Under review as a conference paper at ICLR 2025

TOWARDS RELIABILITY OF PARAMETER-FREE OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning, particularly the selection of an appropriate learning rate
in adaptive gradient training methods, remains a challenge. To tackle this chal-
lenge, in this paper, we propose a novel parameter-free optimizer, ADAMG (Adam
with the golden step size), designed to automatically adapt to diverse optimization
problems without manual tuning. The core technique underlying ADAMG is our
golden step size derived for the AdaGrad-Norm algorithm, which is expected to
help AdaGrad-Norm preserve the tuning-free convergence and approximate the
optimal step size in expectation w.r.t. various optimization scenarios. To bet-
ter evaluate tuning-free performance, we propose a novel evaluation criterion,
reliability, to comprehensively assess the efficacy of parameter-free optimizers
in addition to classical performance criteria. Empirical results demonstrate that
compared with other parameter-free baselines, ADAMG achieves superior perfor-
mance, which is consistently on par with Adam using a manually tuned learning
rate across various optimization tasks.

1 INTRODUCTION

Optimization serves as a foundation technique underpinning modern deep learning, which finds
applications in various domains such as computer vision, Al for science, and natural language pro-
cessing (Voulodimos et al., 2018;|Redmon et al.,|2016; |Paul et al., 2021} Devlin et al.|[2018};|Radford
et all [2019). Some of the recent optimization approaches include embedding momentum mecha-
nisms (Sutskever et al., 2013) and Adam (Kingma & Bal 2014). Among them, adaptive gradient
methods play an important role (Duchi et al.| [2011}; |Kingma & Ba, 2014 [Liu et al.l [2023) due to
their attractive performance across diverse problem structures, encompassing deep model architec-
tures, data characteristics, and running hyper-parameters. Hyperparameter tuning associated with
those optimization algorithms has a significant impact on the practical performance (Wilson et al.,
2017). Especially, the Learning Rate (LR) tuning holds primary importance, since the precision
of LR of popular (adaptive gradient) optimization methods is closely related to unknown problem
properties, such as smoothness, error of estimated gradient, and the initial optimality gap. The close
relationship between LR and these properties makes it a necessity to choose LR. Manual tuning is a
commonly adopted practice for parameter selection, which requires computational resources and is
prohibitive in large-scale machine-learning tasks.

Recently, there has been a growing interest in parameter-free training methodsﬂdue to their practical
training efficiency and satisfactory performance. These methods are designed to eliminate the need
for manual tuning parameters, achieving performance levels close to the best manually tuned train-
ing methods. Pioneering works in the realm of parameter-free training, incorporating mechanisms
like subroutine&bisection subroutine mechanisms (Nesterov, 2015; |(Carmon & Hinder, [2022)), are
prohibitively expensive in the context of large-scale deep learning problems. This study directs its
focus toward identifying parameter-free training methods that maintain comparable training costs
to the most standard training algorithms, such as Adam (Kingma & Ba, 2014), for deep learning
problems.

Current trends in parameter-free training methodologies are standard practices of embedding initial
optimality gap into step size or drawing insights from the recently proposed DoG (Ivgi et al.l|2023),

'In this manuscript, we will use the terms “parameter-free training methods” and “parameter-free optimiz-
ers” interchangeably.

Under review as a conference paper at ICLR 2025

which combines the classical results from AdaGrad-Norm step size and standard Gradient Descent
(GD) step size (Duchi et al.l 2011; Ward et al., 2020; Khaled et al.l [2023). Existing approaches
based on classical evaluation criteria demonstrate advantages in specific scenarios (Ivgi et al.| 2023
Defazio & Mishchenkol 2023} [Khaled et al.l 2023} IMishchenko & Defaziol [2023). However, we
observed that the state-of-the-art parameter-free optimizers exhibit unstable performance when con-
fronted with diverse optimization problems, i.e., the performances of prior arts are sometimes much
lower than the optimal manual tuning performance for some optimization tasks. This observation is
obtained from the experimental results in Section where a default choice like Adam(1e-3) with
a cosine decay learning rate scheduler outperformed existing parameter-free optimizers in certain
optimization scenarios. This prompts the following question: How stable can a specific parameter-
free optimizer be, achieving "close” performance to the manually-tuned best optimizer w.r.t. diverse
optimization scenarios?

To tackle this problem, we first explore how to systematically evaluate the effectiveness of
parameter-free optimizers. Existing approaches mainly adopted the classical evaluation criteria,
including convergence speed and solution quality (Kingma & Bal, 2014 |Liu et al., 2023) for opti-
mizers. However, in the context of parameter-free optimizers, limiting the validation to these two
aspects has hindered researchers and engineers from confidently applying these optimizers to more
complicated real-world tasks. Given a parameter-free optimizer is inherently expected to generalize
to unseen optimization problems, it is critical to collectively measure how it consistently behaves
across a spectrum of optimization problems. To this end, we introduce an additional novel evalu-
ation criterion, reliability, for parameter-free training methods. This criterion evaluates whether a
parameter-free optimizer consistently exhibits performances close to the best manually tuned op-
timizer across various optimization problems. Table [l| summarizes our experimental findings on
reliability evaluation.

DoG DoWG GOG D-Adapt Adam Prodigy Adam Adam(1e-3) (Proposed) ADAMG

Practical probability of achieving close performance of best manually tuning Adam.

0.50 0.27 0.54 0.50 0.60 0.56 0.78
Averaged Performance Gap with best manually tuning Adam. (%)
8.0 12.2 8.2 11.2 5.8 11.4 3.0

Table 1: Practical probability of the parameter-free optimizers achieving close performance (less
than 5% performance measure) with best manually tuning Adam and the averaged performance gap
with best manually tuning Adam, which are derived from TableE}

In this paper, we design a novel algorithm that leverages the ability of tuning-free convergence of
AdaGrad-Norm (Duchi et al.l 20115 [Ward et al.l [2020; McMahan & Streeter, [2010; [Wang et al.
2023). Specifically, we formally define a golden step size of AdaGrad-Norm, drawing insights to
preserve the ability of tuning-free convergence and approximate the optimal step size in expectation
across various optimization problems. Subsequently, we derive the solution for the golden step size,
which is independent of problem-specific properties, and integrate it into AdaGrad-Norm, resulting
in our first parameter-free optimizer (Algorithm [I). By deeply integrating the derived golden step
size with the Adam, we further introduce an Adam-like parameter-free method named ADAMG
(Algorithm [2). Compared to existing parameter-free optimization methods, our proposed ADAMG
stably outperforms all the baselines across various optimization tasks and achieves performance that
closely aligns with the best performance achieved by manually tuning Adam.

‘We highlight the following contributions of the paper:

* We introduce a novel evaluation criterion, namely reliability, for assessing parameter-free
training methods. Practical results show that this criterion reasonably validates the adaptabil-
ity of parameter-free optimizers to diverse optimization problems.

* Based on our analysis of the classical AdaGrad-Norm algorithm, we propose the golden step
size for AdaGrad-Norm, which is expected to preserve the ability of tuning-free convergence
and approximate the optimal step size in expectation w.r.t. various optimization problems,
resulting in an AdaGrad-Norm version parameter-free optimizer. Furthermore, we extend
this concept to devise an Adam-like parameter-free method named ADAMG.

Under review as a conference paper at ICLR 2025

» Extensive experiments conducted on deep learning tasks reveal that ADAMG exhibits stable
performance across a spectrum of optimization problems. Moreover, it closely aligns with the
best performance achieved by manually tuning Adam, making it ready to be widely deployed.

2 RELATED WORK

Adaptive gradient methods have emerged as predominant choices for training deep learning opti-
mization problems (Kingma & Ba, 2014; Balles & Hennig, 2018; Zhuang et al., 2020; Chen et al.,
2023). Concurrently, there is a rising popularity of adaptive parameter-free approaches in the opti-
mization landscape (Ivgi et al.,[2023; Defazio & Mishchenkol 2023} [Khaled et al.,[2023; Mishchenko
& Detazio} [2023).

The search mechanism is the natural avenue for achieving parameter-free capability. As we men-
tioned earlier, several works are the practice of search mechanism (Nesterov}, 2015} [Feurer & Hutter,
2019;Carmon & Hinder, 2022). Pioneering efforts without search mechanisms usually estimate the
problem properties and are more concerned with guarantees for convex optimization problems. For
instance, the Polyak step size schedule incorporates f(xy) — f* into gradient descent for convex op-
timization problems (Polyak, [1987). The subsequent adaptations of this approach demonstrate fair
performance in handling nonconvex problems (Loizou et al. 2021} Malitsky & Mishchenko} |2019;
Latafat et al.| [2023). Contrary to problem properties estimation, approaches adopted from online
learning with theoretical guarantees, such as coin betting schemes, have been applied in deep learn-
ing optimization problems (Orabona & Pall, |2016; |Orabona & Tommasi, 2017} (Chen et al. [2022).

A more recent trend involves the utilization of the initial optimality gap and the sum of gradient
Approx.

max; < i [|%i—Xo||——|Ixo—x"||
VI el
rameters and g denotes stochastic gradient, as a means to adapt to unknown properties associated
with gradient norms, smoothness, and strong convexity (Ivgi et al.,2023). The initial optimality gap
||x; — x0|| primarily draws from classical results using gradient descent for the convex problems,
while the gradient norm \/ﬁ is inspired by AdaGrad (Bubeck et al.,|2015; Nesterov et al.,
i=1 T

2018 [Duchi et al., | 2011). However, the combination itself lacks convincing theoretical guarantees
over nonconvex problems. Several works following this line of thought propose distance measure
variants or integrate those techniques with Adam (Defazio & Mishchenko, 2023} [Khaled et al.,
2023 Mishchenko & Detaziol 2023)).

norm along training trajectory (over K steps), where x denotes pa-

3 METHOD

In Section we start with analyzing and discussing the selection of LR that preserves the ability
of tuning-free convergence of AdaGrad-Norm (Duchi et al., 2011; McMahan & Streeter, 2010;
Wang et al.| |2023; [Faw et al.| 2023). Then, incorporating the ability with the classical result of
the descent lemma of smooth function, coupled with our idea about optimizing the solution across
various optimization problems, we formulate and derive the corresponding solution for the golden
step size of AdaGrad-Norm. This golden step size is expected to help AdaGrad-Norm converge
without tuning and approximate the optimal step size over various settings. Finally, we discuss the
scale-free property of the golden step size. These insights serve as the foundational principles for
the development of our parameter-free optimizers, detailed in Section [3.5]and Section [3.6]

3.1 PRELIMINARY

We work on a differentiable (including non-convex) function f(-) : R? — R with the standard
Euclidean norm || - ||. We follow the standard assumptions on function and stochastic gradient
as ' Wang et al.| (2023)).

Assumption 3.1 (L-smooth condition). We assume that for any model parameter X1,Xs, f is dif-
ferentiable and L-gradient Lipschitz such that ||V f(x1) — V f(x2)|| < L||x1 — x2||.

Assumption 3.2 (Affine noise variance). We assume that there exist positive constant Dy and D+
such l‘/’lal‘]E}‘k[Hgk.HQ] < Dy + D1\|Vf(xk)||2, Vk > 1.

Under review as a conference paper at ICLR 2025

Fr =0(gk—1,--- ,g1) is the standard stochastic operator and stands for the sigma field of historical
gradients up to k — 1.

3.2 GOLDEN STEP SIZE FOR ADAGRAD-NORM

AdaGrad-Norm converges when optimizing non-convex objectives under affine noise variance and
bounded smoothness assumptions (Wang et al.| [2023; |[Faw et al.| 2023). Additionally, It enjoys
the ability of tuning-free convergence, wherein differences in initial learning rates solely impact
practical convergence speed rather than the final convergence. This attribute is considered a primary
advantage inherited by subsequent variants. We initiate our analysis with the following corollary,
which serves as the foundation of analyzing the preservation of the tuning-free convergence ability
of AdaGrad-Norm (c.f. Algorithm [I] without the highlighted content).

Corollary 3.3 (A simple variant of Thm. 2 in[Wang et al.| (2023)). Given Assumptions[3.1land
for AdaGrad-Norm with any learning rate 1 > 0, we have in expectation that:

. oo (A
min (197660 SO(W)(n(ﬂ D= %)+ 2D1€(0)

1 4
2(LnD1)% + Dy (Ln)?> + =Dy | — + 2Ln1
+<(77 1)*+ Di(Ln) +2 0)\/%-*- 77an)7

where K denotes total steps, and vk is accumulated sum of the squared gradient norm (see Algo-

rithm([I).

The proof is presented in appendix [C] Consider right-hand side of Cor. [3.3]as a function w.r.t. 7:

h(n) = \/}}7 (717]2 + yanlnvg + %}3) , where <1, v1, and 3 denote the corresponding problem-
dependent values for simplification purpose. We note that the accumulated gradient norm vg in-
creases; therefore, h(7) must be a decreasing sequence to achieve tuning-free convergence. We

discuss two possible cases of 7 preserving the tuning-free convergence ability:

e Case 1: Supposing 7 is a constant value.

» Case 2: Supposing 7 is constant but dynamic w.r.t. K, and one possible solution is =
(vK)?, where 0 < ¢ < % and vg > 1,50 h(n) = Y1 (0E)?72 + (k)T 2 Inwg +
~v3(v K)’q*% is continually decreasing with the increasing of v .

Simultaneously, considering the general updating step, which can be easily derived from the descent
lemma of smooth function: f(xy+1) < f(xx) — 7V f(xx)gk + n; L||gk||*. Since the right-hand
side of the descent lemma forms a quadratic function w.r.t 7, the (worst-case) optimal progressive
step-size 7°" = In®. Here, n® represents the step size that leads to divergence (v > o is
diverging step size).

Incorporating the concepts of preserving tuning-free convergence and achieving 0.5x diverging step
size under various settings, we formally formulate the golden step size of AdaGrad-Norm as

gold __

1 . 1 73
- E,cpih(z,n) st 1 (h) = —— (n? 1 7)20, 1
" 5 argmaxEyegh(z,n) st lim (h(z,n) ﬁ(vm +72nIna + n) (1)

n r—+00

where z := vk for simplification purposes. Here, the expectation over z € R™ denotes various
settings, the constraint lim,_, h(z,7) = 0 ensures reservation of tuning-free convergence, and
arg max, h(z,7) approximates the step size that drives the objective function to diverge, i.e., the
potentially largest h(x,n). Please also refer to the discussion regarding incorporating the optimal
progressive learning rate and the learning rate that converges with the training trajectory in Section[3]

3.3 SOLUTION OF THE GOLDEN STEP SIZE

We now provide the analytical solution for equation |1} Firstly, we derive the domain of 1 based
on the constraint. Considering the constraint lim, ﬁ(va + yenlnz + 'Y?d) = 0, to en-

nn®

sure 7 satisfies the constraint, one straightforward approach is considering lim,_, Vi 0,
limg 4 o0 % = 0, and lim,;_ 4 ni% = 0. This implies that the domain of 7 is the in-

Under review as a conference paper at ICLR 2025

72”\/1%“, n%} achieves 0 simultane-

ously. In other words, O(n) = (< O(l‘%)) (< O(lm)) N <> (9(:0’%)) = (< O(x%)> N
<> O(az’%)) = O(2') with t € (—1,1). Therefore, we consider two cases as we discussed in

Section when 7 := 2 where t € (—
which covers the above domain. We then
between these two cases.

. . 2
tersection of sub-domains where each sub-component {7\1/’1

% 7) (Case 2) and when 7 is a constant value (Case 1),
compare the maximum of the expectation max E[h(z,)]

Given 7 := 2! where t € (*5, Z) (Case 2), and supposing z is bounded and uniformly distributed,

ie., x ~U(Cy,Cs), where Cy > C7 > 1, we have

1 1 | ~
Baucron 7 (WI +V2771nfv+j73> “ oo /. ﬁ(vlw2t+wwtlnx+%x "dzx
1

]. C2 1 1 1
_ —140t —14q —14
= T2 +voxT 2 Inx + 32”2 dx
02 C /‘1 ga! Y2 3

Ca
1 (gi! L1iog Y2 14y 72 L1t 73 1t>
= prt? 4 = gprtiing — — = _gatt 4 x2
Cy—Ci\5+2t 14t (3 +1)? it o
142t 142t
Cer —C? —149¢

Since t € (—%, %), it is straightforward to observe that = lim,_, 1 - xt attains highest expectation
4
value with E, (¢, c,)[h(z,7)] = O(CQ_§+2Z) =0O(1).

Given 7 is constant value (Case 1), and supposing = is bounded and uniformly distributed, i.e.,
x ~U(Cy,Cs), where Cy > C > 1, we have

1 1 @1 3
EZN 1 = — _ 2 1 el d
U(Cu, Cz)\f (7177 +Yeninx + 77) 0276,1/ NG <717] +yenlnx + 77) T

:ﬁ(ﬂvm + = \F|c +v2n(2vVxrInz — 4\f))

o (HEbe) o (ue))

With Cy > 1, it follows that 7 is a constant value attaining highest expectation value with
In(C;
Eon(cy.colh(@,m)] & O(EL),
In(Cs)

Since 7&°!d desires the maximum expectation and Ocqse 1 o) < Ocase2(1), we conclude that

neM = Zlim, ;- &, where — 1/4~ denotes approaching from the negative side, is the desired
4
golden step size that achieves the maximum expectation under the defined constraint.

3.4 SCALE-FREE PROPERTY OF GOLDEN STEP SIZE

We adopted the definition of the scale-free property of an optimization method from |Khaled et al.
(2023)), where it is defined as multiplying f by a constant factor o > 0 and minimizing of does
not change the method’s trajectory at all. As mentioned in Section |l| the term parameter-free
optimization refers to optimization algorithms devoid of tuning parameters, with scale-free being
one of the preferred properties of parameter-free optimization methods (Khaled et al.|[2023; [Defazio
& Mishchenkol 2023; Mishchenko & Detazio, [2023)).

Taking Theorem [3.4] as an example, also appearing in [Khaled et al.| (2023); [Yang et al. (2024), to
illustrate the concept, Normalized Gradient Descent (NGD) is scale-free inherently, as rescaling f

to af does not alter the step size trajectory, i.e., n°" = Dy /+/ K remains unchanged before and after

Under review as a conference paper at ICLR 2025

rescaling. Meanwhile, if we can approximate Dy dynamically, then NGD qualifies as parameter-
free. We summarize the following key takeaways: 1). An immediate observation regarding scale-
free methods is that the derived step size is not correlated with the scale «v. In terms of the parameter-
free methods, the corresponding step size does not depend on terms such as the scale « or problem
properties that are unknown or cannot be approximated; 2). It is important to note that parameter-
free does not imply the ability to arbitrarily scale the derived step size.

Particularly, there is an immediate observation that 72°¢ is independent of problem-dependent values
71,72, and 3, further reinforcing the notion that rescaling function will not alter its trajectory.

Theorem 3.4 (Example adopted from Levy| (2017); |Grimmer (2019)). Suppose that f is convex
(bounded below by f* := f(x*)) and satisfies Assumption If we run NGD xj4+1 = Xj, —

2
n%, we have ming—o ... x—1(f(xx) — f*) < %(2122(+ 1)2, where Dy := ||xo — x*||, and
opt — Do
=K

3.5 ALGORITHM: ADAGRAD-NORM VERSION PARAMETER-FREE OPTIMIZER

Our analysis shows that when taking the golden step size, the updated AdaGrad-Norm algorithm
is expected to preserve the ability of tuning-free convergence and approximate the optimal step
size across various settings. We hereby propose a novel parameter-free optimization algorithm that
integrates the golden step size into AdaGrad-Norm.

Since ¢4 = 1lim, ,,- «', we define a numerator function s(x) := pa?, where p — 1/2,q —
v 4

1/4—, to represent the embedding of the golden step size. The proposed parameter-free training
method, named GOG (Golden step size over Gradients), is summarized in Algorithm [l We high-
light the modifications (highlighting in grey), involving the direct utilization of the numerator func-
tion as the additional coefficient of the previous parameter updating step. Note that Algorithm [I]
approximates vg with vy, and a similar idea is the optimality gap approximation exploited in the
baseline method DoG and its variants (Ivgi et al.| 2023). Due to page limitation, please refer to
Appendix [D.2]for discussions about the approximation.

Algorithm 1 GOG based on AdaGrad-Norm Algorithm 2 ADAMG based on Adam

Input: initial parameter x;, step size 7 (de- Input: initial parameter x;, step size 7 (de-
fault 1), objective function f(x), p, ¢ fault 1), pyq., B1, Bo, s, €,
Initialize v; = 0 Initialize 1y = 0,0, = 0, 71 =0
s(z) = pat .
for kK =1to K do s(x) = px

gr € Of (Xk, &k) for k =1to K do

Vkt+1 = vk + |8k)2 gr € Of (vr, &)

2
Tha1 = $(Vky1) Ukt = Bave + (1= B)g
- - D1 = vpg1 /(1 — B%)
Tk+1

Xit1 = Xk — Tk s 8k Thy1 = Park + (1 — B3)s(vp41)

end for M1 = P + (1= P1) rega gk

Mps1 = mps1/(1— BY)
Tpt1 = Tp— min(ng, 1/Vk) (::ki;lm
end for

Note that 31, 32, 83, €in Algorithmhave default values of 0.95, 0.999, 0.95, and 108 respectively.

3.6 ALGORITHM: ADAM VERSION PARAMETER-FREE OPTIMIZER

Besides GOG, we further develop an Adam-like method incorporating the golden step size, leading
to a practical parameter-free optimizer with momentum acceleration. Similarly, we use a numerator
function s(-) for the embedding of the golden step size. We then approximate Adam’s update of the
Exponential Moving Average (EMA) w.r.t. the golden step size as follows: 7,41 = B3rg + (1 —
B3)s(vi+1), where 3 € [0, 1) is the exponential decay rate.

Under review as a conference paper at ICLR 2025

Besides, inspired by D-Adapt Adam (Defazio & Mishchenkol [2023), we use EMA golden step size,
Tk+1, in the gradient of first-moment estimation instead of the raw coefficient in the parameter up-
dating step. Additionally, the term 1/+/k in Algorithmis a commonly adopted strategy appearing
in optimizing stochastic problems against error caused by randomness in gradient estimation (Nes-
terov et al.L 2018};|Ge et al.,[2015)). We refer to it as a piratical practice. The parameter-free optimizer
ADAMG, which embeds Golden step size with Adam, is summarized in Algorithm@

4 EXPERIMENTS

4.1 EVALUATION CRITERIA

The existing criteria for evaluating parameter-free approaches include convergence speed (E.g.,
loss curve) and solution quality (E.g., test accuracy), which are common in classical optimizer
designs (Kingma & Bal 2014} [Liu et al., [2023) and parameter-free optimizer designs (Ivgi et al.,
2023; |Defazio & Mishchenko, 2023; [Khaled et al., 2023} Mishchenko & Defaziol [2023). A good
parameter-free optimizer consistently performs well across various optimization tasks, which is not
covered by these criteria. We hereby introduce a novel criterion, reliability, to assess parameter-free
optimizers.

Following, we formally introduce the definition of reliability to illustrate how to systematically
evaluate the adaptability of a parameter-free training method to diverse optimization tasks, which is
hard to achieve by observing the performance of single or independent tasks.

Definition 4.1 (Reliability). Given a set of optimization tasks, we initially group all the conducted
optimization tasks into four categories based on the optimizers among Adam(le-2), Adam(1e-3),
Adam(le-4), and Adam(1e-5), whichever yields the best performance measure, such as test accu-
racy. Reliability is calculated by averaging the practical ratio in each category, where the ratio is
the statistical information about specific parameter-free optimizers achieving less than a 5% perfor-
mance drop compared to the corresponding best Adam on all tasks in that category.

4.2 SETUP

We compare ADAMG to DoG (Ivgi et al., 2023), DowG (Khaled et al., [2023)), D-Adapt Adam (De-
fazio & Mishchenkol 2023), Prodigy Adam (Mishchenko & Defazio, |2023), and Adam(le-
3)&cosine LR scheduler with evaluation criteria reliability, solution quality and convergence speed.
Unless otherwise specified, all Adam and Adam-type parameter-free optimizers are paired with a
cosine learning rate scheduler. I.e., the default value of 7, in ADAMG, D-Adapt Adam and Prodigy
Adam is set to 1 with extra cosine annealing decay strategy, following the default choice of pre-
vious work (Defazio & Mishchenko, 2023} [Mishchenko & Defaziol [2023). It is worth noting that
our experiments in Robustness against LR decay strategy of Appendix show that the proposed
ADAMG has little performance gap with or without LR decay. We adopt the same setting as previous
work in our evaluation for a fair comparison.

The optimization tasks cover two main categories: Image tasks - full fine-tuning pre-
trained&randomly initialized DenseNet121 (Huang et al., 2017), ResNet18 (He et al., [2016)), ViT-
B/16 (Dosovitskiy et al. 2021, and VGG11 (Simonyan & Zisserman, 2014} under datasets CI-
FAR10, CIFAR100, and Tiny-ImageNet (Krizhevsky & Hinton, 2009; Russakovsky et al., [2015));
Language tasks - full fine-tuning pre-trained BERT (Devlin et al.l 2018) under GLUE benchmark
and full fine-tuning LoRA on GPT2 (Radford et al., [2019; [Hu et al., 2021) under GLUE bench-
mark (Wang et al., 2018)). Note that we use the numerator function s(x) = 0.22%-2* for all optimiza-
tion tasks, and the final formula slightly differs from our theoretical derivation, p — 1/2,q — 1/47,
by a small coefficient (Please refer to Appendix [D.T|for discussions about the scaling of the golden
step size). Other setup details of the 38 tasks are summarized in Appendix [A.1]

4.3 PERFORMANCE COMPARISON

The average performance measures for all 38 tasks are summarized in Table 2] and Table 3] A
complete version for each table with standard deviation is provided in Appendix [A.2]to satisfy the
page length limitation. Please note that DenseNet, ResNet, ViT-B, and VGG refer to DenseNet121,

Under review as a conference paper at ICLR 2025

ResNet18, ViT-B/16, and VGGL11, respectively. Below we review aggregated performance metrics
derived from empirical studies in Table [2| and Table (3] including reliability, solution quality, and
convergence speed.

Reliability naturally provides clearer insights into the effectiveness of the parameter-free optimizer
across the pre-defined task categories. To evaluate reliability, we derive the statistical information
from Table [2 and Table [3|about whether specific parameter-free optimizers achieve less than a 5%
performance drop compared to the corresponding best Adam in each category. The results are
presented in Table [showing that the proposed ADAMG exhibits the highest average reliability
ratio.

It is worth noting that with the default 5% performance gap, the proposed method improves the
reliability ratio from the second best of 0.60 to 0.78. Reliability ratio under 1% gap and 10% gap are
provided in Table[I0]of Appendix[A.72] specifically, under a 1% gap, the reliability ratio improvement
is from 0.52 to 0.70. Under a 10% gap, the reliability ratio improvement is from 0.67 to 0.83.
Solution quality is defined as 1 3" max(Perfost A%m _ perfP™ et () ‘where Perf represents
performance measurements, such as test accuracy, for all n optimization tasks. This metric indicates
the average performance gap between the best Adam optimizer and the specific parameter-free op-
timizer. The results are presented in Table [] highlighting that the proposed ADAMG achieves the
best average solution quality.

Convergence speed. Figure [} Figure 2] and Figure [3]in Appendix shows the loss curves of
training pretrained&randomly initialized DenseNet121, ResNetl8, ViT-B/16, and VGGI11 under
CIFAR10, CIFAR100, and Tiny-ImageNet. Figure din Appendix shows the loss curves of full
fine-tuning BERT and fine-tuning LoRA with GPT2 under selected tasks in the GLUE benchmark.
In terms of convergence speed, the proposed ADAMG achieves competitive performance with the
best optimizer across all the conducted optimization tasks.

Performance of GOG. Since acceleration techniques like momentum have been widely employed
by modern optimizers and improve upon classical training methods such as SGD and AdaGrad-
Norm by a large margin, we mainly discuss the results of the accelerated optimizers. Here we
investigate optimizers without accelerations, comparing the proposed GOG and baselines DoG and
DoWG. We see that the proposed GOG achieves the best performance in terms of reliability and
solution quality, shown in Table

5 CONCLUSION

In this work, we introduced a new mechanism for achieving parameter-free in adaptive gradient
training methods by proposing the golden step size. This step size aims to preserve the tuning-
free convergence and approximate the optimal step size in expectation w.r.t. various optimization
problems. The resulting optimizer, ADAMG, demonstrates improved reliability and solution quality
compared to previous methods, closely matching the performance of manually tuned Adam and
facilitating deployment readiness.

Limitation 1). Despite the practical success, understanding the theoretical guarantees of the pro-
posed approach is crucial. We discuss that while the proof framework for the convergence of
AdaGrad-Norm in [Wang et al.| (2023) served as inspiration for our approach, it relies on the col-
lective behavior of AdaGrad-Norm step size throughout the entire training trajectory. The diverging
step size for AdaGrad-Norm is not directly connected to the one derived from the progressive up-
dating formula, (Wang et al.| 2023} [Faw et al., 2023} |Li et al 2023), paving the way for future
research. 2). While this work verifies that the proposed optimizer has a wide adaptability range
through a broad spectrum of optimization tasks, it fails on some tail tasks possibly due to its ex-
pectation mechanism. Further investigations of embedding extra (approximated) problem properties
such as the optimality gap may mitigate the issue but also lead to further work.

ETHICS STATEMENT

Our work primarily focuses on theoretical and practical developments in optimization methods,
which will enable efficient model training of deep model optimization tasks. However, we are also

Under review as a conference paper at ICLR 2025

Test accuracy (%)l
Dataset Algorithm Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet ViT-B VGG

Adam(le-2) 69.4 80.5 212 131 79.6 853 256 10.0
Adam(le-3) 88.1 924 758 845 75.4 849 364 77.3
Adam(le-4) 81.2 854 773 84.6 53.4 632 563 71.0
Adam(le-5) 64.3 723 579 712 48.2 583 293 61.8

CIFAR10

DoG 78.4% 88.3 63.7° 805 622~ 71.1¢ 548 72.9
DoWG 80.4 86.4* 67.1° 80.7 53.9% 65.5% 50.8° 52.7%
GOG 79.5% 857 68.6% 82.6 54.7% 66.3% 53.7 66.3%
D-Adapt Adam 88.2 91.6 773 71.2* 723~ 833 11.3* 49.1%
Prodigy Adam 87.4 909 795 86.1 64.0% 73.7% 21.1% 75.5
ADAMG 86.1 91.1 786 873 68.1% 75.9% 58.1 77.4
Adam(le-2) 37.3 45.0 73 1.0 47.2 52.1 8.4 1.0
Adam(le-3) 65.2 72.8 497 53.6 45.0 575 131 13.4
Adam(le-4) 55.7 623 511 60.1 232 364 278 33.5
Adam(le-5) 20.6 29.0 13.8 435 20.0 32.1 8.9 243
CIFARI00 DoG 50.6% 69.0 30.7% 564 33.6% 47.4% 292 31.8
DoWG 55.7% 65.3% 404* 562 267" 38.1¢ 249 1.0%
GOG 54.2% 61.7% 357% 56.8 25.0% 33.7% 272 25.0%

D-Adapt Adam 65.4 71.8 53.6 43.0¢ 43.7% 557 1.0 29.2
Prodigy Adam 64.4 72.1 559 624 420" 537 5.7% 41.2
ADAMG 62.6 704 545 63.1 35.4% 449 315 42.1

Adam(le-2) 38.5 43.4 39 0.5 37.2 45.5 1.6 0.5

Adam(le-3) 62.9 63.0 573 121 39.2 50.9 7.4 16.9
Adam(le-4) 59.5 60.0 565 59.6 16.8 357 164 35.2
Adam(le-5) 352 248 209 513 16.0 249 109 220

Tiny-ImageNet

DoG 61.4 69.1 495* 574 345 455% 142 24.9%
DoWG 60.7 61.1 453* 572 244~ 28.5% 155 7.8%
GOG 60.4 584 412* 584 22.4% 31.1% 172 20.4%

D-Adapt Adam 60.2 603 645 23.1% 36.0 473 1.2% 27.4%
Prodigy Adam 62.0 63.6 632 5838 40.5 53.6 8.1% 33.8
ADAMG 62.7 642 602 59.7 26.3% 39.0% 169 359

[a] X denotes that the performance measure of the specific parameter-free optimizer is at least 5% lower than
the best Adam, which is highlighted in bold.

Table 2: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

aware that the advancements may have broader implications, some of which could potentially have
negative social impacts, such as misuse of the method in malicious application developments.

Under review as a conference paper at ICLR 2025

Ma?g,el Algorithm SST-2 MRPC QQpr MNLI QNLI RTE WNLI
Acc. Acc. Acc. Matched Acc. Acc. Acc. Acc.

Adam(le-2) 50.3 56.1 54.4 33.0 49.5 49.1 52.1
Adam(le-3) 50.3 68.4 63.2 32.1 49.8 50.9 52.1
Adam(le-4) 77.1 81.6 54.4 77.7 85.3 63.9 474
Adam(le-5) 92.5 83.2 90.7 84.1 91.3 65.8 38.0

BERT DoG 914 74.3% 89.1 83.1 90.6 51.9% 57.3
DoWG 74.8% 72.3% 79.5% 59.5% 74.68% 51.1% 52.1

GOG 91.5 85.6 88.9 82.5 90.8 66.2 52.1

D-Adapt Adam 76.6* 68.4% 63.2% 66.1% 73.9% 61.3 52.1

Prodigy Adam 91.5 73.5% 90.4 83.1 90.8 65.8 46.5%

ADAMG 90.9 81.5 90.4 83.9 89.8 65.2 52.1

Adam(le-2) 50.3 61.6 32.7 32.3 50.0 52.5 48.4
Adam(le-3) 88.1 76.1 67.3 75.6 82.4 60.0 423
Adam(le-4) 90.8 71.3 81.8 78.8 84.9 61.6 44.1

GPT2 Adam(le-5) 88.1 66.3 77.1 72.8 79.8 51.5 47.9
L\gﬁ}}% DoG 64.2% 67.9% 43.0% 43.8% 51.7% 50.1% 48.8
DoWG 90.4 69.8% 77.4 72.8% 81.9 50.8*% 46.9

GOG 90.0 45.4% 77.2 73.7% 81.4 53.1% 52.1

D-Adapt Adam 55.2% 58.5% 27.6% 32.8% 50.2% 50.8% 50.7

Prodigy Adam 85.7% 68.6% 27.5% 33.1% 52.2% 50.9% 51.6

ADAMG 90.9 72.5 80.8 78.8 86.0 58.0 49.8

Table 3: Performance of fine-tuning pre-trained BERT with GLUE benchmark & Epoch 3 under 3
different seeds.

Metrics Algorithm Adam(le-2) Adam(le-3) Adam(le-4) Adam(le-5) Avg. [c]
DoG 2/5 6/12 7115 4/6 0.50
DoWG 2/5 2/12 8/15 0/6 0.27
GOG 2/5 2/12 9/15 6/6 0.54
Reliability ratiol®?) D-Adapt Adam 4/5 10/12 3/15 1/6 0.50
Prodigy Adam 1/5 11/12 7115 5/6 0.60
Adam(1e-3) 4/5 12/12 7115 0/6 0.56
ADAMG 2/5 9/12 15/15 6/6 0.78
DoG 9.0 6.2 12.4 4.5 8.0
DoWG 13.5 11.2 8.3 15.9 12.2
GOG 13.2 13.6 5.3 0.8 8.2
Solution quality D-Adapt Adam 2.6 5.1 20.9 16.4 11.2
Prodigy Adam 7.6 1.5 12.2 2.1 5.8
Adam(le-3) 2.6 0.0 10.9 32.1 11.4
ADAMG 6.5 4.1 0.3 1.0 3.0

(o] The denominators of each entity in a row denote that the numbers of best optimizer for each task count for
Adam(le-2), Adam(le-3), Adam(le-4), and Adam(le-5) are 5,12, 15, 6 regarding the total 38 tasks.

*] Each entity, e.g., 2/5 denotes that the parameter-free optimizer has less than 5% performance drop compared
to the corresponding best hand-tuning Adam for 2 tasks in all 5 tasks.

] The average operation considers an even task distribution over Adam optimizers.

Table 4: Reliability demonstrates the statistical property of parameter-free optimizers. Solution
quality shows an average performance gap to the solution from the best manual tuned Adam.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404-413. PMLR, 2018.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231-357, 2015.

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory,
pp- 2360-2389. PMLR, 2022.

Keyi Chen, John Langford, and Francesco Orabona. Better parameter-free stochastic optimization
with ode updates for coin-betting. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 6239-6247, 2022.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms.
arXiv preprint arXiv:2302.06675, 2023.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. arXiv
preprint arXiv:2301.07733, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. arXiv preprint arXiv:2302.06570, 2023.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pp. 3-33, 2019.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on learning theory, pp. 797-842. PMLR, 2015.

Benjamin Grimmer. Convergence rates for deterministic and stochastic subgradient methods without
lipschitz continuity. SIAM Journal on Optimization, 29(2):1350-1365, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700—4708, 2017.

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. arXiv:2302.12022, 2023.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. arXiv preprint arXiv:2305.16284, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

Under review as a conference paper at ICLR 2025

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, Toronto, Ontario, 2009.

Puya Latafat, Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos. Adaptive proximal al-
gorithms for convex optimization under local lipschitz continuity of the gradient. arXiv preprint
arXiv:2301.04431, 2023.

Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. Advances in
Neural Information Processing Systems, 30, 2017.

Haochuan Li, Ali Jadbabaie, and Alexander Rakhlin. Convergence of adam under relaxed assump-
tions. arXiv preprint arXiv:2304.13972, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306-1314. PMLR, 2021.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. arXiv
preprint arXiv:1910.09529, 2019.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical Pro-
gramming, 152(1-2):381-404, 2015.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Francesco Orabona and Dévid Pal. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Debleena Paul, Gaurav Sanap, Snehal Shenoy, Dnyaneshwar Kalyane, Kiran Kalia, and Rakesh K
Tekade. Artificial intelligence in drug discovery and development. Drug discovery today, 26(1):
80, 2021.

B.T. Polyak. Introduction to Optimization. Optimization Software, New York, 1987.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779-788, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139-1147. PMLR, 2013.

12

Under review as a conference paper at ICLR 2025

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, et al.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161-190. PMLR, 2023.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047-9076, 2020.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Junchi Yang, Xiang Li, Ilyas Fatkhullin, and Niao He. Two sides of one coin: the limits of untuned
sgd and the power of adaptive methods. Advances in Neural Information Processing Systems, 36,
2024.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795-18806, 2020.

13

Under review as a conference paper at ICLR 2025

A EXPERIMENT

A.1 SETUP

For the image tasks, we used the same batch size of 1024 and input image sizes 32x32, 32x32, and
64 x64 for CIAFR 10, CIAFR100, and Tiny-ImageNet datasets respectively. For the language tasks,
we used the same batch size of 32 for BERT and GPT?2 tasks. In particular, we used rank = 4 for the
LoRA in GPT?2 tasks. The number of training epochs is particularly mentioned in the corresponding
performance table.

Computer resources All the experiments can be run on a single NVIDIA RTX A5000 Graphics
Card (24G). Each image task in one setting can be completed within 5 hours, using less than 15GB
of GPU memory. Similarly, each language task in one setting can be completed within 8 hours,
using less than 10GB of GPU memory.

A.2 COMPLETED VERSION RESULTS

The (completed version) average performance measure of all 42 tasks are summarized in Table [5}
Table[6] Table[7] Table[8] and Table [0}

Test accuracy (%) under CIFAR10

Algorithm Epoch 20 & pre-trained network Epoch 100 & randomly initialized network
DenseNet121 ResNet18 ViT-B/16 VGGI11 DenseNet121 ResNet18 ViT-B/16 VGGl11
SGD-M(le-2) 82.5+0.2 88.2+0.5 71.4+0.6 85.5+0.1 65.2+0.2 71.2+0.8 57.9+0.2 73.8+1.1
SGD-M(le-3) 73.7£0.0 74.5+0.8 52.740.6 77.240.0 50.6+0.5 63.1+0.4 52.440.5 50.0+1.0
SGD-M(le-4) 45.8+0.4 43.1£1.5 26.6+0.3 60.2+0.5 39.240.5 37.9+0.6 32.5+0.7 12.7£2.2
SGD(le-2) 73.8+0.1 75.0£0.8 52.9+1.3 77.30.1 51.5+0.3 63.4+0.7 50.7+0.3 46.9+0.6
SGD(le-3) 46.7+0.2 43.6+1.5 27.240.6 60.7+0.5 39.1+0.6 38.1x0.7 32.5+0.6 12.3£1.8
SGD(le-4) 14.5£0.4 14.9+0.5 11.1£0.1 34.0£1.1 21.6+0.8 21.1£1.1 23.9+1.0 10.3+0.4
Adam(le-2) 69.4+5.5 80.5+2.6 21.248.0 13.1+4.5 79.6£1.1 85.3+0.7 25.6+2.7 10.0£0.0
Adam(le-3) 88.1+0.2 92.4+0.4 75.8+0.7 84.5+0.7 75.4+0.5 84.9+0.2 36.4+4.3 71.3%0.5
Adam(le-4) 81.240.1 85.4+0.3 77.3+0.4 84.6+0.2 53.4+0.2 63.2+1.0 56.3+0.7 71.0£0.1
Adam(le-5) 64.3£0.1 72.3+0.9 57.9+0.6 77.240.1 48.2+0.4 58.3+0.6 29.3+0.3 61.8+0.3
DoG 78.4+0.8 88.3+0.7 63.7£0.7 80.5+1.8 62.2+0.2 71.1+0.7 54.8+0.4 72.9+0.2
DoWG 80.4+0.4 86.4+0.7 67.1£1.2 80.7£1.2 53.9£0.5 65.5+0.4 50.8+0.9 52.743.1
GOG 79.5+0.1 85.740.4 68.6+0.5 82.6£1.0 54.7+0.4 66.3+0.7 53.7£0.7 66.3+0.8
D-Adapt Adam 88.2+0.1 91.6x0.4 77.3£1.1 71.2£10.2 72.320.3 83.3+0.3 11.3x1.2 49.1£27.7
Prodigy Adam 87.4+0.1 90.9+0.5 79.5+0.2 86.1+0.2 64.0£0.6 73.7%0.1 21.1+8.2 75.5+0.6
ADAMG 86.1£0.3 91.1x0.4 78.6£0.4 87.320.0 68.1+0.6 75.9£0.6 58.1x0.3 77.4+0.4

Table 5: Test accuracy with CIFAR-10 under 3 different seeds.

Test accuracy (%) under CIFAR-100

Algorithm Epoch 20 & pre-trained network Epoch 100 & randomly initialized network
DenseNet121 ResNet18 ViT-B/16 VGGl1 DenseNet121 ResNetl18 ViT-B/16 VGGl11
Adam(le-2) 37.3+6.3 45.0+1.1 7.3+1.1 1.0+0.0 47.2£1.5 52.1+0.7 8.4+3.7 1.0+0.0
Adam(le-3) 65.2+0.2 72.8+0.8 49.7£2.5 53.6x1.6 45.0+0.4 57.5£0.4 13.1£1.7 13.4+17.5
Adam(le-4) 55.7+0.1 62.3+0.7 51.1+0.4 60.1+0.3 23.2+0.3 36.4+1.0 27.8+0.3 33.5+0.5
Adam(le-5) 20.6+0.4 29.0+0.5 13.8+0.5 43.5+0.2 20.0+0.2 32.1+0.5 8.9+0.3 24.3+0.2
DoG 50625 69.0427 307427 56402 336203 474%07 292%03 318:12
DoWG 55.7+0.1 65.3+3.1 40.4+1.3 56.2+0.4 26.7£0.4 38.1+0.5 24.9+0.3 1.0+£0.0
GOG 54.2+1.3 61.7+2.4 35.7+1.1 56.8+0.2 25.0£0.1 33.7+0.6 27.2+0.3 25.0+0.1
D-Adapt Adam 65.4+0.0 71.8+1.0 53.6+1.0 43.0£5.3 43.7+0.6 55.7+0.8 1.0£0.1 29.2+0.3
Prodigy Adam 64.4+0.1 72.1+0.8 55.9+0.3 62.4+0.5 42.0£0.2 53.7£0.7 5.7£1.6 41.2+0.6
ADAMG 62.6+0.2 70.4+1.3 54.5+0.1 63.1+0.1 35.4+0.0 44.9+0.4 31.5+0.2 42.1£0.4

Table 6: Test accuracy with CIFAR-100 under 3 different seeds.

A.3 RELIABILITY RATIO UNDER DIFFERENT PERFORMANCE GAP

14

Under review as a conference paper at ICLR 2025

Test accuracy (%) under Tiny-ImageNet

Algorithm Epoch 20 & pre-trained network Epoch 100 & randomly initialized network
DenseNet121 ResNet18 ViT-B/16 VGGl11 DenseNet121 ResNet18 ViT-B/16 VGG11
Adam(le-2) 38.5+0.6 43.4+0.5 3.9+2.0 0.5+0.0 37.2+0.9 45.5+0.2 1.6+0.9 0.5+0.0
Adam(le-3) 62.9+0.2 63.0+0.2 57.3+0.4 12.1£16.5 39.2+0.1 50.9£0.5 7.4+0.9 16.9£11.6
Adam(le-4) 59.5+0.3 60.0+1.4 56.5+0.2 59.6+0.2 16.8+0.2 35.7+£0.4 16.4+0.2 35.2+1.0
Adam(le-5) 35.2+0.2 24.8+0.8 20.9+0.1 51.3+0.2 16.0+0.3 24.9+0.3 10.9+0.2 22.0+0.4
DoG 61.4+0.3 69.1+2.0 49.5+0.9 57.4+1.7 34.5+0.3 45.5+0.5 14.2+0.3 24.9+1.0
DoWG 60.7+0.3 61.1£3.9 45.3+2.1 57.2+0.1 24.4+0.1 28.5+0.4 15.5+0.1 7.8+4.5
GOG 60.4+0.1 58.4+3.6 41.2+0.4 58.4+0.3 22.4+0.3 31.1£1.0 17.2+0.5 20.4+0.4
D-Adapt Adam 60.2+0.2 60.3+£0.8 64.5+£0.3 23.1+£7.4 36.0+0.1 47.3+0.4 1.2+0.9 27.4+0.5
Prodigy Adam 62.0+£0.2 63.6+1.0 63.2+0.3 58.8+0.0 40.5+0.4 53.6+0.4 8.1£1.1 33.8+0.1
ADAMG 62.7+0.1 64.2+1.4 60.2+0.3 59.7£0.3 26.3+0.4 39.0+£0.2 16.9£0.1 35.9+0.4

Table 7: Test accuracy with Tiny-Imagenet under 3 different seeds.

Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

Algorithm
CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews corr. Acc. Fl&Acc. Pearson corr.& Fl&Acc. Matched acc.& Acc. Acc. Acc.
Spearman corr. Mismatched acc.
Adam(le-2) 0.0+0.0 50.3£0.9 54.1+38.3&56.1+17.3 nan 17.9425.4&54.4+12.4 33.0£1.7&33.0£1.6 49.5+0.0 49.1£2.6 52.1+6.0
Adam(le-3) 0.0+0.0 50.3£0.9 81.2+0.0&68.4+0.0 nan 0.0£0.0&63.2+0.0 32.1+0.4&32.240.5 49.8+0.5 50.9+2.6 52.1+6.0
Adam(le-4) 48.4+2.1 77.1£7.6 87.0+1.5&81.6+x1.4 88.0+0.3&87.7+0.1 17.9+25.4&54.4+12.4 77.7+0.5&77.8+0.2 85.3+£0.6 63.9+3.5 47.4+12.6
Adam(le-5) 57.242.3 92.5+0.3 88.5+0.5&83.2+0.9 88.5+0.1&88.2+0.1 87.2+0.2&90.7+0.1 84.1+0.1&84.4+0.2 91.3+0.3 65.8+1.2 38.0+10.2
DoG 51.3+4.5 91.4+0.3 83.2+1.7&74.3+4.2 88.2+0.1&88.1+0.2 85.5+0.4&89.1+0.0 83.1+0.2&83.8+0.3 90.6+0.1 51.9+3.3 57.3+1.3
DoWG 17.5424.7 74.8+17.3 82.3+1.8&72.3+2.6 88.1+0.1&88.3+0.1 55.8+39.4&79.5+11.5 59.5+20.6&60.3+21.1 74.6+17.8 51.1+2.7 52.1+6.0
GOG 53.843.7 91.5£0.3 89.7+0.4&85.6+0.1 88.5+0.3&88.5+0.2 85.1+0.2&88.9+0.1 82.5+0.2&83.3+0.2 90.8+0.2 66.2+2.4 52.1+6.0
D-Adapt Adam 0.0+0.0 76.6+18.1 81.2+0.0&68.4+0.0 nan 0.0+£0.0&63.2+0.0 66.1+24.2&66.4+24.5 73.9+17.3 61.3+9.9 52.1+6.0
Prodigy Adam 53.543.3 91.5£1.3 82.0£5.4&73.5+7.5 57.6£39.2&57.0+39.6 87.3+0.1&90.4+0.2 83.1+0.5&83.6+0.6 90.8+0.1 65.8+3.5 46.5+13.9
ADAMG 50.6+3.2 90.9+0.4 87.0+2.1&81.5+£3.3 88.7+0.6&88.5+0.6 87.1+0.1&90.4+0.0 83.9+0.4&84.3+0.1 89.8+0.3 65.2+3.5 52.1+6.0

Table 8: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Fine-tuning LoRA on GPT2 under GLUE benchmark & Epoch 3

Algorithm

CoLA SST-2 MRPC STS-B QQpP MNLI QNLI RTE WNLI

Matthews corr. Acc. Fl&Acc. Pearson corr.& Fl&Acc. Matched acc.& Acc. Acc. Acc.
Spearman corr. Mismatched acc.

Adam(le-2) 0.0+£0.0 50.3+0.9 70.8+14.7&61.6+9.6 1.244.2&0.9+2.5 32.7+7.0&65.840.6 32.3+0.4&32.5+0.5 50.0+0.4 52.5+1.2 48.4+5.7
Adam(le-3) 13.049.7 88.1+0.3 84.5+0.4&76.1+0.9 84.9+1.1&85.0+0.9 67.3+7.2&71.1+10.0 75.6+0.4&77.5+0.4 82.4+0.8 60.0+4.7 42.3+£5.3
Adam(le-4) 9.0£3.4 90.8+0.2 81.3+1.1&71.3+0.7 83.7+0.6&83.5£0.5 81.8+0.2&86.1+0.0 78.8+0.1&80.2+0.3 84.9+0.4 61.6+2.2 44.1+0.7
Adam(le-5) 1.3£32 88.1+0.4 78.1#2.4&66.3+3.2 14.7+19.1&13.9£19.4 77.120.4&82.0£0.1 72.8+0.4&74.4+0.3 79.8+1.1 51.5+3.7 47.9£6.0
DoG 3.0+4.3 64.249.3 80.4+0.5&67.9+0.2 -18.3+2.1&-17.6+2.4 43.0£19.8&67.8+2.0 43.8+0.0&45.4+0.4 51.7+2.0 50.1+1.3 48.8+5.4
DoWG 3.545.0 90.4+0.9 80.7£1.3&69.8+0.6 77.7+3.5&77.6+3.3 77.4+0.4&81.5£0.3 72.840.4&74.8+0.2 81.9+0.9 50.8+3.9 46.9+6.7
GOG 3.1+4.4 90.0+1.0 52.6+7.5&45.4+3.0 13.5+24.8&14.2423.9 77.2+0.6&81.7+0.4 73.7£0.1&75.6+0.3 81.4+0.5 53.1x1.5 52.1+6.0

D-Adapt Adam 0.5+£0.6 55.244.4 63.5425.0&58.5+14.0 4.5+33&2.442.3 27.6£16.8&65.0+1.3 32.840.1&33.0+0.0 50.2+0.5 50.8+1.8 50.745.3
Prodigy Adam 0.0£0.0 85.7£1.9 81.0£0.3&68.6+0.3 35.1+35.3&33.8436.0 27.5+21.1&64.6+1.0 33.1£0.5&33.2+0.3 52.2+1.4 50.9+2.8 51.6+5.7
ADAMG 242450 90.9+0.6 82.6+0.6&72.5+1.4 83.9+0.5&83.6+0.6 80.8+0.4&85.6+0.1 78.8+0.1&79.9+0.2 86.0+0.5 58.0+4.9 49.8+5.8

Table 9: Performance of fine-tuning LoRA on GPT2 with GLUE benchmark under 3 different seeds.

Metrics Algorithm Adam(le-2) Adam(le-3) Adam(le-4) Adam(le-5) Avg.
DoG 2/5 1/12 1/15 4/6 0.30
DoWG 2/5 0/12 4/15 0/6 16.7
GOG 2/5 0/12 3/15 4/6 0.31
1% Reliability ratio D-Adapt Adam 2/5 4/12 2/15 1/6 0.25
Prodigy Adam /15 8/12 6/15 5/6 0.52
Adam(le-3) 2/5 12/12 5/15 0/6 0.43
ADAMG 2/5 5/12 15/15 6/6 0.70
DoG 2/5 9/12 13/15 6/6 0.57
DoWG 2/5 6/12 9/15 0/6 0.37
GOG 2/5 4/12 13/15 6/6 0.65
10% Reliability ratio D-Adapt Adam 5/5 10/12 4/15 1/6 0.56
Prodigy Adam 2/5 11/12 8/15 5/6 0.67
Adam(1e-3) 4/5 12/12 9/15 0/6 0.60
ADAMG 3/5 9/12 15/15 6/6 0.83

Table 10: Reliability under 1% and 10% performance gap.

15

Under review as a conference paper at ICLR 2025

A.4 ROBUSTNESS AGAINST LR DECAY STRATEGY

Recall that 1, in ADAMG has a default value of 1 with an additional cosine annealing decay strat-
egy, following the default choice of previous work Defazio & Mishchenkol (2023)); Mishchenko &
Defazio| (2023). Our empirical results show that ADAMG is robust to the decay strategy. Table [L1]
and Table 12]illustrate the performance difference between default ADAMG and modified ADAMG
(with a constant 7). The two methods show no noticeable performance gap.

Test accuracy (%) under CIFAR10

Algorithm Epoch 20&pre-trained network Epoch 100&randomly initialized network
DenseNet ResNet VIT-B VGG DenseNet ResNet ViT-B VGG

ADAMG 86.1 91.1 78.6 87.3 68.1 75.9 58.1 77.4

Modified ADAMGI 85.6 91.1 77.6 86.7 68.3 75.6 57.1 76.1

[9] ADAMG with 1 = 1, which eliminates decay strategy.

Table 11: Test accuracy with CIFAR-10 under 3 different seeds.

Fine-tuning pre-trained BERT under GLUE benchmark & Epoch 3

Algorithm CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
COIT. COIT. acc.
ADAMG 50.6 90.9 87.0 88.7 87.1 83.9 89.8 652 521

Modified ADAMG!“] 49.9 90.3 87.7 88.5 87.1 83.5 900 673 521

[4] ADAMG with 1, = 1, which eliminates decay strategy.

Table 12: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

16

Under review as a conference paper at ICLR 2025

B TRAINING LOSS CURVES

B.

The training loss curves corresponding to Table 2] are demonstrated below.

(a)

Loss values

1 IMAGE TASKS

— Adam(1.0e-02)
~—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

— DoG
DowG.

—— D-Adapt Adam
Prodigy Adam

— AdamG

—— Adam(1.0e-02)
~—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

— DoG
DOWG
—— D-Adapt Adam
Prodigy Adam
—— AdamG

Loss values

Loss values

— Adam(1.0e-02)
—— Adam(1.0e-:03)
—— Adam(1.0e-04)
— Adam(1.0e-05)
— GoG
— DoG
DoWG
—— D-Adapt Adam
Prodigy Adam
—— AdamG

— Adam(1.0e-02)
~—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

DowG
—— D-Adapt Adam

Prodigy Adam
— AdamG

Number of iteration

trained

Loss values

(2)

Loss values

Densenet121&Pre- (b)
trained

ResNet18&Pre-

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
—— AdamG

25 — Adam(1.0e-02)
—— Adam(1.0e-03)
k - Mamoe0)
—— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
—— AdamG

Loss values

(c) ViT-B/16&Pre-trained

Loss values

Number of iteration

Number of iteration

(d) VGG11&Pre-trained

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

DoWG
—— D-Adapt Adam

Prodigy Adam
—— AdamG

Loss values

—— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)
— GoG
— DoG
DoWG
—— D-Adapt Adam
Prodigy Adam
—— AdamG

Number of iteration

(e) Densenet121&R.1.

Figure 1:

Number of iteration

(f) ResNet18&R.I.

Number of iteration

(g) ViT-B/16&R.1.

Number of iteration

(h) VGG11&R.I.

CIFAR10 experiments. Note Randomly Initialized (R.I.).

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0-05)

—— D-Adapt Adam
Prodigy Adam
— AdamG

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
—— AdamG

Loss values

Loss values

— Adam(1.0e-02)
~—— Adam(1.0e-03)
—— Adam(1.0e:04)
— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam

Loss values

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
— AdamG

trained

Loss values

Densenet121&Pre- (b)

trained

ResNet18&Pre-

(c) ViT-B/16&Pre-trained

Number of iteration

— Adam(1.0e-02)
—— Adam(1.0e:03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

Number of iteration

(d) VGG11&Pre-trained

—— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

—— GoG —— GoG — Gof —— GoG
— DoG — DoG N — DoG - Do
B DoWG DoWG DoWG DowG
—— D-Adapt Adam .? —— D-Adapt Adam W0 —— D-Adapt Adam —— D-Adapt Adam
Prodigy Adam g Prodigy Adam i Prodigy Adam g Prodigy Adam
—— AdamG s —— AdamG . —— AdamG T —— AdamG
LB 8 g
. , . e

Number of iteration

(e) Densenet121&R.1.

Figure 2: CIFAR100 experiments.

Number of iteration

(f) ResNet18&R.I.

Number of iteration

(2) VIT-B/16&R L.

Number of iteration

(h) VGG11&R.L

Note Randomly Initialized (R.IL.).

17

Under review as a conference paper at ICLR 2025

— Adam(1.0e-02)
—— Adam(1.0e:03)
—— Adam(1.0e-04) >
— Adam(1.0e-05)

g9
&

—— DowG
—— D-Adapt Adam

Prodigy Adam
—— AdamG

Loss values
Loss values

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
—— AdamG

Loss values

— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
— Adam(1.0e-05)

—— DoWG
—— D-Adapt Adam

Prodigy Adam
— AdamG

Loss values

—— Adam(1.0e-02)
—— Adam(1.0e-03)
—— Adam(1.0e-04)
—— Adam(1.0e-05)

—— D-Adapt Adam
Prodigy Adam
—— AdamG

Number of iteration

(a) Densenet121&Pre- (b)

ResNet18&Pre-

(¢) ViT-B/16&Pre-trained

Number of iteration

Number of iteration

(d) VGG11&Pre-trained

trained trained
—— Adam(1.0e-02) —— Adam(1.0e-02) !
B —— Adam(1.0e-03) B —— Adam(1.0e-03) i
—— Adam(1.0e-04) —— Adam(1.0e-04) &
—— Adam(1.0e-05) —— Adam(1.0e-05) o
‘ — ‘ — 5 i
— o6 — oG
— Dows — DoWG TN e —
" — DAdaptAdam | D-AdaptAdam | \ N
33 =~ Prodigy Adam s Prodigy Adam K AN g ¢ X
B — Atigma. B |— damG. 2,1 — Adam(10e-02) T | Adam(1.0e-02)
H H & | — Adam(1.0e03) % °7— Adam(1.0e:03)
2 2 = | — Adam(1.0e-04) = —— Adam(1.0e-04)
1 —— Adam(1.0e-05) 21 —— Adam(1.0e-05) —
— o6 — Go6
R B J — oec | — bos
— oowe —— bows 'R
— D-Adapt Adam | — D-Adaptadam
o Prodigy Adam Prodigy Adam
o —— AdamG —— AdamG
0) 100 o o, 100 0 B 100 : o 100

W @
Number of iteration

(e) Densenet121&R.1. (f) ResNet18&R.1.

W)
Number of iteration

w©)
Number of iteration

() ViT-B/16&R 1.

Number of iteration

(h) VGG11&R.I1.

Figure 3: Tiny-ImageNet experiments. Note Randomly Initialized (R.L.).

B.2 LANGUAGE TASKS

The training loss curves corresponding to above Table [3|are demonstrated below.

—— Adam(1.0e-02) ~——— Adam(1.0e-03) —— Adam(1.0e-04) —— Adam(1.0e-05) —— GoG —— DoG ~——— DOWG —— D-Adapt Adam Prodigy Adam —— AdamG
14 175 e
1.4 4
124 \/—v\/—\/ MWAMAM WAANAAAMA
1.50
1.2 “*/‘WWJ\/VM 1.2 W
1.0
o 125
3 08 0 1.00 ”
> 6 0.8 0.8
0 0.6
0.4 g z
! 0.4 0.50 0.4 \’ﬂ,_
0.2 =
0.2 0.25 0.2
0.01 T T T T T T T T T T T T T T T T T
00 25 50 75 100 0 20 40 60 0 20 40 60 0 5 10 15
12 2.00
21 254
175 30
o 107 1.50 2.5 2.0
S
= 0.8 125
] 2.0 154
@ 1.00
806 15
= 0.75 1.0
el N e ———— | 10 —
—_— — - & 054 X’%
0214 T T - T 0251 - - : 051, : : : : - - -
00 25 50 75 100 0 20 40 60 0 20 40 60 0 5 10 15

Number of iteration

Number of iteration

Number of iteration

Number of iteration

Figure 4: BERT and GPT?2 under GLUE benchmark experiments.

18

Under review as a conference paper at ICLR 2025

C TECHNICAL PROOF DETAILS

Corollary C.1 (a simple variant of Theorem 2 in/Wang et al.|(2023))). Let Assumptions I and 2 hold.
Then, for AdaGrad-Norm with any learning rate) > 0, we have in expectation that

. 14 .
s IV £ (xx)||* < W(;(]B(xl) — f*) +2D:£(0)
+ (2(LnD1)? + D1 (Ln)* + ;Do)\;;»0 + 2Lnlan).

Proof. We begin by following the inequality that is extracted from that of Theorem 2 of [Wang et al.
(2023).

K)12)

13 BRI <) - Bl)]+ L BIEC0) - () @
k=1 -1

+ (2n(LnD1)? + nD1(Ln)* + ;’DO)\/]:(TO + §n2(E Invg —Elnwvg). (3)

Given the fact/Wang et al.[(2023)):
2

K
i |Vf<xk>|2] F W S IV £ Gen)]2

TS i)l
R e ik | ° E[/ox) |

Vg—1 |

2

SIvicolR| < ‘W(ﬂxn — E[f(xx)]) + 2D:E[\/GR]EIE(0) — £(T)]
k=1

(2(InDy)? + Dy(In)? + ?@W
+2LE[vk]n(Elnvg — Elnwvg).

Further applying the fact E[g] is upper bounded by O(

expectation that:

) [Wang et al.| (2023), we have in

3

.) 1 1 /4 X
i VGl < 5o () = oy (00 = 1)+ 20160
+ (2(LyD1)? + Dy (Ln)? + ;Do)\;% + 2Lnlan).
This concludes the proof. O

19

Under review as a conference paper at ICLR 2025

D DISCUSSION

D.1 SCALING OF THE GOLDEN STEP SIZE

Our analysis in Section derives 74 = % lim, , .- x! and further suggests a numerator func-
4

tion s(z) = px9, where p — 1/2,q — 1/47. Specifically, we employ s(z) = 0.22%2* for all
optimization tasks in the experiments. In the following, we verify the effectiveness of scaling p.

Table|13|and Table |14 demonstrate the performance comparisons between the default ADAMG and
ADAMG (0.5), which employs s(x) = 0.52°-24. We observe that ADAMG (0.5) generally improves
the performance on image tasks and fine-tuning LoRA on GPT2, but results in performance decay
when fine-tuning BERT.

However, Table[T5]provides clearer insights into the effectiveness of the scaling p through reliability
comparison. Compared with the default ADAMG, ADAMG (0.5) enhances adaptability on tasks that
prefer a large LR Adam and reduces the adaptability on tasks that prefer a small LR Adam. Consid-
ering the inner expectation mechanism of the proposed method and the empirical performance, we
believe that the scaling p potentially shifts the covering but may not damage the range.

Test accuracy (%)
Dataset Algorithm Epoch 20&pre-trained network Epoch 100&randomly init. network

DenseNet ResNet ViT-B VGG DenseNet ResNet VIiT-B VGG

ADAMG 86.1+0.3 91.1+0.4 78.6+0.4 87.3+0.0 68.1+0.6 75.9+0.6™ 58.1+0.3 77.4+0.4

CIFARIO ADAMG (0.5) 87.4+0.2 92.9+0.6 79.60.2 87.4+0.5 74.5+0.4* 82.4+0.2 58.8+0.1 78.8+0.2

ADAMG 62.6+0.2 70.4+1.3 54.5+0.1 63.120.1 35.420.0* 44.9+0.4* 31.5£0.242.1+0.4

CIFARI00 ADAMG (0.5) 65.0+0.2 74.0+1.4 54.940.3 63.7+£0.3 43.8+0.1 53.4+0.2 32.5+0.242.7+1.3

ADAMG 62.70.1 64.2+1.4 60.2+0.3 59.7+0.3 26.3+0.4* 39.0+0.2* 16.9+0.1 35.9+0.4

Tiny-ImageNet \ 1\ \iG (0.5) 63.6£0.2 65.441.3 64.140.5 57.740.0 34.840.1 454403 17.9£0.3 33.70.6

Table 13: Test accuracy with CIFAR-10, CIFAR100, and Tiny-ImageNet under 3 different seeds.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

Matthews Acc. F1 Pearson F1 Matched Acc. Acc. Acc.
COIT. Acc. F1 COIT. F1 acc. Acc. Acc. Acc.

Algorithm

BERT

ADAMG 50.6£3.2% 90.9+0.4 87.0+2.1 88.7£0.6 87.1+0.1 83.9+0.4 89.8+0.3 65.2+3.5 52.1+6.0
ADAMG (0.5) 0.0£0.0* 50.9+0.0* 81.2+0.0% 26.3£29.5% 0.0£0.0* 36.6+6.1* 49.5+0.0* 50.9+2.6* 52.1+6.0

LoRA on GPT2

ADAMG 24.2+5.0 90.9+0.6 82.6+0.6 83.9+0.5 80.8+0.4 78.8+0.1 86.0+0.5 58.0+4.9 49.8+5.8
ADAMG (0.5) 31.0+7.4 90.4+0.4 82.8+0.7 85.4+0.8 82.7+0.3 79.9+0.2 86.7+0.7 56.4+1.2 52.6+5.3

Table 14: Performance of fine-tuning pre-trained BERT with GLUE benchmark under 3 different
seeds.

Metrics Algorithm Adam(le-2) Adam(le-3) Adam(le-4) Adam(le-5) Avg.

ADAMG 2/5 11/14 15/15 7/8 0.76
ADAMG (0.5) 4/5 13/14 15/15 0/8 0.68

Reliability ratio

Table 15: Reliability ratio comparison, which is derived from Table [13|and Table 14} and provides
clearer insights into the effectiveness of the scaling p. Compared with the default ADAMG, ADAMG
(0.5) generally enhances adaptability on tasks that prefer a large LR Adam and reduces adaptability
on tasks that prefer a small LR Adam. This potentially indicates a covering shift phenomenon.

20

Under review as a conference paper at ICLR 2025

D.2 DYNAMIC STEP SIZE

In case 2, 7 is constant but dynamic with respect to K (upper-case), so 1 := (v)9 can be con-
sidered as a constant value that obeys Corollary [3.3] and the analysis in Section [3.2] Finally, we
approximates vx with vy in the proposed Algorithm [} The approximation is intuitive and can

be improved along with training. Besides, a similar idea is the optimality gap approximation,

max;<k ||z; — zol| Approx., ||xo — x*||, exploited in the baseline method DoG and its variantsIvgi

et al.| (2023)).

We further discuss dynamic 7 with respect to k (lower-case), i.e., n := (vg)?, which is naturally
compatible with our algorithm design. We demonstrate that it aligns well our analysis framework
with some wild assumptions and eliminates the need for approximation.

Particularly, we can update our Corollary 3.3 as a time-varying learning rate 7, then, we have a
similar form of conclusion, formulated as

1 Z i Zk L Th 1
min ||V f(z)|]* < (1 S +e Invg +c;);
ke[K] O(F) Zk 1Mk Zk 1Mk Zk 17k

where c1, c2, and c3 are the corresponding coefficients. Ignoring the constant value and substituting
M with (vg)9, the right-hand side can be further reformulated as

1 (Zf 1(”16) Zk (v k)% 1 1 >

Vi S e | S wr TS (e

1 (UK)3q+1 (UK)Qq—H 1
— QO (\/W((UK)q+1 + (’L}K)q+1 1HUK+‘(UK)Q+1))

1 2 q 1
Achieving a good approximation of the above first and second formulas necessitates that
Zk 1(op)? =~ ﬁ(m{)q“, which imposes requirements on the sequence {vq,--- ,vx} (E.g.,

K . L
Zl 122 BN fl %:c%) and leads to future investigations.

However, the desired result, as shown in the third formula above, will lead to the same level of
expectation in Equation |1|as that derived from employing a constant step size (The difference in the
last term does not affect the conclusion). This suggests that our algorithm design, 7, = (vg)?, is
(possibly) naturally compatible with analysis in Section [3.2]and Section 3.3

21

	Introduction
	Related work
	Method
	Preliminary
	Golden step size for AdaGrad-Norm
	Solution of the golden step size
	Scale-free property of golden step size
	Algorithm: AdaGrad-Norm version parameter-free optimizer
	Algorithm: Adam version parameter-free optimizer

	Experiments
	Evaluation criteria
	Setup
	Performance comparison

	Conclusion
	Experiment
	Setup
	Completed version results
	Reliability ratio under different performance gap
	Robustness against LR decay strategy

	Training loss curves
	Image tasks
	Language tasks

	Technical proof details
	Discussion
	Scaling of the golden step size
	Dynamic step size

