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ABSTRACT

With the explosive growth of spatio-temporal data driven by IoT deployments and
urban infrastructure expansion, accurate and efficient continual forecasting remains
a critical challenge. Recent Spatio-Temporal Graph Neural Networks assume
static graph topologies and temporal scales, making them ill-suited for dynamic
real-world data streams. Meanwhile, existing continual learning methods often
adopt simple backbones, limiting their ability to capture evolving dependencies
and adapt to distributional drift. To address these limitations, we propose STBP,
a novel framework for Continual Spatio-Temporal Forecasting that bridges the
gap between STGNNs and continual learning. STBP integrates a general-purpose
spatio-temporal backbone with a scalable contextual pattern bank. The backbone
extracts stable spatio-temporal representations in the frequency domain and models
dynamic spatial correlations using linear graph attention. To support continual
adaptation and alleviate catastrophic forgetting, the contextual pattern bank is
incrementally updated via parameter expansion, capturing evolving node-level
heterogeneous patterns. During incremental training, the backbone remains frozen
to preserve general knowledge, while the contextual pattern bank adapts to new
scenarios and distributions. Extensive experiments show that STBP surpasses state-
of-the-art baselines in both accuracy and scalability, underscoring its effectiveness
for continual spatio-temporal forecasting. Code is available at Anonymous Github.

1 INTRODUCTION

With the rapid development of urban infrastructure (Kumar et al., 2024; Hu et al., 2023) and the
widespread deployment of IoT sensing devices (Jin et al., 2024; Yang et al., 2025), spatio-temporal
data—such as traffic flow (Shao et al., 2022b) and weather observations (Tian et al., 2025)—have
grown explosively. Efficient and accurate forecasting of such large-scale, continuously evolving
spatio-temporal data has become one of the key tasks in the development of smart cities.

However, urban spatio-temporal data inherently form a dynamic system: as the urban area expands,
the spatial topology evolves, sensors are continuously added, and data distributions drift over time.
These dynamic characteristics bring new challenges to recent spatio-temporal forecasting methods,
such as Spatio-Temporal Graph Neural Networks (STGNNs) (Kong et al., 2024; Gao et al., 2024; Liu
& Zhang, 2025), which have achieved significant progress in modeling spatio-temporal correlations.
However, as illustrated in Figure 1, most existing methods are based on static assumptions—i.e.,
fixed temporal scales and static graph topologies—making them ill-suited for real-world data streams
that evolve continuously. More critically, recent STGNNs rely on offline training; when encountering
new data or topology changes, they often require retraining from scratch, which is impractical in
resource-constrained or continuously growing environments.

To tackle these issues, Continual Spatio-Temporal Forecasting (CSTF) (Miao et al., 2024; Chen &
Liang, 2025; Ma et al., 2025b) has emerged as a research hotspot. Its core goal is to achieve incremen-
tal learning and efficient forecasting on new data without retraining on old data. As shown in Figure 1,
these methods typically construct a general spatio-temporal backbone and adopt strategies such as
regularization, replay, and dynamic architectures to enhance adaptability and mitigate catastrophic
forgetting. However, most existing methods mainly focus on retaining old knowledge and adopt
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Figure 1: Limitations of existing studies.

relatively simple spatio-temporal backbones, over-
looking the ability to model dynamic spatio-
temporal characteristics and adapt to distributional
drift, thus limiting forecasting performance.

An intuitive solution is to combine high-
performing STGNNs with continual learning
strategies to balance modeling capacity and adapt-
ability. However, in practice, once the assump-
tion of fixed topology is removed, the original
spatio-temporal modeling ability of STGNNs de-
grades significantly (Shao et al., 2024; Ma et al.,
2025a). Moreover, most STGNNs lack designs for
incremental training, making them hard to scale
efficiently and hindering the real-world deploy-
ment of continual learning strategies. Therefore,
an ideal CSTF framework should simultaneously
address the following four key challenges: ❶ handling distributional drift, ❷ modeling dynamic
spatio-temporal correlations, ❸ alleviating catastrophic forgetting, and ❹ supporting dynamic
expansion of graph structures.

To this end, we bridge the gap between STGNNs and continual learning by introducing a general-
purpose spatio-temporal backbone with scalable contextual pattern bank (STBP). Specifically, the
backbone in STBP extracts stable spatio-temporal components in the frequency domain to mitigate
distributional drift; meanwhile, a lightweight, scene-agnostic, data-driven linear graph attention
is used to model dynamic spatial correlations with minimal computational overhead. To alleviate
catastrophic forgetting and support the continual expansion of graph structures, the contextual pattern
bank—composed of trainable parameters—is incrementally updated through parameter expansion
to adapt to evolving scenarios. In this framework, the backbone models general and stable patterns,
whereas the contextual pattern bank captures contextual and node-specific heterogeneous patterns
that interact with the backbone to adapt to continuously evolving environments.

Our main contributions are summarized as follows: ❶ We propose a highly general and efficient back-
bone tailored for incremental forecasting. ❷ We introduce a contextual pattern-based optimization
strategy that supports dynamic adaptation and mitigates catastrophic forgetting. ❸ Extensive experi-
ments on multiple real-world benchmark datasets demonstrate that STBP significantly outperforms
state-of-the-art baselines in terms of forecasting accuracy, adaptability, and scalability.

2 RELATED WORK

Spatio-Temporal Forecasting. Early studies in spatio-temporal forecasting, including methods like
STGCN (Yu et al., 2018) and DCRNN (Li et al., 2018), primarily focused on combining basic temporal
and spatial elements for prediction tasks. These models typically depended on predefined geographic
adjacency matrices, which limited their ability to capture the evolving nature of spatial correlations.
In contrast, later advancements, such as GWNet (Wu et al., 2019), DGCRN (Li et al., 2023), and
MegaCRN (Jiang et al., 2023b), addressed this limitation by incorporating adaptive adjacency matrices
or learning spatial correlations directly from the data. This shift led to a notable improvement in
forecasting accuracy. More recently, models like STID (Shao et al., 2022a), STAEformer (Liu
et al., 2023a), and HimNet (Dong et al., 2024) have emphasized the significance of distinguishing
spatial patterns to further enhance forecasting performance. These methods incorporate trainable
components, including spatial embeddings, parameter pools, and contextual pattern bank, to more
accurately capture spatial variations, boosting both prediction precision and model adaptability.

Continual Spatio-Temporal Forecasting. TrafficStream (Chen et al., 2021), one of the pioneering
frameworks in CSTF, was instrumental in combining spatio-temporal modeling with continual
learning. It utilized techniques such as historical data replay and parameter smoothing to effectively
manage long-term streaming traffic data, delivering accurate traffic flow predictions. Following
this, the STKEC (Wang et al., 2023a) introduced an influence-based knowledge expansion strategy
along with a memory-augmented knowledge consolidation mechanism, which better supported the
scaling of transportation networks while alleviating issues of catastrophic forgetting. The EAC (Chen
& Liang, 2025) further advanced CSTF by incorporating prompt tuning, which enabled continual
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spatio-temporal learning with a minimal number of trainable parameters. Its dynamic prompt pool,
which allows for both ”expansion” and ”compression,” enhances the model’s adaptability to new
nodes while preserving past knowledge, improving generalization and computational efficiency.
Additionally, the UFCL (Miao et al., 2025) leveraged federated learning to protect data privacy and
introduced a global replay buffer for synthetic spatio-temporal data, addressing challenges associated
with distributed streaming environments.

3 PRELIMINARY

Definition 1 (Streaming Spatio-Temporal Graph). We define a streaming spatio-temporal graph
as a sequence of evolving graphs G = {Gτ}Tτ=1, where each graph Gτ = (Vτ , Eτ , Aτ ) represents
the graph at incremental period τ . Here, Vτ denotes the node set, Eτ the edge set, and adjacency
matrix Aτ ∈ RNτ×Nτ connections between nodes. The number of nodes at period τ is denoted by
Nτ = |Vτ |. The graph evolves incrementally as Gτ = Gτ−1 +∆Gτ , where ∆Gτ captures structural
or feature modifications between periods.

Definition 2 (Continual Spatio-Temporal Forecasting). Continual spatio-temporal forecasting
aims to develop an optimal predictive model at each stage based on dynamic, streaming spatio-
temporal graph data. At each incremental period τ , given the current graph Gτ and historical
observations Xτ ∈ RNτ×Th , the goal is to predict future signals Yτ ∈ RNτ×Tf as follows:

Ŷτ = fθ(Gτ ,Xτ ), (1)
where Th is the length of the historical observation window, and Tf is the forecasting horizon. The
model fθ is parameterized by θ, and continually updated by minimizing:

θ∗τ = argmin
θ

E(Gτ ,Xτ ,Yτ )∼Dτ
[L (fθ(Gτ ,Xτ ),Yτ )] , (2)

where L(·, ·) is a loss function, and Dτ denotes the data distribution at period τ .

4 METHODOLOGY

4.1 OVERVIEW OF STBP

The workflow and architecture of STBP are shown in Figure 2. It consists of two core components: a
general spatio-temporal backbone and a contextual pattern bank. The backbone, comprising temporal
and spatial modules with a prediction layer, captures spatio-temporal correlations in evolving networks.
The contextual pattern bank, made of trainable parameters, is dynamically expanded and fine-tuned
as data evolves. While the backbone captures general, stable patterns, the contextual pattern bank
adapts to environmental changes, focusing on context-specific patterns. Guided by prompts, both
components collaborate to form an efficient and robust continual learning system.

In terms of workflow, streaming spatio-temporal data is sequentially fed into the STBP. During
the initial incremental training phase, the backbone and contextual pattern bank are jointly trained
to capture spatio-temporal correlations from current data. In later stages, the backbone is frozen
(denoted by a snowflake) to retain knowledge learned from historical data, while the contextual
pattern bank is updated (denoted by a flame) through expansion and fine-tuning. These updates serve
as prompts, guiding the frozen backbone to adapt to new data distributions. This continual learning
process, driven by the interplay between backbone and contextual pattern bank, enables the model to
progressively enhance its representation power and adaptability while preserving core functionality.
For detailed workflow steps, refer to Algorithm 1 in Appendix A.3.2.

4.2 CONTEXTUAL PATTERN BANK

Recent studies (Shao et al., 2022a; Dong et al., 2024; Chen & Liang, 2025) have shown that
incorporating node-specific trainable parameters into STGNNs can significantly enhance forecasting
performance. Following this insight, we propose an expandable contextual pattern bank
Pτ ∈ RNτ×d, composed of trainable parameters, to consolidate historical spatio-temporal patterns
and generalize to new ones, thereby mitigating catastrophic forgetting and continuously adapting to
new incremental scenarios, where d denotes the feature dimension.

We posit that the model can utilize Pτ to effectively distinguish both the relevance and hetero-
geneity of nodes, enabling a more nuanced understanding of the underlying data structures. Here,
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Cluster 1

Cluster 2 Cluster 3

Cluster 1

Cluster 2
Cluster 3

Figure 3: Contextual pattern bank visualization.

relevance refers to shared behavioral patterns
among nodes—such as similar trends or periodic
fluctuations—while heterogeneity captures differ-
ences arising from distinct node functions or ex-
ternal factors such as geography, policy, or events.
To validate this hypothesis, we conduct a t-SNE-
based analysis on Pτ trained on spatio-temporal
datasets (see Figure 3), which reveals meaning-
ful clustering patterns. Each cluster exhibits dis-
tinct characteristics, corresponding to heterogene-
ity, while nodes within the same cluster display
similar temporal dynamics, reflecting relevance.

As shown in Figure 2, given an stream spatio-
temporal input Xτ ∈ RNτ×Th , the backbone modelMθ, and contextual pattern bank Pτ ∈ RNτ×d,
the incremental learning process is formulated as:

Ŷτ =Mθ(Xτ ,Pτ ). (3)

At the initial training stage (τ = 1), both the backbone and contextual pattern bank are jointly
trained (denoted with flame). For subsequent stages (τ > 1), the backbone is frozen (denoted with
snowflake), and only the contextual pattern bank is updated through expansion:

P′
τ = Pτ−1 ∥ ∆Pτ , (4)

where ∆Pτ ∈ R(Nτ−Nτ−1)×d represents newly introduced parameters for the current incremental
period. Only the expanded contextual pattern bank P′

τ ∈ RNτ×(d) is fine-tuned during training.
This strategy ensures that the backbone retains previously acquired knowledge, while the contextual
pattern bank continually adapts to evolving distributions. It incrementally expands to represent an
increasingly diverse set of environmental patterns, thereby avoiding the inadequacy exhibited by fixed
models in novel scenarios.

Distinct from existing work (Wang et al., 2023a; Chen & Liang, 2025; Wang et al., 2023b), we
introduce a Prompt-Based Guidance(Peebles & Xie, 2023; Zhang et al., 2023) mechanism to enhance
Pτ ’s capacity to model both node-level relevance and heterogeneity. Specifically, the contextual
pattern bank comprises three groups of trainable parameters: P

(i)
τ ∈ RNτ×d for i ∈ 0, 1, 2. As

4
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illustrated in Figure2, these components interact with the backbone’s hidden representation Hτ via
the following prompt-based gating function:

H′
τ = P(0)

τ · hθ(Hτ ·P(1)
τ ), (5)

where hθ denotes an arbitrary submodule within the backbone. This gating mechanism enables
adaptive modeling of node heterogeneity. Additionally, P(2)

τ acts as a key embedding in the attention
module, guiding the backbone to generalize correlation-aware information under task constraints. Im-
portantly, since the contextual pattern bank encodes high-level abstractions rather than raw historical
data, our method supports knowledge retention without revisiting prior data—offering advantages in
privacy protection and storage efficiency.

4.3 GENERAL SPATIO-TEMPORAL BACKBONE

While the contextual pattern bank mitigates catastrophic forgetting in continual learning, it lacks the
ability to model dynamic spatio-temporal correlations and handle out-of-distribution generalization.
To address this, we design a general spatio-temporal backbone aimed at handling distributional
drift, spatio-temporal correlation modeling, and graph scalability during continual learning. The term
general implies that the backbone is independent of the number of nodes and does not rely on any
predefined adjacency matrix, making it adaptable to arbitrary spatio-temporal data structures.

As shown in Figure 2, the backbone operates as follows: input spatio-temporal data first pass
through a frequency-domain network (FreNet), which maps it into high-dimensional temporal
representations and extracts stable components via frequency domain analysis. A dual-stream
linear graph attention (DLGA) module then captures dynamic spatial correlations, followed by a
feedforward layer with a multilayer perceptron for enhanced nonlinear expressivity. Finally, the
features are reconstructed to their original shape by another FreNet and passed through a prediction
layer. We detail the FreNet and DLGA modules below.

Frequency-Domain Network. Spatio-temporal data in evolving environments often suffer from
distributional drift (Wang et al., 2024; Ji et al., 2025; Zhou et al., 2023). Although the contex-
tual pattern bank helps retain stable knowledge, we further address this issue through a dedicated
frequency-domain analysis (Xia et al., 2023). FreNet is designed to capture temporal correla-
tions while emphasizing stable components in the data, such as periodicity and trends, which are
more resilient to distributional changes (Liu & Zhang, 2025). Specifically, STBP employs two
FreNets—one at the beginning and one at the end of the backbone (Figure 2). The first maps input
data Xτ ∈ RNτ×Th through a linear layer into a high-dimensional representation Hτ ∈ RNτ×d,
which is then transformed to the frequency domain using a Fast Fourier Transform (FFT). A learnable
frequency-domain embedding Fτ ∈ C( d

2+1) adaptively highlights stable features. This process is
formalized as:

Hf
τ = IFFT(FFT(Hτ )⊙ Fτ ), (6)

where Hf
τ ∈ RNτ×d is further processed by a linear layer. The second FreNet performs an inverse

operation, restoring the feature shape to RNτ×Th . Compared to traditional temporal modules like
RNNs (Li et al., 2018; Bai et al., 2020) or TCNs (Zheng et al., 2023; Fang et al., 2023), FreNet
offers higher computational efficiency and improved ability to extract stable components, thereby
alleviating the impact of distributional drift.

Dual-Stream Linear Graph Attention. After obtaining stable components, it remains essential
to capture complex spatial interactions and time-varying node correlations. An effective spatial
module must adaptively learn node correlations in a data-driven manner, maintain computational
efficiency, and scale to growing graphs. Graph attention mechanisms (Veličković et al., 2018) have
emerged as promising solutions, enabling dynamic correlation modeling without relying on fixed
adjacency matrices. However, conventional graph attention (Zheng et al., 2020; Jiang et al., 2023a;
Liu et al., 2023a) incurs O(N2) complexity, limiting its scalability. To overcome this, we propose
DLGA (Figure 2), which improves efficiency using a random feature mapping-based linear attention
mechanism (Katharopoulos et al., 2020). Moreover, DLGA introduces a dual-stream structure by
incorporating the contextual pattern bank P

(2)
τ ∈ RNτ×d as an additional key. This enables the model

to assess the relationship between evolving input patterns and stored knowledge. Formally:

Q = WqH
s
τ , K = WkH

s
τ , V = WvH

s
τ , (7)
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Hs′

τ = Attention(Q,K,V,P(2)
τ )

= Softmax(QK⊤ +Q(P(2)
τ )⊤)V,

(8)

Attention(Q,K,V,P(2)
τ ) ≈ (ϕ(Q)ϕ(K)⊤ + ϕ(Q)ϕ(P(2)

τ )⊤)V

= ϕ(Q)
(
ϕ(K)⊤V + ϕ(P(2)

τ )⊤V
)
.

(9)

Here, Wq, Wk, and Wv are trainable projection matrices. Hs
τ and Hs′

τ ∈ RNτ×d denote the input
and the spatially enriched representation passed to the feedforward layer of the DLGA module,
respectively. The function ϕ(·) denotes a random feature mapping, with Softmax used for approxima-
tion in our implementation. For further details on the approximation derivation, see Appendix A.3.1.
Notably, the linear attention approximation does not explicitly construct an adjacency matrix. Instead,
it implicitly models dynamic correlations by reordering operations in the attention computation.
DLGA reduces computational complexity from quadratic to linear, while preserving dynamic spatial
modeling and seamlessly integrating prompt-based knowledge from the contextual pattern bank.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our model on three real-world streaming spatio-temporal datasets from
the traffic and meteorology domains. The traffic datasets, PEMS-Stream (Chen et al., 2001) and
CA-Stream (Liu et al., 2023b), consist of traffic flow measurements provided by the California
Department of Transportation (CalTrans) 1, with a sampling interval of 5 minutes. The meteorological
dataset, Air-Stream (Chen & Liang, 2025), is derived from urban air quality platform of the Chinese
Environmental Monitoring Center 2, with hourly sampling intervals. To ensure fair evaluation, all
datasets are split into training, validation, and test sets using a fixed ratio of 6:2:2. For each prediction
task, the model is trained to forecast the next 12 time steps based on the previous 12 observations.
Detailed dataset statistics are provided in Table 3 in Appendix A.4.1.

Baselines and Metrics. We select representative models from two categories as baselines: ▷
Conventional spatio-temporal forecasting models, including lightweight spatio-
temporal architectures such as GWNet (Wu et al., 2019), STID (Shao et al., 2022a), and iTrans-
former (Liu et al., 2024). These models are adapted specifically for incremental training in our
experiments. ▷ Continual spatio-temporal forecasting models, including Traf-
ficStream, STKEC (Wang et al., 2023a), and EAC (Chen & Liang, 2025). The performance of all
models is evaluated using the following metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE). More details on this are included in
Appendix A.4.2.

5.2 MAIN RESULTS

Overall results. The main experimental results are summarized in Table 1, which lists the average
metrics for all incremental periods, including the averages for the 3rd, 6th, and 12th time steps, as
well as the overall average. In terms of overall performance, our proposed STBP outperforms all other
models. Compared to the best baseline, STBP improves the average MAE by 18.46%, 16.69%, and
5.1% on the PEMS-Stream, CA-Stream, and Air-Stream datasets, respectively. This improvement
is attributed to the bridge established between STGNNs and CSTF methods, where the carefully
designed general spatio-temporal backbone and contextual pattern bank effectively capture dynamic
spatio-temporal correlations, mitigating catastrophic forgetting and addressing distributional drift.

Results of conventional methods. STGNNs, including GWNet and STID, rely on static graph
assumptions and are not designed for continual learning tasks. Consequently, a new spatio-temporal
backbone is trained for each data stage, with each model trained only on current stage data for
prediction. In contrast, iTransformer is trained on the complete node data of the current spatio-
temporal graph and initializes with weights from the previous period, allowing fine-tuning across the
entire model. As shown in Table 1, STGNNs trained from scratch show mediocre performance at
each dataset. While these methods perform well under static assumptions, they fail to leverage past

1https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
2https://air.cnemc.cn:18007/
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Table 1: Main experimental results. Bold: best, underline: second best.
Dataset Metric Horizon GWNet STID iTransformer TrafficStream STKEC EAC STBP

PEMS-Stream

MAE

3 16.60±0.24 13.71±0.17 13.59±0.23 12.76±0.12 12.79±0.05 12.67±0.12 10.70±0.05

6 16.53±0.16 14.93±0.10 14.49±0.38 13.89±0.10 13.90±0.04 13.41±0.15 10.99±0.04

12 16.77±0.25 17.45±0.12 16.29±0.70 16.18±0.13 16.14±0.05 14.79±0.20 11.45±0.04

Avg. 16.62±0.14 15.14±0.12 14.62±0.40 14.06±0.10 14.07±0.04 13.49±0.15 11.00±0.04

RMSE

3 26.99±0.39 21.89±0.24 21.38±0.41 20.59±0.16 20.65±0.05 20.16±0.13 17.51±0.07

6 26.95±0.21 24.11±0.18 23.10±0.73 22.66±0.18 22.69±0.06 21.52±0.19 18.15±0.06

12 27.37±0.35 28.44±0.30 26.36±1.35 26.61±0.25 26.58±0.06 23.85±0.29 19.10±0.08

Avg. 27.07±0.20 24.41±0.20 23.29±0.77 22.90±0.18 22.93±0.05 21.60±0.19 18.15±0.06

MAPE
(%)

3 25.46±0.64 21.41±2.36 30.88±1.31 17.57±0.42 17.70±0.38 18.67±0.95 14.22±0.08

6 25.22±0.82 22.83±2.32 32.22±1.54 19.14±0.35 18.97±0.39 19.58±0.90 14.50±0.11

12 25.63±1.38 26.12±2.26 35.87±1.96 22.67±0.61 22.00±0.51 21.27±0.92 14.98±0.10

Avg. 25.40±0.87 23.17±2.32 32.65±1.53 19.48±0.41 19.29±0.42 19.69±0.90 14.52±0.09

CA-Stream

MAE

3 19.74±1.05 18.89±0.34 17.32±0.44 16.33±0.14 16.35±0.17 16.90±0.30 14.46±0.06

6 19.96±0.62 21.43±0.53 18.50±0.44 17.79±0.12 17.81±0.17 17.76±0.21 14.92±0.05

12 20.60±0.31 26.17±0.73 20.78±0.72 20.72±0.12 20.73±0.17 19.62±0.22 15.61±0.05

Avg. 20.05±0.57 21.74±0.52 18.65±0.46 18.01±0.13 18.03±0.17 17.91±0.24 14.92±0.05

RMSE

3 31.28±1.93 28.65±0.37 27.10±0.64 25.87±0.16 25.91±0.27 26.09±0.32 23.35±0.10

6 31.66±1.20 32.26±0.60 29.06±0.69 28.28±0.13 28.37±0.30 27.58±0.22 24.18±0.10

12 32.65±0.48 39.07±0.88 32.83±1.20 32.92±0.15 33.03±0.31 30.37±0.26 25.36±0.12

Avg. 31.78±1.11 32.72±0.60 29.31±0.73 28.59±0.14 28.67±0.29 27.73±0.25 24.17±0.09

MAPE
(%)

3 20.03±0.78 19.56±1.17 18.07±0.58 15.77±0.12 15.69±0.37 16.63±0.29 14.05±0.47

6 20.24±0.50 21.85±1.17 19.21±0.50 16.96±0.11 16.90±0.33 17.30±0.22 14.39±0.40

12 20.87±0.91 26.68±1.15 21.74±0.32 19.60±0.25 19.51±0.30 19.06±0.23 14.96±0.39

Avg. 20.33±0.49 22.28±1.16 19.45±0.45 17.20±0.13 17.13±0.33 17.49±0.24 14.41±0.42

Air-Stream

MAE

3 23.51±0.88 20.94±1.31 19.18±0.43 18.71±0.46 19.26±0.32 18.03±0.38 16.71±0.25

6 25.20±0.60 23.42±0.97 21.94±0.33 21.66±0.45 22.06±0.37 20.99±0.24 20.03±0.28

12 27.25±0.39 26.42±0.77 25.02±0.26 24.91±0.42 25.14±0.44 24.27±0.22 23.58±0.32

Avg. 25.11±0.64 23.27±0.96 21.71±0.34 21.42±0.44 21.85±0.36 20.77±0.24 19.71±0.24

RMSE

3 36.60±1.22 32.20±1.86 29.89±0.71 29.01±0.69 29.65±0.56 28.34±0.59 26.93±0.44

6 39.47±0.82 36.89±1.44 34.58±0.49 34.38±0.64 34.84±0.70 33.56±0.33 32.83±0.51

12 42.69±0.49 41.92±1.21 39.37±0.34 39.74±0.56 40.03±0.91 38.78±0.42 38.52±0.57

Avg. 39.21±0.88 36.38±1.46 34.01±0.54 33.72±0.64 34.22±0.70 32.94±0.34 32.02±0.47

MAPE
(%)

3 29.72±1.08 24.57±1.11 24.37±0.58 23.21±0.74 23.73±0.38 22.75±0.42 21.10±0.17

6 32.22±0.72 27.75±0.87 28.37±0.44 27.09±0.75 27.41±0.34 26.93±0.44 25.13±0.23

12 35.46±0.48 31.80±0.62 33.39±0.40 31.95±0.73 32.06±0.33 32.02±0.46 29.85±0.32

Avg. 32.16±0.78 27.64±0.84 28.25±0.48 26.99±0.73 27.35±0.34 26.77±0.39 24.86±0.20

spatio-temporal knowledge, resulting in suboptimal performance. In contrast, iTransformer performs
better by utilizing historical spatio-temporal knowledge through online training, though it still suffers
from catastrophic forgetting, making it a less optimal solution.

Results of CSTF methods. The best-performing models are those that can effectively address
catastrophic forgetting, such as CSTF models, TrafficStream, STKEC, and EAC. It is worth noting
that despite EAC adopting parameter expansion and fine-tuning strategies, it performs poorly due
to neglecting the specific design of the spatio-temporal backbone. In extreme incremental training
scenarios, such as with the CA-Stream dataset, EAC’s parameter expansion strategy is less effective
than the regularization and memory replay strategies used by TrafficStream and STKEC. More
detailed experimental results can be found in Appendix A.4.4.

5.3 ABLATION STUDY & PARAMETER SENSITIVITY ANALYSIS

Ablation Study Settings. To validate the core contributions of STBP, we designed the following
variants for ablation experiments: ❶ Retrain: The contextual pattern bank is removed. Similar to
GWNet and STID, a new backbone is trained for each incremental period using the spatio-temporal
graph data of that period, with the corresponding model predicting the results for the current test
set. ❷ Online: The contextual pattern bank is removed. Similar to iTransformer, the model is
trained on the complete node data of the current spatio-temporal graph and initialized with the model
from the previous period, allowing for adjustments across the entire model. ❸ w/o Backbone: The
contextual pattern bank is retained, but the spatio-temporal backbone is replaced with the ones used
in TrafficStream, STKEC, and EAC—i.e., replacing FreNet and DLGA with CNN and GCN. ❹ w/o
DGLA: The DLGA module in the spatio-temporal backbone is ablated. ❺ EAC: We also included
EAC, which follows a similar approach, for comparison in the ablation study.

Ablation findings. The ablation results are shown in Figure 4. The Retrain and Online results
demonstrate that expanding contextual pattern bank parameters and distinguishing and prompting
spatio-temporal patterns are crucial for mitigating catastrophic forgetting in continual learning. No-
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Figure 5: Results of parameter experiments.

tably, even without the contextual pattern bank, the spatio-temporal backbone achieves performance
comparable to EAC through online training, highlighting the importance of real-time dynamic
correlation modeling and mitigating temporal distributional drift in adapting to new incremental
periods. The w/o Backbone and w/o DGLA variants further confirm the indispensability of both
the general backbone and the contextual pattern bank. Removing the DLGA module significantly
degrades performance, validating its role in capturing dynamic spatial correlations and integrating
prompt-based knowledge. Additionally, the FreNet module in backbone improves computational
efficiency and enhances the extraction of stable temporal components.

Parameter Sensitivity Analysis. Additionally, we performed a sensitivity analysis on the adjustable
hyperparameter d in STBP. In STBP, d represents the feature dimension for each module’s feature
mapping, as well as the feature dimension of parameters in the contextual pattern bank. The analysis
results are shown in Figure 5. Increasing d enhances the model’s overall parameter count and
improves its expressive power. However, the performance gains from increasing d do not grow
indefinitely; after reaching a certain threshold, the performance gain stabilizes. Further increases
in d not only fail to improve performance but may also lead to negative effects, causing parameter
redundancy. More parameter sensitivity analysis can be found in Appendix A.4.5.

5.4 CASE STUDY

To provide a more intuitive explanation of the contextual pattern bank’s distinction and expandability
in STBP, we perform dimensionality reduction and clustering analysis on Pτ ∈ RNτ×d using t-SNE
on the PEMS-Stream dataset. Each scatter in Figure 6 represents a node in the spatio-temporal
graph. The figure shows that the untrained contextual pattern bank exhibits a random, chaotic
distribution, unable to effectively distinguish nodes with different patterns. After multiple incremental
training periods, the contextual pattern bank parameters gradually form distinct clusters. By randomly
selecting nodes from the same cluster and visualizing their real traffic data, we observe similar
patterns, with shared periodic and trend-based characteristics.

In contrast, nodes from different clusters, such as Clusters 1, 2, and 3 in Figure 6, show significantly
different patterns. For the 2011 PEMS-Stream dataset, which consists of 655 nodes, when the
incremental training reaches 2017, Cluster 1 classifies newly emerging nodes into the current cluster.
Nodes 693, 809, and 834, for example, are generalize into Cluster 1 after training on the 2017 data.
This demonstrates that the contextual pattern bank, through the fine-tuning of trainable parameters,
effectively distinguishes between different patterns and generalizes new ones, continuously adapting
to changes. Additional case studies on other datasets can be found in Appendix A.4.6.

5.5 EFFICIENCY STUDY

An effective CSTF method balances scalability, computational cost, and performance. We compare the
efficiency of STBP with baselines under identical settings. Figure 7 shows the average computational
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Figure 7: Efficiency comparison.

cost per period across PEMS-Stream and AIR-Stream, with scatter size indicating GPU memory
usage. We also evaluate the impact of linear attention, full attention, and the contextual pattern bank’s
absence on model efficiency using synthetic datasets. Results on PEMS-Stream and AIR-Stream
show that non-continual methods, such as GWNet, STID, and iTransformer, require global parameter
adjustments at each phase, reducing efficiency. iTransformer, in particular, suffers from high memory
consumption due to quadratic attention complexity. Even lightweight non-continual methods struggle
with efficiency during incremental training.

In contrast, CSTF methods like EAC, TrafficStream, and STKEC are more efficient, thanks to
lightweight backbones and non-global parameter fine-tuning. Despite its complex backbone, STBP
incurs minimal cost compared to models like EAC, due to optimizations like frequency-domain
processing and linear attention. STBP achieves substantial performance gains with minimal overhead.
Synthetic dataset results further confirm that linear attention reduces cost, and as node count increases,
the contextual pattern bank adds minimal burden, demonstrating scalability.

6 CONCLUSION

In this work, we propose STBP, a novel framework for continual spatio-temporal forecasting. By
combining a general-purpose backbone with a scalable contextual pattern bank, STBP efficiently
mitigates catastrophic forgetting while capturing dynamic spatio-temporal correlations. It adapts to
evolving urban data without retraining from scratch, making it suitable for real-time applications.
Validated on multiple datasets, STBP demonstrates strong continual learning capabilities. Neverthe-
less, STBP currently supports continual learning in a single-task setting. In the future, we plan to
extend its application to cross-domain continual spatio-temporal forecasting, which will be a crucial
step towards developing a foundational spatio-temporal model.

9
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This paper is committed to ensuring the reproducibility of its findings. All experiments are conducted
on publicly available, real-world datasets, and detailed descriptions of data processing, model
architecture, and training procedures are provided in the main text. For reproducibility, the source code
for our proposed method, STBP, has been made available at https://anonymous.4open.science/r/STBP/.
This repository includes all necessary scripts for running the experiments and reproducing the results
presented in the paper. For further clarity, the implementation details, model configurations, and
hyperparameter settings are documented within the appendix sections.
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A APPENDIX

A.1 NOTATIONS

Table 2 summarizes the notations frequently used throughout this manuscript.

Table 2: The notations that are commonly used in the manuscript.
Notation Definition

G = {Gτ}Tτ=1 Streaming spatio-temporal graph
Xτ Inputs for the τ period
Yτ Prediction for the τ period
Pτ contextual pattern bank for the τ period
P′

τ Expanded contextual pattern bank
Hτ Hidden representation for the τ period
Mθ Spatio-Temporal backbone
Fτ Frequency domain embedding
Hf

τ Representation after frequency-domain processing
Wq Trainable parameter weights
Wk Trainable parameter weights
Wv Trainable parameter weights
ϕ(·) Random mapping function
Hs

τ Input of the DLGA module
Hs′

τ Output of the DLGA module

A.2 RELATED WORK DETAILS

A.2.1 SPATIO-TEMPORAL FORECASTING

Spatio-temporal forecasting aims to support decision-making in critical domains such as intelligent
transportation and smart cities by uncovering dynamic correlations embedded in spatio-temporal data.
These data typically exhibit strong spatial-temporal correlations and pronounced heterogeneity. In
recent years, deep learning-based STGNNs have emerged as effective tools for such forecasting tasks.
STGNNs generally employ temporal modules (e.g., recurrent neural networks (RNNs) (Li et al.,
2018; Jiang et al., 2023b; Shao et al., 2022b) and convolutional neural networks (CNNs)) (Yu et al.,
2018; Liu & Zhang, 2024b;a) to capture temporal correlations, while leveraging spatial modules
(e.g., graph neural networks (GNNs)) (Veličković et al., 2018; Song et al., 2020) to model spatial
relationships.

Early STGNNs, such as STGCN (Yu et al., 2018) and DCRNN (Li et al., 2018), combined basic
temporal and spatial components for forecasting tasks, often relying on predefined geographic
adjacency matrices. However, these static assumptions hinder their ability to model dynamically
changing spatial correlations in a data-driven manner. Subsequent works—such as GWNet (Wu et al.,
2019), DGCRN (Li et al., 2023), and MegaCRN (Jiang et al., 2023b)—introduced adaptive adjacency
matrices or learned spatial correlations directly from data, significantly improving prediction accuracy.
More recent advances, including STID (Shao et al., 2022a), STAEformer (Liu et al., 2023a), and
HimNet (Dong et al., 2024), have highlighted the importance of spatial pattern distinction in enhancing
forecasting performance. These models incorporate trainable mechanisms such as spatial embeddings,
parameter pools, and contextual pattern banks to distinguish spatial patterns more precisely, thereby
improving both accuracy and adaptability.

Despite these advancements, most existing STGNNs are built on static assumptions and are not
designed to operate in dynamic, continually evolving spatio-temporal environments—limiting their
applicability in continual learning scenarios.

A.2.2 CONTINUAL SPATIO-TEMPORAL LEARNING

Early research in continual learning primarily focused on computer vision (Lee & Park, 2024) and
natural language processing (Caccia et al., 2020). With the rapid development of IoT and intelligent
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transportation systems, attention has increasingly shifted toward CSTL (Chen et al., 2021; Wang
et al., 2023a; Chen & Liang, 2025; Wang et al., 2023b; Miao et al., 2025), which addresses the
challenges of dynamically evolving and expanding spatio-temporal data. CSTL aims to enable models
to continuously learn and adapt to new patterns and knowledge in changing environments, while
minimizing forgetting of previously acquired information or performance degradation.

One of the earliest frameworks in this domain, TrafficStream (Chen et al., 2021), pioneered the
integration of spatio-temporal modeling with continual learning. It employed strategies such as
historical data replay and parameter smoothing to handle long-term streaming traffic data, achieving
accurate traffic flow forecasting. Subsequently, the STKEC (Wang et al., 2023a) introduced an
influence-based knowledge expansion strategy and a memory-augmented knowledge consolidation
mechanism to better accommodate the growth of transportation networks while mitigating catastrophic
forgetting. The EAC (Chen & Liang, 2025) further advanced the field by incorporating prompt tuning,
enabling CSTL with a small number of trainable parameters. Its dynamic prompt pool, which
supports both “expansion” and “compression,” enhances adaptability to new nodes while preserving
historical knowledge, improving both generalization and computational efficiency. In addition, the
UFCL (Miao et al., 2025) leveraged federated learning to preserve data privacy and introduced
a global replay buffer for synthetic spatio-temporal data, addressing the challenges of distributed
streaming environments.

Despite these advancements, most existing methods primarily focus on alleviating knowledge for-
getting, while overlooking the critical role of the spatio-temporal backbone in continual learning
scenarios.

A.3 FURTHER METHODS DETAILS

A.3.1 APPROXIMATION DERIVATION OF EQ. 9

An approximate derivation of the attention mechanism in the dual-stream linear graph attention is
presented below:

Attention (qu, kv, vv, pv) =

N∑
v=1

exp
(
q⊤
u kv

)
vv∑N

w=1 exp (q
⊤
u kw)

+

N∑
v=1

exp
(
q⊤
u pv

)
vv∑N

w=1 exp (q
⊤
u pw)

≈
∑N

v=1 ϕ (qu)
⊤
ϕ (kv)vv∑N

w=1 ϕ (qu)
⊤
ϕ (kw)

+

∑N
v=1 ϕ (qu)

⊤
ϕ (pv)vv∑N

w=1 ϕ (qu)
⊤
ϕ (pw)

=

[
ϕ (qu)

⊤ ∑N
v=1 ϕ (kv)v

⊤
v

ϕ (qu)
⊤ ∑N

w=1 ϕ (kw)

]
︸ ︷︷ ︸
Term 1: Representation-based aggregation

+

[
ϕ (qu)

⊤ ∑N
v=1 ϕ (pv)v

⊤
v

ϕ (qu)
⊤ ∑N

w=1 ϕ (pw)

]
︸ ︷︷ ︸

Term 2: Prompt-based aggregation

(10)

where qu is the query tensor of node u; kv and vv are the key and value tensors of node v, respectively;
and pv represents the prompt information for node v.

A.3.2 ALGORITHM WORKFLOW

The overall workflow of STBP for continual spatio-temporal forecasting is presented in a more
intuitive manner in Algorithm 1.

A.4 ADDITIONAL EXPERIMENT DETAILS

A.4.1 DATASET DETAILS

Table 3 and Table 4 jointly summarize the characteristics of the three continual spatio-temporal
datasets used in this study: PEMS-Stream, CA-Stream, and Air-Stream. These datasets differ
in domain (traffic vs. weather), temporal span, and topological evolution, collectively covering a
broad spectrum of real-world non-stationary scenarios suitable for evaluating continual learning
models. PEMS-Stream contains highway traffic sensor readings collected across California from
July 2011 to September 2017. It spans seven periods with a gradual increase in the number of sensor
nodes—from 655 to 871—resulting in a +33% relative growth. This dataset simulates realistic,
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Algorithm 1 The workflow of STBP for continual spatio-temporal forecasting
Require: Spatio-temporal backboneMθ, contextual pattern bank {P1,P2, . . . ,Pτ}, streaming

train data {X1,X2 . . . ,Xτ}.
Ensure: Optimized backboneMθ∗ and contextual pattern bank {P∗

1, . . . ,P
∗
τ}

Initialize:Mθ ← {}, P1 ← {}
for each period i in {1, 2, 3, . . . , τ} do

if i == 1 then
▷ Initial training phase ◁
Construct the initial contextual pattern bank P1

Optimize backbone and contextual pattern bank with initial data X1:
(Mθ∗ ,P∗

1)← argminθMθ(X1,P1)
else

▷ Streaming learning phase ◁
Expand contextual pattern bank Pi: Pi ← Pi−1 ∥ ∆Pi

Inherit parameters: (Mθ,Pi)← (Mθ∗ ,P∗
i−1)

Freeze backbone parametersMθ: θ ← freeze(θ)
Fine-tune Pi with backboneMθ on Xi:
P∗

i ← argminθMθ(Xi,Pi)

Table 3: Overview of continual spatio-temporal forecasting datasets.

Dataset Domain Time Range Period Node Expansion Frequency

PEMS-Stream Traffic 07/10/2011 - 09/08/2017 7
655→ 715→ 786
→ 822→ 834→ 850

→ 871
5 min

CA-Stream Traffic 01/01/2019 - 04/30/2019 4 480→ 691→ 1175
→ 1698 5 min

Air-Stream Weather 01/01/2016 - 12/31/2019 4 1087→ 1154
→ 1193→ 1202 1 hour

long-term infrastructure expansion and serves as a benchmark for evaluating model adaptability under
progressive and stable topological changes. CA-Stream, also in the traffic domain, covers a much
shorter period (January to April 2019) but features a sharp and sudden node expansion—from 480 to
1,698—corresponding to a +254% relative increase. This explosive growth introduces significant
distributional shifts, making CA-Stream a challenging testbed for assessing model robustness under
rapidly evolving conditions. Air-Stream focuses on urban air quality and environmental measurements
from 2016 to 2019. It exhibits modest but steady node growth—from 1,087 to 1,202 (+10%)—and
represents a relatively stable expansion setting. Its distinct domain and smoother structural changes
make it particularly suitable for evaluating cross-domain generalization and robustness to gradual
environmental variation.

To further assess non-stationarity, we conducted Maximum Mean Discrepancy (MMD) tests across
different periods, separately evaluating original nodes (present from the beginning) and added nodes
(introduced during expansion), as shown in Table 5. A distribution shift is considered significant
when MMD > 0.1 or p < 0.05. Across all datasets, added nodes consistently exhibit stronger
distributional shifts, reflecting the spatial disruptions caused by topological expansion. For instance,
CA-Stream shows a substantial shift for added nodes (MMD = 0.3361, p = 0.0010), consistent with
its rapid growth. Interestingly, Air-Stream records the highest MMD among original nodes (0.3324,
p = 0.001), despite minimal structural change—indicating notable temporal drift in environmental
data. This highlights Air-Stream’s importance for evaluating robustness to evolving distributions
even under stable topology. By contrast, PEMS-Stream shows only moderate drift among original
nodes (MMD = 0.0939), aligning with its smoother expansion. CA-Stream presents weaker drift in
original nodes (MMD = 0.0792, p = 0.1119), likely due to its limited temporal span. These results
underscore the dual challenge in continual spatio-temporal learning: managing both spatial shifts
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Table 4: Topological dynamics and evaluation purposes of the datasets.
Dataset Topology Change △Nodes Relative Change Primary Purpose

PEMS-Stream Gradual expansion 216 +33% Realistic progressive growth
CA-Stream Explosive expansion 1,218 +254% Extreme incremental stress test
AIR-Stream Stable expansion 115 +10% Cross-domain validation

Table 5: Distribution shift analysis based on MMD tests.

Type PEMS-Stream AIR-Stream CA-Stream
MMD p MMD p MMD p

Original Node 0.0939 0.008 0.3324 0.001 0.0792 0.1119
Added Node 0.2958 0.001 0.2679 0.001 0.3361 0.0010

induced by node expansion and temporal non-stationarity inherent to dynamic environments, with
their nature and intensity varying across domains.

A.4.2 BASELINES AND METRICS DETAILS

In this paper, we provide a detailed comparison with two categories of representative models:

Conventional Spatio-Temporal Forecasting Models. ❶ GWNet (Wu et al., 2019): A STGNN
model based on an adaptive adjacency matrix that can adaptively capture latent spatial dependencies.
This model combines graph convolutional networks and temporal convolutions to effectively capture
spatio-temporal correlations in the data. ❷ STID (Shao et al., 2022a): An efficient multilayer
perceptron model that solves the problem of sample non-separability using trainable embeddings,
showing outstanding performance in spatio-temporal forecasting tasks. ❸ iTransformer (Liu et al.,
2024): A time-series model that does not rely on a static graph structure. By modeling the interactions
between variables, it captures temporal features and is effectively applied to multivariate time series
forecasting tasks.

Continual Spatio-Temporal Forecasting Models. These models are designed to handle time-
varying data and are suitable for continual training tasks. Like STBP, they belong to the category of
continual learning models. We selected the following three representative models for comparison:
❶ TrafficStream (Chen et al., 2021): The first model for CSTF, it employs a traffic pattern fusion
approach, historical data replay, and parameter smoothing strategies to efficiently integrate and
learn new spatio-temporal patterns in the continuously expanding and evolving traffic network. ❷
STKEC (Wang et al., 2023a): A traffic forecasting model based on the continual learning paradigm.
Through an influence-based knowledge expansion strategy and a memory-augmented knowledge
consolidation mechanism, STKEC helps the model effectively integrate new spatio-temporal traffic
patterns in an ever-expanding road network while retaining previously learned spatio-temporal
patterns. ❸ EAC (Chen & Liang, 2025): A CSTF based on prompt tuning. By integrating a base
STGNN with a continual prompt pool, it efficiently addresses incremental learning and catastrophic
forgetting in streaming data using lightweight trainable parameters.

The Excluded Models. Some baselines that might be considered relevant for comparison were
excluded, and we provide explanations for their exclusion below. ❶ STAEformer (Liu et al., 2023a):
a widely recognized baseline, was not included in our comparison due to non-convergence observed
when applying the same experimental setting as used for GWNet and STID on the selected three
datasets. To ensure fair and unambiguous evaluation, we excluded it from the results and have
provided the corresponding training logs in the anonymous code repository. ❷ UFCL (Miao et al.,
2025): The CSTF method UFCL is not included in the comparison due to differences in experimental
settings, which prevent a fair evaluation.
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Table 6: Comparison of prediction performance for each incremental period on PEMS-Stream. Bold:
best, underline: second best.

Model Metric PEMS-Stream Period
2011 2012 2013 2014 2015 2016 2017 Avg.

GWNet
MAE 16.48±0.62 16.59±0.62 15.23±1.03 15.50±0.80 17.43±1.06 15.30±0.33 19.77±1.32 16.62±0.14

RMSE 25.82±0.81 26.01±0.75 25.44±1.36 24.81±1.13 28.31±1.38 26.69±0.62 32.40±1.76 27.07±0.20

MAPE (%) 23.81±1.38 24.63±1.99 21.44±1.34 23.93±1.54 27.66±3.19 24.02±4.99 32.29±1.03 25.40±0.87

STID
MAE 16.26±0.34 15.89±0.68 14.54±1.16 14.87±0.15 14.44±0.16 14.73±0.52 15.24±0.45 15.14±0.12

RMSE 24.26±0.42 24.99±0.84 23.82±1.80 24.13±0.35 23.77±0.29 25.76±0.73 24.12±0.24 24.41±0.20

MAPE (%) 23.27±1.96 21.60±1.68 19.85±1.90 21.70±1.40 19.79±1.26 21.84±5.47 34.13±8.59 23.17±2.32

iTransformer
MAE 14.47±0.19 14.06±0.46 14.37±0.41 15.37±0.62 14.51±0.39 14.03±0.47 15.53±0.66 14.62±0.40

RMSE 21.75±0.41 21.70±0.83 22.65±0.72 24.29±1.27 23.36±0.77 24.37±0.72 24.95±1.03 23.29±0.77

MAPE (%) 30.14±3.82 30.18±2.46 36.45±3.48 34.89±2.51 32.19±3.44 31.94±2.73 32.79±1.81 32.65±1.53

TrafficStream
MAE 14.14±0.16 13.78±0.19 13.60±0.10 14.47±0.09 14.11±0.13 13.52±0.11 14.79±0.07 14.06±0.10

RMSE 21.81±0.22 21.71±0.28 21.93±0.21 23.32±0.13 23.08±0.22 24.05±0.16 24.41±0.15 22.90±0.18

MAPE (%) 19.14±0.81 19.48±0.70 19.55±0.91 20.30±0.71 20.07±1.03 18.16±0.43 19.66±0.61 19.48±0.41

STKEC
MAE 14.01±0.10 13.91±0.23 13.64±0.08 14.51±0.11 14.02±0.05 13.45±0.06 14.89±0.11 14.07±0.04

RMSE 21.53±0.21 21.76±0.33 22.02±0.11 23.58±0.23 22.96±0.08 24.13±0.22 24.53±0.10 22.93±0.05

MAPE (%) 18.54±0.43 18.90±0.26 19.64±1.22 19.39±0.73 20.31±1.13 18.20±0.58 20.05±1.17 19.29±0.42

EAC
MAE 13.26±0.05 12.97±0.11 12.95±0.14 13.91±0.22 13.56±0.17 13.01±0.16 14.72±0.28 13.49±0.15

RMSE 20.15±0.09 20.06±0.15 20.61±0.23 22.06±0.37 21.78±0.24 23.00±0.16 23.52±0.23 21.60±0.19

MAPE (%) 17.79±0.52 18.44±0.69 19.23±0.82 20.80±0.96 20.70±1.05 18.63±1.06 22.29±1.85 19.69±0.90

STBP
MAE 11.12±0.07 10.71±0.09 10.48±0.08 11.35±0.08 10.96±0.06 10.35±0.05 12.04±0.05 11.00±0.04

RMSE 17.04±0.07 16.86±0.11 17.09±0.16 18.30±0.12 17.94±0.08 19.65±0.09 20.14±0.04 18.15±0.06

MAPE (%) 14.44±0.21 14.05±0.15 13.75±0.11 14.87±0.06 14.49±0.03 13.17±0.07 16.88±0.26 14.52±0.09

Metrics Details. Additionally, the performance metrics used in the experiments to evaluate the
model, namely MAE, RMSE, and MAPE, are defined as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (11)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (12)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (13)

where n represents the number of observed samples, yi denotes the i-th real sample, and ŷi is the
corresponding predicted value.

A.4.3 IMPLEMENTATION DETAILS

All experiments are conducted on a machine with an NVIDIA Tesla V100 GPU and 32 GB of
memory. The Adam optimizer, with an initial learning rate of 0.01, is used to optimize the training
process. The batch size is set to 64, the number of training epochs is set to 200, and an early stopping
mechanism is implemented to ensure efficient convergence. The reported results for all baselines are
the average of five repeated runs.

A.4.4 EXPERIMENT RESULTS

Tables 6 and 7 present more detailed experimental results, including the prediction performance
metrics for each incremental training period. The metrics for each period represent the average
predictions over 12 time steps. The results demonstrate that, both in terms of overall CSTF per-
formance across all stages and in each individual incremental period, STBP exhibits outstanding
continual spatio-temporal learning capabilities. This advantage can be attributed to its well-designed
spatio-temporal backbone structure and the effective support provided by the contextual pattern bank
in consolidating and inductively incorporating both historical and new spatio-temporal knowledge.

To further evaluate the robustness of the proposed model under low-resource scenarios, we constructed
a few-shot training setting and compared it against existing baselines. Specifically, we simulated a
few-shot environment in which the sample size of the first incremental period was kept unchanged,
while the training set size for subsequent periods was reduced to only 10% of the original. The test
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Table 7: Comparison of prediction performance for each incremental period on CA-Stream and
AIR-Stream. Bold: best, underline: second best.

Model Metric CA-Stream Period AIR-Stream Period
Jan Feb Mar Apr Avg. 2016 2017 2018 2019 Avg.

GWNet
MAE 22.39±0.82 21.08±0.85 17.96±0.55 18.78±0.75 20.05±0.57 26.82±0.78 27.10±2.42 25.29±2.11 21.22±2.61 25.11±0.64

RMSE 35.73±1.38 33.61±1.62 28.74±1.33 29.04±1.35 31.78±1.11 42.98±1.18 40.86±3.33 41.06±2.81 31.95±2.74 39.21±0.88

MAPE (%) 20.10±1.10 21.78±1.79 19.41±0.47 20.03±0.31 20.33±0.49 28.95±0.50 30.60±3.13 39.74±1.76 29.34±2.62 32.16±0.78

STID
MAE 24.20±0.50 25.87±1.52 19.98±0.91 16.93±0.12 21.74±0.52 29.09±2.08 26.23±3.96 18.50±2.90 19.24±1.10 23.27±0.96

RMSE 36.41±0.69 38.24±1.68 30.39±1.20 25.86±0.29 32.72±0.60 45.10±2.41 38.67±4.92 32.28±5.83 29.47±1.11 36.38±1.46

MAPE (%) 22.68±1.36 23.96±3.28 23.27±0.83 19.19±1.74 22.28±1.16 30.12±1.96 28.36±3.57 26.21±4.22 25.89±1.40 27.64±0.84

iTransformer
MAE 21.35±0.88 19.05±0.37 17.33±0.49 16.88±0.38 18.65±0.46 28.19±1.17 23.38±0.77 16.72±0.34 18.55±0.43 21.71±0.34

RMSE 33.14±1.29 30.51±0.55 27.44±0.81 26.14±0.59 29.31±0.73 44.85±1.58 34.61±1.11 28.54±0.54 28.04±0.31 34.01±0.54

MAPE (%) 20.92±1.21 19.80±1.03 18.90±1.01 18.16±0.81 19.45±0.45 31.54±1.31 28.23±0.88 26.12±0.26 27.10±0.72 28.25±0.48

TrafficStream
MAE 19.88±0.22 18.61±0.23 16.97±0.19 16.58±0.05 18.01±0.13 26.99±0.76 23.48±1.08 16.62±0.50 18.62±0.94 21.42±0.44

RMSE 31.43±0.24 30.06±0.28 27.04±0.26 25.83±0.06 28.59±0.14 43.45±1.19 34.39±1.36 28.92±0.71 28.13±1.00 33.72±0.64

MAPE (%) 17.12±0.48 17.93±0.66 17.05±0.28 16.70±0.13 17.20±0.13 28.81±0.95 27.61±0.97 25.68±1.83 25.89±0.80 26.99±0.73

STKEC
MAE 19.68±0.26 18.67±0.32 17.01±0.13 16.76±0.11 18.03±0.17 27.98±1.23 24.34±0.78 16.66±0.62 18.41±0.68 21.85±0.36

RMSE 31.14±0.28 30.25±0.60 27.17±0.26 26.14±0.15 28.67±0.29 44.58±1.53 35.28±1.08 29.31±1.45 27.72±0.42 34.22±0.70

MAPE (%) 17.34±1.50 17.58±0.29 17.28±0.56 16.32±0.10 17.13±0.33 29.15±0.89 28.78±1.58 25.08±0.53 26.38±1.55 27.35±0.34

EAC
MAE 19.18±0.18 17.83±0.14 17.19±0.38 17.45±0.51 17.91±0.24 28.13±0.54 21.68±0.55 16.03±0.41 17.24±0.32 20.77±0.24

RMSE 30.06±0.32 28.39±0.12 26.38±0.39 26.07±0.59 27.73±0.25 45.21±0.82 32.60±0.47 27.35±0.44 26.59±0.27 32.94±0.34

MAPE (%) 17.19±0.54 17.25±0.26 17.50±0.41 18.04±0.54 17.49±0.24 29.35±0.40 25.76±0.76 26.82±1.41 25.15±0.52 26.77±0.39

STBP
MAE 16.72±0.23 15.03±0.06 13.99±0.08 13.94±0.07 14.92±0.05 26.52±0.92 20.49±0.33 14.95±0.28 16.89±0.36 19.71±0.24

RMSE 27.20±0.37 25.16±0.08 22.57±0.14 21.73±0.07 24.17±0.09 43.26±1.74 31.76±0.38 26.41±0.35 26.67±0.41 32.02±0.47

MAPE (%) 14.87±0.84 14.52±0.55 13.90±0.21 14.33±0.17 14.41±0.42 27.15±0.55 24.18±0.37 23.99±0.48 24.15±0.47 24.86±0.20

Table 8: Comparison of few-shot forecasting results. Bold: best, underline: second best.

Model
PEMS-Stream (10%) CA-Stream (10%) AIR-Stream (10%)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
GWN 20.73 34.13 29.04% 28.69 44.85 30.72% 32.62 47.98 53.04%
STID 24.32 39.53 39.68% 31.94 48.90 34.72% 40.30 58.64 61.88%

iTransformer 19.22 30.66 43.26% 26.94 40.51 31.48% 31.38 45.43 55.33%

TrafficStream 14.09 22.81 19.73% 18.17 28.68 16.89% 28.54 42.38 43.97%
STKEC 14.14 23.01 19.20% 18.12 28.63 16.67% 23.73 36.61 32.71%

EAC 13.83 21.94 20.48% 19.12 29.15 19.10% 21.21 33.24 29.52%

STBP 11.86 19.48 15.95% 17.17 27.17 16.32% 20.46 32.64 28.48%

set size remained fixed throughout. As shown in Table 8, STBP consistently outperforms all other
methods, highlighting its strong ability to extract meaningful patterns from limited data. Continual
baselines such as TrafficStream, STKEC, and EAC are more resilient to low-resource conditions than
conventional STGNNs (e.g., GWNet, STID), yet they still suffer from performance drops, especially
on AIR-Stream and CA-Stream, which exhibit strong distributional drift (Table 5).

Existing continual spatio-temporal learning methods typically test the model immediately after
training each incremental period, rather than conducting a unified evaluation on all historical periods
once all incremental training has been completed. In other words, current practices do not directly
assess the model’s ability to retain historical knowledge. To address this, we reevaluated the model
on the test sets from all historical periods after completing the full incremental training, in order to
assess the extent of forgetting. The results in the Figure 8 below show that all continual learning
methods showed varying degrees of performance degradation in this post-hoc evaluation, indicating
catastrophic forgetting of old tasks as new nodes and data were introduced. Nevertheless, STBP
achieved the best overall performance, demonstrating its relative advantage in mitigating forgetting.

A.4.5 PARAMETER SENSITIVITY ANALYSIS

Beyond the feature dimension d, we further investigated the sensitivity of two key architectural
hyperparameters: the number of DLGA layers and attention heads. As shown in Figure 9, increasing
either parameter yields marginal gains at best, and in some cases, even leads to slight performance
degradation. Overall, apart from the feature dimension, model performance remains relatively
insensitive to these hyperparameter variations.

A.4.6 ADDITIONAL CASE STUDY

To maintain consistency with the case study on PEMS-Stream, we also conducted case studies on
the CA-Stream and Air-Stream datasets to further validate the expansion and distinction capabilities
of the contextual pattern bank in STBP. The experimental results for CA-Stream are shown in
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Figure 8: Comparison of historical knowledge forgetting at each incremental period.

Figure 9: Additional Results of parameter experiments.

Figure 10. Even in the more challenging task of node increment, STBP ’s contextual pattern bank
effectively distinguishes and consolidates different spatio-temporal patterns, incorporating new
patterns introduced by newly added nodes into the existing pattern clusters.

Figure 11 presents the results on Air-Stream. Compared to traffic flow data, the spatio-temporal pat-
terns in this dataset exhibit more complex periodic and trend changes. Nonetheless, STBP continues
to accurately differentiate and consolidate diverse patterns, indicating that its contextual pattern bank
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Figure 10: Case Study on CA-Stream.
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Figure 11: Case Study on AIR-Stream.

has adaptive inductive capabilities for various types of spatio-temporal patterns, independent of the
specific dataset type. This mechanism enables STBP to exhibit greater flexibility and adaptability in
CSTF tasks.

A.4.7 EFFICIENCY STUDY

Figure 12 provides additional experiments assessing the efficiency and scalability of STBP. Overall,
these results confirm that STBP achieves favorable scalability and efficiency, and that its linear-
attention design and modular contextual pattern bank structure enable it to handle large-scale spatio-
temporal graphs in continual learning settings.

A.5 LIMITATION

Despite the excellent performance of the STBP model on several benchmark datasets, there remain
several theoretical and practical limitations that warrant further exploration. Firstly, current continual
learning research, including this work, generally assumes an idealized scenario where all tasks pro-
cessed during incremental learning come from the same or highly similar data domains. However, this
assumption significantly deviates from the dynamic, complex, and diverse environments encountered
in the real world. Cross-domain distribution shifts can introduce dual challenges when the model
faces new tasks, including feature space mismatch and exacerbated catastrophic forgetting.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Additional efficiency comparison.

For instance, in intelligent transportation systems, when the model is applied to new urban traffic
data with significant distributional differences, it must not only dynamically expand its spatio-
temporal feature extraction capabilities but also develop effective representations of cross-domain
invariant features. Although road network structures may vary across cities, certain microscopic
traffic dynamics (e.g., traffic flow propagation speed, congestion formation mechanisms) could have
inherent universality. How to construct a continual learning framework with domain adaptation
capabilities, which can accurately distinguish domain-specific features from cross-domain shared
features, will be a key breakthrough in improving the model’s cross-domain generalization abilities.

A.6 BROADER IMPACT

STBP, with its carefully designed general spatio-temporal backbone structure and contextual pattern
bank expansion mechanism tailored for dynamic scenario changes, effectively achieves continual
spatio-temporal forecasting. This approach demonstrates that the spatio-temporal backbone can
serve as a stable infrastructure, consistently retaining the ability to model general spatio-temporal
dependencies. When facing new or evolving scenarios, there is no need to retrain the backbone
network. Instead, by introducing scalable parameters relevant to the current scenario, the model can
rapidly adapt to new tasks.

Building on this concept, we aim to further explore the development of a spatio-temporal foundational
model. This approach involves continuously training a unified backbone model with spatio-temporal
data from multiple heterogeneous domains, thereby enhancing its spatio-temporal representational
capacity. As data from various domains are continuously integrated and trained, the spatio-temporal
foundational model will evolve, enabling efficient generalization and adaptation to entirely new
scenarios or tasks by incorporating only a small number of additional parameters. Such a model
holds the potential to benefit society by improving intelligent transportation through more accurate
traffic forecasting and supporting climate resilience via advanced environmental modeling.

A.7 LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
we used an LLM (ChatGPT) solely for the purpose of improving the grammar, clarity, and fluency
of the manuscript. The content, structure, technical contributions, experiments, analysis, and all
scientific writing were entirely conceived, drafted, and validated by the human authors. The LLM was
not involved in research ideation, experimental design, data analysis, or any aspect of the scientific
content creation. All outputs generated by the LLM were reviewed and edited by the authors to ensure
accuracy and correctness. We confirm that no hidden prompts, prompt injections, or LLM-generated
falsehoods were introduced in the manuscript, and all use of LLMs complies with the ICLR Code of
Ethics.
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