions jointly, as follows,

L = Lclf (B,Bf ) + λ1Ldis(B,Bf ) + λ2Ldec(B), (6)
where λ1 and λ2 are the weights to trade-off classification and privacy preserving. The local update
is then achieved by θk ← θk − η ∂L

∂θk
, where η controls the learning rate.

Feature buffer updating: After the global model aggregation and broadcasting, client k extracts
the features from the new model parameterized by θ(t+1) from layer l to formulate the feature set.
Those sets will be sent to the server to replace the old ones, updating the feature buffer to F(t+ 1).
The iterations continue until the global model converges.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datsets. We evaluate FLea on two different data modalities, classifying images
(CIFAR10 Krizhevsky et al. (2009)) and audio (UrbanSound8K Salamon et al. (2014)). Both
datasets have 10 classes. Following strategies from (Zhang et al., 2022a), we distribute the training
data to |K| clients via quantity-based skew (Quantity(q)) and distribution-based skew (Dirichlet(µ))
splits. More details can be found in the Appendix C.1.

Model architectures and hyper-parameters. We classify images in CIFAR10 using Mo-
bileNet V2 (Sandler et al., 2018) that has 18 blocks consisting of multiple convolutional and pooling
layers. FLea shares the features after the first block as illustrated in Table 4. For audio classification,
the samples are first transformed into spectrograms and fed into a 4 layer CNN model, which we
termed as AudioNet. We share the feature from the second convolutional layer and the details of
architecture can be found in Table 5.

We use the Adam optimizer for local training with an initial learning rate of 10−3 and decay it by
2% per communication round until 10−5. The size of the local batch is 64, and we run 10 local
epochs for 100 clients setting for CIFAR10 and 15 local epochs for other settings. 10% of clients
are randomly sampled at each round. We run 100 communications and take the best accuracy as the
final result. Without particular mention, we use λ ∼ Beta(2, 2) for Eq. (2), and λ1 = 1, λ2 = 3 for
the loss in Eq. (6). For all results, we report the mean and standard deviation of the accuracy from
five runs with different random seeds. More details are presented in Appendix C.2.

Baselines. We compare FLea against FedAvg, and then loss-based methods: i) FedProx (Li
et al., 2020b), ii) FedDecorr (Shi et al., 2022), iii) FedLC (Zhang et al., 2022a), and iv) Fed-
NTD (Lee et al., 2022), as well as data augmentation-based methods: i) FedBR (Guo et al., 2023),
ii) CCVR (Luo et al., 2021), iii) FedGen (Liu et al., 2022), iv) FedData (Zhao et al., 2018) and
v) FedMix (Yoon et al., 2020). All baselines are hyper-parameter optimized to report their best
performances. The specific setting can be found in Appendix C.3.
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Table 2: Overall performance comparison. The local data size |Dk| is as small as 100 on average.
Accuracy is reported as mean± std across five runs. The best baseline (excluding FedData) under
each column is highlighted by red and the second best is highlighted by grey.

CIFAR10 (|K| = 500) UrbanSound8K (|K| = 70)

Accuracy % Quantity(3) Dirichlet(0.5) Dirichlet(0.1) Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedAvg 30.25±1.33 32.58±1.09 20.46±2.15 43.69±0.56 46.77±0.87 34.59±2.64
FedProx 31.92±1.45 32.01±1.25 20.86±1.97 38.45±0.48 39.58±1.02 34.81±0.46
FedDecorr 31.12±1.57 33.57±1.22 21.34±1.59 45.01±0.57 46.77±0.65 35.87±1.03
FedLC 32.05±1.60 30.17±1.18 18.82±2.01 50.98±0.49 50.11±0.83 37.05±0.87
FedNTD 39.98±0.97 39.82±0.86 26.78±2.34 49.80±0.45 51.09±0.97 36.53±0.99
FedBR 31.66±1.07 33.08±1.12 20.98±2.54 44.05±0.63 47.58±0.90 36.15±1.17
CCVR 35.95±1.63 35.02±1.43 24.21±2.67 47.12±0.72 49.26±0.92 39.62±1.20
FedGen 32.32±1.21 34.27±1.56 22.56±2.89 45.20±0.89 48.33±1.12 38.27±1.44

Each client shares 10% of the data or features
FedData 54.64±1.02 56.47±1.22 55.35±1.46 62.83±1.25 64.45±0.76 61.11±0.98
FedMix 44.04±1.53 45.50±1.88 38.13±2.06 51.56±0.59 54.18±0.62 43.35±0.72
FLea 47.03±1.01 48.86±1.43 44.40±1.23 57.73±0.51 59.22±0.78 45.94±0.77

5.2 RESULTS

Figure 5: Convergence speed analysis.

Figure 6: Results for sharing different fractions of
features/data.

Overall accuracy. We summarize the overall
comparison to baselines in Table 2, and present
extended results in Appendix C.4. FLea consis-
tently outperforms the baselines and closes the
gap to FedData across different data scarcity
and label skew levels for the two tasks.

Among the compared baselines that only share
model parameters, FedNTD achieves the best
performance in most cases, but it is outper-
formed by FLea by 7.03 ∼ 17.62% across all
the settings. Notably, the most significant im-
provement occurs when the label skew intensi-
fies, specifically with the Dirichlet(0.1) dis-
tribution. This suggests that FLea, by utilizing
features from other clients to compensate for
locally absent distributions, is more effective in mitigating local bias.Furthermore, we observe that
FLea exhibits faster learning compared to the non-augmentation methods. Illustrated in Figure 5,
FLea consistently requires fewer communication rounds to attain a target model accuracy. Although
this does not necessarily imply superior communication efficiency for FLea, as additional features
need to be transferred and stored. FLea still proves advantageous in scenarios where extensive
communication with a large number of clients is not always feasible.

Compared to the augmentation-based counterparts, FLea is also superior. FedMix is the state-of-the-
art data augmentation-based approach, yet FLea surpasses FedMix with a performance gain ranging
from 2.59% to 6.27%. Besides, we present the results for sharing different fractions of the features
in Figure 6. It is evident that a fraction of 10% can significantly boost the performance while
when sharing more, the advantage over FedMix still keeps. All those demonstrate the superiority
of employing feature augmentation across all classes to enhance local model generalization. In
Sec. 5.3, we will further show that FLea is also more privacy-persevering than FedMix.

Impact of hyper-parameters. We illustrate how we identify the hyper-parameters λ1 and λ2 for
the loss function and a in the Beta distribution for the augmentation in Figure 7. We first set λ2 = 0
(without obfuscating the features) and search the value for λ2. As shown in Figure 7(a), we found
that λ1 > 1 can improve the performance compared to that without the distilling loss (λ1 = 0), but
if the weight is too large (λ1 > 4) it harms the performance. The pattern is similar with other λ2, and
thus we informally use λ1 = 1 for all experiments. With λ1 = 1, we further study how λ2 impacts
the trade-off between privacy preservation (reflected by the reduced correlation) and the feature
utility (reflected by the model accuracy), as shown in Figure 7(b). Enlarging λ2 can significantly
enhance privacy protection (referring to the increasing 1 − c̄) but decreases the final performance.
We finally use λ2 = 3 when the c̄ reduces to about 0.72 while maintaining a strong accuracy of
about 57%. We also suggest future applications using 2 ∼ 6 for the trade-off. In Figure 7(c), we
demonstrate that the final performance is not sensitive to the parameter of the Beta distribution
since we always have an expectation of 0.5 for λ.
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(a) Impact of λ1. (b) Impact of λ2. (c) Probability density function for
Beta(a, a) with different a.

Figure 7: Hyper-parameter tuning for UrbanSound8K, |K| = 70 under Quantity(3) split. In (b), c̄
presents the averaged correlation between the feature and the original data for the 100 rounds.

5.3 FLEA MITIGATES PRIVACY RISK

FLea aims to mitigate the privacy leakage from three aspects: i) reducing feature exposure by only
sharing features with a fraction of clients, ii) defending from data reconstruction attack, and iii)
preventing the sensitive context information from being identified. We demonstrate FLea is more
privacy-preserving than FedMix and FedData as follows.

Figure 8: Feature exposure with
communication rounds.

Feature exposure. To quantify the feature exposure, we de-
fine a feature exchange matrix ξ ∈ R|K|×|K|. ξ

(t)
i,j = 1 de-

notes client i and j have exchanged features (from α fraction
of local data) for at least once until (including) t-th round, oth-
erwise ξ

(t)
i,j = 0. The the feature exposure is measured by

ϵ(t) =
∑

i,j ξ
(t)
i,j /K

2 ( 0 ≤ ϵ(t) ≤ 1), and a smaller ϵ(t) is bet-
ter. As FedData and FedMix gather data or data averages and
broadcast the data to all clients before local model training, ϵ(t) = 100% consistently. We illustrate
ϵ(t) for FLea in Figure 8. From the figure it can be observed that the exposure of FLea grows slowly.
In our experiments, the model converges within 50 rounds, by when ϵ(t) ≤ 40%.

It is worth noting that feature exposure is not equivalent to privacy leakage, as the features of FLea
do not leak source data. As shown in Figure 7(b), our loss function with Ldec can effectively
reduce the correlation between features and raw data, so that the privacy is not compromised. To
demonstrate that FLea can defend from data reconstruction and context identification attacks, we
construct testbeds by assuming the attacker can access the entire CIFAR10 training set. The setup
and results are summarized in Appendix C Sec. D, and the main findings are given blew.

Data reconstruction. Assume one client is selected to share the feature of an image, e.g., the dog
image in Figure (a), in a certain communication round (when c = 0.4), an optimal attacker tries to
reconstruct the image from the feature and it will end up to the image as shown in Figure (c*). The
original attribute, i.e., the color distribution cannot be recovered and thus privacy is preserved.

Identifying context information. As we mentioned before, one advantage of FLea over FedMix
is that FLea can better protect the context information. Again using the example, if one client is
selected to share some augmentations from the data including the dog image in Figure (a*), the
context attacker can easily detect the context marker in Figure (b*) shared by FedMix, but can be
difficult to detect that from the feature in Figure (c) shared by FLea. Therefore, the context privacy
is better preserved.

6 CONCLUSIONS

We proposed FLea, a novel approach to tackle scarce and label-skewed data in FL. Feature aug-
mentation is employed to mitigate over-fitting and local bias simultaneously. Extensive experiments
demonstrate that FLea remarkably outperforms the state-of-the-art baselines.

Limitations. In reality, because of extra feature sharing, FLea can introduce some extra overheads
like communication and storage. We leave the improvement of the efficiency for real-world applica-
tions for future work. To enhance privacy, FLea can be trivially combined with methods protecting
model parameters (such as DP-SGD (Abadi et al., 2016)), however, improving the statistical privacy
risks posed by feature sharing is hard due to the challenges originating from the stochasticity in
modeling, data distribution in the clients, the high dimensionality of real-valued features, etc. We
thus leave this as a future work. We anticipate that our work will inspire further investigations to
comprehensively study feature sharing in the low data regime.
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APPENDIX

A EXPERIMENTAL SETUP FOR SECTION 3

Federated Learning Setup. In Sec. 3 Limitations of Previous Work and Insights, we employ CI-
FAR10 for an empirical comparison. We conduct six groups of experiments to simulate different
levels of label skew and scarcity, as introduced below.

• (a) The training set of CIFAR10 is uniformly distributed to 10 clients, resulting in each
local dataset having a size of 5000 (|Dk| = 5000) and 10 classes (IID). More specifically,
each local dataset has 500 samples per class.

• (b) CIFAR10 is uniformly distributed to 100 clients. Thus each local dataset has a size of
500 (|Dk| = 500), 10 classes (IID) with each class containing 50 samples.

• (c) CIFAR10 is uniformly distributed to 500 clients. Each local dataset have a size of 100
(|Dk| = 100), 10 classes (IID) with each class containing 10 samples.

• (d) The training set of CIFAR10 is distributed to 10 clients, but only three out of ten classes
are distributed to each client (non-IID), resulting in each local dataset having a size of 5000
(|Dk| = 5000) and approximately 1666 samples for each class.

• (e) Similar to (d), CIFAR10 is distributed to 100 clients (|Dk| = 500) with each client
containing 3 classes (non-IID). This data distribution is shown in Figure 9(a).

• (f) Similar to (d), CIFAR10 is distributed to 500 clients (|Dk| = 100). Each client contains
3 classes (non-IID) with about 33 samples per class.

For CIFAR10 classification, we employ MobileNet V2, which has 18 blocks consisting of multiple
convolutional and pooling layers (Sandler et al., 2018). We use the Adam optimizer for local training
with an initial learning rate of 10−3 and decay it by 2% per communication round until 10−5. For (a)
and (d), all clients will participate in the training in each round, while for the other groups, we will
randomly select 10% of the clients for each round. The size of the local batch is 64, and we run 10
local epochs for groups (a, b, d, e) and 5 local epochs for groups (c, f). We run 100 communication
rounds for all groups to ensure global convergence.

Experimental setup for Figure 1: To compare the performance of existing methods with , we
use CIFAR10 dataset and report the classification accuracy of the global model based on the global
testing set. We compare FedAvg with loss-based methods such as FedDecorr and FedNTD, as well
as data augmentation-based methods like FedMix and FedData. They are the most representative
methods in each category. FedMix is implemented by averaging every 10 samples and sharing the
result globally. The shared averaged data is then combined with local data according to a Beta
distribution (with the a = 2) for local training. In the case of FedData, we collect 10% of the
data (randomly chosen) from each client and share it globally, in the first communication round.
To simulate varying scarcity levels, we split the CIFAR10 training set (comprising 50, 000 samples
in total) into 5000, 500, and 100 training samples on average per client, which ends up with 10,
100 and 500 clients finally. Other settings are the same with the main experiments as introduced in
Sec. 5.1.

Experimental setup for Figure 2: DB score (Davies & Bouldin, 1979) is defined as the aver-
age similarity measuring each cluster with its most similar cluster, where similarity is the ratio of
within-cluster distances to between-cluster distances. Thus, clusters which are farther apart and less
dispersed will result in a better score. The minimum score is zero, with lower values indicating
better clustering. To calculate the score for features, we use the ground-true class labels as cluster
labels, and use Euclidean distance between features to measure the similarity.

For a fair comparison, the local training for all clients starts from a same global status with an
accuracy of 40%. The features of the testing set from the initial global model present a DB of
4.8. We run one communication round and report the performance for the global model. In this
round, for |Dk| = 5000 we aggregate 10 clients while for |Dk| = 100 we aggregate 50 clients, so
that the total samples used for model training are kept unchanged. For |Dk| = 100 + 1000 group,
we additionally give the selected 50 clients 1000 samples (gathered in the first round) to aid local
training. In Figure 2, for local models, we report the averaged DB across clients.
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B NOTATIONS AND ALGORITHM

Table 3: Notations used in this paper.
|C| The number of classes T The number of rounds
|K| The number of clients k Client k
Dk client k’s data D Global data
l From layer l to extract features θ(t) Global model at t-th round

θk,:l Top l layers of the model θk,l: Layers after l of the model
F (t)

k Local feature set F (t) Global feature set
a Parameter for Beta distribution λ Weigh for feature mix-up in loss
α Local feature sampling fraction λ2, λ3 Weigh in loss

Algorithm 1: Federated Learning with Feature Sharing (FLea)

Input : Total rounds T , local learning rate η, local training epochs E, sampled clients set K(t),
a given layer l, parameter a for Beta distribution.

Output: Global model θ(T ).
1 Initialize θ(0) for the global model
2 for each round t = 1,2,...,T do
3 Server samples clients K(t) and broadcasts θk ← θ(t−1)

4 Server broadcasts the feature {F (t), ..,F (t−τ)} to clients in K(t) // Skip if t = 1.
5 for each client k ∈ K(t) in parallel do
6 for local step e = 1, 2, .., E do
7 for local batch b = 1, 2, ... do
8 sample λ ∼ Beta(a, a)
9 θk ← θk − η∇L(θk) // if t = 1, only use local data for training. Otherwise,

use one batch of local data Dk and one batch of global feature F (t) according
to Eq. (6).

10 end
11 end
12 Client k sends θk to server
13 end
14 Server aggregates θk to a new global model θ(t) refer to Eq. (1)
15 for each client k ∈ K(t) in parallel do
16 Client k receives model θ(t)

17 Client k extracts (without gradients) and sends F (t)
k to server

18 end
19 end

Beta Distribution. The probability density function (PDF) of the Beta distribution is given by,

f(λ; a, b) =
λa−1(1− λ)(b−1)

N
, (7)

where N is the normalizing factor and λ ∈ [0, 1]. In our study, we choose a = b and herein,
f(λ) = 1

N (λ(1− λ))a−1.

C DETAILS OF EXPERIMENTS

C.1 DATA DISTRIBUTION

Image data: We test our algorithm on CIFAR10 (Krizhevsky et al., 2009). We distribute CIFAR10
training images (containing 50, 000 samples for 10 classes) to K = 100 and K = 500 clients and
use the global CIFAR10 test set (containing 1, 000 samples per class) to report the accuracy of the
global model. We show the data splits for 100 clients setting in Figure 9. For 500 clients setting
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the distribution is similar, but the number of samples per client reduces to one-tenth of the number
shown in Figure 9.

Audio data: We also test FLea using UrbanSound8K dataset Salamon et al. (2014). This dataset
contains 8732 labeled sound excerpts (≤ 4s) of urban sounds from 10 classes: air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street
music. For experiments, we randomly hold out 20% (about 1700 samples) for testing and distribute
the rest (about 7000 samples) to K clients for training. We report the results for K = 70 and
K = 140, using the Quantity(3), Dirichlet(0.5), and Dirichlet(0.1) splits.

(a) Quantify(3).

(b) Dirichlet(0.5).

(c) Dirichlet(0.1).

Figure 9: Training data split for CIFAR10, |K| = 100.

(a) With label skew. (b) Without label skew.

Figure 10: The distribution of the number of samples per client |Dk| for CIFAR10.

To better illustrate the data scarcity problem, we visualize the distribution for the local data size in
Figure 10. As it shown, when we distribute the training set of CIAFR10 (50, 000 samples) to 10
clients using a Dirichlet distribution parameterized by 0.1, these clients will present different class
distributions, and the total number of local samples ranges from 2853 to 8199. This is the commonly
explored non-IID setting. In this paper, we further explore scarce non-IID data, and thus we split the
data into 100 and 500 clients. As a result, the number of samples per client reduces significantly:
the median number drops from 5685 to 90 when the number of clients increases from 10 to 500,
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as shown in Figure 10(a). This is the realistic scenario that we are interested in. It is also worth
mentioning that data scarcity is independent of label skew and it can happen in the IID scenario.
As shown in Figure 10(b), the local data covers 10 classes uniformly, but the data scarcity problem
becomes severe when the number of client increase.

C.2 MODEL ARCHITECTURE AND HYPER-PARAMETERS

We classify images in CIFAR10 using MobileNet V2 (Sandler et al., 2018) that has 18 blocks
consisting of multiple convolutional and pooling layers. The architectures of MobileNet V2 for
CIFAR10 is summarized in Table 4.

For audio classification, the audio samples are first transformed into spectrograms and fed into a
CNN model, which we termed as AudioNet. This model consists of four blocks, each comprising
a convolutional layer, a Relu activation layer, and a Batch Normalization layer, followed by a fully
connected layer1. The details of the convolutional layers are summarized in Table 5.

We use the Adam optimizer for local training with an initial learning rate of 10−3 and decay it by
2% per communication round until 10−5. The size of the local batch is 64, and we run 10 local
epochs for 100 clients setting and 15 local epochs for the rest. For feature augmentation, we use
Beta(2, 2). The weights in the loss function are set to λ1 = 1 and λ2 = 3. 10% of clients are
randomly sampled at each round. We run 100 communications and take the best accuracy as the
final result. For all results, we report the mean and standard deviation of the accuracy from five runs
with different random seeds.

Table 4: Architecture of MobileNet V2. Features used to report the results in Table 6 are underlined.
Block(CNN layers) #Input Operator #Output Channel #Kernel #Stride #Output

0(1) 3× 32× 32(image) conv2d 32 3 1 32× 32× 32
1(2− 5) 32× 32× 32 conv2d×4 32, 32, 16, 16 1, 3, 1, 1, 1, 1, 1, 1 16× 32× 32
2(6− 9) 16× 32× 32 conv2d×4 96, 96, 24, 24 1, 3, 1, 1 1, 1, 1, 1 32× 32× 32

3(10− 12) 32× 32× 32 conv2d×3 144, 144, 24 1, 3, 1 1, 1, 1 24× 32× 32
4(13− 14) 24× 32× 32 conv2d×3 144, 144, 32 1, 3, 1 1, 2, 1 32× 16× 16

5&6(15− 20) 32× 16× 16 conv2d×3 192, 192, 32 1, 3, 1 1, 1, 1 32× 16× 16
7(21− 23) 32× 16× 16 conv2d×3 192, 192, 64 1, 3, 1 1, 2, 1 64× 8× 8

8, 9,&10(24− 32) 64× 8× 8 conv2d×3 384, 384, 64 1, 3, 1 1, 1, 1 64× 8× 8
11(33− 36) 64× 8× 8 conv2d×4 384, 384, 96, 96 1, 3, , 11 1, 1, 1, 1 9× 8× 8

12&13(37− 42) 96× 8× 8 conv2d×3 576, 576, 96 1, 3, 1 1, 1, 1 96× 8× 8
14(43− 45) 96× 8× 8 conv2d×3 576, 576, 160 1, 3, 1 1, 2, 1 160× 4× 4

15&16(46− 51) 160× 4× 4 conv2d×3 960, 960, 160 1, 3, 1 1, 1, 1 160× 4× 4
17(52− 54) 160× 4× 4 conv2d×3 960, 960, 320 1, 3, 1 1, 1, 1 320× 4× 4

18(55) 320× 4× 4 conv2d 1280 1 1 1280× 4× 4

Table 5: Architecture of AduioNet. Features used to report the results in Table 7 are underlined.
Index #Input Operator #Output Channel #Kernel #Stride #Output

1 2× 64× 344(2-channel spectrogram) conv2d 8 5 2 8× 32× 172
2 8× 32× 172 conv2d 16 3 2 16× 16× 86
3 16× 16× 86 conv2d 32 3 2 32× 8× 43
4 32× 8× 43 conv2d 64 3 2 64× 4× 22

C.3 BASELINE IMPLEMENTATION

More details for baseline implementations are summarized as blew,

• FedProx: We adapt the implementation from (Li et al., 2020b). We test the weight for local
model regularization in [0.1, 0.01, 0.001] and report the best results.

• FedLC: it calibrates the logits before softmax cross-entropy according to the probability of oc-
currence of each class (Zhang et al., 2022a). We test the scaling factor in the calibration from
0.1 to 1 and report the best performance.

1https://www.kaggle.com/code/longx99/sound-classification/notebook
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Table 6: Overall performance comparison. Accuracy is reported as mean ± std across five runs.
The best baseline (excluding FedData) under each column is highlighted.

#Clients: 100 (500 samples per client on average) #Clients: 500 (100 samples per client on average)

Quantity(3) Dirichlet(0.5) Dirichlet(0.1) Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedAvg 43.55±0.82 50.36±0.89 28.21±1.20 30.25±1.33 32.58±1.09 20.46±2.15
FedProx 44.37±0.89 49.30±1.00 34.66±1.11 31.92±1.45 32.01±1.25 20.86±1.97
FedDecorr 44.09±0.90 51.27±0.93 30.89±1.40 31.12±1.57 33.57±1.22 21.34±1.59
FedLC 49.35±1.01 53.58±1.02 36.05±1.21 32.05±1.60 30.17±1.18 18.82±2.01
FedNTD 53.01±1.23 56.06±0.97 41.48±0.90 39.98±0.97 39.82±0.86 26.78±2.34
FedBR 44.58±0.73 51.65±1.02 32.11±1.45 31.66±1.07 33.08±1.12 20.98±2.54
CCVR 49.11±0.67 51.21±0.98 34.47±1.35 35.95±1.63 35.02±1.43 24.21±2.67
FedGen 46.66±2.87 52.89±1.09 33.18±1.29 32.32±1.21 34.27±1.56 22.56±2.89

Each client shares 10% of the data or features
FedData 67.60±1.33 72.17±1.34 70.34±1.68 54.64±1.02 56.47±1.22 55.35±1.46
FedMix 52.78±1.99 57.97±1.24 40.68±1.50 44.04±1.53 45.50±1.88 38.13±2.06
FLea (l = 5) 58.27±0.95 59.63±1.28 43.65±1.47 47.03±1.01 48.86±1.43 44.40±1.23

Table 7: Overall performance comparison for audio classification. Accuracy is reported as mean±
std across five runs. The best baseline (excluding FedData) under each column is highlighted.

#Clients: 70 (100 samples per client on average) #Clients: 140 (50 samples per client on average)

Quantity(3) Dirichlet(0.5) Dirichlet(0.1) Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedAvg 43.69±0.56 46.77±0.87 34.59±2.64 39.35±0.60 43.98±0.89 31.21±1.62
FedProx 38.45±0.48 39.58±1.02 34.81±0.46 39.05±0.56 42.21±0.76 32.85±1.22
FedDecorr 45.01±0.57 46.77±0.65 35.87±1.03 39.67±0.58 44.23±0.95 33.67±1.34
FedLC 50.98±0.49 50.11±0.83 37.05±0.87 44.33±0.79 45.15±0.80 39.87±1.04
FedNTD 44.80±0.45 51.09±0.97 36.53±0.99 42.21±0.63 48.63±0.78 40.15±1.22
FedBR 44.05±0.63 47.58±0.90 36.15±1.17 41.15±0.70 44.37±0.82 34.89±1.36
CCVR 47.12±0.72 49.26±0.92 39.62±1.20 44.05±0.87 46.68±0.83 36.80±1.37
FedGen 45.20±0.89 48.33±1.12 38.27±1.44 40.89±0.72 44.54±0.81 35.78±1.40

Each client shares 10% of the data or features
FedData 62.83±1.25 64.45±0.76 61.11±0.98 60.31±0.82 60.48±0.91 59.67±1.55
FedMix 51.56±0.59 54.18±0.62 43.35±0.72 46.55±0.81 50.00±0.92 42.27±1.15
FLea (l = 2) 57.73±0.51 59.22±0.78 45.94±0.77 54.35±0.80 55.68±0.87 45.05±1.32

• FedDecorr: This method applies a regularization term during local training that encourages
different dimensions of the low-dimensional features to be uncorrelated (Shi et al., 2022). We
adapt the official implementation2 and suggested hyper-parameter in the source paper. We found
that this method can only outperform FedAvg with fewer than 10 client for CIFAR10.

• FedNTD: It prevents the local model drift by distilling knowledge from the global model (Lee
et al., 2022). We use the default distilling weights from the original paper as the setting are
similar3.

• FedBR (Guo et al., 2023): this approach leverage 32 mini-batch data averages without class
labels as data augmentation. A min-max algorithm is designed, where the max step aims to
make local features for all classes more distinguishable while the min step enforces the local
classifier to predict uniform probabilities for the global data averages. We adapt the official
implementation4 in our framework.

• CCVR: It collects a global feature set before the final fully connected linear of the converged
global model, i.e., the model trained via FedAvg, to calibrate the classifier on the server (Luo
et al., 2021). For a fair comparison, we use the same amount of features as our method for this
baseline, and we fit the model using the features instead of distributions as used in (Luo et al.,
2021). This allows us to report the optimal performance of CCVR.

• FedGen: It is a method that trains a data generator using the global model as the discriminator
to create synthetic data for local training (Liu et al., 2022). The generator outputs x̂i with input
(yi, zi) where zi is a sample for Normal distribution. The generator is a convolutional neural

2https://github.com/bytedance/FedDecorr
3https://github.com/Lee-Gihun/FedNTD.git
4https://github.com/lins-lab/fedbr
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Figure 11: Accuracy of the global model for CIFAR10.

network consisting of four ConvTranspose2d layers to upsample feature maps. We train the first
30 rounds by normal FedAvg and after 30 rounds, we use the global model as the discriminator
to distinguish with the generated data x̂i is real or not.

• FedData: In this baseline, we assume the server waits until all the clients have shared 10% of
their local data in the beginning round. The gathered data will be sent to clients to mix with local
data for model training.

• FedMix: Similar with FedData, we assume the server waits until all the clients have shared their
data averages.we use a mini-batch of 10 to aggregate the samples. Different from FedBR The
gathered data will be sent to clients, combing with local data based on the Beta distribution.

C.4 EXTENDED RESULTS

Tables 6 and 7 for additional results corresponding to different local data sizes, supplementing the
information presented in Table 2.

Results for CIFAR10 classification. The analysis for Table 6 is elaborated on as follows. Among
loss-based approaches, FedNTD is the best, showing a strong ability to handle data scarcity and label
skew (about 10% improvement from FedAvg), while other loss-based FL methods present marginal
gain from FedAvg. The outstanding performance of FedNTD are mainly attributed to its knowledge
distillation component, mitigating the local over-fitting as well as model bias. FLea further improves
FedNTD by 3 ∼ 5% when the average local data size is 500, and the superiority of FLea is more
remarkable with increasing level of data scarcity, e.g., when the average local data size reduces to
100, the performance gain reaches 17.6% (Dirichlet(0.1) group).

For data augmentation-based baselines, FedMix performs the best and for most of the cases, it is the
SOTA baseline excluding FedData. When sharing the same proportion of global proxies (FedMix
shares data averages while FLea shares features), FLea outperforms FedMix by 2 ∼ 6% across all
experiments. We report the performance of FedData as an Oracle. It is plausible that FLea cannot
beat FedData given FedData shares raw data with privacy protection.

FLea also presents more stable performance compared to FedNTD and FedMix. As shown in Fig-
ure 11, FLea converges after 40 communication rounds, with notably higher averaged accuracy and
smaller variance compared to the other two best baselines. We also demonstrate each component in
FLea yields independent contribution to the overall performance in Appendix C Sec. C.5.

Results for UrbanSound8K classification. Similarly to the performance for audio classification,
FLea consistently achieve the best accuracy across different settings. Given that the total size of Ur-
banSound8K is smaller than CIFAR10, this audio classification has more sever data scarcity problem
globally and locally. This explains why FedMix is the best baseline uniformly for this task. Never-
theless, FLea outperforms FedMix by 2.59% ∼ 7.80%.
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Table 8: More results for FLea (α = 10%, |K| = 100).
Quantity(3) Dirichlet(0.5) Dirichlet(0.1)

FedMix 44.04±1.53 45.50±1.88 38.13±2.06
FLea (l = 5) 47.03±1.01 48.86±1.43 44.40±1.23
FLea (l = 5, λ = 0.5) 45.87±1.23 46.91±1.22 42.01±1.14
FLea (l = 5, λ1 = 0) 45.16±1.06 46.89±1.42 40.98±1.09
FLea (l = 1) 49.67±1.12 50.23±1.35 46.17±1.30
FLea (l = 9) 44.05±1.11 44.87±1.56 40.19±1.27

Table 9: Supplemental results of CCVR (α = 10%, |K| = 100), where global features come from
the later layer in different blocks of MobileNet V2.

Block18 Block17 Block13 Block9 Block5 Block1 Raw Our FLea

Quantity(3) 49.11±0.67 50.96±0.75 51.24±0.68 52.18±0.89 51.77±0.73 51.50±0.78 51.53±0.81 58.27±0.95
Dirichlet(0.5) 51.21±0.98 51.98±1.03 52.78±1.15 53.04±1.12 53.25±0.99 53.14±1.07 52.85±0.99 59.63±1.28

C.5 ABLATION STUDY FOR FLEA

As introduced in Sec. 4, our FLea leverages feature augmentation by combing local and global fea-
tures according to the weights following a Beta distribution. Now we give the results to demonstrate
the advantage of introducing randomness to improve the model generalization: we use fixed λ in-
stead of sampling it from Beta(2, 2) (refer to FLea (l = 5, λ = 0.5) group in Table 8). We also
give the results when removing Ldis from the training loss (refer to FLea (l = 5, λ1 = 0) group in
Table 8). It is evident that our complete version of FLea always performs the best.

We also discuss the impact of layer l, from which layer the features are extracted. It is a trade-
off between between privacy protection and the utilization of features. A smaller l indicates the
features are closer to the raw data while the privacy vulnerability increases. In Sec. 5.3, we have
demonstrated that l = 5 with the de-correlation loss can well defend against privacy attacks in our
simulations. In Table 8, we also show that sharing features from l = 1 can enhance FLea while from
l = 9 can lead to a slight performance decline. For real-world applications (beyond CIFAR10), we
choose l according to the specific performance and privacy requirements. It is also worth mentioning
that, as FLea is designed to leverage the latest feature buffer, l won’t necessarily to be fixed. On
the contrary, l can be dynamically altered during training based on the performance and privacy
requirements.

C.6 REFLECTIONS FOR BASELINES

More results for CCVR. We evaluated the baseline CCVR by using features from different layers to
calibrate the global model, and the performance is reported in Table 9. Those results clearly suggest
that leveraging features from shallower layers does not lead to further performance improvements.
This suggests that post-hoc calibration has limited capability in mitigating the local drift, which is
the fundamental cause of degradation in FL on non-IID data. Our Flea shows an evidently stronger
performance.

More reflection for FedNTD. From both Figure 1 and Table 6, we can see FedNTD is a strong
baseline for both data scarcity and label skew. FedNTD was devised to address the non-IID setting,
but we find it is also able to alleviate issues with data scarcity in the IID setting. This suggests
global knowledge distilling can mitigate local over-fitting. However, as the data becomes scarce,
the distillation ability declines, herein the performance gain drops. Instead of using local data for
knowledge distilling, in FLea, we leverage the augmented features to distil the knowledge from the
global model into the local model.
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Table 10: Architecture of decoder of MobileNet V2.
Layer Index #Input Operator #Output Channel #Kernel #Stride #Output

1 16× 32× 32 (Feature) conv2d 32 1 1 32× 32× 32
2 32× 32× 32 ConvTranspose2d 32 3 2 32× 64× 64
3 32× 64× 64 conv2d 32 3 2 32× 32× 32
4 32× 32× 32 conv2d 3 1 1 3× 32× 32 (Data)

(a) Reconstruction training error. (b) Context detection accuracy.

Figure 13: The effectiveness privacy protection. c is short for the correlation in Figure 12. We show
the reconstruction and context detection performance for c = 0.65 (the 1st round) and c = 0.40 (the
10th round).

.

D PRIVACY STUDY

Figure 12: Correlations in each commu-
nication round.

Now we present the experimental setup for privacy at-
tacks. We use the Quantity(3) data splits when |K| = 100
as an example for studying, as in other settings either the
label is more skewed or the local data is more scarce, pri-
vacy attack can hardly be more effective than this setting.
This is to present the attack defending for the most vul-
nerable case. As the correlation between the features and
the data is continuously reduced (shown in Figure 12),
we report the reconstruction and context detection perfor-
mance for c = 0.65 (the 1st round) and c = 0.40 (the
10th round) for reference.

Data reconstruction. We first implemented a data reconstruction attacker, following the approach
described in Dosovitskiy & Brox (2016), the attacker constructed a decoder for the purpose of
reconstruction. Specifically, the attacker targeted the converged global model trained using the
Quantity(3) distribution, ensuring a fair comparison. The decoder architecture, designed to match
the MobileNet V2 architecture, comprised four conv2d layers (refer to Table 10) to reconstruct the
original data from the provided features. For visualization purposes, the CIFAR10 images were
cropped to a size of 32 × 32 pixels without any normalization. The decoder took the features ex-
tracted from the global model as input and generated a reconstructed image, which served as the
basis for calculating the mean squared error (MSE).

To train the decoder, we utilized the entire CIFAR10 training set, conducting training for 20 epochs
and employing a learning rate of 0.001. This approach allowed us to evaluate the fidelity of the
reconstructed data and compare it with the original input, providing insights into the effectiveness
of our proposed feature interpolation method. We use the testing set and the target global model
(c = 0.65 and c = 0.40 ) to extract features for reconstruction. Figure 13(a) shows the training
MSE while the exampled images are from the testing set. For c = 0.65, i.e., after the first round,
in Figure 12, the sensitive attributes are removed (e.g., the color of the dog). After 10 rounds
when c < 0.4, information is further compressed and the privacy protection is enhanced. Overall,
with Ldec, the correlation between data and features is reduced, preventing the image from being
reconstructed.
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Identifying context information. In this attack, we assume that the attacker explicitly knows the
context information and thus can generate large amounts of negative (clear data) and positive (clear
data with context marker) pairs to train a context classifier (which is very challenging and unreal-
istic but this is for the sake of testing). Real-world attack will be far more challenging than our
simulations.

The context identification attacker is interested in finding out if a given feature f , is from the source
data with a specific context or not. We simulate the context information by adding a color square to
the image (to mimic camera broken), as illustrated in Figure 5.3. We use a binary classifier consisting
of four linear layers to classify the flattened features or images. To train the classifier, we add the
context marker to half of the training set. To report the identification performance, we add the same
marker to half of the testing set. In Figure 13(b), the identification accuracy for FedMix and our
FLea are given. We measure the attacking difficulty by how many training sample the model need
to achieve a certain accuracy. The results in Figure 13(b) suggest that FLea needs times of training
sample than FedMix for different correlations. This demonstrates that FLea can better protect the
context privacy.

All the above results lead to the conclusion that by reducing feature exposure and mitigating the
correlation between the features and source data, FLea safely protect the privacy associated with
feature sharing while achieving favorable performance gain in addressing the label skew and data
scarcity simultaneously.
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