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ABSTRACT

Hyperparameter tuning, particularly the selection of an appropriate learning rate
in adaptive gradient training methods, remains a challenge. To tackle this chal-
lenge, in this paper, we propose a novel parameter-free optimizer, ADAMG (Adam
with the golden step size), designed to automatically adapt to diverse optimization
problems without manual tuning. The core technique underlying ADAMG is our
golden step size derived for the AdaGrad-Norm algorithm, which is expected to
help AdaGrad-Norm preserve the tuning-free convergence and approximate the
optimal step size in expectation w.r.t. various optimization scenarios. To bet-
ter evaluate tuning-free performance, we propose a novel evaluation criterion,
reliability, to comprehensively assess the efficacy of parameter-free optimizers
in addition to classical performance criteria. Empirical results demonstrate that
compared with other parameter-free baselines, ADAMG achieves superior perfor-
mance, which is consistently on par with Adam using a manually tuned learning
rate across various optimization tasks.

1 INTRODUCTION

Optimization serves as a foundation technique underpinning modern deep learning, which finds
applications in various domains such as computer vision, AI for science, and natural language pro-
cessing (Voulodimos et al., 2018; Redmon et al., 2016; Paul et al., 2021; Devlin et al., 2018; Radford
et al., 2019). Some of the recent optimization approaches include embedding momentum mecha-
nisms (Sutskever et al., 2013) and Adam (Kingma & Ba, 2014). Among them, adaptive gradient
methods play an important role (Duchi et al., 2011; Kingma & Ba, 2014; Liu et al., 2023) due to
their attractive performance across diverse problem structures, encompassing deep model architec-
tures, data characteristics, and running hyper-parameters. Hyperparameter tuning associated with
those optimization algorithms has a significant impact on the practical performance (Wilson et al.,
2017). Especially, the Learning Rate (LR) tuning holds primary importance, since the precision
of LR of popular (adaptive gradient) optimization methods is closely related to unknown problem
properties, such as smoothness, error of estimated gradient, and the initial optimality gap. The close
relationship between LR and these properties makes it a necessity to choose LR. Manual tuning is a
commonly adopted practice for parameter selection, which requires computational resources and is
prohibitive in large-scale machine-learning tasks.

Recently, there has been a growing interest in parameter-free training methods 1 due to their practical
training efficiency and satisfactory performance. These methods are designed to eliminate the need
for manual tuning parameters, achieving performance levels close to the best manually tuned train-
ing methods. Pioneering works in the realm of parameter-free training, incorporating mechanisms
like subroutine&bisection subroutine mechanisms (Nesterov, 2015; Carmon & Hinder, 2022), are
prohibitively expensive in the context of large-scale deep learning problems. This study directs its
focus toward identifying parameter-free training methods that maintain comparable training costs
to the most standard training algorithms, such as Adam (Kingma & Ba, 2014), for deep learning
problems.

Current trends in parameter-free training methodologies are standard practices of embedding initial
optimality gap into step size or drawing insights from the recently proposed DoG (Ivgi et al., 2023),

1In this manuscript, we will use the terms “parameter-free training methods” and “parameter-free optimiz-
ers” interchangeably.
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which combines the classical results from AdaGrad-Norm step size and standard Gradient Descent
(GD) step size (Duchi et al., 2011; Ward et al., 2020; Khaled et al., 2023). Existing approaches
based on classical evaluation criteria demonstrate advantages in specific scenarios (Ivgi et al., 2023;
Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko & Defazio, 2023). However, we
observed that the state-of-the-art parameter-free optimizers exhibit unstable performance when con-
fronted with diverse optimization problems, i.e., the performances of prior arts are sometimes much
lower than the optimal manual tuning performance for some optimization tasks. This observation is
obtained from the experimental results in Section 4.3, where a default choice like Adam(1e-3) with
a cosine decay learning rate scheduler outperformed existing parameter-free optimizers in certain
optimization scenarios. This prompts the following question: How stable can a specific parameter-
free optimizer be, achieving ”close” performance to the manually-tuned best optimizer w.r.t. diverse
optimization scenarios?

To tackle this problem, we first explore how to systematically evaluate the effectiveness of
parameter-free optimizers. Existing approaches mainly adopted the classical evaluation criteria,
including convergence speed and solution quality (Kingma & Ba, 2014; Liu et al., 2023) for opti-
mizers. However, in the context of parameter-free optimizers, limiting the validation to these two
aspects has hindered researchers and engineers from confidently applying these optimizers to more
complicated real-world tasks. Given a parameter-free optimizer is inherently expected to generalize
to unseen optimization problems, it is critical to collectively measure how it consistently behaves
across a spectrum of optimization problems. To this end, we introduce an additional novel evalu-
ation criterion, reliability, for parameter-free training methods. This criterion evaluates whether a
parameter-free optimizer consistently exhibits performances close to the best manually tuned op-
timizer across various optimization problems. Table 1 summarizes our experimental findings on
reliability evaluation.

DoG DoWG GOG D-Adapt Adam Prodigy Adam Adam(1e-3) (Proposed) ADAMG

Practical probability of achieving close performance of best manually tuning Adam.

0.50 0.27 0.54 0.50 0.60 0.56 0.78

Averaged Performance Gap with best manually tuning Adam. (%)

8.0 12.2 8.2 11.2 5.8 11.4 3.0

Table 1: Practical probability of the parameter-free optimizers achieving close performance (less
than 5% performance measure) with best manually tuning Adam and the averaged performance gap
with best manually tuning Adam, which are derived from Table 4.

In this paper, we design a novel algorithm that leverages the ability of tuning-free convergence of
AdaGrad-Norm (Duchi et al., 2011; Ward et al., 2020; McMahan & Streeter, 2010; Wang et al.,
2023). Specifically, we formally define a golden step size of AdaGrad-Norm, drawing insights to
preserve the ability of tuning-free convergence and approximate the optimal step size in expectation
across various optimization problems. Subsequently, we derive the solution for the golden step size,
which is independent of problem-specific properties, and integrate it into AdaGrad-Norm, resulting
in our first parameter-free optimizer (Algorithm 1). By deeply integrating the derived golden step
size with the Adam, we further introduce an Adam-like parameter-free method named ADAMG
(Algorithm 2). Compared to existing parameter-free optimization methods, our proposed ADAMG
stably outperforms all the baselines across various optimization tasks and achieves performance that
closely aligns with the best performance achieved by manually tuning Adam.

We highlight the following contributions of the paper:

• We introduce a novel evaluation criterion, namely reliability, for assessing parameter-free
training methods. Practical results show that this criterion reasonably validates the adaptabil-
ity of parameter-free optimizers to diverse optimization problems.

• Based on our analysis of the classical AdaGrad-Norm algorithm, we propose the golden step
size for AdaGrad-Norm, which is expected to preserve the ability of tuning-free convergence
and approximate the optimal step size in expectation w.r.t. various optimization problems,
resulting in an AdaGrad-Norm version parameter-free optimizer. Furthermore, we extend
this concept to devise an Adam-like parameter-free method named ADAMG.
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• Extensive experiments conducted on deep learning tasks reveal that ADAMG exhibits stable
performance across a spectrum of optimization problems. Moreover, it closely aligns with the
best performance achieved by manually tuning Adam, making it ready to be widely deployed.

2 RELATED WORK

Adaptive gradient methods have emerged as predominant choices for training deep learning opti-
mization problems (Kingma & Ba, 2014; Balles & Hennig, 2018; Zhuang et al., 2020; Chen et al.,
2023). Concurrently, there is a rising popularity of adaptive parameter-free approaches in the opti-
mization landscape (Ivgi et al., 2023; Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko
& Defazio, 2023).

The search mechanism is the natural avenue for achieving parameter-free capability. As we men-
tioned earlier, several works are the practice of search mechanism (Nesterov, 2015; Feurer & Hutter,
2019; Carmon & Hinder, 2022). Pioneering efforts without search mechanisms usually estimate the
problem properties and are more concerned with guarantees for convex optimization problems. For
instance, the Polyak step size schedule incorporates f(xk)−f⋆ into gradient descent for convex op-
timization problems (Polyak, 1987). The subsequent adaptations of this approach demonstrate fair
performance in handling nonconvex problems (Loizou et al., 2021; Malitsky & Mishchenko, 2019;
Latafat et al., 2023). Contrary to problem properties estimation, approaches adopted from online
learning with theoretical guarantees, such as coin betting schemes, have been applied in deep learn-
ing optimization problems (Orabona & Pál, 2016; Orabona & Tommasi, 2017; Chen et al., 2022).
A more recent trend involves the utilization of the initial optimality gap and the sum of gradient

norm along training trajectory (over K steps), maxi≤K ||xi−x0||
Approx.−−−−→||x0−x⋆||√∑K

i=1 ||gi||2
where x denotes pa-

rameters and g denotes stochastic gradient, as a means to adapt to unknown properties associated
with gradient norms, smoothness, and strong convexity (Ivgi et al., 2023). The initial optimality gap
||xi − x0|| primarily draws from classical results using gradient descent for the convex problems,
while the gradient norm 1√∑K

i=1 ||gi||2
is inspired by AdaGrad (Bubeck et al., 2015; Nesterov et al.,

2018; Duchi et al., 2011). However, the combination itself lacks convincing theoretical guarantees
over nonconvex problems. Several works following this line of thought propose distance measure
variants or integrate those techniques with Adam (Defazio & Mishchenko, 2023; Khaled et al.,
2023; Mishchenko & Defazio, 2023).

3 METHOD

In Section 3.2, we start with analyzing and discussing the selection of LR that preserves the ability
of tuning-free convergence of AdaGrad-Norm (Duchi et al., 2011; McMahan & Streeter, 2010;
Wang et al., 2023; Faw et al., 2023). Then, incorporating the ability with the classical result of
the descent lemma of smooth function, coupled with our idea about optimizing the solution across
various optimization problems, we formulate and derive the corresponding solution for the golden
step size of AdaGrad-Norm. This golden step size is expected to help AdaGrad-Norm converge
without tuning and approximate the optimal step size over various settings. Finally, we discuss the
scale-free property of the golden step size. These insights serve as the foundational principles for
the development of our parameter-free optimizers, detailed in Section 3.5 and Section 3.6.

3.1 PRELIMINARY

We work on a differentiable (including non-convex) function f(·) : Rd → R with the standard
Euclidean norm || · ||. We follow the standard assumptions on function and stochastic gradient
as Wang et al. (2023).

Assumption 3.1 (L-smooth condition). We assume that for any model parameter x1,x2, f is dif-
ferentiable and L-gradient Lipschitz such that ||∇f(x1)−∇f(x2)|| ≤ L||x1 − x2||.
Assumption 3.2 (Affine noise variance). We assume that there exist positive constant D0 and D1

such that EFk
[||gk||2] ≤ D0 +D1||∇f(xk)||2, ∀k ≥ 1.

3
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Fk = σ(gk−1, · · · , g1) is the standard stochastic operator and stands for the sigma field of historical
gradients up to k − 1.

3.2 GOLDEN STEP SIZE FOR ADAGRAD-NORM

AdaGrad-Norm converges when optimizing non-convex objectives under affine noise variance and
bounded smoothness assumptions (Wang et al., 2023; Faw et al., 2023). Additionally, It enjoys
the ability of tuning-free convergence, wherein differences in initial learning rates solely impact
practical convergence speed rather than the final convergence. This attribute is considered a primary
advantage inherited by subsequent variants. We initiate our analysis with the following corollary,
which serves as the foundation of analyzing the preservation of the tuning-free convergence ability
of AdaGrad-Norm (c.f. Algorithm 1 without the highlighted content).

Corollary 3.3 (A simple variant of Thm. 2 in Wang et al. (2023)). Given Assumptions 3.1 and 3.2,
for AdaGrad-Norm with any learning rate η > 0, we have in expectation that:

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(
4

η
(f(x1)− f⋆) + 2D1ξ(0)

+

(
2(LηD1)

2 +D1(Lη)
2 +

1

2
D0

)
4

√
v0

+ 2Lη ln vK

)
,

where K denotes total steps, and vK is accumulated sum of the squared gradient norm (see Algo-
rithm 1).

The proof is presented in appendix C. Consider right-hand side of Cor. 3.3 as a function w.r.t. η:
h(η) := 1√

vK

(
γ1η

2 + γ2η ln vK + γ3

η

)
, where γ1, γ1, and γ3 denote the corresponding problem-

dependent values for simplification purpose. We note that the accumulated gradient norm vK in-
creases; therefore, h(η) must be a decreasing sequence to achieve tuning-free convergence. We
discuss two possible cases of η preserving the tuning-free convergence ability:

• Case 1: Supposing η is a constant value.
• Case 2: Supposing η is constant but dynamic w.r.t. K, and one possible solution is η =

(vK)q , where 0 < q < 1
4 and vK > 1, so h (η) = γ1(vK)2q−

1
2 + γ2(vK)q−

1
2 ln vK +

γ3(vK)−q− 1
2 is continually decreasing with the increasing of vK .

Simultaneously, considering the general updating step, which can be easily derived from the descent
lemma of smooth function: f(xk+1) ≤ f(xk) − ηk∇f(xk)gk + η2kL||gk||2. Since the right-hand
side of the descent lemma forms a quadratic function w.r.t η, the (worst-case) optimal progressive
step-size ηopt = 1

2η
div. Here, ηdiv represents the step size that leads to divergence (∀η > ηdiv is

diverging step size).

Incorporating the concepts of preserving tuning-free convergence and achieving 0.5× diverging step
size under various settings, we formally formulate the golden step size of AdaGrad-Norm as

ηgold =
1

2
argmax

η
Ex∈R+h(x, η) s.t. lim

x→+∞

(
h(x, η) =

1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

))
= 0, (1)

where x := vK for simplification purposes. Here, the expectation over x ∈ R+ denotes various
settings, the constraint limx→+∞ h(x, η) = 0 ensures reservation of tuning-free convergence, and
argmaxη h(x, η) approximates the step size that drives the objective function to diverge, i.e., the
potentially largest h(x, η). Please also refer to the discussion regarding incorporating the optimal
progressive learning rate and the learning rate that converges with the training trajectory in Section 5.

3.3 SOLUTION OF THE GOLDEN STEP SIZE

We now provide the analytical solution for equation 1. Firstly, we derive the domain of η based
on the constraint. Considering the constraint limx→+∞

1√
x
(γ1η

2 + γ2η lnx + γ3

η ) = 0, to en-

sure η satisfies the constraint, one straightforward approach is considering limx→+∞
γ1η

2

√
x

= 0,

limx→+∞
γ2η ln x√

x
= 0, and limx→+∞

γ3

η
√
x

= 0. This implies that the domain of η is the in-

4
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tersection of sub-domains where each sub-component {γ1η
2

√
x
, γ2η ln x√

x
, γ3

η
√
x
} achieves 0 simultane-

ously. In other words, O(η) =
(
< O(x

1
4 )
)
∩
(
< O(

√
x

ln x )
)
∩
(
> O(x− 1

2 )
)

=
(
< O(x

1
4 )
)
∩(

> O(x− 1
2 )
)

= O(xt) with t ∈ (− 1
2 ,

1
4 ). Therefore, we consider two cases as we discussed in

Section 3.2: when η := xt where t ∈ (− 1
2 ,

1
4 ) (Case 2) and when η is a constant value (Case 1),

which covers the above domain. We then compare the maximum of the expectation maxE[h(x, η)]
between these two cases.

Given η := xt where t ∈ (− 1
2 ,

1
4 ) (Case 2), and supposing x is bounded and uniformly distributed,

i.e., x ∼ U(C1, C2), where C2 ≫ C1 > 1, we have

Ex∼U(C1,C2)
1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
=

1

C2 − C1

∫ C2

C1

1√
x
(γ1x

2t + γ2x
t lnx+ γ3x

−t)dx

=
1

C2 − C1

∫ C2

Cc1

γ1x
− 1

2+2t + γ2x
− 1

2+t lnx+ γ3x
− 1

2−tdx

=
1

C2 − C1

(
γ1

1
2 + 2t

x
1
2+2t +

γ2
1
2 + t

x
1
2+t lnx− γ2

( 12 + t)2
x

1
2+t +

γ3
1
2 − t

x
1
2−t

)∣∣∣∣C2

C1

≈ O

(
C

1
2+2t
2 − C

1
2+2t
1

C2 − C1

)
≈ O(C

− 1
2+2t

2 ).

Since t ∈ (− 1
2 ,

1
4 ), it is straightforward to observe that η = limt→ 1

4
− xt attains highest expectation

value with Ex∼(C1,C2)[h(x, η)] ≈ O(C
− 1

2+2 1
4

2 ) = O(1).

Given η is constant value (Case 1), and supposing x is bounded and uniformly distributed, i.e.,
x ∼ U(C1, C2), where C2 ≫ C1 > 1, we have

Ex∼U(C1,C2)
1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
=

1

C2 − C1

∫ C2

C1

1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
dx

=
1

C2 − C1

(
2(γ1η

2 +
γ3
η
)
√
x
∣∣C2

C1
+ γ2η(2

√
x lnx− 4

√
x)
∣∣C2

C1

)
≈ O

(
ln(C2)− ln(C1)√

C2 − C1

)
≈ O

(
ln(C2)√

C2

)
.

With C2 ≫ 1, it follows that η is a constant value attaining highest expectation value with
Ex∼(C1,C2)[h(x, η)] ≈ O( ln(C2)√

C2
).

Since ηgold desires the maximum expectation and OCase 1(
ln(C2)√

C2
) ≪ OCase 2(1), we conclude that

ηgold = 1
2 limt→ 1

4
− xt, where → 1/4− denotes approaching from the negative side, is the desired

golden step size that achieves the maximum expectation under the defined constraint.

3.4 SCALE-FREE PROPERTY OF GOLDEN STEP SIZE

We adopted the definition of the scale-free property of an optimization method from Khaled et al.
(2023), where it is defined as multiplying f by a constant factor α > 0 and minimizing αf does
not change the method’s trajectory at all. As mentioned in Section 1, the term parameter-free
optimization refers to optimization algorithms devoid of tuning parameters, with scale-free being
one of the preferred properties of parameter-free optimization methods (Khaled et al., 2023; Defazio
& Mishchenko, 2023; Mishchenko & Defazio, 2023).

Taking Theorem 3.4 as an example, also appearing in Khaled et al. (2023); Yang et al. (2024), to
illustrate the concept, Normalized Gradient Descent (NGD) is scale-free inherently, as rescaling f
to αf does not alter the step size trajectory, i.e., ηopt = D0/

√
K remains unchanged before and after

5
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rescaling. Meanwhile, if we can approximate D0 dynamically, then NGD qualifies as parameter-
free. We summarize the following key takeaways: 1). An immediate observation regarding scale-
free methods is that the derived step size is not correlated with the scale α. In terms of the parameter-
free methods, the corresponding step size does not depend on terms such as the scale α or problem
properties that are unknown or cannot be approximated; 2). It is important to note that parameter-
free does not imply the ability to arbitrarily scale the derived step size.

Particularly, there is an immediate observation that ηgold is independent of problem-dependent values
γ1, γ2, and γ3, further reinforcing the notion that rescaling function will not alter its trajectory.
Theorem 3.4 (Example adopted from Levy (2017); Grimmer (2019)). Suppose that f is convex
(bounded below by f⋆ := f(x⋆)) and satisfies Assumption 3.1. If we run NGD xk+1 = xk −
η ∇f(x)
||∇f(x)|| , we have mink=0,··· ,K−1(f(xk) − f⋆) ≤ L

2 (
D2

0

2ηK + η
2 )

2, where D0 := ||x0 − x⋆||, and

ηopt = D0√
K

.

3.5 ALGORITHM: ADAGRAD-NORM VERSION PARAMETER-FREE OPTIMIZER

Our analysis shows that when taking the golden step size, the updated AdaGrad-Norm algorithm
is expected to preserve the ability of tuning-free convergence and approximate the optimal step
size across various settings. We hereby propose a novel parameter-free optimization algorithm that
integrates the golden step size into AdaGrad-Norm.

Since ηgold = 1
2 limt→ 1

4
− xt, we define a numerator function s(x) := pxq , where p → 1/2, q →

1/4−, to represent the embedding of the golden step size. The proposed parameter-free training
method, named GOG (Golden step size over Gradients), is summarized in Algorithm 1. We high-
light the modifications (highlighting in grey), involving the direct utilization of the numerator func-
tion as the additional coefficient of the previous parameter updating step. Note that Algorithm 1
approximates vK with vk, and a similar idea is the optimality gap approximation exploited in the
baseline method DoG and its variants (Ivgi et al., 2023). Due to page limitation, please refer to
Appendix D.2 for discussions about the approximation.

Algorithm 1 GOG based on AdaGrad-Norm
Input: initial parameter x1, step size ηk (de-
fault 1), objective function f(x), p, q

Initialize v1 = 0

s(x) = pxq

for k = 1 to K do
gk ∈ ∂f(xk, ξk)
vk+1 = vk + ||gk||2

rk+1 = s(vk+1)

xk+1 = xk − ηk
rk+1

√
vk+1

gk

end for

Algorithm 2 ADAMG based on Adam
Input: initial parameter x1, step size ηk (de-
fault 1), p, q , β1, β2, β3 , ϵ,

Initialize m1 = 0, v1 = 0, r1 = 0

s(x) = pxq

for k = 1 to K do
gk ∈ ∂f(xk, ξk)
vk+1 = β2vk + (1− β2)g

2
k

v̂k+1 = vk+1/(1− βk
2 )

rk+1 = β3rk + (1− β3)s(vk+1)

mk+1 = β1mk + (1− β1) rk+1 gk

m̂k+1 = mk+1/(1− βk
1 )

xk+1 = xk− min(ηk, 1/
√
k) m̂k+1

(
√

v̂k+1+ϵ)

end for

Note that β1, β2, β3, ϵ in Algorithm 2 have default values of 0.95, 0.999, 0.95, and 10−8 respectively.

3.6 ALGORITHM: ADAM VERSION PARAMETER-FREE OPTIMIZER

Besides GOG, we further develop an Adam-like method incorporating the golden step size, leading
to a practical parameter-free optimizer with momentum acceleration. Similarly, we use a numerator
function s(·) for the embedding of the golden step size. We then approximate Adam’s update of the
Exponential Moving Average (EMA) w.r.t. the golden step size as follows: rk+1 = β3rk + (1 −
β3)s(vk+1), where β3 ∈ [0, 1) is the exponential decay rate.

6
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Besides, inspired by D-Adapt Adam (Defazio & Mishchenko, 2023), we use EMA golden step size,
rk+1, in the gradient of first-moment estimation instead of the raw coefficient in the parameter up-
dating step. Additionally, the term 1/

√
k in Algorithm 2 is a commonly adopted strategy appearing

in optimizing stochastic problems against error caused by randomness in gradient estimation (Nes-
terov et al., 2018; Ge et al., 2015). We refer to it as a piratical practice. The parameter-free optimizer
ADAMG, which embeds Golden step size with Adam, is summarized in Algorithm 2.

4 EXPERIMENTS

4.1 EVALUATION CRITERIA

The existing criteria for evaluating parameter-free approaches include convergence speed (E.g.,
loss curve) and solution quality (E.g., test accuracy), which are common in classical optimizer
designs (Kingma & Ba, 2014; Liu et al., 2023) and parameter-free optimizer designs (Ivgi et al.,
2023; Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko & Defazio, 2023). A good
parameter-free optimizer consistently performs well across various optimization tasks, which is not
covered by these criteria. We hereby introduce a novel criterion, reliability, to assess parameter-free
optimizers.

Following, we formally introduce the definition of reliability to illustrate how to systematically
evaluate the adaptability of a parameter-free training method to diverse optimization tasks, which is
hard to achieve by observing the performance of single or independent tasks.

Definition 4.1 (Reliability). Given a set of optimization tasks, we initially group all the conducted
optimization tasks into four categories based on the optimizers among Adam(1e-2), Adam(1e-3),
Adam(1e-4), and Adam(1e-5), whichever yields the best performance measure, such as test accu-
racy. Reliability is calculated by averaging the practical ratio in each category, where the ratio is
the statistical information about specific parameter-free optimizers achieving less than a 5% perfor-
mance drop compared to the corresponding best Adam on all tasks in that category.

4.2 SETUP

We compare ADAMG to DoG (Ivgi et al., 2023), DowG (Khaled et al., 2023), D-Adapt Adam (De-
fazio & Mishchenko, 2023), Prodigy Adam (Mishchenko & Defazio, 2023), and Adam(1e-
3)&cosine LR scheduler with evaluation criteria reliability, solution quality and convergence speed.
Unless otherwise specified, all Adam and Adam-type parameter-free optimizers are paired with a
cosine learning rate scheduler. I.e., the default value of ηk in ADAMG, D-Adapt Adam and Prodigy
Adam is set to 1 with extra cosine annealing decay strategy, following the default choice of pre-
vious work (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023). It is worth noting that
our experiments in Robustness against LR decay strategy of Appendix A.4 show that the proposed
ADAMG has little performance gap with or without LR decay. We adopt the same setting as previous
work in our evaluation for a fair comparison.

The optimization tasks cover two main categories: Image tasks - full fine-tuning pre-
trained&randomly initialized DenseNet121 (Huang et al., 2017), ResNet18 (He et al., 2016), ViT-
B/16 (Dosovitskiy et al., 2021), and VGG11 (Simonyan & Zisserman, 2014) under datasets CI-
FAR10, CIFAR100, and Tiny-ImageNet (Krizhevsky & Hinton, 2009; Russakovsky et al., 2015);
Language tasks - full fine-tuning pre-trained BERT (Devlin et al., 2018) under GLUE benchmark
and full fine-tuning LoRA on GPT2 (Radford et al., 2019; Hu et al., 2021) under GLUE bench-
mark (Wang et al., 2018). Note that we use the numerator function s(x) = 0.2x0.24 for all optimiza-
tion tasks, and the final formula slightly differs from our theoretical derivation, p → 1/2, q → 1/4−,
by a small coefficient (Please refer to Appendix D.1 for discussions about the scaling of the golden
step size). Other setup details of the 38 tasks are summarized in Appendix A.1.

4.3 PERFORMANCE COMPARISON

The average performance measures for all 38 tasks are summarized in Table 2 and Table 3. A
complete version for each table with standard deviation is provided in Appendix A.2 to satisfy the
page length limitation. Please note that DenseNet, ResNet, ViT-B, and VGG refer to DenseNet121,
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ResNet18, ViT-B/16, and VGG11, respectively. Below we review aggregated performance metrics
derived from empirical studies in Table 2 and Table 3, including reliability, solution quality, and
convergence speed.

Reliability naturally provides clearer insights into the effectiveness of the parameter-free optimizer
across the pre-defined task categories. To evaluate reliability, we derive the statistical information
from Table 2 and Table 3 about whether specific parameter-free optimizers achieve less than a 5%
performance drop compared to the corresponding best Adam in each category. The results are
presented in Table 4, showing that the proposed ADAMG exhibits the highest average reliability
ratio.

It is worth noting that with the default 5% performance gap, the proposed method improves the
reliability ratio from the second best of 0.60 to 0.78. Reliability ratio under 1% gap and 10% gap are
provided in Table 10 of Appendix A.2, specifically, under a 1% gap, the reliability ratio improvement
is from 0.52 to 0.70. Under a 10% gap, the reliability ratio improvement is from 0.67 to 0.83.

Solution quality is defined as 1
n

∑n
i=1 max(Perfbest Adam

i −Perfparameter-free
i , 0), where Perf represents

performance measurements, such as test accuracy, for all n optimization tasks. This metric indicates
the average performance gap between the best Adam optimizer and the specific parameter-free op-
timizer. The results are presented in Table 4, highlighting that the proposed ADAMG achieves the
best average solution quality.

Convergence speed. Figure 1, Figure 2, and Figure 3 in Appendix B.1 shows the loss curves of
training pretrained&randomly initialized DenseNet121, ResNet18, ViT-B/16, and VGG11 under
CIFAR10, CIFAR100, and Tiny-ImageNet. Figure 4 in Appendix B.2 shows the loss curves of full
fine-tuning BERT and fine-tuning LoRA with GPT2 under selected tasks in the GLUE benchmark.
In terms of convergence speed, the proposed ADAMG achieves competitive performance with the
best optimizer across all the conducted optimization tasks.

Performance of GOG. Since acceleration techniques like momentum have been widely employed
by modern optimizers and improve upon classical training methods such as SGD and AdaGrad-
Norm by a large margin, we mainly discuss the results of the accelerated optimizers. Here we
investigate optimizers without accelerations, comparing the proposed GOG and baselines DoG and
DoWG. We see that the proposed GOG achieves the best performance in terms of reliability and
solution quality, shown in Table 4.

5 CONCLUSION

In this work, we introduced a new mechanism for achieving parameter-free in adaptive gradient
training methods by proposing the golden step size. This step size aims to preserve the tuning-
free convergence and approximate the optimal step size in expectation w.r.t. various optimization
problems. The resulting optimizer, ADAMG, demonstrates improved reliability and solution quality
compared to previous methods, closely matching the performance of manually tuned Adam and
facilitating deployment readiness.

Limitation 1). Despite the practical success, understanding the theoretical guarantees of the pro-
posed approach is crucial. We discuss that while the proof framework for the convergence of
AdaGrad-Norm in Wang et al. (2023) served as inspiration for our approach, it relies on the col-
lective behavior of AdaGrad-Norm step size throughout the entire training trajectory. The diverging
step size for AdaGrad-Norm is not directly connected to the one derived from the progressive up-
dating formula, (Wang et al., 2023; Faw et al., 2023; Li et al., 2023), paving the way for future
research. 2). While this work verifies that the proposed optimizer has a wide adaptability range
through a broad spectrum of optimization tasks, it fails on some tail tasks possibly due to its ex-
pectation mechanism. Further investigations of embedding extra (approximated) problem properties
such as the optimality gap may mitigate the issue but also lead to further work.

ETHICS STATEMENT

Our work primarily focuses on theoretical and practical developments in optimization methods,
which will enable efficient model training of deep model optimization tasks. However, we are also
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Dataset Algorithm
Test accuracy (%)[a]

Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

CIFAR10

Adam(1e-2) 69.4 80.5 21.2 13.1 79.6 85.3 25.6 10.0
Adam(1e-3) 88.1 92.4 75.8 84.5 75.4 84.9 36.4 77.3
Adam(1e-4) 81.2 85.4 77.3 84.6 53.4 63.2 56.3 71.0
Adam(1e-5) 64.3 72.3 57.9 77.2 48.2 58.3 29.3 61.8

DoG 78.4× 88.3 63.7× 80.5 62.2× 71.1× 54.8 72.9
DoWG 80.4× 86.4× 67.1× 80.7 53.9× 65.5× 50.8× 52.7×

GOG 79.5× 85.7× 68.6× 82.6 54.7× 66.3× 53.7 66.3×

D-Adapt Adam 88.2 91.6 77.3 71.2× 72.3× 83.3 11.3× 49.1×

Prodigy Adam 87.4 90.9 79.5 86.1 64.0× 73.7× 21.1× 75.5
ADAMG 86.1 91.1 78.6 87.3 68.1× 75.9× 58.1 77.4

CIFAR100

Adam(1e-2) 37.3 45.0 7.3 1.0 47.2 52.1 8.4 1.0
Adam(1e-3) 65.2 72.8 49.7 53.6 45.0 57.5 13.1 13.4
Adam(1e-4) 55.7 62.3 51.1 60.1 23.2 36.4 27.8 33.5
Adam(1e-5) 20.6 29.0 13.8 43.5 20.0 32.1 8.9 24.3

DoG 50.6× 69.0 30.7× 56.4 33.6× 47.4× 29.2 31.8
DoWG 55.7× 65.3× 40.4× 56.2 26.7× 38.1× 24.9 1.0×

GOG 54.2× 61.7× 35.7× 56.8 25.0× 33.7× 27.2 25.0×

D-Adapt Adam 65.4 71.8 53.6 43.0× 43.7× 55.7 1.0× 29.2
Prodigy Adam 64.4 72.1 55.9 62.4 42.0× 53.7 5.7× 41.2

ADAMG 62.6 70.4 54.5 63.1 35.4× 44.9× 31.5 42.1

Tiny-ImageNet

Adam(1e-2) 38.5 43.4 3.9 0.5 37.2 45.5 1.6 0.5
Adam(1e-3) 62.9 63.0 57.3 12.1 39.2 50.9 7.4 16.9
Adam(1e-4) 59.5 60.0 56.5 59.6 16.8 35.7 16.4 35.2
Adam(1e-5) 35.2 24.8 20.9 51.3 16.0 24.9 10.9 22.0

DoG 61.4 69.1 49.5× 57.4 34.5 45.5× 14.2 24.9×

DoWG 60.7 61.1 45.3× 57.2 24.4× 28.5× 15.5 7.8×

GOG 60.4 58.4 41.2× 58.4 22.4× 31.1× 17.2 20.4×

D-Adapt Adam 60.2 60.3 64.5 23.1× 36.0 47.3 1.2× 27.4×

Prodigy Adam 62.0 63.6 63.2 58.8 40.5 53.6 8.1× 33.8
ADAMG 62.7 64.2 60.2 59.7 26.3× 39.0× 16.9 35.9

[a] × denotes that the performance measure of the specific parameter-free optimizer is at least 5% lower than
the best Adam, which is highlighted in bold.

Table 2: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

aware that the advancements may have broader implications, some of which could potentially have
negative social impacts, such as misuse of the method in malicious application developments.
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Model
arc. Algorithm SST-2 MRPC QQP MNLI QNLI RTE WNLI

Acc. Acc. Acc. Matched Acc. Acc. Acc. Acc.

BERT

Adam(1e-2) 50.3 56.1 54.4 33.0 49.5 49.1 52.1
Adam(1e-3) 50.3 68.4 63.2 32.1 49.8 50.9 52.1
Adam(1e-4) 77.1 81.6 54.4 77.7 85.3 63.9 47.4
Adam(1e-5) 92.5 83.2 90.7 84.1 91.3 65.8 38.0

DoG 91.4 74.3× 89.1 83.1 90.6 51.9× 57.3
DoWG 74.8× 72.3× 79.5× 59.5× 74.68× 51.1× 52.1
GOG 91.5 85.6 88.9 82.5 90.8 66.2 52.1

D-Adapt Adam 76.6× 68.4× 63.2× 66.1× 73.9× 61.3 52.1
Prodigy Adam 91.5 73.5× 90.4 83.1 90.8 65.8 46.5×

ADAMG 90.9 81.5 90.4 83.9 89.8 65.2 52.1

GPT2
with

LoRA

Adam(1e-2) 50.3 61.6 32.7 32.3 50.0 52.5 48.4
Adam(1e-3) 88.1 76.1 67.3 75.6 82.4 60.0 42.3
Adam(1e-4) 90.8 71.3 81.8 78.8 84.9 61.6 44.1
Adam(1e-5) 88.1 66.3 77.1 72.8 79.8 51.5 47.9

DoG 64.2× 67.9× 43.0× 43.8× 51.7× 50.1× 48.8
DoWG 90.4 69.8× 77.4 72.8× 81.9 50.8× 46.9
GOG 90.0 45.4× 77.2 73.7× 81.4 53.1× 52.1

D-Adapt Adam 55.2× 58.5× 27.6× 32.8× 50.2× 50.8× 50.7
Prodigy Adam 85.7× 68.6× 27.5× 33.1× 52.2× 50.9× 51.6

ADAMG 90.9 72.5 80.8 78.8 86.0 58.0 49.8

Table 3: Performance of fine-tuning pre-trained BERT with GLUE benchmark & Epoch 3 under 3
different seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.[c]

Reliability ratio[a,b]

DoG 2/5 6/12 7/15 4/6 0.50
DoWG 2/5 2/12 8/15 0/6 0.27
GOG 2/5 2/12 9/15 6/6 0.54

D-Adapt Adam 4/5 10/12 3/15 1/6 0.50
Prodigy Adam 1/5 11/12 7/15 5/6 0.60

Adam(1e-3) 4/5 12/12 7/15 0/6 0.56
ADAMG 2/5 9/12 15/15 6/6 0.78

Solution quality

DoG 9.0 6.2 12.4 4.5 8.0
DoWG 13.5 11.2 8.3 15.9 12.2
GOG 13.2 13.6 5.3 0.8 8.2

D-Adapt Adam 2.6 5.1 20.9 16.4 11.2
Prodigy Adam 7.6 1.5 12.2 2.1 5.8

Adam(1e-3) 2.6 0.0 10.9 32.1 11.4
ADAMG 6.5 4.1 0.3 1.0 3.0

[a] The denominators of each entity in a row denote that the numbers of best optimizer for each task count for
Adam(1e-2), Adam(1e-3), Adam(1e-4), and Adam(1e-5) are 5, 12, 15, 6 regarding the total 38 tasks.
[b] Each entity, e.g., 2/5 denotes that the parameter-free optimizer has less than 5% performance drop compared

to the corresponding best hand-tuning Adam for 2 tasks in all 5 tasks.
[c] The average operation considers an even task distribution over Adam optimizers.

Table 4: Reliability demonstrates the statistical property of parameter-free optimizers. Solution
quality shows an average performance gap to the solution from the best manual tuned Adam.
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A EXPERIMENT

A.1 SETUP

For the image tasks, we used the same batch size of 1024 and input image sizes 32×32, 32×32, and
64×64 for CIAFR10, CIAFR100, and Tiny-ImageNet datasets respectively. For the language tasks,
we used the same batch size of 32 for BERT and GPT2 tasks. In particular, we used rank = 4 for the
LoRA in GPT2 tasks. The number of training epochs is particularly mentioned in the corresponding
performance table.

Computer resources All the experiments can be run on a single NVIDIA RTX A5000 Graphics
Card (24G). Each image task in one setting can be completed within 5 hours, using less than 15GB
of GPU memory. Similarly, each language task in one setting can be completed within 8 hours,
using less than 10GB of GPU memory.

A.2 COMPLETED VERSION RESULTS

The (completed version) average performance measure of all 42 tasks are summarized in Table 5,
Table 6, Table 7, Table 8, and Table 9.

Algorithm
Test accuracy (%) under CIFAR10

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

SGD-M(1e-2) 82.5±0.2 88.2±0.5 71.4±0.6 85.5±0.1 65.2±0.2 71.2±0.8 57.9±0.2 73.8±1.1
SGD-M(1e-3) 73.7±0.0 74.5±0.8 52.7±0.6 77.2±0.0 50.6±0.5 63.1±0.4 52.4±0.5 50.0±1.0
SGD-M(1e-4) 45.8±0.4 43.1±1.5 26.6±0.3 60.2±0.5 39.2±0.5 37.9±0.6 32.5±0.7 12.7±2.2
SGD(1e-2) 73.8±0.1 75.0±0.8 52.9±1.3 77.3±0.1 51.5±0.3 63.4±0.7 50.7±0.3 46.9±0.6
SGD(1e-3) 46.7±0.2 43.6±1.5 27.2±0.6 60.7±0.5 39.1±0.6 38.1±0.7 32.5±0.6 12.3±1.8
SGD(1e-4) 14.5±0.4 14.9±0.5 11.1±0.1 34.0±1.1 21.6±0.8 21.1±1.1 23.9±1.0 10.3±0.4

Adam(1e-2) 69.4±5.5 80.5±2.6 21.2±8.0 13.1±4.5 79.6±1.1 85.3±0.7 25.6±2.7 10.0±0.0
Adam(1e-3) 88.1±0.2 92.4±0.4 75.8±0.7 84.5±0.7 75.4±0.5 84.9±0.2 36.4±4.3 77.3±0.5
Adam(1e-4) 81.2±0.1 85.4±0.3 77.3±0.4 84.6±0.2 53.4±0.2 63.2±1.0 56.3±0.7 71.0±0.1
Adam(1e-5) 64.3±0.1 72.3±0.9 57.9±0.6 77.2±0.1 48.2±0.4 58.3±0.6 29.3±0.3 61.8±0.3

DoG 78.4±0.8 88.3±0.7 63.7±0.7 80.5±1.8 62.2±0.2 71.1±0.7 54.8±0.4 72.9±0.2
DoWG 80.4±0.4 86.4±0.7 67.1±1.2 80.7±1.2 53.9±0.5 65.5±0.4 50.8±0.9 52.7±3.1
GOG 79.5±0.1 85.7±0.4 68.6±0.5 82.6±1.0 54.7±0.4 66.3±0.7 53.7±0.7 66.3±0.8
D-Adapt Adam 88.2±0.1 91.6±0.4 77.3±1.1 71.2±10.2 72.3±0.3 83.3±0.3 11.3±1.2 49.1±27.7
Prodigy Adam 87.4±0.1 90.9±0.5 79.5±0.2 86.1±0.2 64.0±0.6 73.7±0.1 21.1±8.2 75.5±0.6
ADAMG 86.1±0.3 91.1±0.4 78.6±0.4 87.3±0.0 68.1±0.6 75.9±0.6 58.1±0.3 77.4±0.4

Table 5: Test accuracy with CIFAR-10 under 3 different seeds.

Algorithm
Test accuracy (%) under CIFAR-100

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

Adam(1e-2) 37.3±6.3 45.0±1.1 7.3±1.1 1.0±0.0 47.2±1.5 52.1±0.7 8.4±3.7 1.0±0.0
Adam(1e-3) 65.2±0.2 72.8±0.8 49.7±2.5 53.6±1.6 45.0±0.4 57.5±0.4 13.1±1.7 13.4±17.5
Adam(1e-4) 55.7±0.1 62.3±0.7 51.1±0.4 60.1±0.3 23.2±0.3 36.4±1.0 27.8±0.3 33.5±0.5
Adam(1e-5) 20.6±0.4 29.0±0.5 13.8±0.5 43.5±0.2 20.0±0.2 32.1±0.5 8.9±0.3 24.3±0.2

DoG 50.6±2.5 69.0±2.7 30.7±2.7 56.4±0.2 33.6±0.3 47.4±0.7 29.2±0.3 31.8±1.2
DoWG 55.7±0.1 65.3±3.1 40.4±1.3 56.2±0.4 26.7±0.4 38.1±0.5 24.9±0.3 1.0±0.0
GOG 54.2±1.3 61.7±2.4 35.7±1.1 56.8±0.2 25.0±0.1 33.7±0.6 27.2±0.3 25.0±0.1
D-Adapt Adam 65.4±0.0 71.8±1.0 53.6±1.0 43.0±5.3 43.7±0.6 55.7±0.8 1.0±0.1 29.2±0.3
Prodigy Adam 64.4±0.1 72.1±0.8 55.9±0.3 62.4±0.5 42.0±0.2 53.7±0.7 5.7±1.6 41.2±0.6
ADAMG 62.6±0.2 70.4±1.3 54.5±0.1 63.1±0.1 35.4±0.0 44.9±0.4 31.5±0.2 42.1±0.4

Table 6: Test accuracy with CIFAR-100 under 3 different seeds.

A.3 RELIABILITY RATIO UNDER DIFFERENT PERFORMANCE GAP
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Algorithm
Test accuracy (%) under Tiny-ImageNet

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

Adam(1e-2) 38.5±0.6 43.4±0.5 3.9±2.0 0.5±0.0 37.2±0.9 45.5±0.2 1.6±0.9 0.5±0.0
Adam(1e-3) 62.9±0.2 63.0±0.2 57.3±0.4 12.1±16.5 39.2±0.1 50.9±0.5 7.4±0.9 16.9±11.6
Adam(1e-4) 59.5±0.3 60.0±1.4 56.5±0.2 59.6±0.2 16.8±0.2 35.7±0.4 16.4±0.2 35.2±1.0
Adam(1e-5) 35.2±0.2 24.8±0.8 20.9±0.1 51.3±0.2 16.0±0.3 24.9±0.3 10.9±0.2 22.0±0.4

DoG 61.4±0.3 69.1±2.0 49.5±0.9 57.4±1.7 34.5±0.3 45.5±0.5 14.2±0.3 24.9±1.0
DoWG 60.7±0.3 61.1±3.9 45.3±2.1 57.2±0.1 24.4±0.1 28.5±0.4 15.5±0.1 7.8±4.5
GOG 60.4±0.1 58.4±3.6 41.2±0.4 58.4±0.3 22.4±0.3 31.1±1.0 17.2±0.5 20.4±0.4
D-Adapt Adam 60.2±0.2 60.3±0.8 64.5±0.3 23.1±7.4 36.0±0.1 47.3±0.4 1.2±0.9 27.4±0.5
Prodigy Adam 62.0±0.2 63.6±1.0 63.2±0.3 58.8±0.0 40.5±0.4 53.6±0.4 8.1±1.1 33.8±0.1
ADAMG 62.7±0.1 64.2±1.4 60.2±0.3 59.7±0.3 26.3±0.4 39.0±0.2 16.9±0.1 35.9±0.4

Table 7: Test accuracy with Tiny-Imagenet under 3 different seeds.

Algorithm
Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews corr. Acc. F1&Acc. Pearson corr.& F1&Acc. Matched acc.& Acc. Acc. Acc.

Spearman corr. Mismatched acc.

Adam(1e-2) 0.0±0.0 50.3±0.9 54.1±38.3&56.1±17.3 nan 17.9±25.4&54.4±12.4 33.0±1.7&33.0±1.6 49.5±0.0 49.1±2.6 52.1±6.0
Adam(1e-3) 0.0±0.0 50.3±0.9 81.2±0.0&68.4±0.0 nan 0.0±0.0&63.2±0.0 32.1±0.4&32.2±0.5 49.8±0.5 50.9±2.6 52.1±6.0
Adam(1e-4) 48.4±2.1 77.1±7.6 87.0±1.5&81.6±1.4 88.0±0.3&87.7±0.1 17.9±25.4&54.4±12.4 77.7±0.5&77.8±0.2 85.3±0.6 63.9±3.5 47.4±12.6
Adam(1e-5) 57.2±2.3 92.5±0.3 88.5±0.5&83.2±0.9 88.5±0.1&88.2±0.1 87.2±0.2&90.7±0.1 84.1±0.1&84.4±0.2 91.3±0.3 65.8±1.2 38.0±10.2

DoG 51.3±4.5 91.4±0.3 83.2±1.7&74.3±4.2 88.2±0.1&88.1±0.2 85.5±0.4&89.1±0.0 83.1±0.2&83.8±0.3 90.6±0.1 51.9±3.3 57.3±1.3
DoWG 17.5±24.7 74.8±17.3 82.3±1.8&72.3±2.6 88.1±0.1&88.3±0.1 55.8±39.4&79.5±11.5 59.5±20.6&60.3±21.1 74.6±17.8 51.1±2.7 52.1±6.0
GOG 53.8±3.7 91.5±0.3 89.7±0.4&85.6±0.1 88.5±0.3&88.5±0.2 85.1±0.2&88.9±0.1 82.5±0.2&83.3±0.2 90.8±0.2 66.2±2.4 52.1±6.0
D-Adapt Adam 0.0±0.0 76.6±18.1 81.2±0.0&68.4±0.0 nan 0.0±0.0&63.2±0.0 66.1±24.2&66.4±24.5 73.9±17.3 61.3±9.9 52.1±6.0
Prodigy Adam 53.5±3.3 91.5±1.3 82.0±5.4&73.5±7.5 57.6±39.2&57.0±39.6 87.3±0.1&90.4±0.2 83.1±0.5&83.6±0.6 90.8±0.1 65.8±3.5 46.5±13.9
ADAMG 50.6±3.2 90.9±0.4 87.0±2.1&81.5±3.3 88.7±0.6&88.5±0.6 87.1±0.1&90.4±0.0 83.9±0.4&84.3±0.1 89.8±0.3 65.2±3.5 52.1±6.0

Table 8: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Algorithm
Fine-tuning LoRA on GPT2 under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews corr. Acc. F1&Acc. Pearson corr.& F1&Acc. Matched acc.& Acc. Acc. Acc.

Spearman corr. Mismatched acc.

Adam(1e-2) 0.0±0.0 50.3±0.9 70.8±14.7&61.6±9.6 1.2±4.2&0.9±2.5 32.7±7.0&65.8±0.6 32.3±0.4&32.5±0.5 50.0±0.4 52.5±1.2 48.4±5.7
Adam(1e-3) 13.0±9.7 88.1±0.3 84.5±0.4&76.1±0.9 84.9±1.1&85.0±0.9 67.3±7.2&71.1±10.0 75.6±0.4&77.5±0.4 82.4±0.8 60.0±4.7 42.3±5.3
Adam(1e-4) 9.0±3.4 90.8±0.2 81.3±1.1&71.3±0.7 83.7±0.6&83.5±0.5 81.8±0.2&86.1±0.0 78.8±0.1&80.2±0.3 84.9±0.4 61.6±2.2 44.1±0.7
Adam(1e-5) 1.3±3.2 88.1±0.4 78.1±2.4&66.3±3.2 14.7±19.1&13.9±19.4 77.1±0.4&82.0±0.1 72.8±0.4&74.4±0.3 79.8±1.1 51.5±3.7 47.9±6.0

DoG 3.0±4.3 64.2±9.3 80.4±0.5&67.9±0.2 -18.3±2.1&-17.6±2.4 43.0±19.8&67.8±2.0 43.8±0.0&45.4±0.4 51.7±2.0 50.1±1.3 48.8±5.4
DoWG 3.5±5.0 90.4±0.9 80.7±1.3&69.8±0.6 77.7±3.5&77.6±3.3 77.4±0.4&81.5±0.3 72.8±0.4&74.8±0.2 81.9±0.9 50.8±3.9 46.9±6.7
GOG 3.1±4.4 90.0±1.0 52.6±7.5&45.4±3.0 13.5±24.8&14.2±23.9 77.2±0.6&81.7±0.4 73.7±0.1&75.6±0.3 81.4±0.5 53.1±1.5 52.1±6.0
D-Adapt Adam 0.5±0.6 55.2±4.4 63.5±25.0&58.5±14.0 4.5±3.3&2.4±2.3 27.6±16.8&65.0±1.3 32.8±0.1&33.0±0.0 50.2±0.5 50.8±1.8 50.7±5.3
Prodigy Adam 0.0±0.0 85.7±1.9 81.0±0.3&68.6±0.3 35.1±35.3&33.8±36.0 27.5±21.1&64.6±1.0 33.1±0.5&33.2±0.3 52.2±1.4 50.9±2.8 51.6±5.7
ADAMG 24.2±5.0 90.9±0.6 82.6±0.6&72.5±1.4 83.9±0.5&83.6±0.6 80.8±0.4&85.6±0.1 78.8±0.1&79.9±0.2 86.0±0.5 58.0±4.9 49.8±5.8

Table 9: Performance of fine-tuning LoRA on GPT2 with GLUE benchmark under 3 different seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.

1% Reliability ratio

DoG 2/5 1/12 1/15 4/6 0.30
DoWG 2/5 0/12 4/15 0/6 16.7
GOG 2/5 0/12 3/15 4/6 0.31

D-Adapt Adam 2/5 4/12 2/15 1/6 0.25
Prodigy Adam /15 8/12 6/15 5/6 0.52

Adam(1e-3) 2/5 12/12 5/15 0/6 0.43
ADAMG 2/5 5/12 15/15 6/6 0.70

10% Reliability ratio

DoG 2/5 9/12 13/15 6/6 0.57
DoWG 2/5 6/12 9/15 0/6 0.37
GOG 2/5 4/12 13/15 6/6 0.65

D-Adapt Adam 5/5 10/12 4/15 1/6 0.56
Prodigy Adam 2/5 11/12 8/15 5/6 0.67

Adam(1e-3) 4/5 12/12 9/15 0/6 0.60
ADAMG 3/5 9/12 15/15 6/6 0.83

Table 10: Reliability under 1% and 10% performance gap.
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A.4 ROBUSTNESS AGAINST LR DECAY STRATEGY

Recall that ηk in ADAMG has a default value of 1 with an additional cosine annealing decay strat-
egy, following the default choice of previous work Defazio & Mishchenko (2023); Mishchenko &
Defazio (2023). Our empirical results show that ADAMG is robust to the decay strategy. Table 11
and Table 12 illustrate the performance difference between default ADAMG and modified ADAMG
(with a constant ηk). The two methods show no noticeable performance gap.

Algorithm
Test accuracy (%) under CIFAR10

Epoch 20&pre-trained network Epoch 100&randomly initialized network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

ADAMG 86.1 91.1 78.6 87.3 68.1 75.9 58.1 77.4
Modified ADAMG[a] 85.6 91.1 77.6 86.7 68.3 75.6 57.1 76.1
[a] ADAMG with ηk = 1, which eliminates decay strategy.

Table 11: Test accuracy with CIFAR-10 under 3 different seeds.

Algorithm

Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
corr. corr. acc.

ADAMG 50.6 90.9 87.0 88.7 87.1 83.9 89.8 65.2 52.1
Modified ADAMG[a] 49.9 90.3 87.7 88.5 87.1 83.5 90.0 67.3 52.1
[a] ADAMG with ηk = 1, which eliminates decay strategy.

Table 12: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.
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B TRAINING LOSS CURVES

B.1 IMAGE TASKS

The training loss curves corresponding to Table 2 are demonstrated below.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(a) Densenet121&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(b) ResNet18&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

6

7

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(c) ViT-B/16&Pre-trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(d) VGG11&Pre-trained
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(f) ResNet18&R.I.
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(g) ViT-B/16&R.I.
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(h) VGG11&R.I.

Figure 1: CIFAR10 experiments. Note Randomly Initialized (R.I.).
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(e) Densenet121&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(f) ResNet18&R.I.
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(g) ViT-B/16&R.I.
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(h) VGG11&R.I.

Figure 2: CIFAR100 experiments. Note Randomly Initialized (R.I.).
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Figure 3: Tiny-ImageNet experiments. Note Randomly Initialized (R.I.).

B.2 LANGUAGE TASKS

The training loss curves corresponding to above Table 3 are demonstrated below.
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Figure 4: BERT and GPT2 under GLUE benchmark experiments.
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C TECHNICAL PROOF DETAILS

Corollary C.1 (a simple variant of Theorem 2 in Wang et al. (2023)). Let Assumptions 1 and 2 hold.
Then, for AdaGrad-Norm with any learning rate η > 0, we have in expectation that

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(4
η
(f(x1)− f⋆) + 2D1ξ(0)

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4
√
v0

+ 2Lη ln vK

)
.

Proof. We begin by following the inequality that is extracted from that of Theorem 2 of Wang et al.
(2023).

1

4
η

K∑
k=1

E[
||f(xk)||2√

vk−1
] ≤ f(x1)− E[f(xK)] +

ηD1

2
E[ξ(0)− ξ(T )] (2)

+ (2η(LηD1)
2 + ηD1(Lη)

2 +
η

2
D0)

1
√
v0

+
L

2
η2(E ln vK − E ln v0). (3)

Given the fact Wang et al. (2023):

K∑
k=1

E
[
||f(xk)||2√

vk−1

]
≥ E

[∑K
k=1 ||∇f(xk)||2√

vK

]
≥

E
[√∑K

k=1 ||∇f(xk)||2
]2

E[√vK ]
,

we have

E


√√√√ K∑

k=1

||∇f(xk)||2

2

≤
4E[√vK ]

η
(f(x1)− E[f(xK)]) + 2D1E[

√
vK ]E[ξ(0)− ξ(T )]

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4E[√vK ]
√
v0

+ 2LE[
√
vK ]η(E ln vK − E ln v0).

Further applying the fact E[
√
vK
K ] is upper bounded by O( 1√

K
) Wang et al. (2023), we have in

expectation that:

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
K)

(
·
)
≤ 1

O(
√
vK)

(4
η
(f(x1)− f⋆) + 2D1ξ(0)

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4
√
v0

+ 2Lη ln vK

)
.

This concludes the proof.
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D DISCUSSION

D.1 SCALING OF THE GOLDEN STEP SIZE

Our analysis in Section 3.3 derives ηgold = 1
2 limt→ 1

4
− xt and further suggests a numerator func-

tion s(x) = pxq , where p → 1/2, q → 1/4−. Specifically, we employ s(x) = 0.2x0.24 for all
optimization tasks in the experiments. In the following, we verify the effectiveness of scaling p.

Table 13 and Table 14 demonstrate the performance comparisons between the default ADAMG and
ADAMG (0.5), which employs s(x) = 0.5x0.24. We observe that ADAMG (0.5) generally improves
the performance on image tasks and fine-tuning LoRA on GPT2, but results in performance decay
when fine-tuning BERT.

However, Table 15 provides clearer insights into the effectiveness of the scaling p through reliability
comparison. Compared with the default ADAMG, ADAMG (0.5) enhances adaptability on tasks that
prefer a large LR Adam and reduces the adaptability on tasks that prefer a small LR Adam. Consid-
ering the inner expectation mechanism of the proposed method and the empirical performance, we
believe that the scaling p potentially shifts the covering but may not damage the range.

Dataset Algorithm
Test accuracy (%)[a]

Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

CIFAR10 ADAMG 86.1±0.3 91.1±0.4 78.6±0.4 87.3±0.0 68.1±0.6× 75.9±0.6× 58.1±0.3 77.4±0.4
ADAMG (0.5) 87.4±0.2 92.9±0.6 79.6±0.2 87.4±0.5 74.5±0.4× 82.4±0.2 58.8±0.1 78.8±0.2

CIFAR100 ADAMG 62.6±0.2 70.4±1.3 54.5±0.1 63.1±0.1 35.4±0.0× 44.9±0.4× 31.5±0.2 42.1±0.4
ADAMG (0.5) 65.0±0.2 74.0±1.4 54.9±0.3 63.7±0.3 43.8±0.1 53.4±0.2 32.5±0.2 42.7±1.3

Tiny-ImageNet ADAMG 62.7±0.1 64.2±1.4 60.2±0.3 59.7±0.3 26.3±0.4× 39.0±0.2× 16.9±0.1 35.9±0.4
ADAMG (0.5) 63.6±0.2 65.4±1.3 64.1±0.5 57.7±0.0 34.8±0.1 45.4±0.3 17.9±0.3 33.7±0.6

Table 13: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

Algorithm CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
corr. Acc. F1 corr. F1 acc. Acc. Acc. Acc.

BERT

ADAMG 50.6±3.2× 90.9±0.4 87.0±2.1 88.7±0.6 87.1±0.1 83.9±0.4 89.8±0.3 65.2±3.5 52.1±6.0
ADAMG (0.5) 0.0±0.0× 50.9±0.0× 81.2±0.0× 26.3±29.5× 0.0±0.0× 36.6±6.1× 49.5±0.0× 50.9±2.6× 52.1±6.0

LoRA on GPT2

ADAMG 24.2±5.0 90.9±0.6 82.6±0.6 83.9±0.5 80.8±0.4 78.8±0.1 86.0±0.5 58.0±4.9 49.8±5.8
ADAMG (0.5) 31.0±7.4 90.4±0.4 82.8±0.7 85.4±0.8 82.7±0.3 79.9±0.2 86.7±0.7 56.4±1.2 52.6±5.3

Table 14: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.

Reliability ratio ADAMG 2/5 11/14 15/15 7/8 0.76
ADAMG (0.5) 4/5 13/14 15/15 0/8 0.68

Table 15: Reliability ratio comparison, which is derived from Table 13 and Table 14, and provides
clearer insights into the effectiveness of the scaling p. Compared with the default ADAMG, ADAMG
(0.5) generally enhances adaptability on tasks that prefer a large LR Adam and reduces adaptability
on tasks that prefer a small LR Adam. This potentially indicates a covering shift phenomenon.
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D.2 DYNAMIC STEP SIZE

In case 2, η is constant but dynamic with respect to K (upper-case), so η := (vK)q can be con-
sidered as a constant value that obeys Corollary 3.3 and the analysis in Section 3.2. Finally, we
approximates vK with vk in the proposed Algorithm 1. The approximation is intuitive and can
be improved along with training. Besides, a similar idea is the optimality gap approximation,

maxi≤K ||xi − x0||
Approx.−−−−→ ||x0 − x⋆||, exploited in the baseline method DoG and its variantsIvgi

et al. (2023).

We further discuss dynamic η with respect to k (lower-case), i.e., η := (vk)
q , which is naturally

compatible with our algorithm design. We demonstrate that it aligns well our analysis framework
with some wild assumptions and eliminates the need for approximation.

Particularly, we can update our Corollary 3.3 as a time-varying learning rate ηk, then, we have a
similar form of conclusion, formulated as

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(c1

∑K
k=1 η

3
k∑K

k=1 ηk
+ c2

∑K
k=1 η

2
k∑K

k=1 ηk
ln vK + c3

1∑K
k=1 ηk

),

where c1, c2, and c3 are the corresponding coefficients. Ignoring the constant value and substituting
ηk with (vk)

q , the right-hand side can be further reformulated as

1
√
vK

(∑K
k=1(vk)

3q∑K
k=1(vk)

q
+

∑K
k=1(vk)

2q∑K
k=1(vk)

q
ln vK +

1∑K
k=1(vk)

q

)

→ O
(

1
√
vK

(
(vK)3q+1

(vK)q+1
+

(vK)2q+1

(vK)q+1
ln vK +

1

(vK)q+1
)

)
→ O

(
1

√
vK

((vK)2q + (vK)q ln vK +
1

(vK)q+1
)

)
.

Achieving a good approximation of the above first and second formulas necessitates that∑K
k=1(vk)

q ≈ 1
q+1 (vK)q+1, which imposes requirements on the sequence {v1, · · · , vK} (E.g.,∑K

x=1 x
1
2 ≈

∫K

1
2
3x

3
2 ) and leads to future investigations.

However, the desired result, as shown in the third formula above, will lead to the same level of
expectation in Equation 1 as that derived from employing a constant step size (The difference in the
last term does not affect the conclusion). This suggests that our algorithm design, ηk = (vk)

q , is
(possibly) naturally compatible with analysis in Section 3.2 and Section 3.3.
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