
On Verifying Linear Execution Strategies in Planning Against Nature

Primary Keywords: None

Abstract

While planning and acting in environments in which nature
can trigger non-deterministic events, the agent has to con-
sider that the state of the environment might change without
its consent. Practically, it means that the agent has to make
sure that it eventually achieves its goal (if possible) despite5

the acts of nature. In this paper, we first formalize the seman-
tics of such problems in Alternating-time Temporal Logic,
which allows us to prove some theoretical properties of dif-
ferent types of solutions. Then, we focus on linear execution
strategies, which resemble classical plans in that they follow10

a fixed sequence of actions. We show that any problem that
can be solved by a linear execution strategy can be solved by
a particular form of linear execution strategy which assigns
wait-for preconditions to each action in the plan that specifies
when to execute that action. Then, we propose a sound algo-15

rithm that verifies a sequence of actions and assigns wait-for
preconditions to them by leveraging abstraction.

Introduction
Planning and acting in real-world scenarios (Ingrand and
Ghallab 2017), such as planetary rovers (Ai-Chang et al.20

2004), or autonomous underwater vehicles (Chrpa et al.
2015), poses a challenge as during the plan execution the
environment might change by exogenous events that are not
under the control of the agent. Exogenous events are trig-
gered by an actor that does not have specific intentions (or25

goals) and acts rather randomly. We call that actor nature.
The (rational) agent that wants to achieve its goal has to take
into consideration possible actions (events) of nature. We
call such a problem planning against nature. Acts of nature,
however, might render the plan invalid, make the agent’s30

goal no longer achievable, or, worse, they might cause dam-
age to the agent.

For example, the AUV domain (Chrpa, Gemrot, and
Pilát 2020), which is inspired by real-world AUV opera-
tions (Chrpa et al. 2015), simulates a scenario in which the35

AUV has to perform sampling of given objects of interest
while there might be ships passing by in corridors that might
endanger the AUV. The movement of the ship can be rep-
resented by exogenous events. If a ship enters the AUV’s
location, then the AUV is destroyed.40

The concept of planning against nature is not new (Dean
and Wellman 1990; Musliner, Durfee, and Shin 1993; Ioc-

chi, Nardi, and Rosati 2000) and usually requires to rea-
son with the whole state space or a large portion of it.
The problem can be modelled as a Fully-observable non- 45

deterministic (FOND) planning task, which considers ac-
tions with non-deterministic effects, i.e. when an action is
applied, the result of its application might have different out-
comes (Cimatti et al. 2003). FOND planning is known to be
EXPTIME-complete (Littman, Goldsmith, and Mundhenk 50

1998). However, the number of non-deterministic alterna-
tives (per action) might even be exponential with respect to
the number of events if we consider that nature can apply
multiple events at once.

Leveraging classical planning techniques such as FF- 55

replan (Yoon, Fern, and Givan 2007) (an unofficial winner
of the probabilistic track of the International Planning Com-
petition 2006), where if the agent is in an unexpected state
it re-plans, is a promising alternative but does not give any
guarantees of success. Recent works (Chrpa, Gemrot, and 60

Pilát 2020; Chrpa, Pilát, and Med 2021) studied under which
conditions a sequential plan is guaranteed to eventually suc-
ceed. In contrast to those works, we consider that nature can
apply sequences of events at once and provide a formal defi-
nition of wait-for preconditions, inspired by the work on so- 65

cial laws in planning (Karpas, Shleyfman, and Tennenholtz
2017), that establish when a given action (in the sequence)
can be applied. For example, consider an AUV navigating
from west to east, which must cross the path of a ship mov-
ing from north to south. The same sequence of actions for 70

the AUV might lead to different outcomes, depending on
the timing – entering the corridor of the ship after the ship
crosses guarantees the AUV will reach the goal while enter-
ing the path of the ship before the ship crosses might lead to
a collision. Hence, the wait-for precondition should prohibit 75

the latter case, i.e., the AUV has to wait until the ship passes.
Inspired by the line of work on Situation Calculus (Re-

iter 1996; Giacomo and Lespérance 2021), in this paper, we
formalise planning against nature tasks by using a concur-
rent game structure and Alternating-time Temporal Logic 80

(ATL) (Alur, Henzinger, and Kupferman 2002). Hence ATL
model checking can be leveraged to generate execution
strategies. We then focus on linear execution strategies, re-
sembling classical sequential plans, where we show that the
fundamental principle determining whether a sequence of 85

actions can yield a linear execution strategy is to guarantee

that the next action (or the goal after the whole sequence is
executed) becomes applicable (or the goal is achieved) after
an infinite number of “turns” of nature. Also, we show that if
we have a sequence of actions that can yield a linear execu-90

tion strategy that guarantees achieving the goal, then we can
compute wait-for preconditions for each action by stepwise
regression from the goal that makes such a linear execution
strategy unique. Then, we propose an algorithm that veri-
fies a sequence of actions (generated by classical planners)95

by using a heuristic approach based on problem abstraction.
On top of that, the verification algorithm computes wait-
for preconditions for actions in that sequence. Although the
proposed algorithm is theoretically incomplete, it allows to
verify linear execution strategies generated by off-the-shelf100

classical planners for a subclass of problems in the complex-
ity of classical planning, i.e., PSPACE-complete (Bylander
1994). We show empirically that our approach has the poten-
tial to solve a subclass of planning against nature problems.

Preliminaries105

Planning against Nature can be understood as a special
case of multi-agent planning (Brafman and Domshlak 2008)
in which an intelligent agent that plans towards its goal acts
against a “random” agent (or nature) that acts randomly
without a specific purpose (or goal).110

To represent the environment, we use Finite Domain Rep-
resentation (FDR) (Helmert 2009). Let V be a set of vari-
ables where each variable v ∈ V is associated with its do-
main D(v). An assignment of a variable v ∈ V is a pair
(v, val), where its value val ∈ D(v). Hereinafter, an assign-115

ment of a variable is also denoted as a fact. A (partial) vari-
able assignment p over V is a set of assignments of individ-
ual variables from V , where vars(p) is a set of all variables
in p and p[v] represents a value of v in p. A state is a com-
plete variable assignment (over V). We say that a (partial)120

variable assignment q holds in a (partial) variable assign-
ment p, denoted as p |= q, if and only if vars(q) ⊆ vars(p)
and for each v ∈ vars(q) it is the case that q[v] = p[v].

An action is a pair a = (pre(a), eff (a)), where pre(a) is
a partial variable assignment representing a’s precondition125

and eff (a) is a partial variable assignment representing a’s
effects. We say that an action a is applicable in state s if and
only if s |= pre(a). The result of applying a in s, denoted
as γ(s, a), is a state s′ such that for each variable v ∈ V ,
s′[v] = eff (a)[v] if v ∈ vars(eff (a)) while s′[v] = s[v] oth-130

erwise. If a is not applicable in s, γ(s, a) is undefined. The
notion of action application can be extended to sequences
of actions, i.e., γ(s, ⟨a1, . . . , an⟩) = γ(. . . γ(s, a1) . . . , an).
We denote as ha(a) a (partial) variable assignment repre-
senting values of variables that must hold after applying135

an action a, i.e., for each v ∈ vars(eff (a)) : ha(a)[v] =
eff (a)[v] and for each v′ ∈ vars(pre(a)) \ vars(eff (a)) :
ha(a)[v′] = pre(a)[v′].

We define a planning task against nature (or planning
task, for short) as a tuple P = (V,A,E, I,G), where V is a140

set of variables, A a set of actions of the agent, E is a set of
actions of nature (or, events), I a complete variable assign-
ment representing the initial state and G a partial variable
assignment representing the goal.

Alternating-time Temporal Logic (Alur, Henzinger, and 145

Kupferman 2002), abbreviated as ATL, is a modal logic
which allows us to write formulas which describe interac-
tions between multiple agents, and what a set of agents can
achieve regardless of what the other agents choose to do.
The semantics of ATL rely on the definition of a concurrent 150

game structure:
Definition 1. A concurrent game structure is a tuple S =
⟨P, S, F, π, d, δ⟩ with the following components:
• A set of players P = {p1, . . . , pk}
• A finite set of states S 155

• A finite set of propositions F (also called observables)
• For each state s ∈ S, π(s) ⊆ F is a set of propositions

which are true in s
• For each player p ∈ P and each state s ∈ S, a set of

moves dp(s) available to player p in state s. Given a state 160

s ∈ S, we write M(s) for the set (dp1
(s)×· · ·× dpk

(s))
of move vectors. The function M is called move func-
tion.

• For each state s ∈ S and each move
vector ⟨jp1 . . . , jpk

⟩ ∈ M(s), the state 165

δ(s, jp1
, . . . , jpk

) ∈ S that results from state s if
every player pi ∈ P chooses move jpi

. The function δ is
called transition function.

Definition 2. Given a concurrent game structure, an ATL
formula Φ is either: 170

• A single proposition f for any proposition f ∈ F
• Composed of smaller ATL formulas Φ1,Φ2 using the

propositional logical connectives: ¬Φ1 or Φ1 ∨ Φ2

• Composed of smaller ATL formulas using a path quan-
tifier ⟨⟨A⟩⟩ (where A ⊆ P is a set of players) and a 175

temporal operator (◦ (next), □ (always), or U (until)):
⟨⟨A⟩⟩ ◦ Φ1, ⟨⟨A⟩⟩□Φ1, or ⟨⟨A⟩⟩Φ1UΦ2

The interpretation of the propositions (F) and logical con-
nectives (∧,∨,¬) is straightforward, and the temporal opera-
tors — ◦ (next), ⋄ (eventually), □ (always), U (until) — are 180

similar to those used in LTL (Pnueli 1977).
The path quantifiers allow ATL to express properties of

multi-agent systems. For a set of players A, the formula
⟨⟨A⟩⟩Φ, means that the players in A can ensure the for-
mula Φ holds, regardless of what the other players (P \ A) 185

do. To define this formally, we define a strategy zp for
player p as a function that maps every sequence of states
λ ∈ S+ ending in state s (that is, a possible history) to
an action applicable in s, i.e., zp : λ → dp(s). Given
a state s, a set of players A, and a set of strategies ZA 190

(one for each player in A), out(s, ZA) is the set of possi-
ble trajectories which could occur when starting from state
s and the players in A follow strategies ZA. In other words,
a trajectory s0, s1, . . . , sm ∈ out(s, ZA) iff s0 = s, and
for i ∈ {0, . . . ,m} ∃⟨j1, . . . , jn⟩ ∈ M(si) such that 195

δ(si, j1, . . . , jn) = si+1 and for pk ∈ A : zpk
(si) = jk.

We can now define when an ATL formula is satisfied.
Definition 3. Given a concurrent game structure S, state s,
and ATL formula Φ, we say that S, s |= Φ. For brevity we
omit S, and define this recursively by: 200

• s |= f iff f ∈ π(s)
• s |= ¬Φ iff s ̸|= Φ

• s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

• s |= ⟨⟨A⟩⟩ ◦ Φ iff there exists a set of strategies ZA
(one for each player in A) such that for all trajectories205

s0, s1, . . . sj ∈ out(s, ZA), s1 |= Φ
• s |= ⟨⟨A⟩⟩□Φ iff there exists a set of strategies ZA

(one for each player in A) such that for all trajecto-
ries s0, s1, . . . sj ∈ out(s, ZA), for all positions i ∈
{0, . . . , j}, si |= Φ210

• s |= ⟨⟨A⟩⟩Φ1UΦ2 iff there exists a set of strategies ZA
(one for each player in A) such that for all trajectories
s0, s1, . . . sj ∈ out(s, ZA), there exists a position i ∈
{0, . . . , j} such that si |= Φ2, and for all positions 0 ≤
j < i : sj |= Φ1215

Finally, we can discuss ATL fairness constraints. While
there are several types of fairness discussed in the original
ATL paper (Alur, Henzinger, and Kupferman 2002), we re-
view only strong fairness constraints, which we use later.

Definition 4. Given a concurrent game structure S =220

⟨P, S, F, π, d, δ⟩, a fairness constraint is a pair ⟨p, λ⟩ where
p ∈ P is a player and λ maps every state s ∈ S to a set of
moves in dp(s).

A trajectory s0, s1, . . . is strongly ⟨p, λ⟩-fair iff there are
only finitely many positions i where λ(si) ̸= ∅, or there225

are infinitely many positions i where ⟨j1, . . . , jn⟩ ∈ M(si),
δ(si, j1, . . . , jn) = si+1, and jp ∈ λ(si).

In other words, a fairness constraint specifies a subset of
moves, each of which must be taken infinitely often when
each state is visited infinitely often. Note that it is similar to230

fairness required by strong cyclic FOND planning (Cimatti
et al. 2003).

Execution Model as a Concurrent Game
In the presence of non-deterministic events, we look for an
execution strategy of an agent that, in a nutshell, specifies235

which action (if any) is applied in a particular state whenever
the agent can act. Our execution model is derived from the
model used in previous work on social laws (Karpas, Shleyf-
man, and Tennenholtz 2017) to account for possibly differ-
ent durations of actions and events even without explicitly240

specifying those in the action/event description. Note that
this model differs from the work on planning with events
(Chrpa, Pilát, and Med 2021) that considered alternating
turns of agent and nature (like in a game of chess). To resolve
potential conflicts between actions and events, we consider245

in our execution model that sequences of events triggered by
nature alternate with actions of the agent.

In the context of ATL, we can specify a concurrent game
structure for two players – an agent and nature – where
the agent is responsible for applying actions with the aim250

of achieving its goal while nature applies events randomly
without a specific aim (we consider the fairness assumption,
so each event has a chance to occur if it is applicable). We
assume that each player can act only if it is its turn. Note that
we do not consider a specific “scheduler” player for chang-255

ing turns, as suggested in some work on ATL (Alur, Hen-
zinger, and Kupferman 2002), but both players can switch
turns by actions or a specific “switch” events.

Definition 5. Let P = (V,A,E, I,G) be a plan-
ning task. We define a variable turn with domain 260

D(turn) = {at, nt}. Then, we define an action
switcha = ({(turn, at)}, {(turn, nt)}, an event switche =
({(turn, nt)}, {(turn, at)} and an empty action/event “0”.
Let F be the set of all facts over V ∪ {turn}, S be the set of
states over V ∪ {turn}. 265

We define the concurrent game structure for P to be
S = ⟨P, S, F, π, d, δ⟩, where:
• P = {agent, nature}
• π : S → 2F with π(s) = {(v, val) | v ∈ V, val ∈
D(v), s[v] = val} 270

• for each s ∈ S it holds that dagent(s) = {a | a ∈ A ∪
{switcha}, s |= pre(a) ∧ (turn, at)} ∪ {0}, dnature(s) =
{e | e ∈ E ∪ {switche}, s |= pre(e) ∧ (turn, nt)} ∪ {0}

• ∀a ∈ A ∪ {switcha} s.t. s |= pre(a) ∧ (turn, at):
δ(s, a, 0) = (γ(s, a) \ {(turn, at)} ∪ {(turn, nt)}), 275

• ∀e ∈ E ∪ {switche} s.t. s |= pre(e) ∧ (turn, nt):
δ(s, 0, e) = γ(s, e)

We define a fairness constraint (nature, λ) such that λ(s) =
dnature(s) for each s ∈ S, that is, nature will take each
move infinitely often. 280

The concurrent game structure models the interaction be-
tween the agent and nature. Although our model does not
resemble a typical concurrent game, i.e., the agent and na-
ture do not act simultaneously, it captures the interaction in
an asynchronous way, where nature can apply a sequence of 285

events before switching the turn back to the agent.
We can define an execution strategy for the agent as a

function that for each state in which the agent has its turn
maps an action that the agent applies in that state (includ-
ing switch). The outcome of an execution strategy is a set of 290

all possible sequences of actions that might occur when the
agent executes the strategy.

Definition 6. Let P = (V,A,E, I,G) be a planning task
and S = ⟨P, S, F, π, d, δ⟩ be its concurrent game structure.
Let σ be a policy of the agent in the concurrent game struc- 295

ture S, which maps every state s ∈ S to an action da(s). We
define the execution strategy ϵσ : S → A ∪ {switcha} by
ϵσ(s) = σ(s).

Note that by definition of S, for every s ∈ S such that
s[turn] = at it is the case that ϵ(s) = a→ s |= pre(a). 300

The notion of outcome of an execution strategy, formally
introduced below, describes a specific play of the “game”
specified by the concurrent game structure (S) of a planning
task (P).

Definition 7. An outcome of an execution strategy ϵ is a se- 305

quence of actions from A∪ {switcha} that the agent applies
in the game (described by S) starting in I ∪ {(turn, nt)}
and, possibly, reaching a state s |= G∧ (turn, at) if the out-
come is successful.

Note that a successful execution strategy can reach the 310

goal and then continue. If we want to stop at the goal we can
either consider versions of ATL on finite traces (Belardinelli
et al. 2018), or modify the definition of the concurrent game
structure to include “noop” action for the agent at the goal,
allowing the agent to loop forever once it reaches the goal. 315

However, for the sake of simplicity, we use the standard ver-
sion of ATL, which is defined on infinite traces.

We can now define a valid execution strategy as a strat-
egy whose all possible outcomes are successful, in other
words, no matter how nature plays (if following the fairness320

assumption), the agent always reaches its goal by a valid ex-
ecution strategy. We also say that a valid execution strategy
is a solution of the given planning task.

Definition 8. Let P = (V,A,E, I,G) be a planning task
and ϵ be an execution strategy. If every outcome of ϵ is suc-325

cessful, then we say that ϵ is valid. We also say that if ϵ is
valid, then it is a solution of P .

We can reasonably assume that nature always switches the
turn to the agent in a finite number of steps. Then, we can
say that a planning task is solvable if and only if the agent330

can extract an execution strategy that eventually achieves the
goal. The following definition captures the above aspects in
an ATL formula.

Proposition 1. Let P = (V,A,E, I,G) be a planning task,
S be the concurrent game structure for P and turn be a335

variable as in Def. 5. We say that P is solvable if and
only if S, I ∪ {(turn, nt)} |= (⟨⟨nature⟩⟩□((turn, nt) →
⋄(turn, at)))→ (⟨⟨agent⟩⟩ ⋄ (G ∧ (turn, at))).

Proof. If the premise I ∪ {(turn, nt)} |=
(⟨⟨nature⟩⟩□((turn, nt) → ⋄(turn, at))) holds, and340

the formula above is satisfiable for S, then by the definition
of ATL semantics for ⟨⟨agent⟩⟩ ⋄ (G ∧ (turn, at))), there
exists some strategy for the agent, such that for every
strategy of nature, the goal G is achieved for every outcome,
i.e., the execution strategy of the agent is valid and a345

solution of P . The “if” implication also straightforwardly
holds as the existence of an execution strategy achieving G
implies the satisfiability of the ATL formula.

The above proposition indicates that a valid execution
strategy can be extracted by model checking of the given350

ATL formula. Of course, ATL model checking is not compu-
tationally tractable – in fact, with strong fairness constraints
it is PSPACE-hard in the size of the game structure (Alur,
Henzinger, and Kupferman 2002, Theorem 5.5), that is, dou-
bly exponential in the number of variables. In the next sec-355

tion, we restrict our attention to some cases where we can
check if the formula is satisfiable more efficiently.

Linear Execution Strategy
Rather than determining which action has to be applied in
each (reachable) state, it might be practical to consider (se-360

quential) plans where the agent applies actions one by one.
This leads us to the notion of linear execution strategies that
are special cases of execution strategies that, roughly speak-
ing, resemble sequential plans (as in classical planning).

Given a sequence of actions that includes switcha, we call365

the sequence of real actions (all actions except the switch
actions) its non-switch sequence. Using this notion we can
define a linear execution strategy as follows:

Definition 9. Let P = (V,A,E, I,G) be a planning task,
S = ⟨P, S, F, π, d, δ⟩ be its concurrent game structure, and370

let ϵ be an execution strategy. If every outcome of ϵ shares
the same non-switch sequence of actions θ, then ϵ is a linear
execution strategy. We call θ the action sequence of ϵ.

The following example shows that linear execution strate-
gies are indeed more limited than general execution strate- 375

gies. Consider a variant of the AUV example, where a ship
drops an object onto a random place that the AUV wants to
collect. A general execution strategy of the AUV will wait
until the ship drops the object and then will act to collect the
object. However, there is no linear execution strategy that 380

can solve this problem, as the AUV cannot commit to a spe-
cific sequence of actions beforehand. On the other hand, if
the location of the object is fixed at the beginning, the AUV
can commit to a sequence of actions and hence can use a
linear execution strategy to solve the problem. 385

In order to verify if a linear execution strategy is valid, we
have to investigate what nature can do and whether it can
apply a sequence of events that might jeopardize the appli-
cability of the next action or the goal rendering the agent’s
linear execution strategy unsuccessful. Hence we define an 390

alive property determining whether a (partial) variable as-
signment has always a chance to become true despite acts of
nature (while considering the fairness assumption).

Definition 10. Let P = (V,A,E, I,G) be a planning task
and S be the set of states over V . We define a nature game 395

of P as a labelled transition system N = (S, T), where
(s, e, s′) ∈ T iff γ(s, e) = s′.

We say that s′ (resp. an event e ∈ E) is reachable from
s (in N) iff there exists a path from s to s′ (resp. a state
s′′ such that s′′ |= pre(e)) in N . Otherwise, we say that s′ 400

(resp. e) is unreachable from s (in N).
Let q be a (partial or complete) variable assignment over

V . We say that q is alive with respect to s (inN), denoted as
alive(q, s), iff for each state s′ reachable from s there exists
a state s′′ with s′′ |= q that is reachable from s′. 405

For convenience, we define ∆ : 2S × A → 2S as
∆(S′, a) = {s | s′ ∈ S′, γ(s, a) = s′} representing re-
gression from S′ via a, that is, what are the states where
applying action a results in some state from S′.

Theorem 1. Let P = (V,A,E, I,G) be a planning task, let 410

S be the set of states over V andN be the nature game of P .
Finally, let θ = ⟨a1, . . . , an⟩ be an action sequence. Then,
we specify sets of states S0, S1, . . . , Sn as follows.
• Sn = {s | s ∈ S, s |= ha(an), alive(G, s)}
• Si = {s | s ∈ S, s |= ha(ai),∃s′ ∈ ∆(Si+1, ai+1) : 415

alive(s′, s)} for all 1 ≤ i < n
• S0 = {s | s ∈ S, ∃s′ ∈ ∆(S1, a1) : alive(s′, s))}

If I ∈ S0, then there exists a valid linear execution strategy
ϵθ for P and S0, . . . Sn ̸= ∅.

Proof. The intuition behind the proof is to show that we can 420

regressively construct sets of states that ensure the (even-
tual) applicability of the subsequent non-switch actions or
achievability of the goal (after the agent applies all non-
switch actions). It can be seen that for a state s and a variable
assignment q such that alive(q, s) it holds that Sswitch, s |= 425

⟨⟨agent⟩⟩ ⋄ q, where Sswitch is a variant of concurrent game

structure from Definition 5 that allows only the switcha ac-
tion for the agent, as nature cannot generate a sequence of
events making states entailing q unreachable.

For a state sn ∈ Sn, we can derive that Sswitch, sn |=430

⟨⟨agent⟩⟩ ⋄ G and that sn can be achieved just after an
is applied by the agent (because of sn |= ha(an)). Then,
we can observe that if the agent applies an in any state
from ∆(Sn, an) it eventually achieves the goal G. For a
state si ∈ Si (0 ≤ i < n), we can similarly derive that435

Sswitch, si |= ⟨⟨agent⟩⟩ ⋄ (
∨

s′∈∆(Si+1,ai+1)
s′) and that, if

i ≥ 1, then si can be achieved just after ai is applied by the
agent (because of si |= ha(ai)). We can then observe that if
the agent applies ai in any state from ∆(Si, ai), it eventually
reaches a state from ∆(Si+1, ai+1) and eventually achieves440

the goal G (by induction to Sn). From this observation, we
can immediately see that if I ∈ S0, then we can define a
valid linear execution strategy ϵθ which follows θ. Also, if
Si = ∅, we can derive that Sj = ∅ for every 0 ≤ j < i and
hence if I ∈ S0, then S0, . . . Sn ̸= ∅.445

The definition of linear execution strategy (Definition 9)
is, however, not constructive as it contains an implicit ambi-
guity for the agent in deciding when to apply the next action.
To make the definition constructive we leverage the concept
of wait-for preconditions that represents a fragment of so-450

cial laws in multi-agent planning (Karpas, Shleyfman, and
Tennenholtz 2017). In our case, wait-for preconditions are
sets of states that uniquely define when the agent applies its
non-switch action and when it switches.

In the AUV example, the AUV might have to wait until455

a ship passes through the location before entering. This is a
stronger condition than the move action requires; however,
if the AUV enters the location before the ship passes it, the
ship might run over the AUV.
Definition 11. Let P = (V,A,E, I,G) be a planning task460

and S = ⟨D,S, F, π, d, δ⟩ be its concurrent game structure.
Let θw = ⟨(w(a1), a1), . . . , (w(an), an)⟩ be a sequence
of actions (from A) associated with wait-for preconditions
w(ai) ⊆ S(1 ≤ i ≤ n) and ϵθw be a linear execution strat-
egy. If for every outcome of ϵθw , it is the case that non-switch465

actions are applied in states satisfying actions’ wait-for pre-
conditions, i.e., s ∈ w(ai), while switch actions are applied
in states in which the wait-for precondition for the next ac-
tion is not met, then ϵθw is a linear execution strategy with
wait-for preconditions.470

The following theorem, which follows immediately from
Theorem 1 and Definition 11, shows how wait-for precondi-
tions can be refined from Si states.
Theorem 2. Let P = (V,A,E, I,G) be a planning task,
ϵθ be a linear execution strategy whose action sequence is475

θ = ⟨a1, . . . , an⟩ and sets of states S0, S1, . . . , Sn. Then,
we can refine ϵθw , a linear execution strategy with wait-for
preconditions, by computing wait-for precondition, for each
action ai ∈ θ, as w(ai) = ∆(Si, ai).

Verification of Linear Execution Strategies480

Theorems 1 and 2 provide a blueprint of how action se-
quences can be verified as linear execution strategies (with

wait-for preconditions). An important step of the verifica-
tion is to guarantee that the next action (or the goal) will
become eventually applicable regardless of how the nature 485

acts (if it follows the fairness assumption). For that reason,
we have to identify whether a (partial) variable assignment
is “alive” with respect to a state (see Definition 10) can be
done by leveraging the notion of strongly connected com-
ponent, which is well known in the graph theory, and the re- 490

lated notion of condensation of a graph, where each strongly
connected component is “condensed” to a single node. The
idea is to compute strongly connected components and “con-
dense” the nature game to get an understanding of its topol-
ogy. That is important in determining the alive relation for 495

(partial) variable assignments.
Theorem 3. Let P = (V,A,E, I,G) be a planning task
andN = (A, T) be its nature game. Let N1, . . . , Nk be sets
of nodes forming strongly connected components of N . For
some (partial) variable assignment q and a state s, it is the 500

case that alive(q, s) if and only if for N i such that s ∈ N i it
is the case that there does not exist a path from N i to some
(condensed) leaf node N j such that ∄s′ ∈ N j : s′ |= q.

Proof. If alive(q, s), then for every s′′ reachable from s in
N it holds that s′ such that s′ |= q is reachable from s′′ inN 505

(according to Definition 10). Since the condensation ofN is
acyclic there is a path from N i to at least one (condensed)
node (including N i itself). We can also observe that s′ (with
s′ |= q) has to be in a (condensed) leaf node, otherwise, there
might exist s′′ in N from which s′ might not be reachable. 510

If, however, there is a path from N i (s ∈ N i) to another
(condensed) leaf node N j such that ∄s′ ∈ N j : s′ |= q, then
we can find such s′′ (being, for example, in N j) from which
s′ (such that s′ |= q) is not reachable, and hence alive(q, s)
would not hold. 515

Corollary 1. Let P = (V,A,E, I,G) be a planning task,
N = (A, T) be its nature game, and N1, . . . , Nk be sets
of nodes forming strongly connected components of N . Let
q be a (partial) variable assignment. If N i is a (condensed)
leaf node such that s ∈ N i and s |= q, then for each s′ ∈ N i 520

it is the case that alive(q, s′). If, on the other hand, there
does not exist a (condensed) leaf node N i such that s ∈ N i

and s |= q, then alive(q, s′) does not hold for any state s′.
To simplify reasoning about the alive relations we propose

a special case of a Domain Transition Graph (DTG) (Jons- 525

son and Bäckström 1998) that considers how the values of
variables can be changed in the nature game.
Definition 12. Let P = (V,A,E, I,G) be a planning task.
For each v ∈ V , we define the Nature Domain Transi-
tion Graph (NDTG) as a directed graph Gv = (D(v), T v), 530

where D(v) is a set of nodes and T v set of edges such that
for all x, y ∈ D(v) with x ̸= y and e ∈ E, (x, y) ∈ T v iff
eff(e)[v] = y and either pre(e)[v] = x or v ̸∈ vars(pre(e)).
Also, we denote x→v y if there is a path from x to y in Gv ,
x ↛v y if not, and ↓v x if x is a leaf node in Gv . 535

Maintaining the Value of a Variable
Firstly, we consider three situations in which a given value
of the variable is maintained (permanently, or eventually).

By a simple analysis of NDTG we can identify that the
alive relation holds for values in leaf nodes as those values540

cannot be modified by events in any reachable state in the
nature game. In the AUV example, we can observe that, for
example, the position of the AUV is always maintained re-
gardless of event occurrence.

Lemma 1. Let P = (V,A,E, I,G) be a planning task, S545

be the set of states over V , v ∈ V be a variable and Gv =
(D(v), T v) be its NDTG. If for x ∈ D(v) it holds that ↓v x,
then for each state s ∈ S such that s[v] = x it is the case
that alive((v, x), s)

In a more general sense, we can also observe that the value550

for a given variable does not change if none of the events
deleting it is reachable from a given state. In the AUV ex-
ample, the fact determining whether the AUV is operational
cannot be deleted if the AUV is not in the ship’s corridor, or
the ship has already passed by.555

Lemma 2. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V , and v ∈ V be a variable. For
s ∈ S it holds that alive((v, x), s) if s[v] = x, and for every
e ∈ E deleting (v, x) it holds that it is unreachable from s.

Another case considers situations in which an event might560

delete a value of a variable but some other event that can
eventually occur can reachieve that value. In a modified
AUV example, in which the ship cannot run over the AUV,
we can observe that the ship might temporarily block a cell
(i.e., it deletes the fact that the cell is free) but will eventually565

move away and make the cell again free.

Lemma 3. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V and v ∈ V be a variable. For
s ∈ S it is the case that alive((v, x), s) if s[v] = x and for
every e ∈ E applicable in s deleting (v, x), there exists an570

event e′ ∈ E such that ha(e) |= pre(e′), eff(e′)[v] = x and
for every event e′′ ∈ E reachable from γ(s, e) and deleting
some precondition of e′ it holds that either eff(e′′)[v] = x or
pre(e′′)[v] = x.

Proof. It can be seen that if any event e changes the value of575

v from x to some other value, there can eventually occur an-
other event e′ that reverts the value of v back to x. Also, any
event e′′ that can possibly interfere with the applicability of
e′ either requires or achieves (v, x). Hence, alive((v, x), s)
for each s with s[v] = x.580

Note that even though two facts over different variables
can be determined as alive according to Lemma 3 their
conjunction might not be alive as, for example, an event e
deletes (v, x) and achieves (v′, x′) and another event e′ does
it the other way round.585

Connecting Different Variable Values
If the value of a given variable has to be changed, we can
investigate whether nature can eventually apply events that
achieve the required value, and such a value is then main-
tained. NDTG can be analyzed in the sense of achieving a590

leaf value of a variable from another value. It can be pos-
sible if events on the path from that value to the leaf one

Algorithm 1: Verifying a Linear Execution Strategy
Require: A planning task P = (V,A,E, I,G), a sequence

of actions ϵ = ⟨a1, a2, . . . , an⟩
Ensure: A linear execution strategy with wait-for precon-

ditions over θ = ⟨(w(a1), a1), . . . , w(an), an)⟩ being a
solution of P

1: θ ← ⟨⟩; s← G
2: for i← n, i ≥ 0, i−− do
3: sp = ha(ai) if i ≥ 1, or sp = I otherwise
4: prew(ai)← pre(ai)
5: while ∃v ∈ (vars(sp) ∩ vars(s)) : sp[v] ̸= s[v] do
6: if ∃⟨e1, . . . , ek⟩ as in Lemma 4 then
7: for v′ ∈ vars(pre(e1)) ∩ vars(prew(ai)) :

sp[v
′] = prew(ai)[v

′]← pre(e1)[v′]
8: sp ← γ(sp⟨e1, . . . , ek⟩)
9: else

10: return Fail
11: for all v ∈ (vars(sp) ∩ vars(s)) do
12: if none of Lemmas 1–3 can be applied then
13: return Fail
14: else
15: prew(ai).add(Cond-Vals(sp, ai, e, v))
16: s← Reg(s, ai); θ.push-back(prew(ai), ai))
17: return θ

can eventually occur, which is formally stated in the follow-
ing lemma. In the AUV example, we might observe that the
ship will eventually leave the area, i.e., it will be changing 595

its position until it (finally) leaves the area.

Lemma 4. Let P = (V,A,E, I,G) be a planning task, S
be the set of states over V and v ∈ V be a variable and
Gv = (D(v), T v) be its NDTG. For s ∈ S with s[v] = y it
is the case that alive((v, x), s) if (i) there exists a path y = 600

q0, q1, . . . , qk = x in Gv (i.e., y →v x), (ii) ↓v x (iii) there
exists a sequence of events ⟨e1, . . . , ek⟩ such that for every
1 ≤ i ≤ k it holds that pre(ei)[v] = qi−1, eff(ei)[v] = qi,
γ(s, ⟨e1, . . . , ei−1⟩) |= pre(ei) and for each e′i that deletes
a fact required by ei it is the case that e′i is unreachable or 605

v ∈ vars(pre(e′i)) and pre(e′i)[v] ̸= qi−1.

Proof. The sequence of events ⟨e1, . . . , ek⟩ from the as-
sumption can eventually achieve the value x of the variable
v from y. On top of that, the fact (v, x) cannot be deleted
because of (ii). In particular, it is assured that each event 610

(from that sequence) can be eventually applied because of
γ(s, ⟨e1, . . . , ei−1⟩) |= pre(ei) and the fact that any event
possibly invalidating the precondition of any of the events
in the sequence is either unreachable or requires a different
value of v than that being currently set. 615

The Method
“To verify” sequences of actions are generated by off-the-
shelf classical planners such that a planning task P =
(V,A,E, I,G) is converted into a classical planning task
Pc = (V,A ∪ E, I,G), solved, and from the solution of 620

Pc, denoted as ϵc, which contain both agent’s actions and
nature’s events, we take out events, i.e., ϵ = ϵc \ E.

Such an action sequence ϵ has to be verified whether it
can yield a valid linear execution strategy for P . The verifi-
cation of ϵ can be done regressively step by step as indicated625

in Theorem 1 and, consequently, wait-for preconditions can
be computed for the actions from ϵ as indicated in Theo-
rem 2. Note that we abuse the notation by considering wait-
for preconditions (prew(a)) as partial states (or partial vari-
able assignments) meaning that prew(a) represents all states630

in which prew(a) holds. To determine the regression step
(over partial) states we define the Reg(s, a) function that is
calculated according to (Pommerening and Helmert 2015),
i.e., Reg(s, a) is defined only on variables from (vars(s) \
vars(eff (a))) ∪ vars(prew(a))) such that Reg(s, a)[v] =635

prew(a)[v] if v ∈ vars(prew(a)), or Reg(s, a)[v] = s[v]
otherwise. Even though Theorem 3 gives a blueprint on how
the alive relation, which is a necessary element of the ver-
ification process, can be computed, it requires enumerating
(almost) the whole state space. Hence, we leverage Lem-640

mas 1 to 4 to determine some alive relations in polynomial
time (if sequences of events satisfying Lemma 4 are gener-
ated greedily). Although such a simplification compromises
the completeness of the verification approach, it allows us to
leverage classical planners without a large overhead to gen-645

erate linear execution strategies in a subclass of scenarios.

The verification algorithm is summarised in Algorithm 1.
We start in the partial state containing only the goal facts and
iteratively regress through the plan to the initial state. In an
intermediate step, we look for whether we can, for all rel-650

evant variables, claim the alive relation from a partial state
(sp), determined by either ha(ai) or the initial state (after we
processed all actions of the sequence), to the current partial
state (s). At first, we process variables whose values differ
in s and sp by leveraging Lemma 4 (Line 6). If we can find655

a sequence of events satisfying the lemma, we may need to
update prew(ai) by considering extra preconditions needed
to ensure applicability of the event sequence (because of the
condition (iii) of Lemma 4, we need to consider only the pre-
condition of the first event, i.e., pre(e1)), and we also update660

sp reflecting that the sequence of events has been applied
(Line 7). If in any case, we fail to apply Lemma 4, then we
conclude that the verification has failed. Then, we process
variables whose values are the same in s and sp. We lever-
age Lemmas 1–3 (note that Lemma 3 can be applied at most665

once in the i-th step) and if none of them can be applied, we
conclude that the verification has failed. If we use Lemma 2,
then the “Cond-vals” function works as follows (for other
lemmas it returns an empty variable assignment). For each
not unreachable event e deleting the respective value of v670

we try to invalidate its precondition by looking for another
variable that is not (yet) considered in sp (and neither in
prew(ai)) such that we can find a leaf node in the variable’s
NDTG having a different value than the value of the variable
in pre(e). If we find such a variable and its value, we add it675

into prew(ai) (Line 15). Note that the unreachability checks
that are part of some of the lemmas are done on the abstrac-
tion level, i.e., by checking for the non-existence of paths in
NDTGs of respective variables.

Domain Type 1 2 3 4 5
AUV VLES 0.08 0.09 0.10 0.11 0.13
AUV FOND-1 9.56 39.15 - - -
HR VLES 0.06 0.07 0.07 0.09 0.12
HR FOND-1 15.48 - - - -

Table 1: Runtime results (in s) on the AUV and HR domains.

Experimental Evaluation 680

Our experiments aim to demonstrate the potential of our
method for Verifying Linear Execution Strategies (VLES) in
terms of scalability despite possibly large non-deterministic
branching caused by actions of nature. To give a perspective,
we compared our VLES method with a method based on 685

FOND planning that considers that nature can apply at most
one event in its turn (FOND-1) (Chrpa, Pilát, and Gemrot
2019), which is an easier problem to solve (as we consider
infinite sequences of events nature can apply in its turn).

For the comparison, we use the AUV domain introduced 690

by Chrpa, Gemrot, and Pilát (2020), where an AUV (con-
trolled by the agent) has to collect resources in a grid en-
vironment in which there are ships (controlled by nature)
passing through in their designed corridors (columns of the
grid). If a ship enters the cell with the AUV, then the AUV is 695

destroyed. In our case, we consider that each ship can pass
through the area only once. We designed 5 problems ranging
from 4x4 to 8x8 grid size, 4 to 8 resources, and 1 to 5 ships.
We have also designed a HomeRobot (HR) domain that in-
volves a robot (controlled by the agent) that needs to make 700

up rooms. Rooms are connected by a corridor, so to move
between rooms one has to enter the corridor first. There are
also humans (controlled by nature) that can move between
rooms as well. The corridor, however, has limited space and
at most one entity can be there at the same time. We designed 705

5 problems ranging from 4 to 12 rooms, and 2 to 6 humans.
For generating plans as an input to VLES (i.e., solving

classical planning problems considering both actions and
events and then removing events from the plans), we used
LAMA (Richter and Westphal 2010) and for solving FOND- 710

1 problems we used PRP (Muise, McIlraith, and Beck 2012).
The time limit for each problem was 900 seconds and the
memory limit was 4GB. The experiments were run on AMD
Ryzen 5 5500u 2.1GHz, 16GB RAM, Ubuntu 22.04.1

Table 1 shows the runtime comparison of VLES and 715

FOND-1 approaches (note that both planning and verifi-
cation runtimes are included in the VLES case). The re-
sults show that VLES scales reasonably well despite the in-
crease in the number of events nature can apply. Note that
FOND-1 results are shown to demonstrate how detrimental 720

impact on performance the non-deterministic branching can
have (FOND-1 considers a milder assumption than planning
against nature does) rather than to make a direct comparison
against VLES, which is incomplete in general. Nevertheless,
the results of VLES indicate that focusing on linear execu- 725

tion strategies in planning against nature has good potential
despite the incompleteness of such an approach.

1Our source code and benchmarks will be provided in CRC.

Related Work
The concept of exogenous events in planning (Dean and
Wellman 1990) was used in systems such as Circa (Musliner,730

Durfee, and Shin 1993). These systems usually have to rea-
son with a whole (or almost whole) state space. Markov De-
cision Process (MDP)-based approaches can be leveraged to
tackle events (Mausam and Kolobov 2012) and aim to gen-
erate a policy with the most promising action in each state.735

Monte-Carlo Tree Search (MCTS) approaches provide simi-
lar benefits; however, the success rate tends to drop for prob-
lems with dead-ends (Patra et al. 2021).

Alternatively, classical planning techniques can be used
to generate plans without explicitly considering events and740

if an event occurs during the plan execution and changes the
state of the environment to an unknown one, then a new plan
is generated (Komenda, Novák, and Pechoucek 2014). The
success of FF-replan (Yoon, Fern, and Givan 2007) in the
International Planning Competition 2006 (it was an unoffi-745

cial winner of the probabilistic track) indicates that planning
against nature tasks can be addressed by interleaving (clas-
sical) planning, plan execution, and re-planning if the agent
is in an unexpected state or cannot execute the following ac-
tion. However, in domains with dead-ends such an approach750

might not be effective (and might even be dangerous).
To address the issue of encountering dead-ends while

planning and acting in the environment with exogenous
events using classical planning Chrpa, Gemrot, and Pilát
(2020) adapted the notion of safe states (Cserna et al. 2018),755

where a state is safe if no sequence of events can trans-
form it to a dead-end state. If such an event sequence ex-
ists, the state is unsafe. The main idea is to generate robust
plans connecting one safe state to another. Robust plans are
guaranteed to always succeed despite event occurrence. The760

main drawback of the technique is that it tries to find ro-
bust plans between safe states online which might not al-
ways be possible. If there is no way of transiting an unsafe
area via a robust plan, the agent gets stuck forever (albeit in
a safe state). A subsequent work of Chrpa, Pilát, and Med765

(2021) presents a technique for generating eventually appli-
cable plans that, in our terminology, refer to linear execu-
tion policies for problems with events. That technique de-
termines “cyclic phenomena” that are formed by reversible
events and also identifies potentially irreversible events that770

might lead to dead-ends. These irreversible events cannot
occur during plan execution which is guaranteed, informally
speaking, by ensuring that such events cannot become appli-
cable during plan execution (the agent either does not enable
them or disables them before they have a chance to occur).775

It should be noted that works of Chrpa, Gemrot, and Pilát
(2020) and Chrpa, Pilát, and Med (2021) consider a differ-
ent execution model in which an action of the agent is inter-
leaved by a set of independent events (might be empty). Our
work, on the other hand, considers valid sequences of events780

between actions of the agent. Hence concepts from Chrpa et
al.’s works cannot be directly applied in our model.

Planning Against Nature and FOND Planning
Fully Observable Non-deterministic (FOND) Planning, in a
nutshell, concerns tasks in which the environment is fully785

observable while actions have several different outcomes
and if one such action is applied a random outcome occurs
(Cimatti et al. 2003). The task is to find a strong plan that, in
the context of our terminology, represents a valid execution
strategy that is a solution of a FOND planning task. For in- 790

stance, the well-known PRP planner (Muise, McIlraith, and
Beck 2012) looks for strong plans by leveraging classical
planning techniques and handling non-determinism by at-
tempting to “close” states from which there does not yet
exist a plan. FOND planning is known to be EXPTIME- 795

complete (Littman, Goldsmith, and Mundhenk 1998).
Although FOND planning and planning against nature

share some aspects such as non-determinism and full en-
vironment observability, there is a fundamental difference
in how non-determinism occurs. In FOND planning, non- 800

determinism is triggered only by (non-deterministic) ac-
tions of the agent while in planning against nature non-
determinism is triggered by events that nature can apply.
That means, that the number of non-deterministic alterna-
tives occurring after the agent applies an action a in a state s 805

is the number of reachable states from γ(s, a) in the corre-
sponding nature game. In the AUV example, ships can move
freely regardless of the movement of the AUV, and after the
AUV moves, each of the ships can then move to any reach-
able position or stay, so the number of non-deterministic 810

alternatives corresponds to the number of combinations of
reachable positions of the ships. Hence, in each “turn” the
number of outcomes of nature might be exponential with re-
spect to the size of the representation of the planning task
(against nature). We conjecture that planning against nature 815

is computationally harder than FOND planning and at most
double exponential (as ATL model checking).

Conclusion
In this paper, we have formalized the problem of planning
against nature as a concurrent game structure and how to 820

tackle it by using ATL model checking (Alur, Henzinger,
and Kupferman 2002). We then focused on linear execution
strategies resembling sequential plans and have shown that
if actions in a linear execution strategy are enriched with
wait-for preconditions, the strategy then uniquely specifies 825

when the agent has to apply a given action and when it
has to wait. We have shown under which circumstances a
linear execution strategy is valid (i.e., guarantees eventual
goal achievement) and how wait-for preconditions can be
extracted. We have then proposed a method for verifying se- 830

quential plans that also computes wait-for preconditions. Al-
though the method is incomplete and works on a subclass of
problems, we have experimentally shown that focusing on
linear execution strategies in planning against nature has the
potential to alleviate the high computational demand. 835

In the future, we plan to investigate how we can effec-
tively generalize the abstraction approach (e.g. by leveraging
ideas such as Merge and Shrink (Sievers and Helmert 2021))
and how to extract more complex social laws that would help
with generating action sequences forming the basis of linear 840

execution strategies. We also plan to combine linear execu-
tion strategy generation and verification into a generate-and-
test loop that would cover a larger class of problems.

References
Ai-Chang, M.; Bresina, J. L.; Charest, L.; Chase, A.; Hsu,845

J. C.; Jónsson, A. K.; Kanefsky, B.; Morris, P. H.; Rajan, K.;
Yglesias, J.; Chafin, B. G.; Dias, W. C.; and Maldague, P. F.
2004. MAPGEN: Mixed-Initiative Planning and Scheduling
for the Mars Exploration Rover Mission. IEEE Intelligent
Systems, 19(1): 8–12.850

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM, 49(5): 672–713.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2018. Alternating-time Temporal Logic on Finite Traces.
In Lang, J., ed., Proceedings of the Twenty-Seventh Inter-855

national Joint Conference on Artificial Intelligence, IJCAI
2018, 77–83. ijcai.org.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
Proceedings of the Eighteenth International Conference on860

Automated Planning and Scheduling, ICAPS 2008, 28–35.
AAAI.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69: 165–
204.865

Chrpa, L.; Gemrot, J.; and Pilát, M. 2020. Planning and
Acting with Non-Deterministic Events: Navigating between
Safe States. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, 9802–9809. AAAI Press.
Chrpa, L.; Pilát, M.; and Gemrot, J. 2019. Compiling Plan-870

ning Problems with Non-deterministic Events into FOND
Planning. In Proceedings of the RCRA International Work-
shop.
Chrpa, L.; Pilát, M.; and Med, J. 2021. On Eventual Appli-
cability of Plans in Dynamic Environments with Cyclic Phe-875

nomena. In Proceedings of the 18th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, KR 2021, 184–193.
Chrpa, L.; Pinto, J.; Ribeiro, M. A.; Py, F.; de Sousa, J. B.;
and Rajan, K. 2015. On mixed-initiative planning and con-880

trol for Autonomous underwater vehicles. In IROS, 1685–
1690.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell., 147(1-2): 35–84.885

Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding Dead Ends in Real-Time Heuristic Search.
In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence.
Dean, T.; and Wellman, M. 1990. Planning and Control.890

Morgan Kaufmann Publishers.
Giacomo, G. D.; and Lespérance, Y. 2021. The Nondeter-
ministic Situation Calculus. In Proceedings of the 18th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2021, 216–226.895

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell., 173(5-6): 503–535.
Ingrand, F.; and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artif. Intell., 247: 10–44.

Iocchi, L.; Nardi, D.; and Rosati, R. 2000. Planning with 900

sensing, concurrency, and exogenous events: logical frame-
work and implementation. In KR 2000, Principles of Knowl-
edge Representation and Reasoning Proceedings of the Sev-
enth International Conference, 678–689.
Jonsson, P.; and Bäckström, C. 1998. State-Variable Plan- 905

ning Under Structural Restrictions: Algorithms and Com-
plexity. Artif. Intell., 100(1-2): 125–176.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated Verification of Social Law Robustness in STRIPS.
In Proceedings of the Twenty-Seventh International Confer- 910

ence on Automated Planning and Scheduling, ICAPS 2017,
163–171.
Komenda, A.; Novák, P.; and Pechoucek, M. 2014. Domain-
independent multi-agent plan repair. J. Network and Com-
puter Applications, 37: 76–88. 915

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
Computational Complexity of Probabilistic Planning. J. Ar-
tif. Intell. Res., 9: 1–36.
Mausam; and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures 920

on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved Non-Deterministic Planning by Exploiting State Rel-
evance. In Proceedings of the Twenty-Second International 925

Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control architec-
ture. IEEE Trans. Systems, Man, and Cybernetics, 23(6): 930

1561–1574.
Patra, S.; Mason, J.; Ghallab, M.; Nau, D. S.; and Traverso,
P. 2021. Deliberative acting, planning and learning with hi-
erarchical operational models. Artif. Intell., 299: 103523.
Pnueli, A. 1977. The temporal logic of programs. In 18th 935

Annual Symposium on Foundations of Computer Science
(sfcs 1977), 46–57.
Pommerening, F.; and Helmert, M. 2015. A Normal Form
for Classical Planning Tasks. In Brafman, R. I.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the 940

Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2015, 188–192. AAAI Press.
Reiter, R. 1996. Natural Actions, Concurrency and Contin-
uous Time in the Situation Calculus. In Proceedings of the
Fifth International Conference on Principles of Knowledge 945

Representation and Reasoning (KR’96), 2–13.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research (JAIR), 39: 127–
177. 950

Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. J. Artif. Intell. Res., 71: 781–883.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS 2007, 352– 955

359.

