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ABSTRACT

Recently, Masked Image Modeling (MIM) has increasingly reshaped the status
quo of self-supervised visual pre-training. This paper does not describe a novel
MIM framework, but to unravel several fundamental ingredients to robustly and
effectively pre-train a Masked AutoEncoder (MAE) with improved downstream
performance as a byproduct. We highlight the great significance for the whole au-
toencoder to encourage high-variance interactions across different tokens, while
simultaneously for the reconstructed target to smooth the inter-patch variances.
First, at the decoding phase, we apply the standard dropout upon the attention
probabilities as noise to randomly mask out the edge connection across differ-
ent tokens. Otherwise, their shortcut interactions might hinder the emergence of
meaningful contextual representation. Second, we point out that the per-patch
normalization will fail unless the patch pixels rely on some population statistics to
reduce inter-patch variance and then smooth the reconstruction. Third, we show
that autoencoders with different capacities encounter the issue to varying degrees
and the learnable masked tokens can be employed to manipulate the variance de-
pendent on its inserted position and ratio in the model. The proposed techniques
here are simple and effective to benefit the pre-training of a masked autoencoder
stably and obtain superior performance across different downstream tasks.

1 INTRODUCTION

Contrastive learning (He et al., 2020; Chen et al., 2020; Grill et al., 2020) and masked image mod-
eling (Bao et al., 2021; He et al., 2022; Xie et al., 2022b) have become two dominant paradigms for
self-supervised visual pre-training. This paper elaborates on the latter one, which exhibits more in-
triguing progress recently. Generally speaking, the key philosophy of masked image modeling is to
mask out a portion of input image and then learn latent representation that can predict the removed
data. Such mechanism has first manifested its efficacy in natural language processing (Kenton &
Toutanova, 2019; Brown et al., 2020) to learn contextual representation that universally benefits var-
ious downstream tasks. Unfortunately, the vision community struggles to embark a similar trajectory
for a while.

Thanks to the development of Vision Transformer (Dosovitskiy et al., 2020) (ViT), masked image
modeling eventually opens the new chapter for self-supervised visual pre-training. In particular, the
pioneering BEiT (Bao et al., 2021) applies ViT as a bidirectional encoder to predict visual tokens
from a pre-trained codebook (Ramesh et al., 2021), given some patches of the input image are
masked and replaced with a learnable embedding. BEiT first demonstrates the superiority of masked
image modeling by outperforming the supervised version that pre-train using the class label of an
image. Instead, He et al. (2022) presents a self-contained solution to directly reconstruct pixels
at the decoding phase. Their proposed masked autoencoder employs an asymmetric architecture,
where the encoder only computes on the low-portion visible tokens while the lightweight decoder is
used to reconstruct the other high-portion masked tokens. Some similar techniques are also exploited
in Xie et al. (2022b), such as random masking, raw pixel prediction, lightweight decoding, etc. In
addition, Wei et al. (2022) reveals that using HoG (Dalal & Triggs, 2005) as the reconstructed target
yields competitive representation.

In light of these breakthroughs, there arises several lines of improvements: incorporating with
siamese-network-based contrastive learning (Huang et al., 2022; Tao et al., 2022); enhancing the
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pre-trained image tokenizer (Zhou et al., 2021; Peng et al., 2022); etc. Instead, this paper does not
fall within these categories, but to dive into a purely self-contained Masked AuoEncoder (MAE).
Without loss of generality, we consider the architecture proposed in He et al. (2022) as our base-
line. We attempt to reveal several fundamental ingredients that contribute to the success of masked
autoencoding and then propose techniques to robustly and effectively improve it. The key message
we deliver here is that it is of significance for the entire model to circumvent the oversmoothing
token interactions at both encoding and decoding phase. Conversely, we show that some population
statistics are in demand to smooth the inter-patch variance in the pixel space. Otherwise, the per-
patch normalized pixels can not serve as a well-performing reconstructed target. We detail our key
message as follows.

Particularly, when we talk about oversmoothing here, we mean that the pre-trained autoencoder
might learn shortcut interactions across tokens to trivially fulfill the pretext task (e.g., pixel predic-
tion), which hinders the emergence of contextual representation in masked image modeling. On the
encoding side, both high-portion masking and random masking can alleviate this issue, which have
been proposed in He et al. (2022). First, if we regard the self-attention matrix as a normalized adja-
cent matrix across the patches, then a complete connected graph will be created (Shi et al., 2022). To
this end, the high-portion masking enables to dynamically sample a combinatorial number of sub-
graphs, substantially reducing the the risk of oversmoothing. Second, given a fixed masking ratio,
the random masking will have larger bipartite entanglement between the visible and masked tokens
by increasing their boundary perimeter. That is, to preserve a fixed global semantics, the random
masking might be able to have higher masking ratio to spatially remove more redundant patches.
While there have been effective practices for the encoding side, however, they are not applicable
to the decoder. At the decoding phase, the removed tokens are inserted back as a shared learnable
embedding and then all the tokens are visible to the decoder in a fully-connected graph. To circum-
vent the trivial dependencies among tokens, we are inspired by the drop edge technique (Rong et al.,
2019) in graph neural network to randomly remove edges of the graph. In our specific case, we ap-
ply the standard dropout upon the self-attention probabilities to randomly mask out some portion of
interactions across different tokens, dynamically resulting in a partial connected graph to be visible
by the decoder at every iteration.

In addition to the architecture, what to predict (i.e., the reconstructed target) is also a concern. In He
et al. (2022); Feichtenhofer et al. (2022), the per-patch normalization of the raw pixel is empir-
ically demonstrated the optimal variant, which suggests that predicting the local high-frequency
components benefit the representation learning. However, we argue that this operation becomes
meaningless if some population statistics are missed to transform the pixel space. We conduct an
ablation study to illustrate this point in Table 1, where the ViT-Base and ViT-Large models are pre-
trained using different reconstructed targets. As the None variant shown in the table, if we directly
reconstruct on the purely raw pixels with per-patch normalization, then the masked pre-training will
not bring positive gains compared with training the model from scratch. Indeed, only if we first
perform some specific inter-patch normalization, then followed by the intra-patch normalization,
predicting the high-frequency components will be plausible. Specifically, the original MAE actually
transforms the pixel space by normalizing along the RGB channels, where the mean and standard
deviation are calculated image-wisely on the whole dataset. We also testify that the similar advan-
tages can be observed by normalizing over the 1-D patches along the dimension of size equal to
the patch length, which is shown in the last two columns in the table. Note that our conclusion is
indeed aligned with Chen & He (2021); Wang et al. (2022), once we regard the predictor as an au-
toencoder and the original image as the naturally stop-gradient target view. To this end, performing
batch normalization on the target will facilitate smoothing the target branch and thus stablize the
pre-training.

While the previous discussions are delivered in an architecture-invariant manner, however, models
with different capacities are subject to the mentioned issue by varying degrees. For instance, the ex-
tremely high masking ratio (e.g., 75%) might fit the ViT-Large model better but not the optimal one
for the ViT-Base variant. In order to manipulate token interactions for different models, we show
that the involvement of masked tokens could be more flexible in terms of their inserted position and
ratio. For a smaller architecture, we can design an extra low-portion of mid-level masked tokens
and include them earlier in the encoder. The inserted position is preferred at the higher layer of the
encoder, as not to sacrifice the efficiency. Unlike the argument in Chen et al. (2022) that the repre-
sentation learning and pretext task completion should not be coupled, we empirically demonstrate
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Table 1: Top-1 finetuning accuracy (%) on ImageNet-1K with per-patch normalized pixels as the
reconstructed target. If we directly perform intra-patch normalization on the raw pixels without
first centering them based on some population statistics, then it will suffer from the significant
performance drop.

Architecture Epoch None Global RGB
Normalization

Global Patch
Normalization

ViT-Base 800 81.99 83.25 83.28
ViT-Large 800 84.70 85.29 85.47

that this manner does not hurt the performance of the encoder although it is optimized for the two
tasks simultaneously.

2 METHOD

In this part, we first introduce the edge dropping of self-attention matrix at the decoding phase.
Then, we will highlight the importance of conducting inter-patch normalization for the reconstructed
target. Finally, we will show that the insertion of masked token can be more flexible in terms of ratio
and position to manipulate the token interaction.

2.1 DROP EDGE AT THE DECODING

Our method relies on the vision transformer (Dosovitskiy et al., 2020) architecture, where the self-
attention module serves as a principal element. Its computation can be simply shown in Equation 1

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where the Q,K, V are a sequence of query vector, key vector and value vector that are obtained by
multiplying every input token with some learnable matrices. Then the attention score is calculated by
taking the dot product of every two query vector and key vector respectively to measure how closely
there are interacting. In particular, this score will be divided by the square root of the dimension
of the key vector (i.e., dk) and then normalized by the softmax function to obtain a probability
distribution. Eventually, the self-attention module will output the updated embeddings of the tokens
by multiplying the value vector with the normalized probabilities and aggregating the results.

Our modification on the module is simply applying the dropout noise upon the attention probabil-
ities to randomly mask out the interactions across different tokens, which can be represented as
dropout(softmax

(
QKT

√
dk

)
)V . In fact, this operation has been existing in most of the public imple-

mentations of Transformer, Bert and Vision Transformer 1, etc, while is usually frozen in practice.
Gao et al. (2021) utilizes this technique as a minimal data augmentation to generate positive pairs
of sentence embeddings. In our specific case, we use it to imitate the edge dropping in graph neural
network (Rong et al., 2019), dynamically presenting a partial connected graph to the decoder at very
block and every step. To this end, the token embeddings are aggregated information dynamically ac-
cording to a partial set of other tokens, which consequently capture the dependencies across tokens
at various levels.

2.2 ON THE IMPORTANCE OF GLOBAL NORMALIZATION

As proposed in He et al. (2022), the intra-patch normalized pixels are proven to be the empirically
optimal reconstructed target. Given a dataset with N data points, suppose each input sample is spa-
tially resized to H×W with three color channels, then the whole size of the dataset is (N,H,W, 3).
If we patchify the image into a sequence of L tokens {x1...L}, then each of them has D dimensions,

1https://github.com/rwightman/pytorch-image-models/blob/master/timm/
models/vision_transformer.py
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Figure 1: The general pipeline of masked image modeling. A high portion (e.g., 75%) of patches
is first randomly masked out and only those visible patches are forwarded into a ViT-based autoen-
coder. The autoencoder is designed asymmetrically, where the decoder is highly lightweight than
the encoder, in terms of depth and width, as the two gray boxes intuitively shown in the figure. At
the encoding phase, only a low-portion patches are forwarded, which strongly sidesteps the spatial
redundancy and encourages an effective context to be captured. However, since the masked tokens
(marked with light color) are incorporated back to together interact with the visible tokens (marked
with dark color), it increases the risk of oversmoothing. At this phase, we apply dropout on the
self-attention matrix to randomly remove some interactions across different tokens, dynamically re-
vealing a subgraph to the decoder. In the end, the per-patch normalized pixels appear empirically
to be the optimal option for reconstruction, which enhances the contrast of high-frequency compo-
nents. We further demonstrate that, to conduct this intra-patch normalization, we are supposed to
first rely on some population statistics to reduce the variance across patches. Note that the sam-
ple image in the figure is illustrated in gray scale in order to refrain from the display problem of
out-of-range values in the per-patch normalized version.

where D = H√
L
∗ W√

L
∗ 3. In this case, the dataset has the size of (N,L,D). The per-patch normal-

ization in He et al. (2022) calculates the mean µi ∈ R and standard deviation σi ∈ R along the D
dimension for each patch xi as follows:

µi =
1

D

D∑
j=1

xj
i

σ2
i =

1

D

D∑
j=1

(
xj
i − µi

)2

,

(2)

where xj
i is the j-th pixel in the i-th token. To this end, each pixel within the patch is normalized

as x̂j
i =

xj
i−µi√
σ2
i+ϵ

, where ϵ is a constant for numerical stability. As visualized in Figure 1, this

manner enhances the contrast of high-frequency components within the patch, and thus casts the
reconstruction a harder task, where a higher loss is empirically detected.

However, whether struggling to fit the high-frequency details is more intrinsic to obtain universal
representation remains unclear. We find that this intra-patch normalization cannot work without
certain condition, that is, pre-conditioning on some specific inter-patch normalization to first smooth
patch-wise variances. Here we show an optional inter-patch normalization in Equation 3, where we
pre-compute the patch-wise mean µ ∈ RD and standard deviation σ ∈ RD on the whole dataset.
Note that xi,j ∈ RD denotes the j-th patch in the i-th data point. Then, before conducting the
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intra-patch normalization, every token x will be first normalized as x̂ = x−µ√
σ2+ϵ

.

µ =
1

NL

N∑
i=1

L∑
j=1

xi,j

σ2 =
1

NL

N∑
i=1

L∑
j=1

(xi,j − µ)
2
.

(3)

2.3 THE FLEXIBLE INSERTION OF MASKED TOKEN

In the original masked autoencoder proposed in He et al. (2022), the encoder is fed with only the
visible tokens, and a shared learnable embedding for all the masked tokens will not be incorporated
until the decoding. However, it does not mean that we shall strictly abide by this practice. In fact, the
insertion of masked tokens can be more flexible in terms of the ratio and position, which provides
another option to manipulate the token interactions. Although a concern might be raised that the
encoder are not supposed to simultaneously handle both the tasks of representation learning and
pretext task completion (Chen et al., 2022), however, we empirically find that it does not hurt the
encoding under this two-task setting. Since a fixed masking ratio might not be optimal for all the
architectures with varying capacities, the masked token embedding can be exploited to encourage
more token interactions for smaller model. For instance, the extremely high (e.g., 75%) masking
ratio fits the ViT-Large model better but might be considerably higher for the ViT-Base variant. To
address this issue, we similarly design a shared learnable embedding for representing another set
of mid-level masked tokens (e.g., another 25%), compared with the bottleneck masked tokens in
current masked autoencoder. In particular, we are only feeding these tokens into the relatively deep
layers of the encoder, as not to introduce unaffordable degradation on the efficiency.

3 EXPERIMENTS

In this part, we first introduce our pre-training setup. Second, we will compare our pre-trained
models with other methods upon the performance of different downstream tasks. Third, we conduct
case studies to analyze the optimization loss with different reconstructed target and the positive gain
brought from the flexible insertion of the masked tokens.

3.1 IMAGE CLASSIFICATION

Pre-training Setup Our experiments are conducted based on the official PyTorch implementation2

of MAE (He et al., 2022). Specifically, we only rely on the database of ImageNet-1K (IN1K) (Deng
et al., 2009) for the pre-training. Both ViT-Base (ViT-B/16) and ViT-Large (ViT-L/16) have been
used to testify the efficacy of our proposed methods. We follow MAE to adopt its simple data
augmentation. The input image is resized to 224×224 and split into a sequence of 196 patches, each
of them has the patch size of 16×16. At the encoding phase, 75% of the patches are masked out
and only the remaining 49 visible patches are fed into the encoder. At the bottleneck between the
encoder and decoder, a shared learnable embedding for all the masked tokens are inserted back to
interact with the visible tokens. We follow He et al. (2022) to employ a lightweight decoder and
predict the pixels of the masked tokens. We randomly remove the edge interaction across tokens
at the decoder with dropout probability of 0.3. Following Wei et al. (2022), we use [0.5,1.0] as the
scale in random resized crop for ViT-Base model. If not specified, the other hyperparameters in the
pre-training and fine-tuning recipes are simply inherited from He et al. (2022).

Results In Table 2, we compare our method with some typical works in the recent development of
masked image modeling. From the table, we can draw the following conclusions: 1) Our 800-epoch
pre-trained model can achieve the comparable performance against MAE’s 1600-epoch counter-
part, and thus significantly reduces the pre-training overhead; 2) Our model obtains considerable
improvements over MAE in terms of the equal pre-trained epochs, which is marked with the gray
rowcolor in the table; 3) Our model is directly modified from the MAE baseline, which shares the
virtue of self-contained predicted target, simple augmentation view, training efficiency, etc.

2https://github.com/facebookresearch/mae
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Table 2: Top-1 accuracy (%) on ImageNet using ViT-Base and ViT-Large.

Method Pre-train data #Epochs ImgSize (#views) Top-1 Acc (%)
Methods using ViT-B/16:

scratch (He et al., 2022) N/A N/A N/A 82.3
MoCo v3 (Chen et al., 2021) IN1K 300 224 (2) 83.2
DINO (Caron et al., 2021) IN1K 300 224/96 (2/10) 82.8

BEiT (Bao et al., 2021) IN1K+DALLE 800 224 (1) 83.2
MAE (our impl.) IN1K 800 224 (1) 83.3

MAE (He et al., 2022) IN1K 1600 224 (1) 83.6/.5 (paper/git)
Ours IN1K 800 224 (1) 83.6

Methods using ViT-L/16:
scratch (He et al., 2022) N/A N/A N/A 82.6

MoCo v3 (Chen et al., 2021) IN1K 300 224 (2) 84.1
BEiT (Bao et al., 2021) IN1K+DALLE 800 224 (1) 85.2

iBOT (Zhou et al., 2021) IN1K 1000 224 (2) 84.8
MAE (our impl.) IN1K 800 224 (1) 85.3/.4 (/paper)

MAE (He et al., 2022) IN1K 1600 224 (1) 85.9
MaskFeat (Wei et al., 2022) IN1K 1600 224 (1) 85.7

Ours IN1K 800 224 (1) 85.6

3.2 VISUALIZATION OF THE OPTIMIZATION LOSS

In Figure 2, we visualize the training loss curves with respect to different reconstructed targets,
where each variant is pre-trained for 100 epochs. From this visualization, we can draw the fol-
lowing observations: 1) The optimizations across all the variants are converging stably; 2) In case
the normalization is imposed on the raw pixels, it casts the reconstruction a harder task, where a
significantly higher loss is detected; 3) The scalar value of the loss cannot serve as an quantitative
indicator for downstream performance. For example, the variants of Global RGB Normalization
and Global Patch Normalization apply different ways to smooth the inter-patch variances and thus
different optimization losses are exhibited. Nevertheless, both of them eventually achieve a similar
downstream finetune accuracy; 4) When further appending the intra-patch normalization upon these
two variants in 3), their new counterparts are sharing a nearly same loss curve; 5) However, if we
directly conduct the intra-patch normalization upon the raw pixels (the green curve in the figure),
although it has a similar loss curve with the two variants in 4), the performance of its downstream
finetuning is actually much lower.
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Figure 2: The training loss curves with respect to different reconstructed targets, which are marked
with different colors. We conduct this study by pre-training 100 epochs for each variant. The
horizontal and vertical axes represent the iteration steps and loss scalars respectively. Refer to the
section 3.2 for more detailed observations from this visualization.
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Table 3: Performance of transferring the pre-trained models on COCO object detection and segmen-
tation using a ViT Mask R-CNN baseline.

Method #PT-Epoch #FT-Epoch lr Box AP Mask AP
Methods using ViT-B/16:

MAE (our impl.) 800 25 1.0e-4 47.7 42.6
800 25 1.6e-4 48.8 43.6

Ours 800 25 1.0e-4 48.1 42.8
800 25 1.6e-4 48.9 43.7

Methods using ViT-L/16:
MAE (our impl.) 800 25 1.5e-4 51.9 46.0

Ours 800 25 1.5e-4 52.4 46.3

Table 4: Performance (mIoU) of transferring the pre-trained models on ADE20K semantic segmen-
tation using UperNet.

Method #PT-Epoch layer decay mIoU
Methods using ViT-B/16:
MAE (our impl.) 800 0.65 45.92

Ours 800 0.65 46.92

3.3 DETECTION AND SEGMENTATION

Beyond finetuning on the same benchmark, we also verify the transferring performance of our pre-
trained models across different downstream tasks and datasets. First, we conduct object detection
and instance segmentation on COCO (Lin et al., 2014) using a ViT Mask R-CNN (He et al., 2017)
architecture, which is mainly based on the implementation of Li et al. (2021). Specifically, we fine-
tune the pre-trained model for 25 epcohs using an AdamW (Loshchilov & Hutter, 2017) optimizer
with a cosine learning rate scheduler, where the weight decay is set to 0.1. Note that we only tune
on the learning rate. If not specified, the other hyperparameters are simply following the recipes
of Li et al. (2021). As illustrated in Table 3, our method achieves considerable improvements upon
the MAE, especially for the ViT-Large model. It demonstrates that our pre-trained model captures
contextual representation across different tokens that universally benefit a set of downstream tasks
on varying datasets.

We also apply our pre-trained model into the task of semantic segmentation on ADE20K (Zhou
et al., 2017). We conduct the experiments using the UperNet (Xiao et al., 2018) architecture and
fine-tune the model for 160K iterations in total. We do not perform the intermediate finetuning
like Bao et al. (2021), although it can further improve the mean Intersection over Union (mIoU).
The results are shown in Table 4, where our approach obtains superior performance over MAE in
terms of the equal pre-training epochs. It demonstrates that our pre-trained models can also benefit
those downstream tasks for dense prediction.

3.4 FLEXIBLE MASKED TOKEN FOR SMALLER MODEL

Since a 75% masking ratio might be too high for the smaller model (e.g., ViT-Base), in this case
study, we design a set of mid-level masked tokens to enhance the token interactions and verify
whether it can bring positive gains. Unlike the current practice of MAE to insert back the masked
tokens only at the bottleneck between the encoder and decoder, we argue that the incorporation of
masked tokens can be more flexible to manipulate the degree of oversmoothing. In particular, we ini-
tialize another 25% (i.e., 49) masked tokens and insert them into the encoder at the 8th depth, which
encourages more token interactions at the higher layer of the encoder. As illustrated in Table 5, our
800-epoch achieves almost the same performance as the 1600-epoch MAE baseline.
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Table 5: Top-1 accuracy (%) on ImageNet by using the mid-level masked token for ViT-B/16.

Method #PT-Epoch Top-1 Accuracy
MAE (our impl.) 800 83.3

MAE 1600 83.6/83.5 (paper/github)
Ours 800 83.5

4 RELATED WORK

In this part, we first zoom in the specific literatures about masked image modeling and then zoom out
to generally introduce the related development of self-supervised learning. After that, we will review
several works that inspire this paper, including the approaches to alleviate the posterior collapse in
autoencoding and some understandings about the success of recent self-supervised algorithms.

4.1 MASKED IMAGE MODELING

To the best of our knowledge, Vincent et al. (2008) is one of the very first works to corrupt the input
for autoencoding and then utilize the pre-trained denoising autoencoder to initialize deep neural net-
works. This philosophy has been widely-adopted in the visual modeling such as the context encoder
proposed in Pathak et al. (2016), which models the visual feature learning as to predict a region of
the image given its surrounding context. However, for a period of time, this mechanism in the vision
community does not stand out since its performance is far behind the supervised counterpart. On
the contrary, the similar paradigm has recently reshaped the language modeling with an impressive
progress (Kenton & Toutanova, 2019; Liu et al., 2019; Brown et al., 2020), which shifts researchers’
attention to exploiting its potential in visual modeling. Thanks largely to the equipment of vision
transformer (Dosovitskiy et al., 2020), masked image modeling becomes increasingly promising in
the self-supervised visual pre-training. BEiT (Bao et al., 2021) attempts to transfer the practices in
BERT correspondingly in the image domain, while the predicted visual tokens are extracted from
a pre-trained dVAE (van den Oord et al., 2017; Ramesh et al., 2021). He et al. (2022) removes
the randomly masked tokens at the encoding phase and reconstructs their raw pixels using a highly
lightweight decoder. Xie et al. (2022b) shares some similar designs with He et al. (2022), such as
random masking, lightweight decoder and reconstructing pixels. Wei et al. (2022) demonstrates
that the HoG representation can be an alternative option for the predicted target.

4.2 SELF-SUPERVISED LEARNING

The regime of supervised learning cannot scale up since human annotations are sometimes very
expensive and time-consuming. Self-supervised learning illuminates the dark spaces of artificial in-
telligence by exploring the limit of unlabeled data. A dominant pipeline of self-supervised learning
is to pre-train on large-scale raw data and then adapt the pre-trained model into different downstream
tasks. Beyond the masked image modeling, contrastive learning is another dominant paradigm of
self-supervised visual pre-training, which pulls closer multiple augmentations of an identical in-
stance while pushes away that of different instances. MoCo (He et al., 2020) creates a dynamic
queue to store negative samples and a moving-averaged strategy to maintain consistency between
the query and key encoders. SimCLR (Chen et al., 2020) employs an extremely large-batch training
to directly provide sufficient negative samples, which also achieves remarkable performance. BYOL
(Bootstrap Your Own Latent) (Grill et al., 2020) shows that contrastive learning can still work (and
even better) without negative pairs, where the online view is further fed into an extra predictor to pre-
dict the projection of the stop-gradient target view. On the other hand, masked signal modeling is not
only effective in the image domain, but being a unified pretext task for large-scale pre-training across
many domains, including language (Kenton & Toutanova, 2019; Ramesh et al., 2021), video (Tong
et al., 2022; Feichtenhofer et al., 2022), audio (Baevski et al., 2020), multi-modal (Bachmann et al.,
2022; Aghajanyan et al., 2022), and etc.
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4.3 POSTERIOR COLLAPSE ON AUTOENCODING

When adapting the pre-trained masked autoencoder into downstream tasks, the decoder will be
removed in most of current practices. To this end, similar to all the two-network autoencoding
architecture, the masked autoencoder also suffers from the curse of posterior collapse. Informally
speaking, the decoder itself might be able to accomplish the reconstruction/translation/generation
even though the encoder fails to embed meaningful context from the input. To mitigate this issue,
Bao et al. (2021) constructs a discretized token space from a pre-trained codebook. Chen et al.
(2022) introduces an alignment constraint to decouple the representation learning and the pretext
task completion. Beyond the visual domain, Lu et al. (2021) designs a weak decoder with restricted
capacity and attention flexibility to encode better text representations. Zhang et al. (2020) presents
a mechanism of token dropping for neural machine translation, expecting the decoding to rely on
the source context more heavily.

4.4 UNDERSTANDINGS OF SELF-SUPERVISED METHODS

Some literatures attempting to understand the success of self-supervised algorithms also inspires this
paper from various perspectives. Wang et al. (2022) emphasizes the importance of the asymmetric
design in self-supervised siamese networks, where the extra predictor can be regarded as an autoen-
coder, as suggested by Chen & He (2021). In particular, their conclusion (i.e., higher variance in
the online branch and lower variance in the target counterpart) is also applicable to the practice of
masked image modeling. First, for the online branch, we echo that the whole masked autoencoder
is in demand of high-variance interactions across tokens to refrain from the oversmoothing issue.
To fulfill this goal, it can randomly mask out a high-portion of tokens at the encoding side, while
at the decoding side, it can randomly remove some of the edge connections across different tokens.
Second, for the target branch, we demonstrate that the pre-training will benefit from conducting the
global normalization on the reconstructed objective to smooth the inter-patch variances, and further
followed by an intra-patch normalization. Moreover, the uniformity metric proposed in Wang &
Isola (2020) supports us to analyze the token distribution in a spherical space, verifying whether the
tokens collapse or not. Xie et al. (2022a) applies some visualization techniques to reveal that the
masked image modeling brings strong locality inductive bias to all the layers of the model, when
compared with its supervised counterpart.

5 CONCLUSION AND LIMITATION

In this paper, we highlight several ingredients that are of significance for the current success of
masked image modeling and propose corresponding techniques to robustly and effectively improve
them. First, we argue that the whole autoencoder should circumvent the shortcut interactions across
different tokens. To fulfill this goal, the high-portion random masking at the encoding and our pro-
posed edge connection dropout at the decoding turn out be the well-performing practices. Second,
we demonstrate that the reconstructed target should be applied with some population statistics to
smooth the inter-patch variances. Finally, we show that the introduction of masked tokens can be
more flexible, in terms of their inserted position and ratio, to manipulate the token interaction for
different models with varying capacities.

However, our current efforts are still driven by the empirical observations. A more rigorous un-
derstanding of the success of masked image modeling is expected to be developed. Besides, the
proposed techniques are typically applied on a single baseline (i.e., MAE) of masked image model-
ing for demonstration. In future work, we are looking forward to testifying their efficacy covering
more MIM frameworks and downstream tasks.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

10



Under review as a conference paper at ICLR 2023

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Zhicheng Huang, Xiaojie Jin, Chengze Lu, Qibin Hou, Ming-Ming Cheng, Dongmei Fu, Xiaohui
Shen, and Jiashi Feng. Contrastive masked autoencoders are stronger vision learners. arXiv
preprint arXiv:2207.13532, 2022.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross Girshick. Benchmarking
detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul Bennett, Tieyan
Liu, and Arnold Overwijk. Less is more: Pre-train a strong text encoder for dense retrieval using
a weak decoder. arXiv preprint arXiv:2102.09206, 2021.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2: Masked image modeling
with vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen Lee, and
James T Kwok. Revisiting over-smoothing in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022.

Chenxin Tao, Xizhou Zhu, Gao Huang, Yu Qiao, Xiaogang Wang, and Jifeng Dai. Siamese image
modeling for self-supervised vision representation learning. arXiv preprint arXiv:2206.01204,
2022.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Proceedings of the 31st International Conference on Neural Information Processing Sys-
tems, pp. 6309–6318, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

11



Under review as a conference paper at ICLR 2023

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, and Xinlei Chen. On the importance of
asymmetry for siamese representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16570–16579, 2022.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14668–14678, 2022.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp.
418–434, 2018.

Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and Yue Cao. Revealing the dark
secrets of masked image modeling. arXiv preprint arXiv:2205.13543, 2022a.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9653–9663, 2022b.

Huaao Zhang, Shigui Qiu, Xiangyu Duan, and Min Zhang. Token drop mechanism for neural
machine translation. In Proceedings of the 28th International Conference on Computational Lin-
guistics, pp. 4298–4303, 2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

12


	Introduction
	Method
	Drop edge at the decoding
	On the Importance of Global Normalization
	The flexible insertion of masked token

	Experiments
	Image Classification
	Visualization of the optimization Loss
	Detection and Segmentation
	Flexible masked token for smaller model

	Related Work
	Masked Image Modeling
	Self-supervised Learning
	Posterior Collapse on Autoencoding
	Understandings of Self-supervised Methods

	Conclusion and Limitation

