
GLoRe: When, Where, and How to Improve LLM Reasoning
via Global and Local Refinements

Alex Havrilla 1 2 Sharath Raparthy 1 Christoforos Nalmpantis 1 Jane Dwivedi-Yu 1 Maksym Zhuravynski 3

Eric Hambro 4 Roberta Raileanu 1

Abstract

State-of-the-art language models exhibit reason-
ing refinement capabilities on math, science and
coding tasks. However, recent work demonstrates
that even the best models struggle to identify when
and where to refine without access to external
feedback. In this paper, we propose Stepwise
ORMs (SORMs) which are trained, only on syn-
thetic data, to approximate the expected future
reward of the optimal policy, or V ⋆, as a form of
process-based reward modeling. Our experiments
show that SORMs can more accurately detect in-
correct reasoning steps compared to ORMs, thus
enabling them to give precise step-level feedback
to refinement models. We then train global refine-
ment models, which take only the question and
a draft solution as input and predict a corrected
solution, and local refinement models which also
take as input a critique indicating the location of
the first reasoning error. We generate training data
for both models synthetically by reusing data used
to train the SORM. By combining both global and
local refinements for the same question, via using
an ORM as a reranker, we significantly outper-
form either approach individually, as well as a
best of three baseline. With this strategy we can
improve the accuracy of a LLaMA 2-chat 13B
model (already fine-tuned with RL) on GSM8K
from 53% to 65% when greedily sampled.

1. Introduction
State-of-the-art large language models (LLMs) exhibit a
wide range of downstream capabilities after pre-training.
This includes the ability to refine their reasoning on math,

*Equal contribution 1Meta 2Georgia Tech 3StabilityAI
4Anthropic. Correspondence to: Alex Havrilla
<ahavrilla3@gatech.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

science, or coding problems (OpenAI, 2023; Touvron et al.,
2023; Chowdhery et al., 2022). However, under close in-
spection, this refinement ability is quite brittle, often unable
to even identify when a solution needs refinement (Huang
et al., 2023). When LLMs do produce successful refine-
ments on hard reasoning tasks this is often due to the in-
corporation of external forms of feedback, e.g. feedback
from humans or code, stronger models, or other tools (Zhou
et al., 2023; Gou et al., 2023). In this work, we carefully
examine and improve the self-refinement abilities of LLMs
on reasoning tasks without any external feedback other than
the ground truth answers of the training problems. Notably,
this means we make no use of data or feedback from hu-
mans or stronger models. To do so we start by heuristically
decomposing the refinement problem into three parts: firstly
deciding when to refine, then where to refine, and finally
how to refine.

Outcome Based Reward Models (ORMs) (Cobbe et al.,
2021), first introduced as an estimator of final answer cor-
rectness given a question to do solution reranking, are a
natural choice for addressing step one. For deciding where
to refine, we carefully examine the generalization of ORMs
to intermediate steps. We find the accuracy of the underlying
data generating policy π directly affects the ORM’s ability
to learn correctness of intermediate solutions steps. This
leads to the ORM often under-estimating the solvability
of a problem from an intermediate step Si. This under-
estimation leads to high false-negative rates when used to
classify steps with errors. Process Based Reward Models
(PRMs) instead are trained to directly estimate the correct-
ness of each step. Yet these models require extensive human
labeling of model-generated solution steps as valid or in-
valid. In an effort to improve our ability to give intermediate
step feedback, we introduce the Stepwise ORMs (SORMs)
which explicitly predict labels at each step indicating the
presence of an error. We generate SORM training data by
sampling a student policy π many times at a step Si in solu-
tion S, labeling Si as valid if we successfully reach the final
answer. From an RL perspective, this can be interpreted
as learning (a lower bound of) the optimal value function
V ∗ of the reasoning task via approximation of the optimal
policy π∗ with rejection sampling. The resulting SORM

1



GLoRe: Global and Local Refinement for LLM Reasoning

gives better intermediate step-level feedback, allowing us to
give information to the refinement model about both when
and where to refine. The refinement model must then only
decide how to refine.

We initially train global refinement models capable of refin-
ing the entire reasoning trace without any feedback beyond
an initial draft solution D. The training data is generated
synthetically, by pairing correct solutions with incorrect
solutions (as done in Welleck et al. (2022)). An evalua-
tion of the global refinement model confirms its inability to
correctly identify when to refine, demonstrating the need
for an ORM. Reusing the SORM training data, we train
a local refinement model which uses the feedback given
by the SORM to identify the first incorrect reasoning step.
We then compare the performance of global versus local
refinements on a test set of incorrect solution drafts, find-
ing similar refinement accuracy but on largely disjoint sets
of problems. In this sense the global and local refinement
models are complementary, with local refinements often
able to solve problems global refinements cannot and vice
versa. To obtain our best results we combine both global
and local refinements, using the ORM to choose the most
promising one by acting as a reranker of both plus the initial
draft. Using this strategy, we can improve the accuracy of
an already strong RL fine-tuned Llama 2-chat 13B model
from 53% to 65% when greedily sampled.

In summary we make the following contributions:

• Decompose the refinement problem into three parts,
namely deciding when, where, and how to refine a
solution by leveraging reward models (RMs).

• Highlight the limitations of ORMs in judging the cor-
rectness of intermediate steps, despite their ability to
judge the correctness of the final answer.

• Introduce the step-wise ORM (SORM) to refine which
is trained only on synthetic data and can more accu-
rately evaluate intermediate steps than the ORM.

• Propose a new method for refining LLM reasoning that
decides when to refine using an ORM, where to refine
using a SORM, and how to refine using both global and
local refinements. We find the two types of refinement
are complementary, each able to solve a large class of
problems the other cannot.

• Demonstrate performance improvements of up to 12%
on GSM8K for a 13B LLaMA 2-chat model using our
approach.

Notation: For the rest of the paper we refer to the pre-
trained LLM fine-tuned for downstream tasks as the base
model. We fine-tune the base model, either on supervised

data or using RL, to produce a student model that generates
answers A given a question Q. Sometimes we may also
write the student model as a policy π implicitly depending
on learnable parameters θ. DTASK will be used to denote
a dataset for TASK τ with train split Dtrain

TASK and test split
Dtest

TASK being implicit.

We will use Q to denote a question and A1, ..., Ak to denote
solution traces. Sometimes we will write A = (S1, ..., SL)
which decomposes the solution trace A into intermediate
steps Si. Pi = (S1, ..., Si) will be used to denote the prefix
of steps up to Si. We define a refinement of a draft solution
AD and question Q as a new solution AR generated by
conditioning on both Q and AD. We consider both global
refinement models, which take as input only Q,AD and
predict p(AR|Q,AD), and local refinement models, which
take as input an extra parameter E indicating the location of
an error in AD, to predict p(AR|Q,AD, E). Additionally
we will sometimes use AGR and ALR to represent global
and local refinements of AD. V π denotes the value function
of policy π. V ∗ denotes the optimal value function with
dependence on the background task implicit.

2. Related Works
LLM Reasoning: State-of-the-art (SOTA) large language
models (OpenAI, 2023; Touvron et al., 2023; Bai et al.,
2022; Chowdhery et al., 2022) demonstrate increasingly
impressive abilities on hard reasoning tasks as studied by a
wide range of math, science, and code benchmarks (Cobbe
et al., 2021; Hendrycks et al., 2021b; Sawada et al., 2023;
Liang et al., 2022; Srivastava et al., 2022; Rein et al., 2023;
Mialon et al., 2023; Chollet, 2019; Hendrycks et al., 2021a;
Austin et al., 2021; Mishra et al., 2022; Patel et al., 2021;
Gao et al., 2021). Chain of thought (CoT) (Wei et al., 2022)
and related techniques (Chen et al., 2022; Yao et al., 2023a;
Besta et al., 2023) have emerged as dominant methods sig-
nificantly boosting LLM performance on these types of
tasks. CoT methods allow LLMs to defer giving their final
answer by first generating a ”chain of thought” involving
intermediate computations needed to correctly solve the
problem.

LLM Refinement: Intimately related to reasoning ability
is a model’s ability to refine previous answers. This work
studies the ability of large language models to self-refine
their CoT solutions to math reasoning tasks. Several works
(Yao et al., 2022; Madaan et al., 2023; Zhou et al., 2023)
demonstrate SOTA LLM self-refining and self-critiquing
abilities on a range of tasks via prompting and/or tool usage.
However, recent work (Huang et al., 2023) argues even for
the strongest models such techniques struggle on hard, open-
ended reasoning tasks where the model itself must decide
when to stop refinement.

2



GLoRe: Global and Local Refinement for LLM Reasoning

Figure 1. Diagram for three-stage refinement training pipeline.

Other papers use hand-crafted data augmentation (Paul et al.,
2023) or gather human data (Wang et al., 2023; Chen, 2023;
Lee et al., 2023; Saunders et al., 2022; Schick et al., 2022)
while still others use techniques from reinforcement learning
to generate critiques (Akyurek et al., 2023; Yao et al., 2023b)
for larger models. Most related to us is (Welleck et al.,
2022) which trains global refinement models in an implicit
reinforcement learning like manner by pairing low-value
rollouts with high-value rollouts.

Process-based reward modeling (PRMs) (Uesato et al.,
2022; Lightman et al., 2023) gives a denser, step-by-step
reward for the ”correctness” of a particular step without
explicitly modeling the step’s impact on the correctness of
the final answer. Both ORMs and PRMs are most often
used as rerankers over large numbers of candidate solutions,
with PRMs generally outperforming ORMs (Lightman et al.,
2023). However, PRMs are expensive to train, requiring ex-
tensive human annotation of each step. Uesato et al. (2022)
directly compares the performance of a 70B ORM vs PRM
on GSM8K, finding both performing similarly when used as
a reward for RL and for reranking. They qualitatively note
the ORM appears to somewhat generalize to intermediate
steps in a manner similar to a PRM but do not quantitatively
ablate this observation over multiple models or tasks. Li
et al. (2022) attempt to train synthetic stepwise verifiers

similar to a PRM which are then used for Monte Carlo Tree
Search.

In contrast to the above works we conduct a careful compar-
ison of ORM/SORM verification abilities at the step level.
We then propose to utilize the ORM/SORM for refinement.
We accomplish this by generating fully synthetic stepwise
labels which allow us to train both the SORM and refine-
ment models. Importantly, we do not rely on any feedback
data distilled from humans or a stronger model, allowing
us carefully ablate just how much can be learned just by
training and sampling a single student.

3. Method
We start by decomposing the refinement problem into three
stages: First, learning when a draft D is correct and when it
needs refinement. Second, learning where to begin refine-
ment by identifying the first incorrect step. Third, learning
how to correct the initial draft. We can naturally address
step one by using the ORM which is trained to predict the
probability of a draft being correct. Additionally, when
doing local refinement, we propose using the (S)ORM to
localize the position of the first error. This simplifies the
task even more, as now the local refiner must only decide
how to fix the error and continue from there.

3



GLoRe: Global and Local Refinement for LLM Reasoning

Localizing errors with Reward Models: To best under-
stand the behavior of the ORM’s prediction at an interme-
diate step Si, we can interpret it as the value function of π.
Recall the value function V π of a policy π is computed as
V π(S) = Eτ∼π(S)R(τ) i.e. the mean return of the policy
π from the state S. In the context of reasoning problems,
the states we consider are of the form S = (Q,S1, ..., Si)
with question Q and intermediate steps Sj . In our setting
by default there is only a sparse reward of +1 given at the
terminal state for a correct final answer.

We write ORMπ(Q,Pi) ≈ p(is correct(A)|Q,Pi, π)
where Pi = (S1, ..., Si) is the prefix of all prior
steps and is correct(A) is the event that a
full solution A sampled from π with prefix Pi

has the correct final answer. We can then write
EA∼π(Q,Pi)R(A) = EA∼π(Q,Pi)1is correct(A) =
p(is correct(A)|Q,Pi, π). Therefore, an approxi-
mation to the value function of a policy π is predicting
exactly the same thing as the outcome-based reward model
at an intermediate step S. So we may treat the ORM as
approximating a value function for the student model π
used to generate its training data.

Ideally we might want to use the ORM to identify where
a mistake was made by finding the first step Si such that
ORM(Q,Pi) ≤ 0.5 i.e. Pi is likely to result in the wrong
answer. However, because the ORM is acting as a value
function for π, it tends to hallucinate error steps simply
because it expects the data generating student π to fail. For
example, if π almost always fails problems involving divi-
sion, the ORM will assign low probability of success to a
division problem even before the student takes its first step.
In these cases we say the ORM is overly pessimistic. This
is not ideal when using the ORM to identify the location of
mistakes.

Learning a Step-Wise ORM (SORM): Another natural
candidate which could be used to identify mistakes at each
step is a Process Based Reward Model (PRM) (Lightman
et al., 2023). A PRM estimates the probability of correct-
ness of a step Si, p(Si correct|Q,S1, S2, ..., Si) inde-
pendently of its impact on the final answer. However, this
would be expensive, requiring collecting human annotated
samples. Instead, we propose to approximate the optimal
value function V ∗ of the reasoning task. V ∗ corresponds
to the value function of the optimal policy which is able
to successfully solve the reasoning task from any logically
valid intermediate state Sj . Such an optimal value function
would have V ∗(Q,S1, ..., Si) = 1 for a solution prefix with
no mistakes, and V ∗(Q,S1, ..., Si) = 0 if the prefix already
contains a mistake which will result in an incorrect final
answer.

3.1. Training pipeline

Recall, we assume no access to data from humans or better
models for fine-tuning. Thus we must generate all train-
ing data synthetically for both global and local refinement.
Additionally we must generate data for both the ORM and
SORM. We divide our proposed training pipeline in three
steps. See Figure 1 for a diagram outlining each step.

Step 1: Fine-tuning a student model

To produce base checkpoints from which we can generate
ORM/SORM training data and initial refinement drafts AD

we fine-tune models using Expert Iteration (EI) (Silver et al.,
2017). This is done by sampling the student model K = 96
times per question and filtering out rollouts with incorrect
final answers. De-duplication is then performed on the re-
maining samples to construct a new finetuning dataset R1

which we use to again fine-tune the pretrained model. This
process is repeated until the maj@1 score of each subse-
quent fine-tune converges. Note, the fine-tuning dataset
used at step i is Di = Ri ∪ Di−1: the union of rollouts gen-
erated at the ith step with previously generated training data
(D0 = ∅). In the case of GSM8K we first fine-tune each
pre-trained model on the given supervised fine-tuning (SFT)
data. For SVAMP, which has no CoT SFT data, we 1-shot
prompted the pretrained model to generate solutions used to
construct an initial EI dataset. We call the resulting model
the student model or student policy π. For more details of
this training process and resulting models see Section B in
the appendix.

Step 2: Training the ORM/SORM

We generate ORM training data by sampling the RL fine-
tuned student policy π K times per prompt. As usual, we
then label each intermediate step Si as correct if the final an-
swer is correct and incorrect otherwise. To generate training
data for our SORM we sample an approximation of the opti-
mal policy π∗ at each step Si in a model generated solution
and check correctness of the final answer. We aim to approx-
imate π∗ via rejection sampling of our student policy π∗.
Concretely, to produce a training label for a step Si in model
generated rollout S, we sample the student policy π for K
rollouts starting from the prefix Pi = (S1, ..., Si). This pro-
duces verifying traces T1, ..., TK with correct final answers
indicated by l1, ..., lK . We then label Si as positive if
maxj lj = 1 i.e. we can find the correct final answer starting
from Si. Otherwise we label Si as negative. In practice
we sample K = 8 rollouts per step, each generating at most
300 tokens. We then train the SORM in exactly the same
manner as the ORM, predicting the appropriate label after
each step in a solution. See Section G for a comparison of
the labels assigned by this process to ground truth human
labels.

SORM data post-processing To improve our approxima-

4



GLoRe: Global and Local Refinement for LLM Reasoning

Figure 2. Example of local and global refinements on a math word problem. Left: The local refinement does poorly with a student which
struggles dividing by a fraction. Right: The global refinement does poorly because it must start from scratch.

GSM8K SVAMP

7B 13B 7B 13B

ORM 0.74 0.73 0.77 0.85
Balanced ORM 0.73 0.74 0.77 0.83
SORM 0.79 0.81 0.78 0.87

Table 1. Step-level accuracy of 7B/13B ORM and SORM on
test set labels. Note: the test sets are well balanced with
positive labels representing 45%-55% of samples. The SORM
has better step level accuracy than ORM on the harder GSM8K
benchmark but comparable step level accuracy on SVAMP.

GSM8K SVAMP

7B 13B 7B 13B

ORM 0.82 0.85 0.75 0.82
Balanced ORM 0.8 0.82 0.73 0.79
SORM 0.79 0.8 0.74 0.79

Table 2. Final answer accuracy of 7B/13B ORM and SORM
on test set labels. Note: the test sets are well balanced with
positive labels representing 45%-55% of samples. The ORM
has better accuracy than the SORM at predicting final answer
correctness.

tion to the optimal policy via rejection sampling we apply
several post-processing steps: 1) If a step Si has a positive
label li we set lj = 1 for j ≤ i. I.e. all steps before a
positive steps are labeled as positive. This accounts for par-
ticularly hard problems where the student is able to find the
solution with K samples from the step Si but not any prior
step Sj , j < i. 2) We enforce a consistency constraint on
the verifying rollouts, requiring each intermediate result Ri

computed on step Si of the solution to be used later on. This
helps prevent false positives by requiring a verification to
make full use of the previous steps it’s verifying. In prac-
tice we implement this by checking for each Ri as a string
in the suffix after Pi. 3) We balance the number of posi-
tive and negative labels at each prefix length in the training
dataset. This is crucial, as otherwise there is an imbalance
of positive labels towards the start of solutions and negative

labels towards the end. This imbalance is easy for SORMs
to exploit, leading to models which almost always predict a
positive label in the first few steps a negative label
towards the end.

As an additional baseline we consider the Balanced ORM
which simply balances the number of positives and negatives
per question in the ORM training dataset. This is done in an
attempt to mitigate the overly pessimisstic behavior of the
ORM described earlier.

Step 3: Training refinement models

To train a local refinement model we need a dataset of
the form (Q,AD, AR, E) where Q is a question, AD is an
initial draft, E labels the location of the first error in AD

indicating where to refine, and AR is a refinement with
the correct final answer. In pratice, E is communicated

5



GLoRe: Global and Local Refinement for LLM Reasoning

to the local refinement as a “[BAD]” token prefixing the
incorrect step Si in the draft. Then, at test time, we need a
model predicting p(E|Q,AD) to localize errors in the draft.
Conveniently, we explicitly train the SORM to predict the
correctness of each step in AD. Thus, to produce E we infer
the SORM on all steps and return the index of the first step
with predicted correctness below a threshold T . Further, we
can construct a refinement training dataset with error
annotations using the SORM dataset. Given an incorrect
model rollout A = (S1, S2, ..., SL) we can locate step Si

as containing the first error by identifying li = 0 as the
first zero label in the trace. We then pair A with a correct
verifying trace T from the previous (correct) step Si−1. This
creates a training pair (A, T ) where we label the first error
in A as E = i. See Figure 2 for an example. We construct
a dataset for global refinement similarly using the ORM
training dataset. This is done by pairing incorrect rollouts
Aincorrect with correct rollouts Acorrect for the same question
Q. This constructs a training tuple (Q,Aincorrect, Acorrect).

3.2. Evaluation

We construct a test set for both the ORM/SORM and refine-
ment models by sampling the student model greedily on test
questions Q from the task τ . For each benchmark this gives
us a test set with prompts of the form (Q,AD) where Q is
the problem and AD is an initial draft. For both benchmarks
we refer to this as the (Q,D) test set. To generate intermedi-
ate step labels we use the same process as used to generate
SORM training data. We evalaute the ORM and SORM on
this test set by comparing their predictions to these ground
truth labels. To evaluate the global refinement performance
we greedily infer the refiner on each (Q,AD) sample and
compare the resulting refinement AGR to the ground truth.
To evaluate the local refinement model we first annotate
each (Q,AD) pair with the location of its first error using
the ORM or SORM. This forms a (Q,AD, E) triplet which
we use to greedily sample the local refiner.

For our best results, we propose to sample both a global re-
finement AGR and a local refinement ALR for a draft AD and
choose the best solution using the ORM reranker. This strat-
egy stems from our observation that global and local refine-
ments each solve complementary, partially non-overlapping
subsets of problems the student initially fails on. Thus com-
bining both refinements with the draft significantly expands
the set of problems we can solve. Additionally, using the
ORM to rerank refinements allows for a cleaner comparison
against a best-of-three baseline from the draft-generating
student π.

4. Results
We evaluate our refinement pipeline on the GSM8K (Cobbe
et al., 2021) and SVAMP (Patel et al., 2021) math word

problem benchmarks. We fine-tune Llama 2-chat 7B and
13B to produce all downstream models including the ORM,
SORM, and refinement models. Note, the evaluation of
each model size is self-contained, not utilizing any data or
feedback from models of a different size. maj@1 model
scores via greedy sampling will be used to evaluate model
performance. Hyperparamters for each phase of training are
supplied in Section A of the appendix.

4.1. Evaluting the ORM and SORM

SORMs are better than ORMs at evaluating interme-
diate answers: On GSM8K the SORM improves over the
intermediate step accuracy of the ORM by up to 8% from
73% to 81% (See Table 1). This confirms the ORM does a
reasonable job estimating intermediate step correctness but
can still be improved, particularly for smaller models on a
hard tasks like GSM8K. We’ll see this difference in label
accuracy also translates into a difference in refinement final
accuracy, where it is critical for the ORM/SORM to reliably
identify locations of mistakes. In comparison, the balanced
ORM underperforms, having comparable intermediate ac-
curacy to the ORM. This is despite qualitiatively appearing
to fix the ORM’s over-pessimism, as the balanced ORM
assigns roughly 50% chance of success to all questions. We
also examine the types of errors models make, finding the
SORMs to have a balanced numbers of false positives and
negatives when using a 0.5 as the classification threshold.

ORMs better approximate V ∗ on easier tasks: On
SVAMP the ORM has better step accuracy than on GSM8K
(see Table 1), particularly the 13B model. As a result the
SORM offers less improvement. Most questions in GSM8K
are relatively more difficult, requiring at least 4 steps to
solve. In contrast, most questions in SVAMP require at
most three key steps. This small number of steps likely
makes it easier for the ORM to generalize. Additionally,
the EI models trained on SVAMP reach on average 15%
higher accuracy than the same sized model on GSM8K.
This makes the base student model a closer approximation
to π∗ on SVAMP, making the ORM a closer approximation
to V ∗.

The importance of a strong data generating student π is
further highlighted by the difference in accuracies between
7B and 13B models on SVAMP. The 7B student EI model
gets an accuracy of 58%, whereas the 13B model gets an
accuracy of 70%. Correspondingly, the 13B ORM model
performs much better at on intermediate steps than the 7B
model. Yet in contrast the 13B ORM on GSM8K performs
slightly worse at intermediate steps than 7B. This is perhaps
partially explained by the performance of the 13B EI student
on GSM8K which only improves 5% over the 7B student.

ORMs are better than SORMs at evaluating final an-
swers: Despite the SORM being generally better at predict-

6



GLoRe: Global and Local Refinement for LLM Reasoning

Figure 3. Refinement accuracies on GSM8K. All refinement models struggle identifying correct drafts which do not need refinement.
Significant improvements are seen when only refining incorrect drafts.

GSM8K 7B GSM8K 13B SVAMP 7B SVAMP 13B

Global Refinement 0.203 0.281 0.14 0.255
Local Refinement + ORM 0.182 0.262 0.09 0.229
Local Refinement + SORM 0.211 0.283 0.11 0.237
Global Refinement + Local Refinement + ORM 0.252 0.384 0.173 0.35
Global Refinement + Local Refinement + SORM 0.280 0.412 0.19 0.37

Table 3. Refinement accuracy on incorrect model answers. Local refinement + SORM denotes using the SORM to highlight the first
incorrect reasoning step for the local refinement model. We find refining both globally and locally with the SORM can fix up to 41% of
problems the model previously failed.

ing intermediate steps, it is slightly worse at predicting final
answer correctness compared to the ORM. This is true for
both benchmarks, with the 13B SORM on GSM8K lagging
by 5% (See Table 2). However, part of this difference is
likely due to statistical biases the ORM is able to exploit, im-
proving final answer accuracy at the cost of over-pessimism.
For example, if the problem involves division, the ORM
knows the student is likely to fail and immediately predicts
a low probability of success. In contrast the SORM is forced
to be more optimistic, attempting to carefully examine the
correctness of each intermediate step.

4.2. Evaluating global and local refinements

Now, with a better understanding of our SORMs’ capa-
bilities, we can apply them for refinement. Recall that to
decide when to accept a refinement AR we use the ORM
as a reranker on the draft AD and refinement AR. When
performing local refinement we can additionally use both
the ORM and SORM to identify the location of the first
mistake in AD. For the ORM we do this by labeling the
first step Si such that ORM(Si) ≤ T = 0.5 where T is a
threshold hyperparameter. We identify the first error analo-
gously with the SORM. We report results on both GSM8K
and SVAMP (Q,D) test sets in Figure 3. Note, we being

evaluation without using the ORM as a reranker. This is
done to confirm others’ observations that refiners struggle
knowing when to refine on their own.

Both global and local refinement models struggle with
knowing when to refine: On both benchmarks global and
local refinements show little improvement to overall model
accuracy. GSM8K 7B global refinements even decreases
overall accuracy, with the other models improving by at
most 1%. The local refinements improve overall accuracy
more, likely due to the presence of the “[BAD]” token in-
dicating the location (and therefore presence) of the first
mistake. This underscores the importance of an ORM for
choosing when to refine an incorrect draft.

Global and local refinements fix similar percentages of
incorrect drafts: To understand how well our refiners per-
form when refinement is needed we also report results when
applying refinement to only incorrect drafts from the test set
in Figure 3. In this case both global and local refinements
do much better, improving overall accuracy by an average
of 10% on GSM8K and 8% on SVAMP. This demonstrates
the refiners have learned how to refine, they simply often do
not know when.

It is initially somewhat surprising global refinements are

7



GLoRe: Global and Local Refinement for LLM Reasoning

Figure 4. Accuracy of reranked refinements on all drafts compared to greedy and best of 3 samples from the student (Bo3) baselines. On
GSM8K, reranking refinements using the ORM improves over the Bo3 baseline by up to 9% and up to 13% with a perfect reranker.

able to fix a similar percentage of drafts as local refine-
ments. Local refinements receive extra information from
E, presumably strictly improving performance over the
global refiner. In reality, the provided E is noisy as it must
be predicted by an imperfect ORM/SORM. We see that
even the difference in label accuracy bewteen the ORM
and SORM results in a nontrivial difference in refinement
accuracy. Global refinements also have the advantage of
optionally restarting a solution from scratch. A local re-
finement model is trained to reuse the prefix of a solution
preceding a “[BAD]” token under the assumption this prefix
has no errors. However, even if this prefix has valid reason-
ing, it may be unlikely the student can actually complete
the intended solution path. For example, a student who
often fails to correctly divide may benefit from starting the
problem from scratch in a way that doesn’t require any use
of division. global refinements can take advantage of this,
whereas local refinements may be commited to valid rea-
soning with a low chance of successfully completing. See
Figure 2 for examples illustrating this point.

Global and local refinements solve partially disjoint,
complementary sets of problems: To better understand
how global and local refinements compare we examine the
overlap between the problems they correctly solve. The last
two rows of Table 3 show that, when combined, global
and local refinements can fix 41% of incorrect GSM8K
drafts from the 13B student. Alone, global refinement and
local refinement with the SORM fixes only 28% of problems.
Yet, when taking the best of both types of refinement for
the same question, we significantly improve performance
across all combinations of benchmarks and model sizes.
This shows local refinement is able to solve a large set of
problems global refinement cannot, and vice versa. Best per-
formance at test time can then be achieved if we have a way

of selecting which of the two refinements is appropriate.

Fortunately, we can use the ORM as a reranker for exactly
the task of choosing between global and local refinements.
Additionally, we can consider the initial draft as a third
possible option as a way of deciding if we want to refine
at all. Figure 4 shows the results of reranking the draft,
global, and local refinement for each question. Since we are
effectively sampling three times, we include as a baseline
the best of three (Bo3) samples from the EI student. We
additionally report overall accuracy if we had a perfect
reranker capable of always choosing the correct solution.

Reranking the draft + refinements improves over the draft
accuracy by on average 8% across models and benchmarks.
When comparing with the Bo3 baseline we still see signifi-
cant improvements of around 8% on GSM8K. On SVAMP,
reranked Bo3 is a much more competitive baseline, itself
giving a large improvement over the draft accuracy. An
even bigger improvement can be seen when using an or-
acle reranker, with the 13B refiner improving 11% over
even Bo3 on GSM8K. These results demonstrate combining
refinements, either via the ORM or an orcale reranker, sig-
nificantly outperforms naievly sampling the student multiple
times on harder reasoning tasks.

5. Conclusions
In this paper we study the use of reward models for both
identifying when to refine and where to refine LLM reason-
ing. We propose to approximate the optimal policy π∗ via
rejection sampling, allowing us to generate training labels
for intermediate steps Si used to train SORM models. We
find the SORM generalizes better on intermediate test steps
than the ORM, allowing us to localize errors for refinement
at test time. We then reused the SORM training data to train

8



GLoRe: Global and Local Refinement for LLM Reasoning

a global/local refinement models. For our best results we
combine both via ORM reranking, improving over baselines
by up to 12%.

Impact Statement
This paper presents work whose goal is to advance the field
of large language modeling. As is the case with all works
involving large language modeling, there are dangers in-
volving the spread of misinformation and propagation of
societal biases.

References
Akyurek, A. F., Akyürek, E., Madaan, A., Kalyan, A.,

Clark, P., Wijaya, D., and Tandon, N. Rl4f: Gen-
erating natural language feedback with reinforcement
learning for repairing model outputs. In Annual Meet-
ing of the Association for Computational Linguistics,
2023. URL https://api.semanticscholar.
org/CorpusID:258685337.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M.,
Le, Q. V., and Sutton, C. Program synthesis
with large language models. ArXiv, abs/2108.07732,
2021. URL https://api.semanticscholar.
org/CorpusID:237142385.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., Chen, C., Olsson, C., Olah, C., Hernandez, D.,
Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez,
E., Kerr, J., Mueller, J., Ladish, J., Landau, J., Ndousse,
K., Lukoiūtė, K., Lovitt, L., Sellitto, M., Elhage, N.,
Schiefer, N., Mercado, N., DasSarma, N., Lasenby, R.,
Larson, R., Ringer, S., Johnston, S., Kravec, S., Showk,
S. E., Fort, S., Lanham, T., Telleen-Lawton, T., Conerly,
T., Henighan, T. J., Hume, T., Bowman, S., Hatfield-
Dodds, Z., Mann, B., Amodei, D., Joseph, N., McCan-
dlish, S., Brown, T. B., and Kaplan, J. Constitutional ai:
Harmlessness from ai feedback. ArXiv, abs/2212.08073,
2022. URL https://api.semanticscholar.
org/CorpusID:254823489.

Besta, M., Blach, N., Kubı́ek, A., Gerstenberger, R.,
Gianinazzi, L., Gajda, J., Lehmann, T., Podstawski,
M., Niewiadomski, H., Nyczyk, P., and Hoefler,
T. Graph of thoughts: Solving elaborate problems
with large language models. ArXiv, abs/2308.09687,
2023. URL https://api.semanticscholar.
org/CorpusID:261030303.

Chen, A. Improving code generation by training with
natural language feedback. ArXiv, abs/2303.16749,

2023. URL https://api.semanticscholar.
org/CorpusID:257804798.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Pro-
gram of thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks. ArXiv,
abs/2211.12588, 2022.

Chollet, F. On the measure of intelligence.
ArXiv, abs/1911.01547, 2019. URL https:
//api.semanticscholar.org/CorpusID:
207870692.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N. M., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B. C., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-
Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat,
S., Dev, S., Michalewski, H., Garcı́a, X., Misra, V.,
Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan,
D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R.,
Dohan, D., Agrawal, S., Omernick, M., Dai, A. M.,
Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E.,
Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X.,
Saeta, B., Dı́az, M., Firat, O., Catasta, M., Wei, J.,
Meier-Hellstern, K. S., Eck, D., Dean, J., Petrov, S.,
and Fiedel, N. Palm: Scaling language modeling with
pathways. J. Mach. Learn. Res., 24:240:1–240:113,
2022. URL https://api.semanticscholar.
org/CorpusID:247951931.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to
solve math word problems. ArXiv, abs/2110.14168,
2021. URL https://api.semanticscholar.
org/CorpusID:239998651.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y.,
Duan, N., and Chen, W. Critic: Large language
models can self-correct with tool-interactive cri-
tiquing. ArXiv, abs/2305.11738, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258823123.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021a.

9

https://api.semanticscholar.org/CorpusID:258685337
https://api.semanticscholar.org/CorpusID:258685337
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:254823489
https://api.semanticscholar.org/CorpusID:254823489
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:261030303
https://api.semanticscholar.org/CorpusID:257804798
https://api.semanticscholar.org/CorpusID:257804798
https://api.semanticscholar.org/CorpusID:207870692
https://api.semanticscholar.org/CorpusID:207870692
https://api.semanticscholar.org/CorpusID:207870692
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://api.semanticscholar.org/CorpusID:258823123
https://api.semanticscholar.org/CorpusID:258823123
https://api.semanticscholar.org/CorpusID:258823123


GLoRe: Global and Local Refinement for LLM Reasoning

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,
Basart, S., Tang, E., Song, D. X., and Stein-
hardt, J. Measuring mathematical problem solv-
ing with the math dataset. ArXiv, abs/2103.03874,
2021b. URL https://api.semanticscholar.
org/CorpusID:232134851.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W.,
Song, X., and Zhou, D. Large language models can-
not self-correct reasoning yet. ArXiv, abs/2310.01798,
2023. URL https://api.semanticscholar.
org/CorpusID:263609132.

Lee, A. N., Hunter, C. J., and Ruiz, N. Platypus:
Quick, cheap, and powerful refinement of llms.
ArXiv, abs/2308.07317, 2023. URL https:
//api.semanticscholar.org/CorpusID:
260886870.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-
G., and Chen, W. Making language models better
reasoners with step-aware verifier. In Annual Meet-
ing of the Association for Computational Linguistics,
2022. URL https://api.semanticscholar.
org/CorpusID:259370847.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., Newman, B., Yuan, B., Yan, B., Zhang, C., Cos-
grove, C., Manning, C. D., Ré, C., Acosta-Navas, D.,
Hudson, D. A., Zelikman, E., Durmus, E., Ladhak, F.,
Rong, F., Ren, H., Yao, H., Wang, J., Santhanam, K., Orr,
L. J., Zheng, L., Yüksekgönül, M., Suzgun, M., Kim, N.,
Guha, N., Chatterji, N. S., Khattab, O., Henderson, P.,
Huang, Q., Chi, R., Xie, S. M., Santurkar, S., Ganguli, S.,
Hashimoto, T., Icard, T., Zhang, T., Chaudhary, V., Wang,
W., Li, X., Mai, Y., Zhang, Y., and Koreeda, Y. Holistic
evaluation of language models. ArXiv, abs/2211.09110,
2022. URL https://api.semanticscholar.
org/CorpusID:263423935.

Lightman, H., Kosaraju, V., Burda, Y., Edwards,
H., Baker, B., Lee, T., Leike, J., Schulman, J.,
Sutskever, I., and Cobbe, K. Let’s verify step by
step. ArXiv, abs/2305.20050, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258987659.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iterative
refinement with self-feedback, 2023.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., Le-
Cun, Y. A., and Scialom, T. Gaia: a benchmark
for general ai assistants. 2023. URL https:

//api.semanticscholar.org/CorpusID:
265351664.

Mishra, S., Lu, P., and Kalyan, A. Lila: A uni-
fied benchmark for mathematical reasoning. 2022.
URL https://api.semanticscholar.org/
CorpusID:257405677.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023. URL https://api.semanticscholar.
org/CorpusID:257532815.

Patel, A., Bhattamishra, S., and Goyal, N. Are nlp models
really able to solve simple math word problems?, 2021.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B.,
Bosselut, A., West, R., and Faltings, B. Refiner:
Reasoning feedback on intermediate representa-
tions. ArXiv, abs/2304.01904, 2023. URL https:
//api.semanticscholar.org/CorpusID:
257921623.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J.,
Pang, R. Y., Dirani, J., Michael, J., and Bow-
man, S. R. Gpqa: A graduate-level google-
proof q&a benchmark. ArXiv, abs/2311.12022,
2023. URL https://api.semanticscholar.
org/CorpusID:265295009.

Saunders, W., Yeh, C., Wu, J., Bills, S., Long, O.,
Ward, J., and Leike, J. Self-critiquing models for
assisting human evaluators. ArXiv, abs/2206.05802,
2022. URL https://api.semanticscholar.
org/CorpusID:249626555.

Sawada, T., Paleka, D., Havrilla, A., Tadepalli, P., Vi-
das, P., Kranias, A., Nay, J. J., Gupta, K., and Ko-
matsuzaki, A. Arb: Advanced reasoning benchmark
for large language models. ArXiv, abs/2307.13692,
2023. URL https://api.semanticscholar.
org/CorpusID:260155126.

Schick, T., Dwivedi-Yu, J., Jiang, Z., Petroni, F.,
Lewis, P., Izacard, G., You, Q., Nalmpantis, C.,
Grave, E., and Riedel, S. Peer: A collab-
orative language model. ArXiv, abs/2208.11663,
2022. URL https://api.semanticscholar.
org/CorpusID:251765117.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T. P., Simonyan, K., and Hassabis, D.
Mastering chess and shogi by self-play with a general re-
inforcement learning algorithm. ArXiv, abs/1712.01815,
2017. URL https://api.semanticscholar.
org/CorpusID:33081038.

10

https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:263609132
https://api.semanticscholar.org/CorpusID:263609132
https://api.semanticscholar.org/CorpusID:260886870
https://api.semanticscholar.org/CorpusID:260886870
https://api.semanticscholar.org/CorpusID:260886870
https://api.semanticscholar.org/CorpusID:259370847
https://api.semanticscholar.org/CorpusID:259370847
https://api.semanticscholar.org/CorpusID:263423935
https://api.semanticscholar.org/CorpusID:263423935
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:265351664
https://api.semanticscholar.org/CorpusID:265351664
https://api.semanticscholar.org/CorpusID:265351664
https://api.semanticscholar.org/CorpusID:257405677
https://api.semanticscholar.org/CorpusID:257405677
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257921623
https://api.semanticscholar.org/CorpusID:257921623
https://api.semanticscholar.org/CorpusID:257921623
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:265295009
https://api.semanticscholar.org/CorpusID:249626555
https://api.semanticscholar.org/CorpusID:249626555
https://api.semanticscholar.org/CorpusID:260155126
https://api.semanticscholar.org/CorpusID:260155126
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:33081038
https://api.semanticscholar.org/CorpusID:33081038


GLoRe: Global and Local Refinement for LLM Reasoning

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., Kluska, A., Lewkowycz, A., Agar-
wal, A., Power, A., Ray, A., Warstadt, A., Kocurek, A. W.,
Safaya, A., Tazarv, A., Xiang, A., Parrish, A., Nie, A.,
Hussain, A., Askell, A., Dsouza, A., Slone, A., Rahane,
A. A., Iyer, A. S., Andreassen, A., Madotto, A., San-
tilli, A., Stuhlmuller, A., Dai, A. M., La, A., Lampinen,
A. K., Zou, A., Jiang, A., Chen, A., Vuong, A., Gupta,
A., Gottardi, A., Norelli, A., Venkatesh, A., Gholami-
davoodi, A., Tabassum, A., Menezes, A., Kirubarajan,
A., Mullokandov, A., Sabharwal, A., Herrick, A., Efrat,
A., Erdem, A., Karakacs, A., Roberts, B. R., Loe, B. S.,
Zoph, B., Bojanowski, B., Ozyurt, B., Hedayatnia, B.,
Neyshabur, B., Inden, B., Stein, B., Ekmekci, B., Lin,
B. Y., Howald, B. S., Orinion, B., Diao, C., Dour, C., Stin-
son, C., Argueta, C., Ram’irez, C. F., Singh, C., Rathkopf,
C., Meng, C., Baral, C., Wu, C., Callison-Burch, C.,
Waites, C., Voigt, C., Manning, C. D., Potts, C., Ramirez,
C., Rivera, C. E., Siro, C., Raffel, C., Ashcraft, C., Gar-
bacea, C., Sileo, D., Garrette, D. H., Hendrycks, D., Kil-
man, D., Roth, D., Freeman, D., Khashabi, D., Levy, D.,
Gonz’alez, D. M., Perszyk, D. R., Hernandez, D., Chen,
D., Ippolito, D., Gilboa, D., Dohan, D., Drakard, D., Ju-
rgens, D., Datta, D., Ganguli, D., Emelin, D., Kleyko,
D., Yuret, D., Chen, D., Tam, D., Hupkes, D., Misra, D.,
Buzan, D., Mollo, D. C., Yang, D., Lee, D.-H., Schrader,
D., Shutova, E., Cubuk, E. D., Segal, E., Hagerman,
E., Barnes, E., Donoway, E. P., Pavlick, E., Rodolà, E.,
Lam, E., Chu, E., Tang, E., Erdem, E., Chang, E., Chi,
E. A., Dyer, E., Jerzak, E. J., Kim, E., Manyasi, E. E.,
Zheltonozhskii, E., Xia, F., Siar, F., Mart’inez-Plumed, F.,
Happ’e, F., Chollet, F., Rong, F., Mishra, G., Winata, G. I.,
de Melo, G., Kruszewski, G., Parascandolo, G., Mariani,
G., Wang, G., Jaimovitch-L’opez, G., Betz, G., Gur-Ari,
G., Galijasevic, H., Kim, H., Rashkin, H., Hajishirzi, H.,
Mehta, H., Bogar, H., Shevlin, H., Schutze, H., Yakura,
H., Zhang, H., Wong, H. M., Ng, I., Noble, I., Jumelet, J.,
Geissinger, J., Kernion, J., Hilton, J., Lee, J., Fisac, J. F.,
Simon, J. B., Koppel, J., Zheng, J., Zou, J., Koco’n, J.,
Thompson, J., Wingfield, J., Kaplan, J., Radom, J., Sohl-
Dickstein, J. N., Phang, J., Wei, J., Yosinski, J., Novikova,
J., Bosscher, J., Marsh, J., Kim, J., Taal, J., Engel, J.,
Alabi, J. O., Xu, J., Song, J., Tang, J., Waweru, J. W.,
Burden, J., Miller, J., Balis, J. U., Batchelder, J., Berant,
J., Frohberg, J., Rozen, J., Hernández-Orallo, J., Boude-
man, J., Guerr, J., Jones, J., Tenenbaum, J., Rule, J. S.,
Chua, J., Kanclerz, K., Livescu, K., Krauth, K., Gopalakr-
ishnan, K., Ignatyeva, K., Markert, K., Dhole, K. D.,
Gimpel, K., Omondi, K., Mathewson, K. W., Chiafullo,
K., Shkaruta, K., Shridhar, K., McDonell, K., Richardson,
K., Reynolds, L., Gao, L., Zhang, L., Dugan, L., Qin, L.,
Contreras-Ochando, L., Morency, L.-P., Moschella, L.,
Lam, L., Noble, L., Schmidt, L., He, L., Col’on, L. O.,

Metz, L., cSenel, L. K., Bosma, M., Sap, M., ter Hoeve,
M., Farooqi, M., Faruqui, M., Mazeika, M., Baturan, M.,
Marelli, M., Maru, M., Quintana, M. J. R., Tolkiehn, M.,
Giulianelli, M., Lewis, M., Potthast, M., Leavitt, M. L.,
Hagen, M., Schubert, M., Baitemirova, M., Arnaud, M.,
McElrath, M. A., Yee, M. A., Cohen, M., Gu, M., Ivan-
itskiy, M., Starritt, M., Strube, M., Swkedrowski, M.,
Bevilacqua, M., Yasunaga, M., Kale, M., Cain, M., Xu,
M., Suzgun, M., Walker, M., Tiwari, M., Bansal, M.,
Aminnaseri, M., Geva, M., Gheini, M., MukundVarma,
T., Peng, N., Chi, N. A., Lee, N., Krakover, N. G.-A.,
Cameron, N., Roberts, N., Doiron, N., Martinez, N., Nan-
gia, N., Deckers, N., Muennighoff, N., Keskar, N. S.,
Iyer, N., Constant, N., Fiedel, N., Wen, N., Zhang, O.,
Agha, O., Elbaghdadi, O., Levy, O., Evans, O., Casares, P.
A. M., Doshi, P., Fung, P., Liang, P. P., Vicol, P., Alipoor-
molabashi, P., Liao, P., Liang, P., Chang, P., Eckersley,
P., Htut, P. M., Hwang, P.-B., Milkowski, P., Patil, P. S.,
Pezeshkpour, P., Oli, P., Mei, Q., Lyu, Q., Chen, Q.,
Banjade, R., Rudolph, R. E., Gabriel, R., Habacker, R.,
Risco, R., Milliere, R., Garg, R., Barnes, R., Saurous,
R. A., Arakawa, R., Raymaekers, R., Frank, R., Sikand,
R., Novak, R., Sitelew, R., Lebras, R., Liu, R., Jacobs,
R., Zhang, R., Salakhutdinov, R., Chi, R., Lee, R., Sto-
vall, R., Teehan, R., Yang, R., Singh, S., Mohammad,
S. M., Anand, S., Dillavou, S., Shleifer, S., Wiseman, S.,
Gruetter, S., Bowman, S. R., Schoenholz, S. S., Han, S.,
Kwatra, S., Rous, S. A., Ghazarian, S., Ghosh, S., Casey,
S., Bischoff, S., Gehrmann, S., Schuster, S., Sadeghi, S.,
Hamdan, S. S., Zhou, S., Srivastava, S., Shi, S., Singh, S.,
Asaadi, S., Gu, S. S., Pachchigar, S., Toshniwal, S., Upad-
hyay, S., Debnath, S., Shakeri, S., Thormeyer, S., Melzi,
S., Reddy, S., Makini, S. P., Lee, S.-H., Torene, S., Hat-
war, S., Dehaene, S., Divic, S., Ermon, S., Biderman, S.,
Lin, S., Prasad, S., Piantadosi, S. T., Shieber, S. M., Mish-
erghi, S., Kiritchenko, S., Mishra, S., Linzen, T., Schuster,
T., Li, T., Yu, T., Ali, T., Hashimoto, T., Wu, T.-L., Des-
bordes, T., Rothschild, T., Phan, T., Wang, T., Nkinyili,
T., Schick, T., Kornev, T., Tunduny, T., Gerstenberg, T.,
Chang, T., Neeraj, T., Khot, T., Shultz, T., Shaham, U.,
Misra, V., Demberg, V., Nyamai, V., Raunak, V., Ra-
masesh, V. V., Prabhu, V. U., Padmakumar, V., Srikumar,
V., Fedus, W., Saunders, W., Zhang, W., Vossen, W., Ren,
X., Tong, X., Zhao, X., Wu, X., Shen, X., Yaghoobzadeh,
Y., Lakretz, Y., Song, Y., Bahri, Y., Choi, Y., Yang, Y.,
Hao, Y., Chen, Y., Belinkov, Y., Hou, Y., Hou, Y., Bai,
Y., Seid, Z., Zhao, Z., Wang, Z. F., Wang, Z. J., Wang,
Z., and Wu, Z. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
2022. URL https://api.semanticscholar.
org/CorpusID:263625818.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,

11

https://api.semanticscholar.org/CorpusID:263625818
https://api.semanticscholar.org/CorpusID:263625818


GLoRe: Global and Local Refinement for LLM Reasoning

Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel,
N., Wang, L., Creswell, A., Irving, G., and Hig-
gins, I. Solving math word problems with process-
and outcome-based feedback. ArXiv, abs/2211.14275,
2022. URL https://api.semanticscholar.
org/CorpusID:254017497.

Wang, T., Yu, P., Tan, X. E., O’Brien, S., Pasunuru, R.,
Dwivedi-Yu, J., Golovneva, O., Zettlemoyer, L., Fazel-
Zarandi, M., and Celikyilmaz, A. Shepherd: A critic for
language model generation, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi,
E. H., Xia, F., Le, Q., and Zhou, D. Chain of thought
prompting elicits reasoning in large language models.
ArXiv, abs/2201.11903, 2022.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences
by learning to self-correct. ArXiv, abs/2211.00053,
2022. URL https://api.semanticscholar.
org/CorpusID:253244506.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and
acting in language models. ArXiv, abs/2210.03629,
2022. URL https://api.semanticscholar.
org/CorpusID:252762395.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L.,
Cao, Y., and Narasimhan, K. Tree of thoughts:
Deliberate problem solving with large language mod-
els. ArXiv, abs/2305.10601, 2023a. URL https:
//api.semanticscholar.org/CorpusID:
258762525.

Yao, W., Heinecke, S., Niebles, J. C., Liu, Z., Feng, Y.,
Xue, L., Murthy, R., Chen, Z., Zhang, J., Arpit, D., Xu,
R., Mui, P. T., Wang, H., Xiong, C., and Savarese, S.
Retroformer: Retrospective large language agents with
policy gradient optimization. ArXiv, abs/2308.02151,

Expert Iteration (S)ORM Refiners

Epochs 4 1 1
max lr 2e-5 2e-6 2e-5
min lr 2e-7 2e-7 2e-7
Batch size 128 256 128

Table 4. Hyperparameters for all training jobs. A cosine decay lr
schedule is used in all cases.

2023b. URL https://api.semanticscholar.
org/CorpusID:260611249.

Zhou, A., Wang, K., Lu, Z., Shi, W., Luo, S., Qin, Z., Lu,
S., Jia, A., Song, L., Zhan, M., and Li, H. Solving chal-
lenging math word problems using gpt-4 code interpreter
with code-based self-verification. ArXiv, abs/2308.07921,
2023. URL https://api.semanticscholar.
org/CorpusID:260900008.

A. Hyperparamters
See Table 4 for a list of training hyperparameters used in
each training job. We train and do inference on a single
node of 8x80GB A100s.

B. RL for Reasoning
In order to start from the best student possible we RL fine-
tune the base-model using Expert Iteration. See Table 5 for
maj@1 (greedy), maj@96, Rerank@96 and pass@96 scores
for EI fine-tuned models.

C. RL for (global) refinement
Setup: We compare the utility of PPO versus EI for re-
finement on the GSM8K benchmark. To train EI mod-
els we sample the SFT1.5 model trained in Section ??
K = 96 times per prompt in the train set. We then pair
together all incorrect solutions Awrong with correct solu-
tions Acorrect for a fixed question Q to form training tuples
(Q,Awrong, Acorrect). We then fine-tune from Llama 2-chat
7B to predict p(Acorrect|Q,Awrong) with the standard cross-
entropy loss for a single epoch. We use an initial learning
rate of 5e-5 decaying to 5e-7.

We initialize the PPO model from the SFT1.5 checkpoint
used in Section 2 above and use the same PPO parameters
as when fine-tuning from the SFT checkpoint on GSM8K.
A single example, included in the appendix for reference, is
used to prompt the model for refinement. During training
the student model is given a question Q and draft D, where
the draft is generated by the SFT model, and tasked with
generating a refinement R. We give R = 1is correct(R) −
1is correct(D) as a sparse reward at the end of the rollout.

12

https://api.semanticscholar.org/CorpusID:254017497
https://api.semanticscholar.org/CorpusID:254017497
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:260611249
https://api.semanticscholar.org/CorpusID:260611249
https://api.semanticscholar.org/CorpusID:260900008
https://api.semanticscholar.org/CorpusID:260900008


GLoRe: Global and Local Refinement for LLM Reasoning

maj@1 maj@96 Rerank@96 pass@96

GSM8K

SFT 7B 0.41 0.47 0.54 0.72
SFT 13B 0.48 0.55 0.68 0.84
EI2 7B 0.485 0.55 0.64 0.8
EI2 13B 0.53 0.59 0.71 0.88

SVAMP

EI5 7B 0.58 0.6 0.62 0.70
EI5 13B 0.69 0.75 0.78 0.93

Table 5. Performance metrics for EI fine-tuned models on GSM8K and SVAMP. The subscript n denotes the number of rounds of expert
iteration until convergence of the maj@1 score. Reranking done via an ORM trained with samples from the model being reranked.

Accuracy

SFT 0.36
Prompted 0.15
PPO 0.36
ORM PPO 0.36
EI 0.39

Table 6. global refinement accuracies for prompted, PPO, and EI
models. Note, maj@1 accuracy is reported for entire test set
containing both correct and incorrect SFT generated drafts.

We additionally experimented with mixing in scores from an
ORM, giving a final reward of R = max(1is correct(R) −
1is correct(D), ORM(R)−ORM(D)).

C.0.1. RESULTS FOR GLOBAL REFINEMENT

We evaluate all refinement models on a test set with ques-
tions from GSM8K test and drafts generated by SFT1.5.
Results are reported in Table 6. Sampling at test time is
done greedily, so only maj@1 accuracy is reported. We
additionally report a 1-shot prompted Llama 2-chat 7B as a
baseline.

All models struggle learning when to refine Our best re-
finement model is the EI model. However, EI improves
over the SFT baseline by only 3%, with PPO showing no
improvement at all. This is because both models strug-
gle correctly deciding when to refine. Often the EI model
chooses to incorrectly refine correct drafts. The prompted
pretrained model does even worse, having not been trained
on GSM8K and thus struggling with when to refine and how
to produce correct alternative refinements.

The PPO model collapses to simply returning the draft final
answer, at least avoiding any negative rewards from incor-
rectly refining a correct draft. The prompted baseline also
exhibits this copying behavior, accounting for the majority
of its nontrivial accuracy. We experiment with alternative
RL setups for preventing this degenerate behavior by using

the ORM as an additional reward, removing the penalty for
refining correct drafts, and/or having the student generate
both the draft D and refinement R. However, in all cases the
model’s copy bias continues to limit exploration, causing a
collapse of the refinement to the initial draft.

Discussion: The results above highlight several failure
modes. Firstly, models struggle with determining when
to refine, often defaulting to never refining at all. Secondly,
when the model does correctly choose where to refine it
still struggles with knowing where to refine. Finally, even
knowing when and where to refine, the model still must
decide how to refine.

In order to improve model refinement capability we propose
to decompose the problem by using unique models to solve
each failure mode. Fortunately, deciding when to refine can
naturally be handled by the ORM which is explicitly trained
to predict when a final answer is correct. Additionally, when
doing local refinement, we can use the SORM to identify
where to refine. This now only requires the refinement
model we train to decide how to refine, making the task
significantly easier.

D. Misc. Objectives for Reranking
In Lightman et al. (2023) the PRM is used for reranking
by estimating P (Good|Si) for each step Si and taking the
product. Inspired by this, we experimented with a number of
different weightings for SORM intermediate step estimates
when doing final answer reranking. For a solution of the
form S = (S1, ..., SL) these heuristics included:

1. Final: ORM(SL)

2. Mean: 1
L

∑L
i=1 ORM(Si)

3. Weighted mean:
∑L

i=1
1

L−i−1ORM(Si)

4. Min: mini∈[L]ORM(Si)

13



GLoRe: Global and Local Refinement for LLM Reasoning

Figure 5. Comparison of heuristics for determining final rerank
score with SORM.

EI Test Accuracy SFT Test Accuracy

ORMEI 0.64 0.51
ORMSFT 0.58 0.56

Table 7. Evaluation ORMEI and ORMSFT cross-generalization.

5. Product:
∏L

i=1 ORM(Si)

6. Penultimate mean: ORM(SL−1)−ORM(SL)
2

The results are plotted in Figure 5. Overall using only
the final ORM estimates gives the best reranking accuracy
with the penultimate mean coming in at a close second.
The weighted mean significantly underperforms all other
strategies, even taking the minimum ORM estimate.

E. ORM and SORM extra-model
generalization

Both ORMs and SORMs exhibit signs of overfit to the data
generating student π. When evaluated on GSM8K train
set a 7B ORM model incorrectly classifies 42% of correct
solutions as incorrect. To examine this more closely we take
two base student models, EI (trained with expert iteration)
and SFT (supervised fine-tuning), and use both to generate
training data for ORMEI and ORMSFT respectively. we
then evaluate both ORMs on test sets generated by each
model. Results are reported in Table 7. We find both ORMs
underperform on the test dataset generated by the opposite
student model.

F. Contrastive vs. Classifier RMs
Both the ORM and SORM are trained as classifiers to pre-
dict the probability of a good label at each intermediate
step Si. However, in RLHF there are only preference com-
parisons over solutions. So the RLHF reward model is

often trained via a contrastive loss −log(σ(RM(ygood)−
RM(ybad)). We explore the use of a contrastive reward
model in the reasoning setting, comparing reranking perfor-
mance with the ORM. Training data is sampled from a 7B
SFT student model with K = 96 rollouts per training prompt
at a temperature T = 1.0. We assign ORM step labels in
the usual way, setting li = 1 at a step Si if lL = 1 and oth-
erwise li = 0. To construct preference pairs we select the
maximal equal number of positive and negative solutions
for the same prompt and form pairs (Sgood, Sbad) with no
solution repeated. Only the contrastive loss on the final
token is backpropagated. We then rerank solutions on the
test set using scores assigned by both the classifier ORM
and contrastive ORM. We find the classifier ORM gets 0.56
rerank accuracy whereas the contrastive ORM gets 0.47,
suggesting the classifier to be a strictly better reranker.

G. Accuracy of the SORM data generating
method

The SORM data generation process will suffer from both
false positives and false negatives. False positives may
occur when the student model solves the problem incorrectly
but gets the right final answer. False negatives will occur
when the rejection sampled student is simply unable to
solve the problem from a prefix Pi desipte the prefix being
logically valid. In order to verify the correctness of the
SORM step-level verification process we hand-label several
model generated solutions on GSM8K and compute how
well the our ground truth labels align with the generated
labels. Over n = 64 and a total of 257 steps we find the
SORM data labels agree with our ground truth 94% of the
time.

H. Mixing other sources of PRM data
We additionally experiment with mixing in PRM data on the
MATH dataset from Lightman et al. (2023). We train Llama
2-chat 7B to predict negative, neutral and good la-
bels for each step, with “bad” steps being incorrect, “neutral”
steps neither making forward nor backward progress, and
“good” steps being correct and useful to solving the problem.
The resulting PRM gets 0.91 accuracy on the MATH PRM
test set. However, we find the PRM transfers poorly as a fi-
nal answer correctness predictor, getting only 0.58 accuracy
on an EI generated test set.

I. Self-supervised learning with the SORM
It is likely the SORM dataset generation process is fairly
noisy. Low quality samples will directly impact the per-
formance of the downstream SORM, making it critical to
improve dataset quality. In an attempt to remove noisy out-
liers we filtered version of the SORM dataset via SORM

14



GLoRe: Global and Local Refinement for LLM Reasoning

self-supervsion. For each training pair (Q,Pi, li), where
Q is the question, Pi = (S1, ..., Si) is a solution pre-
fix with i steps, and li is the correctness label, we apply
SORM((Q,Pi)). This generates a self-supervised label
l′i = 1SORM((Q,Pi))>0.5. We then filter out all training
samples with l′i ̸= li.

We filter the SORM dataset with a SORM checkpoint trained
for 1 epoch and another trained for 2 epochs. The first model,
denoted as SORM1, has 75% accuracy on the SORM test
set but 91% on the SORM train set. SORM2 gets 78% test
but 95% on the train set. It could be SORM2 is overfit to
the train set, so we train new SORM models on both fil-
tered datasets. SORM′

1, trained on SORM data filtered with
SORM1, gets 79% accuracy. SORM′

2, trained on SORM
data filtered with SORM2, gets the same.

J. Value refinement
The local refinement strategy employed in the main body
of this work uses critiques attempting to locate steps with
logical errors. This can be interpreted as a type of process-
based refinement which which gives feedback agnostic to
the abilities of the refinement model. More sophisticated
forms of feedback might take the underlying capabilities
of the model into account, maximizing the chances of this
particular student succeeding.

One alternative refinement strategy which gives student
specific feedback is value-based refinement. A value-based
refinement model receives feedback in the form of a “[BAD]”
token at the step in a solution with the highest value for the
model. Recall the value of a step Si is the probability the
model gets the correct answer from Si. Note this is not
the same thing as process-based feedback as the step Si+1

after the highest value step Si may not necessarily contain
an error. Instead, Si+1 may attempt to solve the problem
is a difficult way, for example using division with a model
which struggles dividing correctly.

Training a value-based refinement model Further recall
the ORM directly estimates the value function V π of its
data generating policy π such that ORM(Pi) ≈ V π(Si)
for a prefix with Pi = (S1, ..., Si). Given a student model
π on a reasoning task τ we generate an ORM training set
DORM by sampling each prompt in K = 96 times. We
train the ORM as a classifier, setting an intermediate step
label li = lL where lL = is correct(S).

To construct the value based refinement dataset Dvrefine we
start by reusing the SORM dataset DSORM generated as
above using policy π and rejection sampling. For a sample
S = (S1, ..., SL) we identify the highest value step Si by
choosing the step with the most correct verifying rollouts
vji . We then select one of the verifying rollouts whose
first step differs from Si+1 as the improving refinement

R. This forms a value-refinement training pair (Q,S,R,C)
where C is a “[BAD]” token inserted before step Si+1 in
S. We then train a value-based local refinement model by
minimizing p(R|Q,S,C) with the standard cross-entropy
loss.

In practice we generate all downstream models and datasets
using LLama 2-chat 7B EI on GSM8K as π.

Results: To evaluate we use the 7B EI model trained on
GSM8K from our best SFT checkpoint. We greedily sample
solution drafts on the GSM8K test set, forming a (Q,D)
test set for the value-based local refinement model. We then
label the highest value step Si of each draft using the ORM,
placing the “[BAD]” token as a prefix to Si+1.

We evaluate only on incorrect drafts, comparing directly the
performance of process-based SORM refinement. Value-
based refinement fixes 14% of incorrect drafts whereas the
SORM baseline fixes 21%. Surprisingly, even global re-
finement outperforms value-based refinement by 6%. This
again take this to suggest intermediate ORM estimates are
fairly noisy on test data.

15


