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ABSTRACT

With the rapid growth of spatio-temporal data fueled by IoT deployments and urban
infrastructure expansion, accurate and efficient continual forecasting has become
a critical challenge. Most existing Spatio-Temporal Graph Neural Networks rely
on static graph structures and offline training, rendering them inadequate for real-
world streaming scenarios characterized by graph expansion and distribution shifts.
Although Continual Spatio-Temporal Forecasting methods have been proposed to
tackle these issues, they often adopt backbones with limited modeling capacity
and lack effective mechanisms to balance stability and adaptability. To overcome
these limitations, we propose STBP, a novel framework that integrates a general
spatio-temporal backbone with a scalable contextual pattern bank. The backbone
extracts stable representations in the frequency domain and captures dynamic
spatial correlations through lightweight linear graph attention. To support continual
adaptation and mitigate catastrophic forgetting, the contextual pattern bank is
updated incrementally via parameter expansion, enabling the capture of evolving
node-level heterogeneity and relevance. During incremental training, the backbone
remains fixed to preserve general knowledge, while the pattern bank adapts to
new scenarios and distributions. Extensive experiments demonstrate that STBP
outperforms state-of-the-art baselines in both forecasting accuracy and scalability,
validating its effectiveness for continual spatio-temporal forecasting. Code is
available at https://github.com/Aoyu-Liu/STBP.

1 INTRODUCTION

With the rapid development of urban IoT sensing systems, spatio-temporal data such as traffic
flow (Shao et al., 2022b) and air quality (Tian et al., 2025) observations continue to surge (Kumar
et al., 2024; Hu et al., 2023; Fang et al., 2026). Conducting efficient and accurate forecasting on
data streams has become a core task in the development of smart cities (Jin et al., 2024; Yang et al.,
2025). Unlike traditional offline learning based on static assumptions, real-world urban environments
are in a state of continuous evolution—dynamic changes in urban structure and behavioral patterns
constantly drive the evolution of graph structures and data distributions.

Spatio-Temporal Graph Neural Networks (STGNNs) (Kong et al., 2024; Gao et al., 2024; Liu &
Zhang, 2025) have been widely used to model complex spatio-temporal dependencies. However,
most existing models still adhere to the paradigm of ”fixed topology + offline training”: the graph
structure is predefined and fixed during the training phase, and the model is deployed directly after
training. Yet, as shown in Figure 1, this static assumption becomes difficult to sustain when the node
set continuously expands or the connectivity dynamically reconstructs over time. If one relies solely
on structural modifications and continuous fine-tuning to handle node increments, model performance
often degrades significantly. Therefore, Continual Spatio-Temporal Forecasting (CSTF) (Miao et al.,
2024b; Chen & Liang, 2025; Ma et al., 2025b) has garnered increasing attention. Its goal is to achieve
incremental learning and efficient inference on new data without repeatedly relying on retraining with
historical data. As shown in Figure 1, typical CSTF approaches employ a general spatio-temporal
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Figure 1: Limitations of existing studies.

backbone integrated with strategies such as reg-
ularization, replay, or dynamic architectures to
adapt to graph structural expansion and mitigate
catastrophic forgetting.

However, two key issues in existing CSTF meth-
ods have not yet been adequately addressed. First,
the general backbone adopted by most current
methods is relatively simple (e.g., stacks of graph
and temporal convolutions), making it difficult to
effectively handle incremental scenarios character-
ized by dynamically changing spatio-temporal cor-
relations and long-term distribution drift. Forcibly
adapting existing STGNNs for continual learn-
ing often leads to performance degradation (Shao
et al., 2024; Ma et al., 2025a). Second, continual
optimization strategies based on dynamic structural expansion are often weakly coupled with the
backbone—such as direct parameter expansion or prompt concatenation—making it challenging
to achieve a good balance among model stability, adaptability, and interpretability. Based on the
above issues, we argue that an ideal CSTF framework should simultaneously address the following
four key challenges: ❶ handling distributional drift; ❷ modeling dynamic spatio-temporal correla-
tions; ❸ alleviating catastrophic forgetting; and ❹ designing an incremental strategy that efficiently
collaborates with the backbone.

To this end, we bridge the gap between STGNNs and continual learning by introducing a general-
purpose spatio-temporal backbone with scalable contextual pattern bank (STBP). Specifically, the
backbone in STBP leverages frequency-domain modules to extract stable spatio-temporal components,
mitigating distributional drift. Simultaneously, a lightweight, scene-agnostic linear graph attention
mechanism is introduced to model dynamic spatial correlations with low computational overhead.
To mitigate catastrophic forgetting and support continuous graph structure expansion, we design
a contextual pattern bank composed of trainable parameters. It incrementally updates knowledge
via parameter expansion and interacts with the backbone through gating and attention mechanisms,
thereby uncovering node relevance and heterogeneity, and gradually adapting to scenario expansion
at low cost. Within this framework, the backbone is responsible for modeling general and stable
patterns, while the contextual pattern bank captures node-related heterogeneous contexts, working
collaboratively to adapt to continuously evolving environments.

Our main contributions are summarized as follows: ❶ We propose an efficient and general back-
bone tailored for continual forecasting tasks, capable of modeling dynamic spatial correlations and
mitigating distribution shift; ❷ We design a prompt-based guidance mechanism using contextual
pattern bank, supporting dynamic model adaptation and alleviating catastrophic forgetting; ❸ Exten-
sive experiments on multiple real-world datasets demonstrate that STBP significantly outperforms
state-of-the-art baselines in terms of forecasting accuracy, adaptability, and scalability.

2 RELATED WORK

Spatio-Temporal Forecasting. Early studies in spatio-temporal forecasting, including methods like
STGCN (Yu et al., 2018) and DCRNN (Li et al., 2018), primarily focused on combining basic temporal
and spatial elements for prediction tasks. These models typically depended on predefined geographic
adjacency matrices, which limited their ability to capture the evolving nature of spatial correlations.
In contrast, later advancements, such as GWNet (Wu et al., 2019), DGCRN (Li et al., 2023), and
MegaCRN (Jiang et al., 2023b), addressed this limitation by incorporating adaptive adjacency matrices
or learning spatial correlations directly from the data. This shift led to a notable improvement in
forecasting accuracy. More recently, models like STID (Shao et al., 2022a), STAEformer (Liu
et al., 2023a), and HimNet (Dong et al., 2024) have emphasized the significance of distinguishing
spatial patterns to further enhance forecasting performance. These methods incorporate trainable
components, including spatial embeddings, parameter pools, and contextual pattern bank, to more
accurately capture spatial variations, boosting both prediction precision and model adaptability.

Continual Spatio-Temporal Forecasting. TrafficStream (Chen et al., 2021), one of the pioneering
frameworks in CSTF, integrates spatio-temporal modeling with continual learning by employing
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historical data replay and parameter smoothing to manage long-term streaming traffic data and
achieve accurate traffic flow prediction. Building on this line of work, STKEC (Wang et al., 2023a)
proposes an influence-based knowledge expansion strategy together with a memory-augmented
knowledge consolidation mechanism, which better supports the scaling of transportation networks
while alleviating catastrophic forgetting. PECPM (Wang et al., 2023b) leverages pattern matching
to dynamically maintain a traffic pattern bank, enabling efficient, historical-data-free continual
learning with improved accuracy. STRAP (Zhang et al., 2025) adopts retrieval-augmented learning,
constructing multi-dimensional pattern libraries and using plug-and-play prompting to fuse retrieved
patterns, thereby enhancing out-of-distribution (OOD) generalization and mitigating catastrophic
forgetting. EAC (Chen & Liang, 2025) introduces prompt tuning via a dynamic prompt pool that
expands and compresses over time, balancing adaptation to new nodes with knowledge preservation in
a parameter-efficient manner. Additionally, UFCL (Miao et al., 2025) leverages federated learning to
protect data privacy and employs a global replay buffer of synthetic spatio-temporal data, addressing
the challenges of distributed streaming environments.

3 PRELIMINARY

Definition 1 (Streaming Spatio-Temporal Graph). We define a streaming spatio-temporal graph
as a sequence of evolving graphs G = {Gτ}Tτ=1, where each graph Gτ = (Vτ , Eτ , Aτ ) represents
the graph at incremental period τ . Here, Vτ denotes the node set, Eτ the edge set, and adjacency
matrix Aτ ∈ RNτ×Nτ connections between nodes. The number of nodes at period τ is denoted by
Nτ = |Vτ |. The graph evolves incrementally as Gτ = Gτ−1 +∆Gτ , where ∆Gτ captures structural
or feature modifications between periods.

Definition 2 (Continual Spatio-Temporal Forecasting). Continual spatio-temporal forecasting aims
to develop an optimal predictive model at each stage based on dynamic, streaming spatio-temporal
graph data. At each incremental period τ , given the current graph Gτ and historical observations
Xτ ∈ RNτ×Th , the goal is to predict future signals Yτ ∈ RNτ×Tf as follows:

Ŷτ = fθ(Gτ ,Xτ ), (1)

where Th is the length of the historical observation window, and Tf is the forecasting horizon. The
model fθ is parameterized by θ, and continually updated by minimizing:

θ∗τ = argmin
θ

E(Gτ ,Xτ ,Yτ )∼Dτ
[L (fθ(Gτ ,Xτ ),Yτ )] , (2)

where L(·, ·) is a loss function, and Dτ denotes the data distribution at period τ .

4 METHODOLOGY

4.1 OVERVIEW OF STBP

The workflow and architecture of STBP are shown in Figure 2. It consists of two core components: a
general spatio-temporal backbone and a contextual pattern bank. The backbone, comprising temporal
and spatial modules with a prediction layer, captures spatio-temporal correlations in evolving networks.
The contextual pattern bank, made of trainable parameters, is dynamically expanded and fine-tuned
as data evolves. While the backbone captures general, stable patterns, the contextual pattern bank
adapts to environmental changes, focusing on context-specific patterns. Guided by prompts, both
components collaborate to form an efficient and robust continual learning system.

In terms of workflow, streaming spatio-temporal data is sequentially fed into the STBP. During
the initial incremental training phase, the backbone and contextual pattern bank are jointly trained
to capture spatio-temporal correlations from current data. In later stages, the backbone is frozen
(denoted by a snowflake) to retain knowledge learned from historical data, while the contextual
pattern bank is updated (denoted by a flame) through expansion and fine-tuning. These updates serve
as prompts, guiding the frozen backbone to adapt to new data distributions. This continual learning
process, driven by the interplay between backbone and contextual pattern bank, enables the model to
progressively enhance its representation power and adaptability while preserving core functionality.
For detailed workflow steps, refer to Algorithm 1 in Appendix A.3.2.
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Figure 2: The overall workflow and architecture of STBP.

4.2 CONTEXTUAL PATTERN BANK
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Figure 3: Contextual pattern bank visualization.

Recent studies (Shao et al., 2022a; Dong et al.,
2024; Chen & Liang, 2025) have shown that incor-
porating node-specific trainable parameters into
STGNNs can significantly enhance forecasting
performance. Following this insight, we propose
an expandable contextual pattern bank
Pτ ∈ RNτ×d, composed of trainable parameters,
to consolidate historical spatio-temporal patterns
and generalize to new ones, thereby mitigating
catastrophic forgetting and continuously adapting
to new incremental scenarios, where d denotes the
feature dimension.

We posit that the model can utilize Pτ to effec-
tively distinguish both the relevance and heterogeneity of nodes, enabling a more nuanced under-
standing of the underlying data structures. Here, relevance refers to shared behavioral patterns
among nodes—such as similar trends or periodic fluctuations—while heterogeneity captures differ-
ences arising from distinct node functions or external factors such as geography, policy, or events.
To validate this hypothesis, we conduct a t-SNE-based analysis on Pτ trained on spatio-temporal
datasets (see Figure 3), which reveals meaningful clustering patterns. Each cluster exhibits distinct
characteristics, corresponding to heterogeneity, while nodes within the same cluster display similar
temporal dynamics, reflecting relevance.

As shown in Figure 2, given a streaming spatio-temporal input Xτ ∈ RNτ×Th , the backbone model
Mθ, and contextual pattern bank Pτ ∈ RNτ×d, the incremental learning process is formulated as:

Ŷτ =Mθ(Xτ ,Pτ ). (3)

At the initial training stage (τ = 1), both the backbone and contextual pattern bank are jointly
trained (denoted with flame). For subsequent stages (τ > 1), the backbone is frozen (denoted with
snowflake), and only the contextual pattern bank is updated through expansion:

P′
τ = Pτ−1 ∥ ∆Pτ , (4)
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where ∆Pτ ∈ R(Nτ−Nτ−1)×d represents newly introduced parameters for the current incremental
period. Only the expanded contextual pattern bank P′

τ ∈ RNτ×d is fine-tuned during training.
Notably, even without explicit clustering constraints, the contextual pattern bank autonomously
distinguishes heterogeneous and relevant nodes through data-driven parameter learning and prompt-
based interactions with the backbone, driven by the prediction task. This strategy ensures that the
backbone retains previously acquired knowledge, while the contextual pattern bank continually
adapts to evolving distributions. It incrementally expands to represent an increasingly diverse set of
environmental patterns, thereby avoiding the inadequacy exhibited by fixed models in novel scenarios.

Distinct from existing work (Wang et al., 2023a; Chen & Liang, 2025; Wang et al., 2023b), we
introduce a Prompt-Based Guidance (Peebles & Xie, 2023; Zhang et al., 2023) mechanism to enhance
Pτ ’s capacity to model both node-level relevance and heterogeneity. Specifically, the contextual
pattern bank comprises three groups of trainable parameters: P

(i)
τ ∈ RNτ×d for i ∈ 0, 1, 2. As

illustrated in Figure 2, these components interact with the backbone’s hidden representation Hτ via
the following prompt-based gating function:

H′
τ = P(1)

τ · hθ(Hτ · (1 +P(0)
τ )), (5)

where hθ denotes an arbitrary submodule within the backbone. This gating mechanism enables
adaptive modeling of node heterogeneity. Additionally, P(2)

τ acts as a key embedding in the attention
module, guiding the backbone to generalize correlation-aware information under task constraints. Im-
portantly, since the contextual pattern bank encodes high-level abstractions rather than raw historical
data, our method supports knowledge retention without revisiting prior data—offering advantages in
privacy protection and storage efficiency.

4.3 GENERAL SPATIO-TEMPORAL BACKBONE

While the contextual pattern bank mitigates catastrophic forgetting in continual learning, it lacks the
ability to model dynamic spatio-temporal correlations and handle distributional drift. To address
this, we design a general spatio-temporal backbone aimed at handling distributional drift, spatio-
temporal correlation modeling, and graph scalability during continual learning. The term general
implies that the backbone is independent of the number of nodes and does not rely on any predefined
adjacency matrix, making it adaptable to arbitrary spatio-temporal data structures.

As shown in Figure 2, the backbone operates as follows: the input spatio-temporal data first passes
through a frequency-domain network (FreNet), which maps it into high-dimensional temporal
representations and extracts stable components via frequency domain analysis. A dual-stream
linear graph attention (DLGA) module then captures dynamic spatial correlations, followed by a
feedforward layer with a multilayer perceptron for enhanced nonlinear expressivity. Finally, the
features are reconstructed to their original shape by another FreNet and passed through a prediction
layer. We detail the FreNet and DLGA modules below.

Frequency-Domain Network. Spatio-temporal data in evolving environments often suffer from
distributional drift (Wang et al., 2024; Ji et al., 2025; Zhou et al., 2023). Although the contex-
tual pattern bank helps retain stable knowledge, we further address this issue through a dedicated
frequency-domain analysis (Xia et al., 2023). FreNet is designed to capture temporal correla-
tions while emphasizing stable components in the data, such as periodicity and trends, which are
more resilient to distributional changes (Liu & Zhang, 2025). Specifically, STBP employs two
FreNets—one at the beginning and one at the end of the backbone (Figure 2). The first maps input
data Xτ ∈ RNτ×Th through a linear layer into a high-dimensional representation Hτ ∈ RNτ×d,
which is then transformed to the frequency domain using a Fast Fourier Transform (FFT). A learnable
frequency-domain embedding Fτ ∈ C( d

2+1) adaptively highlights stable features. This process is
formalized as:

Hf
τ = IFFT(FFT(Hτ )⊙ Fτ ), (6)

where Hf
τ ∈ RNτ×d is further processed by a linear layer. The resulting representation Hf

τ then
interacts with the contextual pattern bank component P(0)

τ via gating-based prompt guidance (Eq.
5) to produce Hs

τ ∈ RNτ×d, which serves as input to the subsequent DLGA module. The second
FreNet performs an inverse operation, restoring the feature shape to RNτ×Th . Compared to
traditional temporal modules like RNNs (Li et al., 2018; Bai et al., 2020) or TCNs (Zheng et al., 2023;
Fang et al., 2023), FreNet offers higher computational efficiency and enhanced ability to extract

5



Published as a conference paper at ICLR 2026

stable low-frequency components (e.g., periodicity and trends) while suppressing high-frequency
noise, thereby obtaining more robust temporal representations that are resilient to distributional drift
across periods and scenarios.

Dual-Stream Linear Graph Attention. After obtaining stable components, it remains essential
to capture complex spatial interactions and time-varying node correlations. An effective spatial
module must adaptively learn node correlations in a data-driven manner, maintain computational
efficiency, and scale to growing graphs. Graph attention mechanisms (Veličković et al., 2018) have
emerged as promising solutions, enabling dynamic correlation modeling without relying on fixed
adjacency matrices. However, conventional graph attention (Zheng et al., 2020; Jiang et al., 2023a;
Liu et al., 2023a) incurs O(N2) complexity, limiting its scalability. To overcome this, we propose
DLGA (Figure 2), which improves efficiency using a random feature mapping-based linear attention
mechanism (Katharopoulos et al., 2020). Moreover, DLGA introduces a dual-stream structure by
incorporating the contextual pattern bank P

(2)
τ ∈ RNτ×d as an additional key. This enables the model

to assess the relationship between evolving input patterns and stored knowledge. Formally:

Q = WqH
s
τ , K = WkH

s
τ , V = WvH

s
τ , (7)

Hs′

τ = Attention(Q,K,V,P(2)
τ )

= Softmax(QK⊤ +Q(P(2)
τ )⊤)V,

(8)

Attention(Q,K,V,P(2)
τ ) ≈ (ϕ(Q)ϕ(K)⊤ + ϕ(Q)ϕ(P(2)

τ )⊤)V

= ϕ(Q)
(
ϕ(K)⊤V + ϕ(P(2)

τ )⊤V
)
.

(9)

Here, Wq, Wk, and Wv are trainable projection matrices. Hs
τ and Hs′

τ ∈ RNτ×d denote the input
and the spatially enriched representation passed to the feedforward layer of the DLGA module, respec-
tively. The function ϕ(·) denotes a random feature mapping, with Softmax used for approximation
in our implementation. For further details on the approximation derivation, see Appendix A.3.1.
Notably, the linear attention approximation does not explicitly construct an adjacency matrix. Instead,
it implicitly models dynamic correlations by reordering operations in the attention computation.
DLGA reduces computational complexity from quadratic to linear, while preserving dynamic spatial
modeling and seamlessly integrating prompt-based knowledge from the contextual pattern bank.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our model on three real-world streaming spatio-temporal datasets from
the traffic and meteorology domains. The traffic datasets, PEMS-Stream (Chen et al., 2001) and
CA-Stream (Liu et al., 2023b), consist of traffic flow measurements provided by the California
Department of Transportation (CalTrans), with a sampling interval of 5 minutes. The meteorological
dataset, AIR-Stream (Chen & Liang, 2025), is derived from urban air quality platform of the Chinese
Environmental Monitoring Center, with hourly sampling intervals. To ensure fair evaluation, all
datasets are split into training, validation, and test sets using a fixed ratio of 6:2:2. For each prediction
task, the model is trained to forecast the next 12 time steps based on the previous 12 observations.
Detailed dataset statistics are provided in Appendix A.4.1.

Baselines and Metrics. We select representative models from two categories as baselines: ▷
Conventional spatio-temporal forecasting models, including lightweight spatio-
temporal architectures such as GWNet (Wu et al., 2019), STID (Shao et al., 2022a), and iTrans-
former (Liu et al., 2024b). These models are adapted specifically for incremental training in our
experiments. ▷ Continual spatio-temporal forecasting models, including Traf-
ficStream, STKEC (Wang et al., 2023a), PECPM (Wang et al., 2023b), STRAP (Zhang et al., 2025),
and EAC (Chen & Liang, 2025). The performance of all models is evaluated using the following
metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). More details on this are included in Appendix A.4.2.

5.2 MAIN RESULTS

The main experimental results are summarized in Table 1, which reports the metrics averaged over all
incremental periods. We also present the results at specific forecasting horizons (3, 6, and 12 time
steps ahead), together with the overall average across horizons. STGNNs, including GWNet and STID,
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Table 1: Main experimental results. Bold: best, underline: second best.
Dataset MetricHorizon GWNet STID iTransformerTrafficStream STKEC PECPM STRAP EAC STBP

PEMS-Stream

MAE

3 19.64±0.1224.34±0.13 17.63±0.76 14.23±0.09 14.29±0.1214.26±0.1314.30±0.11 13.86±0.16 11.62±0.09

6 19.68±0.1925.45±0.21 20.82±0.76 16.43±0.03 16.44±0.1116.35±0.1216.34±0.10 15.40±0.19 12.26±0.10

12 20.63±0.0929.42±0.38 28.33±0.86 21.76±0.07 21.66±0.1121.46±0.1921.52±0.15 18.90±0.28 13.47±0.08

Avg. 19.87±0.1026.07±0.23 21.60±0.79 16.95±0.03 16.96±0.0916.86±0.1216.88±0.10 15.67±0.20 12.31±0.07

RMSE

3 32.20±0.1739.37±0.13 28.20±1.15 23.00±0.09 23.08±0.1423.07±0.1523.06±0.13 22.26±0.23 19.20±0.13

6 32.34±0.3240.86±0.19 33.80±1.13 26.87±0.04 26.93±0.1526.76±0.2026.71±0.14 24.99±0.28 20.51±0.15

12 33.73±0.0946.20±0.43 45.98±1.25 35.29±0.11 35.19±0.1134.77±0.3734.80±0.19 30.56±0.45 22.67±0.13

Avg. 32.59±0.1841.67±0.21 34.88±1.17 27.52±0.05 27.56±0.1127.37±0.2027.35±0.13 25.30±0.29 20.52±0.11

MAPE
(%)

3 27.47±0.6937.79±2.23 32.46±3.04 18.34±0.67 18.54±0.6118.19±0.6618.69±0.52 18.35±0.31 15.00±0.24

6 27.22±0.5839.70±2.43 36.73±3.84 20.77±0.71 20.64±0.4820.79±0.5721.33±0.41 20.11±0.36 15.55±0.26

12 29.38±1.1847.94±2.91 54.31±4.66 27.88±0.26 27.05±0.6228.33±0.5228.20±1.10 24.30±0.57 16.75±0.23

Avg. 27.79±0.7641.09±2.49 39.63±3.81 21.66±0.54 21.50±0.5221.73±0.4522.17±0.46 20.42±0.41 15.65±0.21

CA-Stream

MAE

3 23.49±0.8027.71±0.23 20.16±0.06 17.82±0.26 17.69±0.1917.93±0.1223.59±0.61 17.66±0.37 15.01±0.18

6 23.31±0.6928.93±0.26 24.37±0.06 20.38±0.17 20.41±0.0420.33±0.0925.38±0.68 19.68±0.54 15.78±0.07

12 24.78±0.8633.61±0.45 34.05±0.06 26.92±0.53 27.05±0.1726.68±0.1931.10±0.89 24.86±1.33 17.19±0.09

Avg. 23.73±0.7529.71±0.28 25.34±0.05 21.09±0.29 21.09±0.1321.04±0.1126.25±0.62 20.20±0.69 15.77±0.09

RMSE

3 35.87±0.9841.53±0.31 31.58±0.09 28.01±0.22 28.02±0.1928.00±0.1634.73±0.74 27.46±0.46 24.37±0.27

6 35.68±0.8843.14±0.35 37.76±0.10 32.19±0.22 32.43±0.0531.94±0.0937.97±0.86 30.64±0.83 25.71±0.22

12 37.57±1.1149.18±0.58 51.24±0.10 41.59±0.64 42.08±0.2141.14±0.3046.74±1.36 37.77±1.94 28.08±0.14

Avg. 36.20±0.9644.12±0.37 38.94±0.09 33.01±0.35 33.24±0.1332.77±0.1739.05±0.80 31.18±0.99 25.70±0.16

MAPE
(%)

3 24.61±0.9529.24±0.65 21.76±0.17 17.05±0.41 16.60±0.1917.63±0.9119.11±0.49 18.26±1.88 14.22±0.03

6 24.44±0.8030.66±0.78 26.76±0.22 19.22±0.30 18.98±0.1719.74±0.9220.48±0.39 19.45±1.16 14.85±0.07

12 25.71±0.8136.88±1.29 39.81±0.38 25.47±0.46 24.99±0.2925.94±1.0924.97±0.59 24.52±1.10 16.20±0.08

Avg. 24.79±0.8531.73±0.86 28.34±0.20 19.98±0.30 19.61±0.1920.49±0.9121.15±0.47 20.17±1.25 14.94±0.05

AIR-Stream

MAE

3 28.48±1.4332.85±0.21 22.37±0.76 20.73±0.40 20.95±0.1720.82±0.3521.41±0.33 20.41±0.36 20.00±0.14

6 29.79±0.8933.15±0.22 26.22±0.48 25.64±0.34 25.54±0.0825.54±0.1926.12±0.34 25.20±0.29 24.70±0.30

12 31.30±0.5233.88±0.25 29.45±0.31 29.04±0.23 28.94±0.1228.95±0.1129.38±0.31 28.57±0.42 28.28±0.63

Avg. 29.66±1.0133.23±0.22 25.53±0.56 24.58±0.34 24.63±0.1124.60±0.2125.16±0.32 24.21±0.43 23.64±0.23

RMSE

3 44.38±2.0451.24±0.28 34.98±1.18 32.80±0.57 33.13±0.2833.07±0.5233.72±0.41 32.19±0.57 32.15±0.24

6 46.22±1.2851.61±0.31 40.95±0.73 40.41±0.53 40.38±0.2040.48±0.3941.13±0.4039.63±0.43 39.81±0.26

12 48.34±0.8552.55±0.39 45.70±0.55 45.54±0.47 45.53±0.2745.63±0.2746.07±0.3444.65±0.63 44.97±0.97

Avg. 46.01±1.4651.72±0.33 39.67±0.91 38.58±0.53 38.70±0.2638.76±0.4139.37±0.38 37.83±0.60 37.76±0.30

MAPE
(%)

3 38.02±2.6043.52±0.64 28.64±1.28 26.33±0.30 26.24±0.3025.79±0.5026.80±0.36 26.06±0.71 24.64±0.16

6 39.98±1.7044.12±0.57 34.91±0.68 33.33±0.21 33.10±0.2832.97±0.1833.30±0.19 32.88±0.64 30.66±0.42

12 42.37±1.1445.06±0.62 40.79±0.39 39.27±0.24 39.02±0.1838.67±0.0238.87±0.24 38.85±0.67 36.23±0.52

Avg. 39.87±1.8744.16±0.60 34.15±0.76 32.29±0.29 32.12±0.2131.82±0.1932.37±0.28 31.77±0.53 29.70±0.35

Table 2: Comparison of few-shot forecasting performance.
Model PEMS-Stream 10% CA-Stream 10%

MAE RMSE MAPE (%) MAE RMSE MAPE (%)
GWNet 30.15±1.06 45.30±1.59 48.80±3.85 33.73±0.89 50.80±1.43 36.52±0.86

STID 33.42±2.90 50.63±3.73 63.96±12.60 37.09±0.52 55.10±0.69 39.18±1.12

iTransformer 20.99±0.19 32.67±0.25 49.11±1.62 25.43±0.08 39.01±0.10 28.39±0.54

TrafficStream 17.23±0.08 27.49±0.17 27.63±0.43 21.28±0.19 33.25±0.22 20.45±0.45

STKEC 17.75±0.12 28.23±0.13 27.80±0.88 21.20±0.13 33.20±0.08 20.23±0.46

PECPM 17.05±0.02 27.20±0.07 29.08±1.90 21.48±0.15 33.33±0.13 21.25±0.86

STRAP 17.68±0.10 27.98±0.14 31.67±2.88 26.34±0.79 39.39±1.09 21.34±0.45

EAC 16.13±0.05 25.57±0.06 24.02±1.23 20.94±0.70 32.15±1.00 21.37±1.53

STBP 13.58±0.0522.24±0.13 17.89±0.29 17.11±0.0327.48±0.16 17.60±0.30

rely on static graph assumptions and
are not designed for continual learn-
ing. Following prior work (Chen
& Liang, 2025), we therefore re-
train the backbone from scratch at
each incremental stage using only
data from the current period. In
contrast, iTransformer is scenario-
agnostic, so we adopt an online
training regime: at each stage it is
trained on the complete node set of
the current spatio-temporal graph,
initialized from the previous period’s weights, enabling end-to-end fine-tuning. More detailed
experimental results are provided in Appendix A.4.4.

Results of conventional methods. As shown in Table 1, STGNNs trained from scratch achieve only
poor performance on all datasets. Although these methods work well under static assumptions, they
fail to exploit past spatio-temporal knowledge, resulting in unsatisfactory performance. In contrast,
iTransformer performs better by leveraging historical spatio-temporal information through online
training, but it still suffers from catastrophic forgetting and is therefore not an ideal solution.

Results of CSTF methods. The best-performing models are those that explicitly mitigate catas-
trophic forgetting, including CSTF methods such as PECPM, STRAP, and EAC. Compared with
full-parameter fine-tuning strategies (e.g., PECPM, STKEC, TrafficStream), lightweight prompt-
based adaptation on a frozen backbone (e.g., EAC, STRAP, STBP) yields higher average accuracy,
highlighting the benefits of dynamically tuning only a small set of parameters. Nevertheless, STRAP
performs notably poorly on CA-Stream, indicating that retrieval-based pattern matching struggles
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Figure 5: Results of parameter experiments.

in extreme incremental scenarios with rapid, large-scale topology expansion. Overall, our proposed
STBP outperforms all competing models. Compared with the best baseline, STBP reduces the
average MAE by 21.44%, 21.93%, and 2.35% on the PEMS-Stream, CA-Stream, and AIR-Stream
datasets, respectively. This gain stems from the bridge it establishes between STGNNs and CSTF
methods: the carefully designed general spatio-temporal backbone and contextual pattern bank
jointly capture dynamic spatio-temporal correlations, thereby mitigating catastrophic forgetting and
alleviating distributional drift.

Results of few-shot forecasting task. To further evaluate the robustness of the proposed model
under low-resource scenarios, we construct a few-shot training setting and compare it against existing
baselines. Specifically, we simulate a few-shot setting in which the sample size of the first incremental
period is kept unchanged, while the training set size for subsequent periods is reduced to only 10%
of the original. The test set size remains fixed throughout. As shown in Table 2, STBP consistently
outperforms all other methods, highlighting its strong ability to extract meaningful patterns from
limited data. CSTF baselines are more resilient to low-resource conditions than conventional STGNNs
(e.g., GWNet, STID). This demonstrates that when data is extremely scarce, conventional models
struggle to capture stable spatio-temporal patterns, whereas CSTF methods can leverage knowledge
accumulated from historical stages to adapt more quickly to new nodes. The continual learning
mechanism effectively mitigates catastrophic forgetting, allowing the model to continuously utilize
previously learned general features during incremental learning.

5.3 ABLATION STUDY & PARAMETER SENSITIVITY ANALYSIS

Ablation Study Settings. To validate the core contributions of STBP, we design the following
variants for ablation experiments: ❶ Retrain: The contextual pattern bank is removed. Similar to
GWNet and STID, a new backbone is trained for each incremental period using the spatio-temporal
graph data of that period, with the corresponding model predicting the results for the current test
set. ❷ Online: The contextual pattern bank is removed. Similar to iTransformer, the model is
trained on the complete node data of the current spatio-temporal graph and initialized with the model
from the previous period, allowing for adjustments across the entire model. ❸ w/o Backbone: The
contextual pattern bank is retained, but the spatio-temporal backbone is replaced with the ones used
in TrafficStream, STKEC, and EAC—i.e., replacing FreNet and DLGA with CNN and GCN. ❹ w/o
DLGA: The DLGA module in the spatio-temporal backbone is ablated. ❺ EAC: We also include EAC,
which follows a similar approach, for comparison in the ablation study.

Ablation findings. As shown in Figure 4, the ablation results demonstrate that parameter expansion
in the contextual pattern bank, together with spatio-temporal pattern distinction and prompt guidance,
is essential for alleviating catastrophic forgetting in continual learning. The performance of the
Retrain and Online variants supports this conclusion. Notably, even without the contextual pattern
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Figure 7: Visualization of real forecasting results.

bank on traffic datasets, the spatio-temporal backbone alone attains performance comparable to
EAC under online training, highlighting the critical role of real-time dynamic correlation modeling
and temporal distribution-drift mitigation in adapting to new incremental tasks. The performance
drop observed in the w/o Backbone variant further confirms the indispensability of the general
backbone and highlights the portability and adaptability of the pattern bank across different backbone
architectures. Moreover, removing the DLGA module leads to significant performance degradation,
validating its role in capturing dynamic spatial correlations and integrating prompt-based knowledge.
The FreNet module also makes a notable contribution by improving computational efficiency and
enhancing the extraction of stable temporal components.

Parameter Sensitivity Analysis. Additionally, we perform a sensitivity analysis on the adjustable
hyperparameter d in STBP. In STBP, d represents the feature dimension for each module’s feature
mapping, as well as the feature dimension of parameters in the contextual pattern bank. The analysis
results are shown in Figure 5. Increasing d enhances the model’s overall parameter count and
improves its expressive power. However, the performance gains from increasing d do not grow
indefinitely; after reaching a certain threshold, the performance gain stabilizes. Further increases
in d not only fail to improve performance but may also lead to negative effects, causing parameter
redundancy. More parameter sensitivity analysis can be found in Appendix A.4.5.

5.4 CASE STUDY

To illustrate the distinction and expandability of the contextual pattern bank in STBP, we apply
t-SNE to reduce the dimensionality of Pτ ∈ RNτ×d on the PEMS-Stream dataset. As shown in
Figure 6, each point represents a graph node. Initially untrained, the pattern bank shows a chaotic
distribution. After incremental training, clear clusters emerge. Nodes within the same cluster exhibit
similar periodic and trend patterns in their traffic data, while those in different clusters (e.g., Clusters
1–3) show distinct behaviors. New nodes from later stages (e.g., Nodes 693, 809, 834 in 2017) are
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Figure 8: Efficiency comparison. STBP O(N2) denotes the version without linear attention, and
Retrain refers to removing the contextual pattern bank.

correctly grouped into existing clusters, demonstrating that the pattern bank effectively distinguishes
and generalizes spatio-temporal patterns through parameter fine-tuning, enabling continual adaptation.

In addition, we conduct an intuitive comparison of the forecasting performance between STBP and
EAC in real-world application scenarios. As shown in Figure 7, we select representative nodes
from three datasets for visualization. Compared to EAC, STBP more accurately captures dynamic
trends, and its predictions demonstrate higher practical relevance in real-world continual learning
environments. Additional case studies on other datasets can be found in Appendix A.4.6.

5.5 EFFICIENCY STUDY

An effective CSTF method must balance scalability, computational cost, and performance. We
evaluate the efficiency of STBP against baselines under the same settings. As shown in Figure 8, the
average computational cost per period on PEMS-Stream and AIR-Stream is reported, with scatter
size indicating GPU memory usage. We further analyze the impact of linear attention, full attention,
and removal of the contextual pattern bank using a toy dataset. Results indicate that non-continual
methods—such as GWNet, STID, and iTransformer—require global parameter adjustments at each
phase, impairing efficiency. iTransformer, in particular, incurs high memory overhead due to quadratic
attention complexity. Even lightweight non-continual models exhibit limited efficiency in incremental
training.

In contrast, CSTF methods such as EAC, TrafficStream, and STKEC achieve higher efficiency through
lightweight backbones and localized parameter tuning. While PECPM and STRAP maintain low
memory usage, their training speeds remain modest. Despite its more complex backbone, STBP incurs
only minimal overhead compared to models like EAC, thanks to optimizations including frequency-
domain processing and linear attention. This enables STBP to deliver substantial performance
gains with negligible cost increase. Results on the toy dataset confirm that linear attention reduces
computational load effectively. As node count grows, the contextual pattern bank introduces only
linear additional cost through its lightweight interaction with the backbone, avoiding exponential
overhead. Furthermore, on CA-Stream, STBP maintains state-of-the-art performance even under
drastic graph expansion, demonstrating strong scalability.

6 CONCLUSION

In this work, we propose STBP, a novel framework for continual spatio-temporal forecasting. By
combining a general-purpose backbone with a scalable contextual pattern bank, STBP efficiently
mitigates catastrophic forgetting while capturing dynamic spatio-temporal correlations. It adapts to
evolving urban data without retraining from scratch, making it suitable for real-time applications.
Validated on multiple datasets, STBP demonstrates strong continual learning capabilities. Neverthe-
less, STBP currently supports continual learning in a single-task setting. In the future, we plan to
extend its application to cross-domain continual spatio-temporal forecasting, which will be a crucial
step towards developing a foundational spatio-temporal model.
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A APPENDIX

A.1 NOTATIONS

Table 3 summarizes the notations frequently used throughout this manuscript.

Table 3: The notations that are commonly used in the manuscript.
Notation Definition

G = {Gτ}Tτ=1 Streaming spatio-temporal graph
Xτ Inputs for the τ period
Yτ Prediction for the τ period
Pτ contextual pattern bank for the τ period
P′

τ Expanded contextual pattern bank
Hτ Hidden representation for the τ period
Mθ Spatio-Temporal backbone
Fτ Frequency domain embedding
Hf

τ Representation after frequency-domain processing
Wq Trainable parameter weights
Wk Trainable parameter weights
Wv Trainable parameter weights
ϕ(·) Random mapping function
Hs

τ Input of the DLGA module
Hs′

τ Output of the DLGA module

A.2 RELATED WORK DETAILS

A.2.1 SPATIO-TEMPORAL FORECASTING

Spatio-temporal forecasting aims to support decision-making in critical domains such as intelligent
transportation and smart cities by uncovering dynamic correlations embedded in spatio-temporal data.
These data typically exhibit strong spatial-temporal correlations and pronounced heterogeneity. In
recent years, deep learning-based STGNNs have emerged as effective tools for such forecasting tasks.
STGNNs generally employ temporal modules (e.g., recurrent neural networks (RNNs) (Li et al.,
2018; Jiang et al., 2023b; Shao et al., 2022b) and convolutional neural networks (CNNs)) (Yu et al.,
2018; Liu & Zhang, 2024b;a) to capture temporal correlations, while leveraging spatial modules
(e.g., graph neural networks (GNNs)) (Veličković et al., 2018; Song et al., 2020) to model spatial
relationships.

Early STGNNs, such as STGCN (Yu et al., 2018) and DCRNN (Li et al., 2018), combined basic
temporal and spatial components for forecasting tasks, often relying on predefined geographic
adjacency matrices. However, these static assumptions hinder their ability to model dynamically
changing spatial correlations in a data-driven manner. Subsequent works—such as GWNet (Wu et al.,
2019), DGCRN (Li et al., 2023), and MegaCRN (Jiang et al., 2023b)—introduced adaptive adjacency
matrices or learned spatial correlations directly from data, significantly improving prediction accuracy.
More recent advances, including STID (Shao et al., 2022a), STAEformer (Liu et al., 2023a), and
HimNet (Dong et al., 2024), have highlighted the importance of spatial pattern distinction in enhancing
forecasting performance. These models incorporate trainable mechanisms such as spatial embeddings,
parameter pools, and contextual pattern banks to distinguish spatial patterns more precisely, thereby
improving both accuracy and adaptability.

Despite these advancements, most existing STGNNs are built on static assumptions and are not
designed to operate in dynamic, continually evolving spatio-temporal environments—limiting their
applicability in continual learning scenarios.
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A.2.2 CONTINUAL SPATIO-TEMPORAL LEARNING

Early research in continual learning primarily focused on computer vision (Lee & Park, 2024; Miao
et al., 2024a) and natural language processing (Caccia et al., 2020; Xia et al., 2025). With the
rapid development of IoT and intelligent transportation systems, attention has increasingly shifted
toward CSTF (Chen et al., 2021; Wang et al., 2023a; Chen & Liang, 2025; Wang et al., 2023b;
Miao et al., 2025), which addresses the challenges of dynamically evolving and expanding spatio-
temporal data. CSTF aims to enable models to continuously learn and adapt to new patterns and
knowledge in changing environments, while minimizing forgetting of previously acquired information
or performance degradation.

One of the earliest frameworks in this domain, TrafficStream (Chen et al., 2021), pioneered the
integration of spatio-temporal modeling with continual learning. It employed strategies such as
historical data replay and parameter smoothing to handle long-term streaming traffic data, achieving
accurate traffic flow forecasting. Subsequently, the STKEC (Wang et al., 2023a) introduced an
influence-based knowledge expansion strategy and a memory-augmented knowledge consolidation
mechanism to better accommodate the growth of transportation networks while mitigating catastrophic
forgetting. The PECPM (Wang et al., 2023b) framework employs a pattern matching mechanism to
maintain and dynamically update a bank of representative traffic patterns from evolving road networks,
enabling efficient continual learning without historical data and improving both prediction accuracy
and training efficiency. Meanwhile, STRAP (Zhang et al., 2025) introduces a retrieval-augmented
approach that builds multi-dimensional pattern libraries. During inference, it retrieves and fuses
relevant historical patterns with current inputs via a plug-and-play prompting mechanism, effectively
boosting generalization in OOD scenarios while mitigating catastrophic forgetting.

The EAC (Chen & Liang, 2025) further advanced the field by incorporating prompt tuning, enabling
CSTF with a small number of trainable parameters. Its dynamic prompt pool, which supports
both “expansion” and “compression,” enhances adaptability to new nodes while preserving historical
knowledge, improving both generalization and computational efficiency. In addition, the UFCL (Miao
et al., 2025) leveraged federated learning to preserve data privacy and introduced a global replay
buffer for synthetic spatio-temporal data, addressing the challenges of distributed streaming environ-
ments. Despite these advancements, most existing methods primarily focus on alleviating knowledge
forgetting, while overlooking the critical role of the spatio-temporal backbone in continual learning
scenarios.

Advancements Beyond Existing Prompt Methods. Unlike EAC’s ”expand-and-compress” prompt
pool that may lead to historical information loss during compression, our contextual pattern bank
adopts pure parametric incremental expansion without compression, more completely preserving
historical knowledge. Additionally, while EAC’s prompt interaction is relatively simple (e.g., feature
addition), our pattern bank employs structured multi-component design (P(0)

τ , P(1)
τ , P(2)

τ ) that jointly
models node relevance and heterogeneity through gating and attention mechanisms, enabling more
comprehensive spatio-temporal representation learning.

A.3 FURTHER METHODS DETAILS

A.3.1 APPROXIMATION DERIVATION OF EQ. 9

An approximate derivation of the attention mechanism in the dual-stream linear graph attention is
presented below:

Attention (qu, kv, vv, pv) =

N∑
v=1

exp
(
q⊤
u kv

)
vv∑N

w=1 exp (q
⊤
u kw)

+

N∑
v=1

exp
(
q⊤
u pv

)
vv∑N

w=1 exp (q
⊤
u pw)

≈
∑N

v=1 ϕ (qu)
⊤
ϕ (kv)vv∑N

w=1 ϕ (qu)
⊤
ϕ (kw)

+

∑N
v=1 ϕ (qu)

⊤
ϕ (pv)vv∑N

w=1 ϕ (qu)
⊤
ϕ (pw)

=

[
ϕ (qu)

⊤ ∑N
v=1 ϕ (kv)v

⊤
v

ϕ (qu)
⊤ ∑N

w=1 ϕ (kw)

]
︸ ︷︷ ︸
Term 1: Representation-based aggregation

+

[
ϕ (qu)

⊤ ∑N
v=1 ϕ (pv)v

⊤
v

ϕ (qu)
⊤ ∑N

w=1 ϕ (pw)

]
︸ ︷︷ ︸

Term 2: Prompt-based aggregation

(10)
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Algorithm 1 The workflow of STBP for continual spatio-temporal forecasting
Require: Spatio-temporal backboneMθ, contextual pattern bank {P1,P2, . . . ,Pτ}, streaming

train data {X1,X2 . . . ,Xτ}.
Ensure: Optimized backboneMθ∗ and contextual pattern bank {P∗

1, . . . ,P
∗
τ}

Initialize:Mθ ← {}, P1 ← {}
for each period i in {1, 2, 3, . . . , τ} do

if i == 1 then
▷ Initial training phase ◁
Construct the initial contextual pattern bank P1

Optimize backbone and contextual pattern bank with initial data X1:
(Mθ∗ ,P∗

1)← argminθMθ(X1,P1)
else

▷ Streaming learning phase ◁
Expand contextual pattern bank Pi: Pi ← Pi−1 ∥ ∆Pi

Inherit parameters: (Mθ,Pi)← (Mθ∗ ,P∗
i−1)

Freeze backbone parametersMθ: θ ← freeze(θ)
Fine-tune Pi with backboneMθ on Xi:
P∗

i ← argminθMθ(Xi,Pi)

Table 4: Overview of continual spatio-temporal forecasting datasets.

Dataset Domain Time Range Period Node Expansion Frequency

PEMS-Stream Traffic 07/10/2011 - 09/08/2017 7
655→ 715→ 786
→ 822→ 834→ 850

→ 871
5 min

CA-Stream Traffic 01/01/2019 - 04/30/2019 4 480→ 691→ 1175
→ 1698 5 min

AIR-Stream Air Quality 01/01/2016 - 12/31/2019 4 1087→ 1154
→ 1193→ 1202 1 hour

where qu is the query tensor of node u; kv and vv are the key and value tensors of node v, respectively;
and pv represents the prompt information for node v.

A.3.2 ALGORITHM WORKFLOW

The overall workflow of STBP for continual spatio-temporal forecasting is presented in a more
intuitive manner in Algorithm 1.

A.4 ADDITIONAL EXPERIMENT DETAILS

A.4.1 DATASET DETAILS

Table 4 and Table 5 jointly summarize the characteristics of the three continual spatio-temporal
datasets used in this study: PEMS-Stream, CA-Stream, and AIR-Stream. These datasets differ in
domain (traffic 1 vs. air quality 2), temporal span, and topological evolution, collectively covering
a broad spectrum of real-world non-stationary scenarios suitable for evaluating continual learning
models. PEMS-Stream contains highway traffic sensor readings collected across California from
July 2011 to September 2017. It spans seven periods with a gradual increase in the number of sensor
nodes—from 655 to 871—resulting in a +33% relative growth. This dataset simulates realistic,
long-term infrastructure expansion and serves as a benchmark for evaluating model adaptability under
progressive and stable topological changes. CA-Stream, also in the traffic domain, covers a much

1https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
2https://air.cnemc.cn:18007/
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Table 5: Topological dynamics and evaluation purposes of the datasets.
Dataset Topology Change ∆Nodes Relative Change Primary Purpose

PEMS-Stream Gradual expansion 216 +33% Realistic progressive growth
CA-Stream Explosive expansion 1,218 +254% Extreme incremental stress test
AIR-Stream Stable expansion 115 +10% Cross-domain validation

Table 6: Distribution shift analysis based on MMD tests.

Type PEMS-Stream AIR-Stream CA-Stream
MMD p MMD p MMD p

Original Node 0.0939 0.008 0.3324 0.001 0.0792 0.1119
Added Node 0.2958 0.001 0.2679 0.001 0.3361 0.0010

shorter period (January to
April 2019) but features
a sharp and sudden node
expansion—from 480 to
1,698—corresponding to a
+254% relative increase.
This explosive growth intro-
duces significant distributional shifts, making CA-Stream a challenging testbed for assessing model
robustness under rapidly evolving conditions. AIR-Stream focuses on urban air quality and envi-
ronmental measurements from 2016 to 2019. It exhibits modest but steady node growth—from
1,087 to 1,202 (+10%)—and represents a relatively stable expansion setting. Its distinct domain and
smoother structural changes make it particularly suitable for evaluating cross-domain generalization
and robustness to gradual environmental variation.

To further assess non-stationarity, we conduct Maximum Mean Discrepancy (MMD) tests across
different periods, separately evaluating original nodes (present from the beginning) and added nodes
(introduced during expansion), as shown in Table 6. A distribution shift is considered significant
when MMD > 0.1 or p < 0.05. Across all datasets, added nodes consistently exhibit stronger
distributional shifts, reflecting the spatial disruptions caused by topological expansion. For instance,
CA-Stream shows a substantial shift for added nodes (MMD = 0.3361, p = 0.0010), consistent with
its rapid growth. Interestingly, AIR-Stream records the highest MMD among original nodes (0.3324,
p = 0.001), despite minimal structural change—indicating notable temporal drift in environmental
data. This highlights AIR-Stream’s importance for evaluating robustness to evolving distributions
even under stable topology. By contrast, PEMS-Stream shows only moderate drift among original
nodes (MMD = 0.0939), aligning with its smoother expansion. CA-Stream presents weaker drift in
original nodes (MMD = 0.0792, p = 0.1119), likely due to its limited temporal span. These results
underscore the dual challenge in continual spatio-temporal learning: managing both spatial shifts
induced by node expansion and temporal non-stationarity inherent to dynamic environments, with
their nature and intensity varying across domains.

A.4.2 BASELINES AND METRICS DETAILS

In this paper, we provide a detailed comparison with two categories of representative models:

Conventional Spatio-Temporal Forecasting Models. ❶ GWNet (Wu et al., 2019): A STGNN
model based on an adaptive adjacency matrix that can adaptively capture latent spatial dependencies.
This model combines graph convolutional networks and temporal convolutions to effectively capture
spatio-temporal correlations in the data. ❷ STID (Shao et al., 2022a): An efficient multilayer
perceptron model that solves the problem of sample non-separability using trainable embeddings,
showing outstanding performance in spatio-temporal forecasting tasks. ❸ iTransformer (Liu et al.,
2024b): A time-series model that does not rely on a static graph structure. By modeling the
interactions between variables, it captures temporal features and is effectively applied to multivariate
time series forecasting tasks.

Continual Spatio-Temporal Forecasting Models. These models are designed to handle time-
varying data and are suitable for continual training tasks. Like STBP, they belong to the category of
continual learning models. We selected the following three representative models for comparison:
❶ TrafficStream (Chen et al., 2021): The first model for CSTF, it employs a traffic pattern fusion
approach, historical data replay, and parameter smoothing strategies to efficiently integrate and
learn new spatio-temporal patterns in the continuously expanding and evolving traffic network. ❷
STKEC (Wang et al., 2023a): A traffic forecasting model based on the continual learning paradigm.
Through an influence-based knowledge expansion strategy and a memory-augmented knowledge
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Table 7: Comparison of prediction performance for each incremental period on PEMS-Stream. Bold:
best, underline: second best.

Model Metric PEMS-Stream Period
2011 2012 2013 2014 2015 2016 2017 Avg.

GWNet
MAE 25.90±1.19 20.51±2.14 18.59±1.31 16.17±0.39 19.37±1.73 17.58±0.83 20.95±1.03 19.87±0.10

RMSE 44.79±1.08 32.43±2.60 29.32±1.47 25.37±0.60 31.37±2.11 29.89±1.14 34.96±1.12 32.59±0.18

MAPE (%) 29.79±1.61 29.18±2.95 28.89±2.63 25.45±2.51 29.61±4.28 24.79±1.44 26.86±2.42 27.79±0.76

STID
MAE 32.68±1.34 26.10±0.97 25.36±2.28 22.78±1.25 23.37±1.38 24.28±1.09 27.98±1.08 26.07±0.23

RMSE 53.22±2.16 41.02±1.64 39.50±3.50 35.67±2.07 37.15±2.34 40.94±1.78 44.20±1.39 41.67±0.21

MAPE (%) 44.33±5.66 38.68±1.13 41.40±0.58 39.50±3.34 42.05±5.09 39.65±6.86 42.05±4.57 41.09±2.49

iTransformer
MAE 25.44±3.24 20.90±0.70 20.37±0.58 20.58±0.85 20.23±0.71 20.83±0.80 22.83±1.04 21.60±0.79

RMSE 39.73±4.15 33.32±1.23 32.39±1.00 33.25±1.35 33.04±1.04 35.70±1.22 36.69±1.64 34.88±1.17

MAPE (%) 35.71±2.97 38.61±4.15 37.35±3.82 42.89±5.17 40.49±6.04 40.83±5.24 41.55±4.25 39.63±3.81

TrafficStream
MAE 18.15±0.19 16.81±0.36 16.16±0.12 16.62±0.14 16.39±0.01 16.47±0.15 18.04±0.09 16.95±0.03

RMSE 27.75±0.23 26.72±0.58 25.64±0.13 26.96±0.06 27.29±0.02 28.93±0.05 29.31±0.10 27.52±0.05

MAPE (%) 21.35±0.76 21.14±0.46 21.33±0.85 22.61±1.31 21.36±0.53 20.84±0.86 22.99±1.47 21.66±0.54

STKEC
MAE 18.09±0.46 16.83±0.36 16.26±0.20 16.48±0.24 16.38±0.15 16.31±0.13 18.41±0.35 16.96±0.09

RMSE 27.47±0.47 26.85±0.56 25.74±0.21 26.97±0.40 27.17±0.22 28.70±0.38 30.03±0.68 27.56±0.11

MAPE (%) 21.00±0.77 21.42±1.07 20.54±0.47 21.53±0.63 21.71±0.46 20.38±0.86 23.87±1.01 21.50±0.52

PECPM
MAE 18.43±0.41 16.91±0.43 16.03±0.28 16.27±0.12 16.09±0.13 16.21±0.23 18.05±0.39 16.86±0.12

RMSE 28.09±0.39 26.94±0.64 25.48±0.43 26.49±0.28 26.71±0.28 28.55±0.24 29.31±0.63 27.37±0.20

MAPE (%) 21.57±0.84 21.18±0.63 20.71±0.82 22.82±1.61 22.12±1.68 20.99±0.37 22.73±1.83 21.73±0.45

STRAP
MAE 18.18±0.08 17.40±0.56 16.07±0.11 16.30±0.06 16.04±0.06 16.16±0.13 18.02±0.12 16.88±0.10

RMSE 27.72±0.04 27.60±0.82 25.46±0.16 26.49±0.06 26.53±0.07 28.34±0.18 29.30±0.19 27.35±0.13

MAPE (%) 22.66±0.84 21.06±0.61 22.58±0.79 22.87±0.51 21.57±1.66 21.90±0.73 22.54±1.14 22.17±0.46

EAC
MAE 18.12±0.26 15.41±0.40 14.67±0.21 15.09±0.15 14.96±0.15 14.78±0.21 16.67±0.19 15.67±0.20

RMSE 27.72±0.70 24.23±0.62 23.08±0.32 24.29±0.22 24.58±0.25 26.26±0.30 26.96±0.30 25.30±0.29

MAPE (%) 19.62±0.16 19.90±0.51 20.40±0.63 20.01±0.32 20.72±0.27 19.98±0.70 22.33±1.19 20.42±0.41

STBP
MAE 14.29±0.05 12.13±0.11 11.60±0.09 11.71±0.07 11.61±0.06 11.38±0.09 13.42±0.17 12.31±0.07

RMSE 22.00±0.07 19.47±0.18 18.58±0.15 19.54±0.10 19.55±0.07 21.91±0.07 22.56±0.26 20.52±0.11

MAPE (%) 16.34±0.12 15.26±0.28 15.38±0.15 15.51±0.23 15.47±0.35 14.80±0.23 16.76±0.20 15.65±0.21

consolidation mechanism, STKEC helps the model effectively integrate new spatio-temporal traffic
patterns in an ever-expanding road network while retaining previously learned spatio-temporal
patterns. ❸ PECPM (Wang et al., 2023b): A continual spatio-temporal forecasting model for
evolving traffic networks, relying on a pattern-matching pattern bank to store representative patterns
without full historical data. It fine-tunes with new/conflict nodes for knowledge expansion and
uses preservation/traceability mechanisms to avoid forgetting. ❹ STRAP (Zhang et al., 2025): A
retrieval-augmented framework for OOD generalization, building a multi-dimensional key-value
pattern library (spatial/temporal/spatio-temporal) during training. It retrieves similar patterns to fuse
with current data in inference, achieving SOTA without task-specific fine-tuning. ❺ EAC (Chen
& Liang, 2025): A CSTF based on prompt tuning. By integrating a base STGNN with a continual
prompt pool, it efficiently addresses incremental learning and catastrophic forgetting in streaming
data using lightweight trainable parameters.

The Excluded Models. Some baselines that might be considered relevant for comparison were
excluded, and we provide explanations for their exclusion below. ❶ STAEformer (Liu et al., 2023a):
a widely recognized baseline, was not included in our comparison due to non-convergence observed
when applying the same experimental setting as used for GWNet and STID on the selected three
datasets. To ensure fair and unambiguous evaluation, we excluded it from the results and have
provided the corresponding training logs in the code repository. ❷ UFCL (Miao et al., 2025): The
CSTF method UFCL is not included in the comparison due to differences in experimental settings,
which prevent a fair evaluation.

Metrics Details. Additionally, the performance metrics used in the experiments to evaluate the model,
namely MAE, RMSE, and MAPE, are defined as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (11)
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Table 8: Comparison of prediction performance for each incremental period on CA-Stream and
AIR-Stream. Bold: best, underline: second best.

Model Metric CA-Stream Period AIR-Stream Period
Jan-19 Feb-19 Mar-19 Apr-19 Avg. 2016 2017 2018 2019 Avg.

GWNet
MAE 26.94±1.39 26.20±1.56 20.98±0.48 20.82±0.24 23.73±0.75 35.54±3.70 29.94±1.11 26.87±1.57 26.29±1.96 29.66±1.01

RMSE 41.01±1.71 39.79±1.97 32.44±0.55 31.58±0.13 36.20±0.96 55.84±5.75 45.28±1.33 43.63±2.52 39.29±2.53 46.01±1.46

MAPE (%) 23.13±0.91 30.31±2.77 23.72±1.09 22.00±0.38 24.79±0.85 41.77±4.84 34.94±0.62 41.09±1.99 41.68±3.65 39.87±1.87

STID
MAE 33.83±0.51 30.83±0.23 26.66±0.46 27.50±0.73 29.71±0.28 40.38±0.56 34.92±0.82 28.36±0.43 29.28±0.16 33.23±0.22

RMSE 49.98±0.53 45.98±0.25 39.84±0.51 40.70±0.97 44.12±0.37 64.10±0.91 52.12±1.11 46.78±0.78 43.90±0.42 51.72±0.33

MAPE (%) 31.21±2.21 33.63±0.89 31.11±2.31 30.95±1.25 31.73±0.86 44.78±0.79 42.04±0.82 45.92±0.63 43.87±1.16 44.16±0.60

iTransformer
MAE 30.00±0.11 25.99±0.08 23.27±0.08 22.11±0.06 25.34±0.05 32.03±1.25 27.07±0.35 20.74±0.18 22.28±0.68 25.53±0.56

RMSE 45.21±0.25 40.76±0.15 35.89±0.10 33.90±0.18 38.94±0.09 50.92±2.20 40.22±0.61 34.16±0.39 33.37±0.65 39.67±0.91

MAPE (%) 31.23±0.90 29.31±0.59 28.31±0.70 24.50±0.92 28.34±0.20 38.05±2.33 32.25±0.33 33.64±0.43 32.66±0.69 34.15±0.76

TrafficStream
MAE 23.63±0.42 21.87±0.28 19.71±0.37 19.15±0.18 21.09±0.29 30.09±0.63 26.43±0.33 20.34±0.39 21.48±0.31 24.58±0.34

RMSE 36.46±0.53 34.85±0.34 31.07±0.43 29.64±0.20 33.01±0.35 48.04±1.10 39.24±0.40 34.22±0.68 32.80±0.42 38.58±0.53

MAPE (%) 21.34±1.65 20.03±0.36 19.65±0.81 18.88±0.33 19.98±0.30 34.34±0.33 31.34±0.31 33.17±1.08 30.30±0.38 32.29±0.29

STKEC
MAE 23.22±0.54 22.29±0.35 19.79±0.26 19.09±0.13 21.09±0.13 30.12±0.30 26.74±0.41 20.34±0.27 21.33±0.31 24.63±0.11

RMSE 36.16±0.62 35.73±0.52 31.36±0.38 29.71±0.23 33.24±0.13 48.48±0.61 39.57±0.57 34.33±0.70 32.45±0.29 38.70±0.26

MAPE (%) 20.12±0.46 20.01±0.13 19.80±0.79 18.48±0.14 19.61±0.19 33.22±0.32 31.87±0.39 32.71±0.48 30.69±0.35 32.12±0.21

PECPM
MAE 24.29±0.22 21.46±0.11 19.34±0.10 19.06±0.15 21.04±0.11 30.86±1.38 26.02±0.60 20.43±0.06 21.15±0.45 24.74±0.25

RMSE 37.05±0.42 34.11±0.10 30.54±0.25 29.39±0.17 32.77±0.17 49.63±2.19 38.92±0.60 34.66±0.05 32.28±0.49 39.00±0.48

MAPE (%) 23.05±3.21 20.07±0.43 19.77±1.00 19.07±0.21 20.49±0.91 34.29±0.90 30.69±0.63 31.84±0.92 30.22±0.25 31.93±0.22

STRAP
MAE 30.64±1.85 25.93±0.48 23.87±0.44 24.56±0.66 26.25±0.62 32.14±1.35 26.36±0.78 20.22±0.66 21.91±0.30 25.16±0.32

RMSE 44.86±2.30 38.96±0.60 35.98±0.70 36.41±0.61 39.05±0.80 51.46±2.36 38.99±0.73 34.07±1.51 32.97±0.10 39.37±0.38

MAPE (%) 21.72±0.97 22.02±0.63 20.41±0.41 20.43±0.49 21.15±0.47 34.25±0.97 31.62±0.94 32.30±1.13 31.33±0.87 32.37±0.28

EAC
MAE 22.70±0.82 20.76±0.73 18.77±0.66 18.55±0.57 20.20±0.69 30.36±1.21 25.74±0.33 19.74±0.34 21.02±0.23 24.21±0.43

RMSE 34.85±1.19 32.70±0.96 29.04±0.96 28.12±0.87 31.18±0.99 48.33±1.71 38.22±0.24 32.88±0.51 31.89±0.26 37.83±0.60

MAPE (%) 20.56±1.51 20.72±1.94 20.26±1.18 19.14±0.90 20.17±1.25 33.43±0.72 30.78±0.52 32.02±1.31 30.86±0.31 31.77±0.53

STBP
MAE 17.88±0.37 15.86±0.10 14.62±0.20 14.73±0.22 15.77±0.09 30.95±0.55 24.32±0.09 18.82±0.20 20.47±0.15 23.64±0.23

RMSE 29.56±0.84 26.54±0.14 23.58±0.30 23.13±0.34 25.70±0.16 49.34±0.79 37.65±0.18 32.14±0.24 31.92±0.34 37.76±0.30

MAPE (%) 15.47±0.32 14.86±0.05 14.30±0.12 15.11±0.14 14.94±0.05 31.89±0.48 27.98±0.28 30.22±0.42 28.72±0.32 29.70±0.35

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (12)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (13)

where n represents the number of observed samples, yi denotes the i-th real sample, and ŷi is the
corresponding predicted value.

A.4.3 IMPLEMENTATION DETAILS

All experiments are conducted on a machine with an NVIDIA Tesla V100 GPU and 32 GB of
memory. The Adam optimizer, with an initial learning rate of 0.01, is used to optimize the training
process. The batch size is set to 64, the number of training epochs is set to 200, and an early stopping
mechanism is implemented to ensure efficient convergence. The reported results for all baselines are
the average of five repeated runs.

A.4.4 EXPERIMENT RESULTS

Tables 7 and 8 report detailed results for each incremental period, where the metrics of a given period
are averaged over 12 forecasting steps. Figure 9 provides a visual summary of the same results to
better illustrate the performance trends across periods. Overall, STBP consistently achieves strong
performance throughout the entire continual spatio-temporal forecasting process, including both the
aggregated performance across all periods and the period-wise results. This advantage is largely
attributed to the well-designed spatio-temporal backbone and the contextual pattern bank, which
together support effective knowledge reuse and adaptation under evolving spatio-temporal patterns.

A.4.5 PARAMETER SENSITIVITY ANALYSIS

Beyond the feature dimension d, we further investigated the sensitivity of two key architectural
hyperparameters: the number of DLGA layers and attention heads. As shown in Figure 10, increasing
either parameter yields marginal gains at best, and in some cases, even leads to slight performance
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Figure 9: Visualization of period-wise forecasting performance across incremental periods.

Figure 10: Additional Results of parameter experiments.

degradation. Overall, apart from the feature dimension, model performance remains relatively
insensitive to these hyperparameter variations.
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Figure 11: Case Study on CA-Stream.
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Figure 12: Case Study on AIR-Stream.

A.4.6 ADDITIONAL CASE STUDY

To maintain consistency with the case study on PEMS-Stream, we also conduct case studies on the
CA-Stream and AIR-Stream datasets to further validate the expansion and distinction capabilities
of the contextual pattern bank in STBP. The experimental results for CA-Stream are shown in
Figure 11. Even in the more challenging task of node increment, STBP’s contextual pattern bank
effectively distinguishes and consolidates different spatio-temporal patterns, incorporating new
patterns introduced by newly added nodes into the existing pattern clusters.

Figure 12 presents the results on AIR-Stream. Compared to traffic flow data, the spatio-temporal pat-
terns in this dataset exhibit more complex periodic and trend changes. Nonetheless, STBP continues
to accurately differentiate and consolidate diverse patterns, indicating that its contextual pattern bank
has adaptive inductive capabilities for various types of spatio-temporal patterns, independent of the
specific dataset type. This mechanism enables STBP to exhibit greater flexibility and adaptability in
CSTF tasks.

In addition, Figure 13 provides an intuitive comparison of the predictive performance of STBP and
the second-best model, EAC, in real-world application scenarios. These representative cases further
substantiate the superior practical utility of STBP in realistic continual learning settings.
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Figure 13: Additional visualization of real forecasting results.

Figure 14: Additional efficiency comparison. STBP O(N2) denotes the version without linear
attention, and Retrain refers to removing the contextual pattern bank.

A.4.7 EFFICIENCY STUDY

Figure 14 provides additional experiments assessing the efficiency and scalability of STBP. Overall,
these results confirm that STBP achieves favorable scalability and efficiency, and that its linear-
attention design and modular contextual pattern bank structure enable it to handle large-scale spatio-
temporal graphs in continual learning settings.

A.5 LIMITATION

Despite STBP’s strong performance on benchmark datasets, its limitations in cross-domain gen-
eralization warrant further investigation. Current continual learning approaches, including ours,
typically assume incremental tasks originate from similar domains—an idealization that diverges
from real-world dynamic and heterogeneous environments. In practice, cross-domain distribution
shift introduce dual challenges: feature space misalignment and exacerbated catastrophic forget-
ting. While STBP’s architecture exhibits inherent adaptability—with DLGA dynamically capturing
topological variations and FreNet extracting domain-invariant frequency patterns—its robustness
remains unverified under significant structural divergence between source and target domains. Future
work should therefore validate the framework’s efficacy in such complex cross-domain scenarios.
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A.6 BROADER IMPACT

STBP, with its carefully designed general spatio-temporal backbone and contextual pattern bank
expansion mechanism tailored for dynamic scenario changes, effectively achieves continual spatio-
temporal forecasting. This approach demonstrates that the spatio-temporal backbone can serve as a
stable infrastructure, consistently retaining the ability to model general spatio-temporal dependencies.
When facing new or evolving scenarios, there is no need to retrain the backbone. Instead, by
introducing scalable parameters relevant to the current scenario, the model can rapidly adapt to new
tasks. Building on this concept, we aim to advance the development of a spatio-temporal foundational
model with enhanced cross-domain generalization, while concurrently exploring the potential of
Large Language Models (LLMs) in spatio-temporal and time-series forecasting tasks (Liu et al.,
2025b; 2024a; 2025a).

This involves two key directions: ❶ introducing explicit domain adaptation mechanisms to better
distinguish between domain-specific and shared features, and ❷ exploring cross-domain shared
contextual pattern banks to enhance adaptability while maintaining efficiency. This approach involves
continuously training a unified backbone model with spatio-temporal data from multiple heteroge-
neous domains, thereby enhancing its spatio-temporal representational capacity. As data from various
domains are continuously integrated and trained, the spatio-temporal foundational model will evolve,
enabling efficient generalization and adaptation to entirely new scenarios or tasks by incorporating
only a small number of additional parameters. Such a model holds the potential to benefit society by
improving intelligent transportation through more accurate traffic forecasting and supporting climate
resilience via advanced environmental modeling.

A.7 LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
we used an LLM (ChatGPT) solely for the purpose of improving the grammar, clarity, and fluency
of the manuscript. The content, structure, technical contributions, experiments, analysis, and all
scientific writing were entirely conceived, drafted, and validated by the human authors. The LLM was
not involved in research ideation, experimental design, data analysis, or any aspect of the scientific
content creation. All outputs generated by the LLM were reviewed and edited by the authors to ensure
accuracy and correctness. We confirm that no hidden prompts, prompt injections, or LLM-generated
falsehoods were introduced in the manuscript, and all use of LLMs complies with the ICLR Code of
Ethics.
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