
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS RELIABILITY OF PARAMETER-FREE OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning, particularly the selection of an appropriate learning rate
in adaptive gradient training methods, remains a challenge. To tackle this chal-
lenge, in this paper, we propose a novel parameter-free optimizer, ADAMG (Adam
with the golden step size), designed to automatically adapt to diverse optimization
problems without manual tuning. The core technique underlying ADAMG is our
golden step size derived for the AdaGrad-Norm algorithm, which is expected to
help AdaGrad-Norm preserve the tuning-free convergence and approximate the
optimal step size in expectation w.r.t. various optimization scenarios. To bet-
ter evaluate tuning-free performance, we propose a novel evaluation criterion,
reliability, to comprehensively assess the efficacy of parameter-free optimizers
in addition to classical performance criteria. Empirical results demonstrate that
compared with other parameter-free baselines, ADAMG achieves superior perfor-
mance, which is consistently on par with Adam using a manually tuned learning
rate across various optimization tasks.

1 INTRODUCTION

Optimization serves as a foundation technique underpinning modern deep learning, which finds
applications in various domains such as computer vision, AI for science, and natural language pro-
cessing (Voulodimos et al., 2018; Redmon et al., 2016; Paul et al., 2021; Devlin et al., 2018; Radford
et al., 2019). Some of the recent optimization approaches include embedding momentum mecha-
nisms (Sutskever et al., 2013) and Adam (Kingma & Ba, 2014). Among them, adaptive gradient
methods play an important role (Duchi et al., 2011; Kingma & Ba, 2014; Liu et al., 2023) due to
their attractive performance across diverse problem structures, encompassing deep model architec-
tures, data characteristics, and running hyper-parameters. Hyperparameter tuning associated with
those optimization algorithms has a significant impact on the practical performance (Wilson et al.,
2017). Especially, the Learning Rate (LR) tuning holds primary importance, since the precision
of LR of popular (adaptive gradient) optimization methods is closely related to unknown problem
properties, such as smoothness, error of estimated gradient, and the initial optimality gap. The close
relationship between LR and these properties makes it a necessity to choose LR. Manual tuning is a
commonly adopted practice for parameter selection, which requires computational resources and is
prohibitive in large-scale machine-learning tasks.

Recently, there has been a growing interest in parameter-free training methods 1 due to their practical
training efficiency and satisfactory performance. These methods are designed to eliminate the need
for manual tuning parameters, achieving performance levels close to the best manually tuned train-
ing methods. Pioneering works in the realm of parameter-free training, incorporating mechanisms
like subroutine&bisection subroutine mechanisms (Nesterov, 2015; Carmon & Hinder, 2022), are
prohibitively expensive in the context of large-scale deep learning problems. This study directs its
focus toward identifying parameter-free training methods that maintain comparable training costs
to the most standard training algorithms, such as Adam (Kingma & Ba, 2014), for deep learning
problems.

Current trends in parameter-free training methodologies are standard practices of embedding initial
optimality gap into step size or drawing insights from the recently proposed DoG (Ivgi et al., 2023),

1In this manuscript, we will use the terms “parameter-free training methods” and “parameter-free optimiz-
ers” interchangeably.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which combines the classical results from AdaGrad-Norm step size and standard Gradient Descent
(GD) step size (Duchi et al., 2011; Ward et al., 2020; Khaled et al., 2023). Existing approaches
based on classical evaluation criteria demonstrate advantages in specific scenarios (Ivgi et al., 2023;
Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko & Defazio, 2023). However, we
observed that the state-of-the-art parameter-free optimizers exhibit unstable performance when con-
fronted with diverse optimization problems, i.e., the performances of prior arts are sometimes much
lower than the optimal manual tuning performance for some optimization tasks. This observation is
obtained from the experimental results in Section 4.3, where a default choice like Adam(1e-3) with
a cosine decay learning rate scheduler outperformed existing parameter-free optimizers in certain
optimization scenarios. This prompts the following question: How stable can a specific parameter-
free optimizer be, achieving ”close” performance to the manually-tuned best optimizer w.r.t. diverse
optimization scenarios?

To tackle this problem, we first explore how to systematically evaluate the effectiveness of
parameter-free optimizers. Existing approaches mainly adopted the classical evaluation criteria,
including convergence speed and solution quality (Kingma & Ba, 2014; Liu et al., 2023) for opti-
mizers. However, in the context of parameter-free optimizers, limiting the validation to these two
aspects has hindered researchers and engineers from confidently applying these optimizers to more
complicated real-world tasks. Given a parameter-free optimizer is inherently expected to generalize
to unseen optimization problems, it is critical to collectively measure how it consistently behaves
across a spectrum of optimization problems. To this end, we introduce an additional novel evalu-
ation criterion, reliability, for parameter-free training methods. This criterion evaluates whether a
parameter-free optimizer consistently exhibits performances close to the best manually tuned op-
timizer across various optimization problems. Table 1 summarizes our experimental findings on
reliability evaluation.

DoG DoWG GOG D-Adapt Adam Prodigy Adam Adam(1e-3) (Proposed) ADAMG

Practical probability of achieving close performance of best manually tuning Adam.

0.50 0.27 0.54 0.50 0.60 0.56 0.78

Averaged Performance Gap with best manually tuning Adam. (%)

8.0 12.2 8.2 11.2 5.8 11.4 3.0

Table 1: Practical probability of the parameter-free optimizers achieving close performance (less
than 5% performance measure) with best manually tuning Adam and the averaged performance gap
with best manually tuning Adam, which are derived from Table 4.

In this paper, we design a novel algorithm that leverages the ability of tuning-free convergence of
AdaGrad-Norm (Duchi et al., 2011; Ward et al., 2020; McMahan & Streeter, 2010; Wang et al.,
2023). Specifically, we formally define a golden step size of AdaGrad-Norm, drawing insights to
preserve the ability of tuning-free convergence and approximate the optimal step size in expectation
across various optimization problems. Subsequently, we derive the solution for the golden step size,
which is independent of problem-specific properties, and integrate it into AdaGrad-Norm, resulting
in our first parameter-free optimizer (Algorithm 1). By deeply integrating the derived golden step
size with the Adam, we further introduce an Adam-like parameter-free method named ADAMG
(Algorithm 2). Compared to existing parameter-free optimization methods, our proposed ADAMG
stably outperforms all the baselines across various optimization tasks and achieves performance that
closely aligns with the best performance achieved by manually tuning Adam.

We highlight the following contributions of the paper:

• We introduce a novel evaluation criterion, namely reliability, for assessing parameter-free
training methods. Practical results show that this criterion reasonably validates the adaptabil-
ity of parameter-free optimizers to diverse optimization problems.

• Based on our analysis of the classical AdaGrad-Norm algorithm, we propose the golden step
size for AdaGrad-Norm, which is expected to preserve the ability of tuning-free convergence
and approximate the optimal step size in expectation w.r.t. various optimization problems,
resulting in an AdaGrad-Norm version parameter-free optimizer. Furthermore, we extend
this concept to devise an Adam-like parameter-free method named ADAMG.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Extensive experiments conducted on deep learning tasks reveal that ADAMG exhibits stable
performance across a spectrum of optimization problems. Moreover, it closely aligns with the
best performance achieved by manually tuning Adam, making it ready to be widely deployed.

2 RELATED WORK

Adaptive gradient methods have emerged as predominant choices for training deep learning opti-
mization problems (Kingma & Ba, 2014; Balles & Hennig, 2018; Zhuang et al., 2020; Chen et al.,
2023). Concurrently, there is a rising popularity of adaptive parameter-free approaches in the opti-
mization landscape (Ivgi et al., 2023; Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko
& Defazio, 2023).

The search mechanism is the natural avenue for achieving parameter-free capability. As we men-
tioned earlier, several works are the practice of search mechanism (Nesterov, 2015; Feurer & Hutter,
2019; Carmon & Hinder, 2022). Pioneering efforts without search mechanisms usually estimate the
problem properties and are more concerned with guarantees for convex optimization problems. For
instance, the Polyak step size schedule incorporates f(xk)−f⋆ into gradient descent for convex op-
timization problems (Polyak, 1987). The subsequent adaptations of this approach demonstrate fair
performance in handling nonconvex problems (Loizou et al., 2021; Malitsky & Mishchenko, 2019;
Latafat et al., 2023). Contrary to problem properties estimation, approaches adopted from online
learning with theoretical guarantees, such as coin betting schemes, have been applied in deep learn-
ing optimization problems (Orabona & Pál, 2016; Orabona & Tommasi, 2017; Chen et al., 2022).
A more recent trend involves the utilization of the initial optimality gap and the sum of gradient

norm along training trajectory (over K steps), maxi≤K ||xi−x0||
Approx.−−−−→||x0−x⋆||√∑K

i=1 ||gi||2
where x denotes pa-

rameters and g denotes stochastic gradient, as a means to adapt to unknown properties associated
with gradient norms, smoothness, and strong convexity (Ivgi et al., 2023). The initial optimality gap
||xi − x0|| primarily draws from classical results using gradient descent for the convex problems,
while the gradient norm 1√∑K

i=1 ||gi||2
is inspired by AdaGrad (Bubeck et al., 2015; Nesterov et al.,

2018; Duchi et al., 2011). However, the combination itself lacks convincing theoretical guarantees
over nonconvex problems. Several works following this line of thought propose distance measure
variants or integrate those techniques with Adam (Defazio & Mishchenko, 2023; Khaled et al.,
2023; Mishchenko & Defazio, 2023).

3 METHOD

In Section 3.2, we start with analyzing and discussing the selection of LR that preserves the ability
of tuning-free convergence of AdaGrad-Norm (Duchi et al., 2011; McMahan & Streeter, 2010;
Wang et al., 2023; Faw et al., 2023). Then, incorporating the ability with the classical result of
the descent lemma of smooth function, coupled with our idea about optimizing the solution across
various optimization problems, we formulate and derive the corresponding solution for the golden
step size of AdaGrad-Norm. This golden step size is expected to help AdaGrad-Norm converge
without tuning and approximate the optimal step size over various settings. Finally, we discuss the
scale-free property of the golden step size. These insights serve as the foundational principles for
the development of our parameter-free optimizers, detailed in Section 3.5 and Section 3.6.

3.1 PRELIMINARY

We work on a differentiable (including non-convex) function f(·) : Rd → R with the standard
Euclidean norm || · ||. We follow the standard assumptions on function and stochastic gradient
as Wang et al. (2023).

Assumption 3.1 (L-smooth condition). We assume that for any model parameter x1,x2, f is dif-
ferentiable and L-gradient Lipschitz such that ||∇f(x1)−∇f(x2)|| ≤ L||x1 − x2||.
Assumption 3.2 (Affine noise variance). We assume that there exist positive constant D0 and D1

such that EFk
[||gk||2] ≤ D0 +D1||∇f(xk)||2, ∀k ≥ 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fk = σ(gk−1, · · · , g1) is the standard stochastic operator and stands for the sigma field of historical
gradients up to k − 1.

3.2 GOLDEN STEP SIZE FOR ADAGRAD-NORM

AdaGrad-Norm converges when optimizing non-convex objectives under affine noise variance and
bounded smoothness assumptions (Wang et al., 2023; Faw et al., 2023). Additionally, It enjoys
the ability of tuning-free convergence, wherein differences in initial learning rates solely impact
practical convergence speed rather than the final convergence. This attribute is considered a primary
advantage inherited by subsequent variants. We initiate our analysis with the following corollary,
which serves as the foundation of analyzing the preservation of the tuning-free convergence ability
of AdaGrad-Norm (c.f. Algorithm 1 without the highlighted content).

Corollary 3.3 (A simple variant of Thm. 2 in Wang et al. (2023)). Given Assumptions 3.1 and 3.2,
for AdaGrad-Norm with any learning rate η > 0, we have in expectation that:

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(
4

η
(f(x1)− f⋆) + 2D1ξ(0)

+

(
2(LηD1)

2 +D1(Lη)
2 +

1

2
D0

)
4

√
v0

+ 2Lη ln vK

)
,

where K denotes total steps, and vK is accumulated sum of the squared gradient norm (see Algo-
rithm 1).

The proof is presented in appendix C. Consider right-hand side of Cor. 3.3 as a function w.r.t. η:
h(η) := 1√

vK

(
γ1η

2 + γ2η ln vK + γ3

η

)
, where γ1, γ1, and γ3 denote the corresponding problem-

dependent values for simplification purpose. We note that the accumulated gradient norm vK in-
creases; therefore, h(η) must be a decreasing sequence to achieve tuning-free convergence. We
discuss two possible cases of η preserving the tuning-free convergence ability:

• Case 1: Supposing η is a constant value.
• Case 2: Supposing η is constant but dynamic w.r.t. K, and one possible solution is η =

(vK)q , where 0 < q < 1
4 and vK > 1, so h (η) = γ1(vK)2q−

1
2 + γ2(vK)q−

1
2 ln vK +

γ3(vK)−q− 1
2 is continually decreasing with the increasing of vK .

Simultaneously, considering the general updating step, which can be easily derived from the descent
lemma of smooth function: f(xk+1) ≤ f(xk) − ηk∇f(xk)gk + η2kL||gk||2. Since the right-hand
side of the descent lemma forms a quadratic function w.r.t η, the (worst-case) optimal progressive
step-size ηopt = 1

2η
div. Here, ηdiv represents the step size that leads to divergence (∀η > ηdiv is

diverging step size).

Incorporating the concepts of preserving tuning-free convergence and achieving 0.5× diverging step
size under various settings, we formally formulate the golden step size of AdaGrad-Norm as

ηgold =
1

2
argmax

η
Ex∈R+h(x, η) s.t. lim

x→+∞

(
h(x, η) =

1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

))
= 0, (1)

where x := vK for simplification purposes. Here, the expectation over x ∈ R+ denotes various
settings, the constraint limx→+∞ h(x, η) = 0 ensures reservation of tuning-free convergence, and
argmaxη h(x, η) approximates the step size that drives the objective function to diverge, i.e., the
potentially largest h(x, η). Please also refer to the discussion regarding incorporating the optimal
progressive learning rate and the learning rate that converges with the training trajectory in Section 5.

3.3 SOLUTION OF THE GOLDEN STEP SIZE

We now provide the analytical solution for equation 1. Firstly, we derive the domain of η based
on the constraint. Considering the constraint limx→+∞

1√
x
(γ1η

2 + γ2η lnx + γ3

η) = 0, to en-

sure η satisfies the constraint, one straightforward approach is considering limx→+∞
γ1η

2

√
x

= 0,

limx→+∞
γ2η ln x√

x
= 0, and limx→+∞

γ3

η
√
x

= 0. This implies that the domain of η is the in-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tersection of sub-domains where each sub-component {γ1η
2

√
x
, γ2η ln x√

x
, γ3

η
√
x
} achieves 0 simultane-

ously. In other words, O(η) =
(
< O(x

1
4)
)
∩
(
< O(

√
x

ln x)
)
∩
(
> O(x− 1

2)
)

=
(
< O(x

1
4)
)
∩(

> O(x− 1
2)
)

= O(xt) with t ∈ (− 1
2 ,

1
4). Therefore, we consider two cases as we discussed in

Section 3.2: when η := xt where t ∈ (− 1
2 ,

1
4) (Case 2) and when η is a constant value (Case 1),

which covers the above domain. We then compare the maximum of the expectation maxE[h(x, η)]
between these two cases.

Given η := xt where t ∈ (− 1
2 ,

1
4) (Case 2), and supposing x is bounded and uniformly distributed,

i.e., x ∼ U(C1, C2), where C2 ≫ C1 > 1, we have

Ex∼U(C1,C2)
1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
=

1

C2 − C1

∫ C2

C1

1√
x
(γ1x

2t + γ2x
t lnx+ γ3x

−t)dx

=
1

C2 − C1

∫ C2

Cc1

γ1x
− 1

2+2t + γ2x
− 1

2+t lnx+ γ3x
− 1

2−tdx

=
1

C2 − C1

(
γ1

1
2 + 2t

x
1
2+2t +

γ2
1
2 + t

x
1
2+t lnx− γ2

(12 + t)2
x

1
2+t +

γ3
1
2 − t

x
1
2−t

)∣∣∣∣C2

C1

≈ O

(
C

1
2+2t
2 − C

1
2+2t
1

C2 − C1

)
≈ O(C

− 1
2+2t

2).

Since t ∈ (− 1
2 ,

1
4), it is straightforward to observe that η = limt→ 1

4
− xt attains highest expectation

value with Ex∼(C1,C2)[h(x, η)] ≈ O(C
− 1

2+2 1
4

2) = O(1).

Given η is constant value (Case 1), and supposing x is bounded and uniformly distributed, i.e.,
x ∼ U(C1, C2), where C2 ≫ C1 > 1, we have

Ex∼U(C1,C2)
1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
=

1

C2 − C1

∫ C2

C1

1√
x

(
γ1η

2 + γ2η lnx+
γ3
η

)
dx

=
1

C2 − C1

(
2(γ1η

2 +
γ3
η
)
√
x
∣∣C2

C1
+ γ2η(2

√
x lnx− 4

√
x)
∣∣C2

C1

)
≈ O

(
ln(C2)− ln(C1)√

C2 − C1

)
≈ O

(
ln(C2)√

C2

)
.

With C2 ≫ 1, it follows that η is a constant value attaining highest expectation value with
Ex∼(C1,C2)[h(x, η)] ≈ O(ln(C2)√

C2
).

Since ηgold desires the maximum expectation and OCase 1(
ln(C2)√

C2
) ≪ OCase 2(1), we conclude that

ηgold = 1
2 limt→ 1

4
− xt, where → 1/4− denotes approaching from the negative side, is the desired

golden step size that achieves the maximum expectation under the defined constraint.

3.4 SCALE-FREE PROPERTY OF GOLDEN STEP SIZE

We adopted the definition of the scale-free property of an optimization method from Khaled et al.
(2023), where it is defined as multiplying f by a constant factor α > 0 and minimizing αf does
not change the method’s trajectory at all. As mentioned in Section 1, the term parameter-free
optimization refers to optimization algorithms devoid of tuning parameters, with scale-free being
one of the preferred properties of parameter-free optimization methods (Khaled et al., 2023; Defazio
& Mishchenko, 2023; Mishchenko & Defazio, 2023).

Taking Theorem 3.4 as an example, also appearing in Khaled et al. (2023); Yang et al. (2024), to
illustrate the concept, Normalized Gradient Descent (NGD) is scale-free inherently, as rescaling f
to αf does not alter the step size trajectory, i.e., ηopt = D0/

√
K remains unchanged before and after

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

rescaling. Meanwhile, if we can approximate D0 dynamically, then NGD qualifies as parameter-
free. We summarize the following key takeaways: 1). An immediate observation regarding scale-
free methods is that the derived step size is not correlated with the scale α. In terms of the parameter-
free methods, the corresponding step size does not depend on terms such as the scale α or problem
properties that are unknown or cannot be approximated; 2). It is important to note that parameter-
free does not imply the ability to arbitrarily scale the derived step size.

Particularly, there is an immediate observation that ηgold is independent of problem-dependent values
γ1, γ2, and γ3, further reinforcing the notion that rescaling function will not alter its trajectory.
Theorem 3.4 (Example adopted from Levy (2017); Grimmer (2019)). Suppose that f is convex
(bounded below by f⋆ := f(x⋆)) and satisfies Assumption 3.1. If we run NGD xk+1 = xk −
η ∇f(x)
||∇f(x)|| , we have mink=0,··· ,K−1(f(xk) − f⋆) ≤ L

2 (
D2

0

2ηK + η
2)

2, where D0 := ||x0 − x⋆||, and

ηopt = D0√
K

.

3.5 ALGORITHM: ADAGRAD-NORM VERSION PARAMETER-FREE OPTIMIZER

Our analysis shows that when taking the golden step size, the updated AdaGrad-Norm algorithm
is expected to preserve the ability of tuning-free convergence and approximate the optimal step
size across various settings. We hereby propose a novel parameter-free optimization algorithm that
integrates the golden step size into AdaGrad-Norm.

Since ηgold = 1
2 limt→ 1

4
− xt, we define a numerator function s(x) := pxq , where p → 1/2, q →

1/4−, to represent the embedding of the golden step size. The proposed parameter-free training
method, named GOG (Golden step size over Gradients), is summarized in Algorithm 1. We high-
light the modifications (highlighting in grey), involving the direct utilization of the numerator func-
tion as the additional coefficient of the previous parameter updating step. Note that Algorithm 1
approximates vK with vk, and a similar idea is the optimality gap approximation exploited in the
baseline method DoG and its variants (Ivgi et al., 2023). Due to page limitation, please refer to
Appendix D.2 for discussions about the approximation.

Algorithm 1 GOG based on AdaGrad-Norm
Input: initial parameter x1, step size ηk (de-
fault 1), objective function f(x), p, q

Initialize v1 = 0

s(x) = pxq

for k = 1 to K do
gk ∈ ∂f(xk, ξk)
vk+1 = vk + ||gk||2

rk+1 = s(vk+1)

xk+1 = xk − ηk
rk+1

√
vk+1

gk

end for

Algorithm 2 ADAMG based on Adam
Input: initial parameter x1, step size ηk (de-
fault 1), p, q , β1, β2, β3 , ϵ,

Initialize m1 = 0, v1 = 0, r1 = 0

s(x) = pxq

for k = 1 to K do
gk ∈ ∂f(xk, ξk)
vk+1 = β2vk + (1− β2)g

2
k

v̂k+1 = vk+1/(1− βk
2)

rk+1 = β3rk + (1− β3)s(vk+1)

mk+1 = β1mk + (1− β1) rk+1 gk

m̂k+1 = mk+1/(1− βk
1)

xk+1 = xk− min(ηk, 1/
√
k) m̂k+1

(
√

v̂k+1+ϵ)

end for

Note that β1, β2, β3, ϵ in Algorithm 2 have default values of 0.95, 0.999, 0.95, and 10−8 respectively.

3.6 ALGORITHM: ADAM VERSION PARAMETER-FREE OPTIMIZER

Besides GOG, we further develop an Adam-like method incorporating the golden step size, leading
to a practical parameter-free optimizer with momentum acceleration. Similarly, we use a numerator
function s(·) for the embedding of the golden step size. We then approximate Adam’s update of the
Exponential Moving Average (EMA) w.r.t. the golden step size as follows: rk+1 = β3rk + (1 −
β3)s(vk+1), where β3 ∈ [0, 1) is the exponential decay rate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Besides, inspired by D-Adapt Adam (Defazio & Mishchenko, 2023), we use EMA golden step size,
rk+1, in the gradient of first-moment estimation instead of the raw coefficient in the parameter up-
dating step. Additionally, the term 1/

√
k in Algorithm 2 is a commonly adopted strategy appearing

in optimizing stochastic problems against error caused by randomness in gradient estimation (Nes-
terov et al., 2018; Ge et al., 2015). We refer to it as a piratical practice. The parameter-free optimizer
ADAMG, which embeds Golden step size with Adam, is summarized in Algorithm 2.

4 EXPERIMENTS

4.1 EVALUATION CRITERIA

The existing criteria for evaluating parameter-free approaches include convergence speed (E.g.,
loss curve) and solution quality (E.g., test accuracy), which are common in classical optimizer
designs (Kingma & Ba, 2014; Liu et al., 2023) and parameter-free optimizer designs (Ivgi et al.,
2023; Defazio & Mishchenko, 2023; Khaled et al., 2023; Mishchenko & Defazio, 2023). A good
parameter-free optimizer consistently performs well across various optimization tasks, which is not
covered by these criteria. We hereby introduce a novel criterion, reliability, to assess parameter-free
optimizers.

Following, we formally introduce the definition of reliability to illustrate how to systematically
evaluate the adaptability of a parameter-free training method to diverse optimization tasks, which is
hard to achieve by observing the performance of single or independent tasks.

Definition 4.1 (Reliability). Given a set of optimization tasks, we initially group all the conducted
optimization tasks into four categories based on the optimizers among Adam(1e-2), Adam(1e-3),
Adam(1e-4), and Adam(1e-5), whichever yields the best performance measure, such as test accu-
racy. Reliability is calculated by averaging the practical ratio in each category, where the ratio is
the statistical information about specific parameter-free optimizers achieving less than a 5% perfor-
mance drop compared to the corresponding best Adam on all tasks in that category.

4.2 SETUP

We compare ADAMG to DoG (Ivgi et al., 2023), DowG (Khaled et al., 2023), D-Adapt Adam (De-
fazio & Mishchenko, 2023), Prodigy Adam (Mishchenko & Defazio, 2023), and Adam(1e-
3)&cosine LR scheduler with evaluation criteria reliability, solution quality and convergence speed.
Unless otherwise specified, all Adam and Adam-type parameter-free optimizers are paired with a
cosine learning rate scheduler. I.e., the default value of ηk in ADAMG, D-Adapt Adam and Prodigy
Adam is set to 1 with extra cosine annealing decay strategy, following the default choice of pre-
vious work (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023). It is worth noting that
our experiments in Robustness against LR decay strategy of Appendix A.4 show that the proposed
ADAMG has little performance gap with or without LR decay. We adopt the same setting as previous
work in our evaluation for a fair comparison.

The optimization tasks cover two main categories: Image tasks - full fine-tuning pre-
trained&randomly initialized DenseNet121 (Huang et al., 2017), ResNet18 (He et al., 2016), ViT-
B/16 (Dosovitskiy et al., 2021), and VGG11 (Simonyan & Zisserman, 2014) under datasets CI-
FAR10, CIFAR100, and Tiny-ImageNet (Krizhevsky & Hinton, 2009; Russakovsky et al., 2015);
Language tasks - full fine-tuning pre-trained BERT (Devlin et al., 2018) under GLUE benchmark
and full fine-tuning LoRA on GPT2 (Radford et al., 2019; Hu et al., 2021) under GLUE bench-
mark (Wang et al., 2018). Note that we use the numerator function s(x) = 0.2x0.24 for all optimiza-
tion tasks, and the final formula slightly differs from our theoretical derivation, p → 1/2, q → 1/4−,
by a small coefficient (Please refer to Appendix D.1 for discussions about the scaling of the golden
step size). Other setup details of the 38 tasks are summarized in Appendix A.1.

4.3 PERFORMANCE COMPARISON

The average performance measures for all 38 tasks are summarized in Table 2 and Table 3. A
complete version for each table with standard deviation is provided in Appendix A.2 to satisfy the
page length limitation. Please note that DenseNet, ResNet, ViT-B, and VGG refer to DenseNet121,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ResNet18, ViT-B/16, and VGG11, respectively. Below we review aggregated performance metrics
derived from empirical studies in Table 2 and Table 3, including reliability, solution quality, and
convergence speed.

Reliability naturally provides clearer insights into the effectiveness of the parameter-free optimizer
across the pre-defined task categories. To evaluate reliability, we derive the statistical information
from Table 2 and Table 3 about whether specific parameter-free optimizers achieve less than a 5%
performance drop compared to the corresponding best Adam in each category. The results are
presented in Table 4, showing that the proposed ADAMG exhibits the highest average reliability
ratio.

It is worth noting that with the default 5% performance gap, the proposed method improves the
reliability ratio from the second best of 0.60 to 0.78. Reliability ratio under 1% gap and 10% gap are
provided in Table 10 of Appendix A.2, specifically, under a 1% gap, the reliability ratio improvement
is from 0.52 to 0.70. Under a 10% gap, the reliability ratio improvement is from 0.67 to 0.83.

Solution quality is defined as 1
n

∑n
i=1 max(Perfbest Adam

i −Perfparameter-free
i , 0), where Perf represents

performance measurements, such as test accuracy, for all n optimization tasks. This metric indicates
the average performance gap between the best Adam optimizer and the specific parameter-free op-
timizer. The results are presented in Table 4, highlighting that the proposed ADAMG achieves the
best average solution quality.

Convergence speed. Figure 1, Figure 2, and Figure 3 in Appendix B.1 shows the loss curves of
training pretrained&randomly initialized DenseNet121, ResNet18, ViT-B/16, and VGG11 under
CIFAR10, CIFAR100, and Tiny-ImageNet. Figure 4 in Appendix B.2 shows the loss curves of full
fine-tuning BERT and fine-tuning LoRA with GPT2 under selected tasks in the GLUE benchmark.
In terms of convergence speed, the proposed ADAMG achieves competitive performance with the
best optimizer across all the conducted optimization tasks.

Performance of GOG. Since acceleration techniques like momentum have been widely employed
by modern optimizers and improve upon classical training methods such as SGD and AdaGrad-
Norm by a large margin, we mainly discuss the results of the accelerated optimizers. Here we
investigate optimizers without accelerations, comparing the proposed GOG and baselines DoG and
DoWG. We see that the proposed GOG achieves the best performance in terms of reliability and
solution quality, shown in Table 4.

5 CONCLUSION

In this work, we introduced a new mechanism for achieving parameter-free in adaptive gradient
training methods by proposing the golden step size. This step size aims to preserve the tuning-
free convergence and approximate the optimal step size in expectation w.r.t. various optimization
problems. The resulting optimizer, ADAMG, demonstrates improved reliability and solution quality
compared to previous methods, closely matching the performance of manually tuned Adam and
facilitating deployment readiness.

Limitation 1). Despite the practical success, understanding the theoretical guarantees of the pro-
posed approach is crucial. We discuss that while the proof framework for the convergence of
AdaGrad-Norm in Wang et al. (2023) served as inspiration for our approach, it relies on the col-
lective behavior of AdaGrad-Norm step size throughout the entire training trajectory. The diverging
step size for AdaGrad-Norm is not directly connected to the one derived from the progressive up-
dating formula, (Wang et al., 2023; Faw et al., 2023; Li et al., 2023), paving the way for future
research. 2). While this work verifies that the proposed optimizer has a wide adaptability range
through a broad spectrum of optimization tasks, it fails on some tail tasks possibly due to its ex-
pectation mechanism. Further investigations of embedding extra (approximated) problem properties
such as the optimality gap may mitigate the issue but also lead to further work.

ETHICS STATEMENT

Our work primarily focuses on theoretical and practical developments in optimization methods,
which will enable efficient model training of deep model optimization tasks. However, we are also

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Dataset Algorithm
Test accuracy (%)[a]

Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

CIFAR10

Adam(1e-2) 69.4 80.5 21.2 13.1 79.6 85.3 25.6 10.0
Adam(1e-3) 88.1 92.4 75.8 84.5 75.4 84.9 36.4 77.3
Adam(1e-4) 81.2 85.4 77.3 84.6 53.4 63.2 56.3 71.0
Adam(1e-5) 64.3 72.3 57.9 77.2 48.2 58.3 29.3 61.8

DoG 78.4× 88.3 63.7× 80.5 62.2× 71.1× 54.8 72.9
DoWG 80.4× 86.4× 67.1× 80.7 53.9× 65.5× 50.8× 52.7×

GOG 79.5× 85.7× 68.6× 82.6 54.7× 66.3× 53.7 66.3×

D-Adapt Adam 88.2 91.6 77.3 71.2× 72.3× 83.3 11.3× 49.1×

Prodigy Adam 87.4 90.9 79.5 86.1 64.0× 73.7× 21.1× 75.5
ADAMG 86.1 91.1 78.6 87.3 68.1× 75.9× 58.1 77.4

CIFAR100

Adam(1e-2) 37.3 45.0 7.3 1.0 47.2 52.1 8.4 1.0
Adam(1e-3) 65.2 72.8 49.7 53.6 45.0 57.5 13.1 13.4
Adam(1e-4) 55.7 62.3 51.1 60.1 23.2 36.4 27.8 33.5
Adam(1e-5) 20.6 29.0 13.8 43.5 20.0 32.1 8.9 24.3

DoG 50.6× 69.0 30.7× 56.4 33.6× 47.4× 29.2 31.8
DoWG 55.7× 65.3× 40.4× 56.2 26.7× 38.1× 24.9 1.0×

GOG 54.2× 61.7× 35.7× 56.8 25.0× 33.7× 27.2 25.0×

D-Adapt Adam 65.4 71.8 53.6 43.0× 43.7× 55.7 1.0× 29.2
Prodigy Adam 64.4 72.1 55.9 62.4 42.0× 53.7 5.7× 41.2

ADAMG 62.6 70.4 54.5 63.1 35.4× 44.9× 31.5 42.1

Tiny-ImageNet

Adam(1e-2) 38.5 43.4 3.9 0.5 37.2 45.5 1.6 0.5
Adam(1e-3) 62.9 63.0 57.3 12.1 39.2 50.9 7.4 16.9
Adam(1e-4) 59.5 60.0 56.5 59.6 16.8 35.7 16.4 35.2
Adam(1e-5) 35.2 24.8 20.9 51.3 16.0 24.9 10.9 22.0

DoG 61.4 69.1 49.5× 57.4 34.5 45.5× 14.2 24.9×

DoWG 60.7 61.1 45.3× 57.2 24.4× 28.5× 15.5 7.8×

GOG 60.4 58.4 41.2× 58.4 22.4× 31.1× 17.2 20.4×

D-Adapt Adam 60.2 60.3 64.5 23.1× 36.0 47.3 1.2× 27.4×

Prodigy Adam 62.0 63.6 63.2 58.8 40.5 53.6 8.1× 33.8
ADAMG 62.7 64.2 60.2 59.7 26.3× 39.0× 16.9 35.9

[a] × denotes that the performance measure of the specific parameter-free optimizer is at least 5% lower than
the best Adam, which is highlighted in bold.

Table 2: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

aware that the advancements may have broader implications, some of which could potentially have
negative social impacts, such as misuse of the method in malicious application developments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model
arc. Algorithm SST-2 MRPC QQP MNLI QNLI RTE WNLI

Acc. Acc. Acc. Matched Acc. Acc. Acc. Acc.

BERT

Adam(1e-2) 50.3 56.1 54.4 33.0 49.5 49.1 52.1
Adam(1e-3) 50.3 68.4 63.2 32.1 49.8 50.9 52.1
Adam(1e-4) 77.1 81.6 54.4 77.7 85.3 63.9 47.4
Adam(1e-5) 92.5 83.2 90.7 84.1 91.3 65.8 38.0

DoG 91.4 74.3× 89.1 83.1 90.6 51.9× 57.3
DoWG 74.8× 72.3× 79.5× 59.5× 74.68× 51.1× 52.1
GOG 91.5 85.6 88.9 82.5 90.8 66.2 52.1

D-Adapt Adam 76.6× 68.4× 63.2× 66.1× 73.9× 61.3 52.1
Prodigy Adam 91.5 73.5× 90.4 83.1 90.8 65.8 46.5×

ADAMG 90.9 81.5 90.4 83.9 89.8 65.2 52.1

GPT2
with

LoRA

Adam(1e-2) 50.3 61.6 32.7 32.3 50.0 52.5 48.4
Adam(1e-3) 88.1 76.1 67.3 75.6 82.4 60.0 42.3
Adam(1e-4) 90.8 71.3 81.8 78.8 84.9 61.6 44.1
Adam(1e-5) 88.1 66.3 77.1 72.8 79.8 51.5 47.9

DoG 64.2× 67.9× 43.0× 43.8× 51.7× 50.1× 48.8
DoWG 90.4 69.8× 77.4 72.8× 81.9 50.8× 46.9
GOG 90.0 45.4× 77.2 73.7× 81.4 53.1× 52.1

D-Adapt Adam 55.2× 58.5× 27.6× 32.8× 50.2× 50.8× 50.7
Prodigy Adam 85.7× 68.6× 27.5× 33.1× 52.2× 50.9× 51.6

ADAMG 90.9 72.5 80.8 78.8 86.0 58.0 49.8

Table 3: Performance of fine-tuning pre-trained BERT with GLUE benchmark & Epoch 3 under 3
different seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.[c]

Reliability ratio[a,b]

DoG 2/5 6/12 7/15 4/6 0.50
DoWG 2/5 2/12 8/15 0/6 0.27
GOG 2/5 2/12 9/15 6/6 0.54

D-Adapt Adam 4/5 10/12 3/15 1/6 0.50
Prodigy Adam 1/5 11/12 7/15 5/6 0.60

Adam(1e-3) 4/5 12/12 7/15 0/6 0.56
ADAMG 2/5 9/12 15/15 6/6 0.78

Solution quality

DoG 9.0 6.2 12.4 4.5 8.0
DoWG 13.5 11.2 8.3 15.9 12.2
GOG 13.2 13.6 5.3 0.8 8.2

D-Adapt Adam 2.6 5.1 20.9 16.4 11.2
Prodigy Adam 7.6 1.5 12.2 2.1 5.8

Adam(1e-3) 2.6 0.0 10.9 32.1 11.4
ADAMG 6.5 4.1 0.3 1.0 3.0

[a] The denominators of each entity in a row denote that the numbers of best optimizer for each task count for
Adam(1e-2), Adam(1e-3), Adam(1e-4), and Adam(1e-5) are 5, 12, 15, 6 regarding the total 38 tasks.
[b] Each entity, e.g., 2/5 denotes that the parameter-free optimizer has less than 5% performance drop compared

to the corresponding best hand-tuning Adam for 2 tasks in all 5 tasks.
[c] The average operation considers an even task distribution over Adam optimizers.

Table 4: Reliability demonstrates the statistical property of parameter-free optimizers. Solution
quality shows an average performance gap to the solution from the best manual tuned Adam.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory,
pp. 2360–2389. PMLR, 2022.

Keyi Chen, John Langford, and Francesco Orabona. Better parameter-free stochastic optimization
with ode updates for coin-betting. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6239–6247, 2022.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms.
arXiv preprint arXiv:2302.06675, 2023.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. arXiv
preprint arXiv:2301.07733, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. arXiv preprint arXiv:2302.06570, 2023.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3–33, 2019.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on learning theory, pp. 797–842. PMLR, 2015.

Benjamin Grimmer. Convergence rates for deterministic and stochastic subgradient methods without
lipschitz continuity. SIAM Journal on Optimization, 29(2):1350–1365, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. arXiv:2302.12022, 2023.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. arXiv preprint arXiv:2305.16284, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, Toronto, Ontario, 2009.

Puya Latafat, Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos. Adaptive proximal al-
gorithms for convex optimization under local lipschitz continuity of the gradient. arXiv preprint
arXiv:2301.04431, 2023.

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017.

Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of adam under relaxed assump-
tions. arXiv preprint arXiv:2304.13972, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306–1314. PMLR, 2021.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. arXiv
preprint arXiv:1910.09529, 2019.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical Pro-
gramming, 152(1-2):381–404, 2015.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Debleena Paul, Gaurav Sanap, Snehal Shenoy, Dnyaneshwar Kalyane, Kiran Kalia, and Rakesh K
Tekade. Artificial intelligence in drug discovery and development. Drug discovery today, 26(1):
80, 2021.

B.T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, et al.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Junchi Yang, Xiang Li, Ilyas Fatkhullin, and Niao He. Two sides of one coin: the limits of untuned
sgd and the power of adaptive methods. Advances in Neural Information Processing Systems, 36,
2024.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENT

A.1 SETUP

For the image tasks, we used the same batch size of 1024 and input image sizes 32×32, 32×32, and
64×64 for CIAFR10, CIAFR100, and Tiny-ImageNet datasets respectively. For the language tasks,
we used the same batch size of 32 for BERT and GPT2 tasks. In particular, we used rank = 4 for the
LoRA in GPT2 tasks. The number of training epochs is particularly mentioned in the corresponding
performance table.

Computer resources All the experiments can be run on a single NVIDIA RTX A5000 Graphics
Card (24G). Each image task in one setting can be completed within 5 hours, using less than 15GB
of GPU memory. Similarly, each language task in one setting can be completed within 8 hours,
using less than 10GB of GPU memory.

A.2 COMPLETED VERSION RESULTS

The (completed version) average performance measure of all 42 tasks are summarized in Table 5,
Table 6, Table 7, Table 8, and Table 9.

Algorithm
Test accuracy (%) under CIFAR10

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

SGD-M(1e-2) 82.5±0.2 88.2±0.5 71.4±0.6 85.5±0.1 65.2±0.2 71.2±0.8 57.9±0.2 73.8±1.1
SGD-M(1e-3) 73.7±0.0 74.5±0.8 52.7±0.6 77.2±0.0 50.6±0.5 63.1±0.4 52.4±0.5 50.0±1.0
SGD-M(1e-4) 45.8±0.4 43.1±1.5 26.6±0.3 60.2±0.5 39.2±0.5 37.9±0.6 32.5±0.7 12.7±2.2
SGD(1e-2) 73.8±0.1 75.0±0.8 52.9±1.3 77.3±0.1 51.5±0.3 63.4±0.7 50.7±0.3 46.9±0.6
SGD(1e-3) 46.7±0.2 43.6±1.5 27.2±0.6 60.7±0.5 39.1±0.6 38.1±0.7 32.5±0.6 12.3±1.8
SGD(1e-4) 14.5±0.4 14.9±0.5 11.1±0.1 34.0±1.1 21.6±0.8 21.1±1.1 23.9±1.0 10.3±0.4

Adam(1e-2) 69.4±5.5 80.5±2.6 21.2±8.0 13.1±4.5 79.6±1.1 85.3±0.7 25.6±2.7 10.0±0.0
Adam(1e-3) 88.1±0.2 92.4±0.4 75.8±0.7 84.5±0.7 75.4±0.5 84.9±0.2 36.4±4.3 77.3±0.5
Adam(1e-4) 81.2±0.1 85.4±0.3 77.3±0.4 84.6±0.2 53.4±0.2 63.2±1.0 56.3±0.7 71.0±0.1
Adam(1e-5) 64.3±0.1 72.3±0.9 57.9±0.6 77.2±0.1 48.2±0.4 58.3±0.6 29.3±0.3 61.8±0.3

DoG 78.4±0.8 88.3±0.7 63.7±0.7 80.5±1.8 62.2±0.2 71.1±0.7 54.8±0.4 72.9±0.2
DoWG 80.4±0.4 86.4±0.7 67.1±1.2 80.7±1.2 53.9±0.5 65.5±0.4 50.8±0.9 52.7±3.1
GOG 79.5±0.1 85.7±0.4 68.6±0.5 82.6±1.0 54.7±0.4 66.3±0.7 53.7±0.7 66.3±0.8
D-Adapt Adam 88.2±0.1 91.6±0.4 77.3±1.1 71.2±10.2 72.3±0.3 83.3±0.3 11.3±1.2 49.1±27.7
Prodigy Adam 87.4±0.1 90.9±0.5 79.5±0.2 86.1±0.2 64.0±0.6 73.7±0.1 21.1±8.2 75.5±0.6
ADAMG 86.1±0.3 91.1±0.4 78.6±0.4 87.3±0.0 68.1±0.6 75.9±0.6 58.1±0.3 77.4±0.4

Table 5: Test accuracy with CIFAR-10 under 3 different seeds.

Algorithm
Test accuracy (%) under CIFAR-100

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

Adam(1e-2) 37.3±6.3 45.0±1.1 7.3±1.1 1.0±0.0 47.2±1.5 52.1±0.7 8.4±3.7 1.0±0.0
Adam(1e-3) 65.2±0.2 72.8±0.8 49.7±2.5 53.6±1.6 45.0±0.4 57.5±0.4 13.1±1.7 13.4±17.5
Adam(1e-4) 55.7±0.1 62.3±0.7 51.1±0.4 60.1±0.3 23.2±0.3 36.4±1.0 27.8±0.3 33.5±0.5
Adam(1e-5) 20.6±0.4 29.0±0.5 13.8±0.5 43.5±0.2 20.0±0.2 32.1±0.5 8.9±0.3 24.3±0.2

DoG 50.6±2.5 69.0±2.7 30.7±2.7 56.4±0.2 33.6±0.3 47.4±0.7 29.2±0.3 31.8±1.2
DoWG 55.7±0.1 65.3±3.1 40.4±1.3 56.2±0.4 26.7±0.4 38.1±0.5 24.9±0.3 1.0±0.0
GOG 54.2±1.3 61.7±2.4 35.7±1.1 56.8±0.2 25.0±0.1 33.7±0.6 27.2±0.3 25.0±0.1
D-Adapt Adam 65.4±0.0 71.8±1.0 53.6±1.0 43.0±5.3 43.7±0.6 55.7±0.8 1.0±0.1 29.2±0.3
Prodigy Adam 64.4±0.1 72.1±0.8 55.9±0.3 62.4±0.5 42.0±0.2 53.7±0.7 5.7±1.6 41.2±0.6
ADAMG 62.6±0.2 70.4±1.3 54.5±0.1 63.1±0.1 35.4±0.0 44.9±0.4 31.5±0.2 42.1±0.4

Table 6: Test accuracy with CIFAR-100 under 3 different seeds.

A.3 RELIABILITY RATIO UNDER DIFFERENT PERFORMANCE GAP

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm
Test accuracy (%) under Tiny-ImageNet

Epoch 20 & pre-trained network Epoch 100 & randomly initialized network

DenseNet121 ResNet18 ViT-B/16 VGG11 DenseNet121 ResNet18 ViT-B/16 VGG11

Adam(1e-2) 38.5±0.6 43.4±0.5 3.9±2.0 0.5±0.0 37.2±0.9 45.5±0.2 1.6±0.9 0.5±0.0
Adam(1e-3) 62.9±0.2 63.0±0.2 57.3±0.4 12.1±16.5 39.2±0.1 50.9±0.5 7.4±0.9 16.9±11.6
Adam(1e-4) 59.5±0.3 60.0±1.4 56.5±0.2 59.6±0.2 16.8±0.2 35.7±0.4 16.4±0.2 35.2±1.0
Adam(1e-5) 35.2±0.2 24.8±0.8 20.9±0.1 51.3±0.2 16.0±0.3 24.9±0.3 10.9±0.2 22.0±0.4

DoG 61.4±0.3 69.1±2.0 49.5±0.9 57.4±1.7 34.5±0.3 45.5±0.5 14.2±0.3 24.9±1.0
DoWG 60.7±0.3 61.1±3.9 45.3±2.1 57.2±0.1 24.4±0.1 28.5±0.4 15.5±0.1 7.8±4.5
GOG 60.4±0.1 58.4±3.6 41.2±0.4 58.4±0.3 22.4±0.3 31.1±1.0 17.2±0.5 20.4±0.4
D-Adapt Adam 60.2±0.2 60.3±0.8 64.5±0.3 23.1±7.4 36.0±0.1 47.3±0.4 1.2±0.9 27.4±0.5
Prodigy Adam 62.0±0.2 63.6±1.0 63.2±0.3 58.8±0.0 40.5±0.4 53.6±0.4 8.1±1.1 33.8±0.1
ADAMG 62.7±0.1 64.2±1.4 60.2±0.3 59.7±0.3 26.3±0.4 39.0±0.2 16.9±0.1 35.9±0.4

Table 7: Test accuracy with Tiny-Imagenet under 3 different seeds.

Algorithm
Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews corr. Acc. F1&Acc. Pearson corr.& F1&Acc. Matched acc.& Acc. Acc. Acc.

Spearman corr. Mismatched acc.

Adam(1e-2) 0.0±0.0 50.3±0.9 54.1±38.3&56.1±17.3 nan 17.9±25.4&54.4±12.4 33.0±1.7&33.0±1.6 49.5±0.0 49.1±2.6 52.1±6.0
Adam(1e-3) 0.0±0.0 50.3±0.9 81.2±0.0&68.4±0.0 nan 0.0±0.0&63.2±0.0 32.1±0.4&32.2±0.5 49.8±0.5 50.9±2.6 52.1±6.0
Adam(1e-4) 48.4±2.1 77.1±7.6 87.0±1.5&81.6±1.4 88.0±0.3&87.7±0.1 17.9±25.4&54.4±12.4 77.7±0.5&77.8±0.2 85.3±0.6 63.9±3.5 47.4±12.6
Adam(1e-5) 57.2±2.3 92.5±0.3 88.5±0.5&83.2±0.9 88.5±0.1&88.2±0.1 87.2±0.2&90.7±0.1 84.1±0.1&84.4±0.2 91.3±0.3 65.8±1.2 38.0±10.2

DoG 51.3±4.5 91.4±0.3 83.2±1.7&74.3±4.2 88.2±0.1&88.1±0.2 85.5±0.4&89.1±0.0 83.1±0.2&83.8±0.3 90.6±0.1 51.9±3.3 57.3±1.3
DoWG 17.5±24.7 74.8±17.3 82.3±1.8&72.3±2.6 88.1±0.1&88.3±0.1 55.8±39.4&79.5±11.5 59.5±20.6&60.3±21.1 74.6±17.8 51.1±2.7 52.1±6.0
GOG 53.8±3.7 91.5±0.3 89.7±0.4&85.6±0.1 88.5±0.3&88.5±0.2 85.1±0.2&88.9±0.1 82.5±0.2&83.3±0.2 90.8±0.2 66.2±2.4 52.1±6.0
D-Adapt Adam 0.0±0.0 76.6±18.1 81.2±0.0&68.4±0.0 nan 0.0±0.0&63.2±0.0 66.1±24.2&66.4±24.5 73.9±17.3 61.3±9.9 52.1±6.0
Prodigy Adam 53.5±3.3 91.5±1.3 82.0±5.4&73.5±7.5 57.6±39.2&57.0±39.6 87.3±0.1&90.4±0.2 83.1±0.5&83.6±0.6 90.8±0.1 65.8±3.5 46.5±13.9
ADAMG 50.6±3.2 90.9±0.4 87.0±2.1&81.5±3.3 88.7±0.6&88.5±0.6 87.1±0.1&90.4±0.0 83.9±0.4&84.3±0.1 89.8±0.3 65.2±3.5 52.1±6.0

Table 8: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Algorithm
Fine-tuning LoRA on GPT2 under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews corr. Acc. F1&Acc. Pearson corr.& F1&Acc. Matched acc.& Acc. Acc. Acc.

Spearman corr. Mismatched acc.

Adam(1e-2) 0.0±0.0 50.3±0.9 70.8±14.7&61.6±9.6 1.2±4.2&0.9±2.5 32.7±7.0&65.8±0.6 32.3±0.4&32.5±0.5 50.0±0.4 52.5±1.2 48.4±5.7
Adam(1e-3) 13.0±9.7 88.1±0.3 84.5±0.4&76.1±0.9 84.9±1.1&85.0±0.9 67.3±7.2&71.1±10.0 75.6±0.4&77.5±0.4 82.4±0.8 60.0±4.7 42.3±5.3
Adam(1e-4) 9.0±3.4 90.8±0.2 81.3±1.1&71.3±0.7 83.7±0.6&83.5±0.5 81.8±0.2&86.1±0.0 78.8±0.1&80.2±0.3 84.9±0.4 61.6±2.2 44.1±0.7
Adam(1e-5) 1.3±3.2 88.1±0.4 78.1±2.4&66.3±3.2 14.7±19.1&13.9±19.4 77.1±0.4&82.0±0.1 72.8±0.4&74.4±0.3 79.8±1.1 51.5±3.7 47.9±6.0

DoG 3.0±4.3 64.2±9.3 80.4±0.5&67.9±0.2 -18.3±2.1&-17.6±2.4 43.0±19.8&67.8±2.0 43.8±0.0&45.4±0.4 51.7±2.0 50.1±1.3 48.8±5.4
DoWG 3.5±5.0 90.4±0.9 80.7±1.3&69.8±0.6 77.7±3.5&77.6±3.3 77.4±0.4&81.5±0.3 72.8±0.4&74.8±0.2 81.9±0.9 50.8±3.9 46.9±6.7
GOG 3.1±4.4 90.0±1.0 52.6±7.5&45.4±3.0 13.5±24.8&14.2±23.9 77.2±0.6&81.7±0.4 73.7±0.1&75.6±0.3 81.4±0.5 53.1±1.5 52.1±6.0
D-Adapt Adam 0.5±0.6 55.2±4.4 63.5±25.0&58.5±14.0 4.5±3.3&2.4±2.3 27.6±16.8&65.0±1.3 32.8±0.1&33.0±0.0 50.2±0.5 50.8±1.8 50.7±5.3
Prodigy Adam 0.0±0.0 85.7±1.9 81.0±0.3&68.6±0.3 35.1±35.3&33.8±36.0 27.5±21.1&64.6±1.0 33.1±0.5&33.2±0.3 52.2±1.4 50.9±2.8 51.6±5.7
ADAMG 24.2±5.0 90.9±0.6 82.6±0.6&72.5±1.4 83.9±0.5&83.6±0.6 80.8±0.4&85.6±0.1 78.8±0.1&79.9±0.2 86.0±0.5 58.0±4.9 49.8±5.8

Table 9: Performance of fine-tuning LoRA on GPT2 with GLUE benchmark under 3 different seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.

1% Reliability ratio

DoG 2/5 1/12 1/15 4/6 0.30
DoWG 2/5 0/12 4/15 0/6 16.7
GOG 2/5 0/12 3/15 4/6 0.31

D-Adapt Adam 2/5 4/12 2/15 1/6 0.25
Prodigy Adam /15 8/12 6/15 5/6 0.52

Adam(1e-3) 2/5 12/12 5/15 0/6 0.43
ADAMG 2/5 5/12 15/15 6/6 0.70

10% Reliability ratio

DoG 2/5 9/12 13/15 6/6 0.57
DoWG 2/5 6/12 9/15 0/6 0.37
GOG 2/5 4/12 13/15 6/6 0.65

D-Adapt Adam 5/5 10/12 4/15 1/6 0.56
Prodigy Adam 2/5 11/12 8/15 5/6 0.67

Adam(1e-3) 4/5 12/12 9/15 0/6 0.60
ADAMG 3/5 9/12 15/15 6/6 0.83

Table 10: Reliability under 1% and 10% performance gap.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 ROBUSTNESS AGAINST LR DECAY STRATEGY

Recall that ηk in ADAMG has a default value of 1 with an additional cosine annealing decay strat-
egy, following the default choice of previous work Defazio & Mishchenko (2023); Mishchenko &
Defazio (2023). Our empirical results show that ADAMG is robust to the decay strategy. Table 11
and Table 12 illustrate the performance difference between default ADAMG and modified ADAMG
(with a constant ηk). The two methods show no noticeable performance gap.

Algorithm
Test accuracy (%) under CIFAR10

Epoch 20&pre-trained network Epoch 100&randomly initialized network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

ADAMG 86.1 91.1 78.6 87.3 68.1 75.9 58.1 77.4
Modified ADAMG[a] 85.6 91.1 77.6 86.7 68.3 75.6 57.1 76.1
[a] ADAMG with ηk = 1, which eliminates decay strategy.

Table 11: Test accuracy with CIFAR-10 under 3 different seeds.

Algorithm

Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
corr. corr. acc.

ADAMG 50.6 90.9 87.0 88.7 87.1 83.9 89.8 65.2 52.1
Modified ADAMG[a] 49.9 90.3 87.7 88.5 87.1 83.5 90.0 67.3 52.1
[a] ADAMG with ηk = 1, which eliminates decay strategy.

Table 12: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B TRAINING LOSS CURVES

B.1 IMAGE TASKS

The training loss curves corresponding to Table 2 are demonstrated below.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(a) Densenet121&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(b) ResNet18&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

6

7

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(c) ViT-B/16&Pre-trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(d) VGG11&Pre-trained

0 20 40 60 80 100
Number of iteration

0.0

0.5

1.0

1.5

2.0

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(e) Densenet121&R.I.

0 20 40 60 80 100
Number of iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(f) ResNet18&R.I.

0 20 40 60 80 100
Number of iteration

0

2

4

6

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(g) ViT-B/16&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(h) VGG11&R.I.

Figure 1: CIFAR10 experiments. Note Randomly Initialized (R.I.).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(a) Densenet121&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(b) ResNet18&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

2

4

6

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(c) ViT-B/16&Pre-trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(d) VGG11&Pre-trained

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(e) Densenet121&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(f) ResNet18&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

6

7

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(g) ViT-B/16&R.I.

0 20 40 60 80 100
Number of iteration

0

5

10

15

20

25

30

35

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(h) VGG11&R.I.

Figure 2: CIFAR100 experiments. Note Randomly Initialized (R.I.).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(a) Densenet121&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(b) ResNet18&Pre-
trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

1

2

3

4

5

6

7

8

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(c) ViT-B/16&Pre-trained

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of iteration

0

5

10

15

20

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(d) VGG11&Pre-trained

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(e) Densenet121&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(f) ResNet18&R.I.

0 20 40 60 80 100
Number of iteration

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(g) ViT-B/16&R.I.

0 20 40 60 80 100
Number of iteration

1

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue
s

Adam(1.0e-02)
Adam(1.0e-03)
Adam(1.0e-04)
Adam(1.0e-05)
GoG
DoG
DoWG
D-Adapt Adam
Prodigy Adam
AdamG

(h) VGG11&R.I.

Figure 3: Tiny-ImageNet experiments. Note Randomly Initialized (R.I.).

B.2 LANGUAGE TASKS

The training loss curves corresponding to above Table 3 are demonstrated below.

0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 v
al

ue
s

Adam(1.0e-02) Adam(1.0e-03) Adam(1.0e-04) Adam(1.0e-05) GoG DoG DoWG D-Adapt Adam Prodigy Adam AdamG

0 20 40 60

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 5 10 15

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 2.5 5.0 7.5 10.0
Number of iteration

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

 v
al

ue
s

0 20 40 60
Number of iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 20 40 60
Number of iteration

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15
Number of iteration

0.5

1.0

1.5

2.0

2.5

BERT

SST2 QQP MNLI QNLI

GPT2

Figure 4: BERT and GPT2 under GLUE benchmark experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C TECHNICAL PROOF DETAILS

Corollary C.1 (a simple variant of Theorem 2 in Wang et al. (2023)). Let Assumptions 1 and 2 hold.
Then, for AdaGrad-Norm with any learning rate η > 0, we have in expectation that

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(4
η
(f(x1)− f⋆) + 2D1ξ(0)

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4
√
v0

+ 2Lη ln vK

)
.

Proof. We begin by following the inequality that is extracted from that of Theorem 2 of Wang et al.
(2023).

1

4
η

K∑
k=1

E[
||f(xk)||2√

vk−1
] ≤ f(x1)− E[f(xK)] +

ηD1

2
E[ξ(0)− ξ(T)] (2)

+ (2η(LηD1)
2 + ηD1(Lη)

2 +
η

2
D0)

1
√
v0

+
L

2
η2(E ln vK − E ln v0). (3)

Given the fact Wang et al. (2023):

K∑
k=1

E
[
||f(xk)||2√

vk−1

]
≥ E

[∑K
k=1 ||∇f(xk)||2√

vK

]
≥

E
[√∑K

k=1 ||∇f(xk)||2
]2

E[√vK]
,

we have

E


√√√√ K∑

k=1

||∇f(xk)||2

2

≤
4E[√vK]

η
(f(x1)− E[f(xK)]) + 2D1E[

√
vK]E[ξ(0)− ξ(T)]

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4E[√vK]
√
v0

+ 2LE[
√
vK]η(E ln vK − E ln v0).

Further applying the fact E[
√
vK
K] is upper bounded by O(1√

K
) Wang et al. (2023), we have in

expectation that:

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
K)

(
·
)
≤ 1

O(
√
vK)

(4
η
(f(x1)− f⋆) + 2D1ξ(0)

+ (2(LηD1)
2 +D1(Lη)

2 +
1

2
D0)

4
√
v0

+ 2Lη ln vK

)
.

This concludes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D DISCUSSION

D.1 SCALING OF THE GOLDEN STEP SIZE

Our analysis in Section 3.3 derives ηgold = 1
2 limt→ 1

4
− xt and further suggests a numerator func-

tion s(x) = pxq , where p → 1/2, q → 1/4−. Specifically, we employ s(x) = 0.2x0.24 for all
optimization tasks in the experiments. In the following, we verify the effectiveness of scaling p.

Table 13 and Table 14 demonstrate the performance comparisons between the default ADAMG and
ADAMG (0.5), which employs s(x) = 0.5x0.24. We observe that ADAMG (0.5) generally improves
the performance on image tasks and fine-tuning LoRA on GPT2, but results in performance decay
when fine-tuning BERT.

However, Table 15 provides clearer insights into the effectiveness of the scaling p through reliability
comparison. Compared with the default ADAMG, ADAMG (0.5) enhances adaptability on tasks that
prefer a large LR Adam and reduces the adaptability on tasks that prefer a small LR Adam. Consid-
ering the inner expectation mechanism of the proposed method and the empirical performance, we
believe that the scaling p potentially shifts the covering but may not damage the range.

Dataset Algorithm
Test accuracy (%)[a]

Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

CIFAR10 ADAMG 86.1±0.3 91.1±0.4 78.6±0.4 87.3±0.0 68.1±0.6× 75.9±0.6× 58.1±0.3 77.4±0.4
ADAMG (0.5) 87.4±0.2 92.9±0.6 79.6±0.2 87.4±0.5 74.5±0.4× 82.4±0.2 58.8±0.1 78.8±0.2

CIFAR100 ADAMG 62.6±0.2 70.4±1.3 54.5±0.1 63.1±0.1 35.4±0.0× 44.9±0.4× 31.5±0.2 42.1±0.4
ADAMG (0.5) 65.0±0.2 74.0±1.4 54.9±0.3 63.7±0.3 43.8±0.1 53.4±0.2 32.5±0.2 42.7±1.3

Tiny-ImageNet ADAMG 62.7±0.1 64.2±1.4 60.2±0.3 59.7±0.3 26.3±0.4× 39.0±0.2× 16.9±0.1 35.9±0.4
ADAMG (0.5) 63.6±0.2 65.4±1.3 64.1±0.5 57.7±0.0 34.8±0.1 45.4±0.3 17.9±0.3 33.7±0.6

Table 13: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

Algorithm CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
corr. Acc. F1 corr. F1 acc. Acc. Acc. Acc.

BERT

ADAMG 50.6±3.2× 90.9±0.4 87.0±2.1 88.7±0.6 87.1±0.1 83.9±0.4 89.8±0.3 65.2±3.5 52.1±6.0
ADAMG (0.5) 0.0±0.0× 50.9±0.0× 81.2±0.0× 26.3±29.5× 0.0±0.0× 36.6±6.1× 49.5±0.0× 50.9±2.6× 52.1±6.0

LoRA on GPT2

ADAMG 24.2±5.0 90.9±0.6 82.6±0.6 83.9±0.5 80.8±0.4 78.8±0.1 86.0±0.5 58.0±4.9 49.8±5.8
ADAMG (0.5) 31.0±7.4 90.4±0.4 82.8±0.7 85.4±0.8 82.7±0.3 79.9±0.2 86.7±0.7 56.4±1.2 52.6±5.3

Table 14: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Metrics Algorithm Adam(1e-2) Adam(1e-3) Adam(1e-4) Adam(1e-5) Avg.

Reliability ratio ADAMG 2/5 11/14 15/15 7/8 0.76
ADAMG (0.5) 4/5 13/14 15/15 0/8 0.68

Table 15: Reliability ratio comparison, which is derived from Table 13 and Table 14, and provides
clearer insights into the effectiveness of the scaling p. Compared with the default ADAMG, ADAMG
(0.5) generally enhances adaptability on tasks that prefer a large LR Adam and reduces adaptability
on tasks that prefer a small LR Adam. This potentially indicates a covering shift phenomenon.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 DYNAMIC STEP SIZE

In case 2, η is constant but dynamic with respect to K (upper-case), so η := (vK)q can be con-
sidered as a constant value that obeys Corollary 3.3 and the analysis in Section 3.2. Finally, we
approximates vK with vk in the proposed Algorithm 1. The approximation is intuitive and can
be improved along with training. Besides, a similar idea is the optimality gap approximation,

maxi≤K ||xi − x0||
Approx.−−−−→ ||x0 − x⋆||, exploited in the baseline method DoG and its variantsIvgi

et al. (2023).

We further discuss dynamic η with respect to k (lower-case), i.e., η := (vk)
q , which is naturally

compatible with our algorithm design. We demonstrate that it aligns well our analysis framework
with some wild assumptions and eliminates the need for approximation.

Particularly, we can update our Corollary 3.3 as a time-varying learning rate ηk, then, we have a
similar form of conclusion, formulated as

min
k∈[K]

||∇f(xk)||2 ≤ 1

O(
√
vK)

(c1

∑K
k=1 η

3
k∑K

k=1 ηk
+ c2

∑K
k=1 η

2
k∑K

k=1 ηk
ln vK + c3

1∑K
k=1 ηk

),

where c1, c2, and c3 are the corresponding coefficients. Ignoring the constant value and substituting
ηk with (vk)

q , the right-hand side can be further reformulated as

1
√
vK

(∑K
k=1(vk)

3q∑K
k=1(vk)

q
+

∑K
k=1(vk)

2q∑K
k=1(vk)

q
ln vK +

1∑K
k=1(vk)

q

)

→ O
(

1
√
vK

(
(vK)3q+1

(vK)q+1
+

(vK)2q+1

(vK)q+1
ln vK +

1

(vK)q+1
)

)
→ O

(
1

√
vK

((vK)2q + (vK)q ln vK +
1

(vK)q+1
)

)
.

Achieving a good approximation of the above first and second formulas necessitates that∑K
k=1(vk)

q ≈ 1
q+1 (vK)q+1, which imposes requirements on the sequence {v1, · · · , vK} (E.g.,∑K

x=1 x
1
2 ≈

∫K

1
2
3x

3
2) and leads to future investigations.

However, the desired result, as shown in the third formula above, will lead to the same level of
expectation in Equation 1 as that derived from employing a constant step size (The difference in the
last term does not affect the conclusion). This suggests that our algorithm design, ηk = (vk)

q , is
(possibly) naturally compatible with analysis in Section 3.2 and Section 3.3.

21

	Introduction
	Related work
	Method
	Preliminary
	Golden step size for AdaGrad-Norm
	Solution of the golden step size
	Scale-free property of golden step size
	Algorithm: AdaGrad-Norm version parameter-free optimizer
	Algorithm: Adam version parameter-free optimizer

	Experiments
	Evaluation criteria
	Setup
	Performance comparison

	Conclusion
	Experiment
	Setup
	Completed version results
	Reliability ratio under different performance gap
	Robustness against LR decay strategy

	Training loss curves
	Image tasks
	Language tasks

	Technical proof details
	Discussion
	Scaling of the golden step size
	Dynamic step size

