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ABSTRACT

With the explosive growth of spatio-temporal data driven by IoT deployments and
urban infrastructure expansion, accurate and efficient continual forecasting remains
a critical challenge. Recent Spatio-Temporal Graph Neural Networks assume
static graph topologies and temporal scales, making them ill-suited for dynamic
real-world data streams. Meanwhile, existing continual learning methods often
adopt simple backbones, limiting their ability to capture evolving dependencies
and adapt to distributional drift. To address these limitations, we propose STBP,
a novel framework for Continual Spatio-Temporal Forecasting that bridges the
gap between STGNNSs and continual learning. STBP integrates a general-purpose
spatio-temporal backbone with a scalable contextual pattern bank. The backbone
extracts stable spatio-temporal representations in the frequency domain and models
dynamic spatial correlations using linear graph attention. To support continual
adaptation and alleviate catastrophic forgetting, the contextual pattern bank is
incrementally updated via parameter expansion, capturing evolving node-level
heterogeneous patterns. During incremental training, the backbone remains frozen
to preserve general knowledge, while the contextual pattern bank adapts to new
scenarios and distributions. Extensive experiments show that STBP surpasses state-
of-the-art baselines in both accuracy and scalability, underscoring its effectiveness
for continual spatio-temporal forecasting. Code is available at|/Anonymous Github,

1 INTRODUCTION

With the rapid development of urban infrastructure (Kumar et al., 2024} Hu et al., |2023) and the
widespread deployment of IoT sensing devices (Jin et al.| 2024} Yang et al.l 2025)), spatio-temporal
data—such as traffic flow (Shao et al.,[2022b) and weather observations (Tian et al., 2025)—have
grown explosively. Efficient and accurate forecasting of such large-scale, continuously evolving
spatio-temporal data has become one of the key tasks in the development of smart cities.

However, urban spatio-temporal data inherently form a dynamic system: as the urban area expands,
the spatial topology evolves, sensors are continuously added, and data distributions drift over time.
These dynamic characteristics bring new challenges to recent spatio-temporal forecasting methods,
such as Spatio-Temporal Graph Neural Networks (STGNNs) (Kong et al., 2024} |Gao et al.| [2024; Liu
& Zhang|, 2025)), which have achieved significant progress in modeling spatio-temporal correlations.
However, as illustrated in Figure[I] most existing methods are based on static assumptions—i.e.,
fixed temporal scales and static graph topologies—making them ill-suited for real-world data streams
that evolve continuously. More critically, recent STGNNS rely on offline training; when encountering
new data or topology changes, they often require retraining from scratch, which is impractical in
resource-constrained or continuously growing environments.

To tackle these issues, Continual Spatio-Temporal Forecasting (CSTF) (Miao et al.| 2024} |Chen &
Liang, 2025} Ma et al., 2025b) has emerged as a research hotspot. Its core goal is to achieve incremen-
tal learning and efficient forecasting on new data without retraining on old data. As shown in Figure[I]
these methods typically construct a general spatio-temporal backbone and adopt strategies such as
regularization, replay, and dynamic architectures to enhance adaptability and mitigate catastrophic
forgetting. However, most existing methods mainly focus on retaining old knowledge and adopt
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incremental training, making them hard to scale
efficiently and hindering the real-world deploy-
ment of continual learning strategies. Therefore,
an ideal CSTF framework should simultaneously
address the following four key challenges: @ handling distributional drift, ® modeling dynamic
spatio-temporal correlations, ® alleviating catastrophic forgetting, and @ supporting dynamic
expansion of graph structures.

Figure 1: Limitations of existing studies.

To this end, we bridge the gap between STGNNSs and continual learning by introducing a general-
purpose spatio-temporal backbone with scalable contextual pattern bank (STBP). Specifically, the
backbone in STBP extracts stable spatio-temporal components in the frequency domain to mitigate
distributional drift; meanwhile, a lightweight, scene-agnostic, data-driven linear graph attention
is used to model dynamic spatial correlations with minimal computational overhead. To alleviate
catastrophic forgetting and support the continual expansion of graph structures, the contextual pattern
bank—composed of trainable parameters—is incrementally updated through parameter expansion
to adapt to evolving scenarios. In this framework, the backbone models general and stable patterns,
whereas the contextual pattern bank captures contextual and node-specific heterogeneous patterns
that interact with the backbone to adapt to continuously evolving environments.

Our main contributions are summarized as follows: @ We propose a highly general and efficient back-
bone tailored for incremental forecasting. ® We introduce a contextual pattern-based optimization
strategy that supports dynamic adaptation and mitigates catastrophic forgetting. ® Extensive experi-
ments on multiple real-world benchmark datasets demonstrate that STBP significantly outperforms
state-of-the-art baselines in terms of forecasting accuracy, adaptability, and scalability.

2 RELATED WORK

Spatio-Temporal Forecasting. Early studies in spatio-temporal forecasting, including methods like
STGCN (Yu et al.}[2018) and DCRNN (Li et al.,|2018]), primarily focused on combining basic temporal
and spatial elements for prediction tasks. These models typically depended on predefined geographic
adjacency matrices, which limited their ability to capture the evolving nature of spatial correlations.
In contrast, later advancements, such as GWNet (Wu et al.| [2019), DGCRN (Li et al., [2023)), and
MegaCRN (Jiang et al.,|2023b)), addressed this limitation by incorporating adaptive adjacency matrices
or learning spatial correlations directly from the data. This shift led to a notable improvement in
forecasting accuracy. More recently, models like STID (Shao et al.| 2022a)), STAEformer (Liu
et al.,|2023a)), and HimNet (Dong et al., 2024)) have emphasized the significance of distinguishing
spatial patterns to further enhance forecasting performance. These methods incorporate trainable
components, including spatial embeddings, parameter pools, and contextual pattern bank, to more
accurately capture spatial variations, boosting both prediction precision and model adaptability.

Continual Spatio-Temporal Forecasting. TrafficStream (Chen et al.,|2021)), one of the pioneering
frameworks in CSTF, was instrumental in combining spatio-temporal modeling with continual
learning. It utilized techniques such as historical data replay and parameter smoothing to effectively
manage long-term streaming traffic data, delivering accurate traffic flow predictions. Following
this, the STKEC (Wang et al.| 2023a) introduced an influence-based knowledge expansion strategy
along with a memory-augmented knowledge consolidation mechanism, which better supported the
scaling of transportation networks while alleviating issues of catastrophic forgetting. The EAC (Chen
& Liang) 20235)) further advanced CSTF by incorporating prompt tuning, which enabled continual
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spatio-temporal learning with a minimal number of trainable parameters. Its dynamic prompt pool,
which allows for both “expansion” and “compression,” enhances the model’s adaptability to new
nodes while preserving past knowledge, improving generalization and computational efficiency.
Additionally, the UFCL (Miao et al.,|2025)) leveraged federated learning to protect data privacy and
introduced a global replay buffer for synthetic spatio-temporal data, addressing challenges associated
with distributed streaming environments.

3 PRELIMINARY

Definition 1 (Streaming Spatio-Temporal Graph). We define a streaming spatio-temporal graph
as a sequence of evolving graphs G = {G,}7_,, where each graph G, = (V;, E., A;,) represents
the graph at incremental period 7. Here, V- denotes the node set, F; the edge set, and adjacency
matrix A, € RV~ >N+ connections between nodes. The number of nodes at period 7 is denoted by
N, = |V;|. The graph evolves incrementally as G, = G,_1 + AG, where AG, captures structural
or feature modifications between periods.

Definition 2 (Continual Spatio-Temporal Forecasting). Continual spatio-temporal forecasting
aims to develop an optimal predictive model at each stage based on dynamic, streaming spatio-
temporal graph data. At each incremental period 7, given the current graph G, and historical
observations X, € RV7*Th the goal is to predict future signals Y, € RN~*77 ag follows:

YT = fH(GTaXT)7 (1)

where Tj, is the length of the historical observation window, and T is the forecasting horizon. The
model fy is parameterized by 6, and continually updated by minimizing:

9: = arg meinE(G.,-,XT,YT)N'DT [E (f@(GT7 XT)7 YT)] ) (2)
where L£(-, -) is a loss function, and D, denotes the data distribution at period 7.
4 METHODOLOGY

4.1 OVERVIEW OF STBP

The workflow and architecture of STBP are shown in Figure[2] It consists of two core components: a
general spatio-temporal backbone and a contextual pattern bank. The backbone, comprising temporal
and spatial modules with a prediction layer, captures spatio-temporal correlations in evolving networks.
The contextual pattern bank, made of trainable parameters, is dynamically expanded and fine-tuned
as data evolves. While the backbone captures general, stable patterns, the contextual pattern bank
adapts to environmental changes, focusing on context-specific patterns. Guided by prompts, both
components collaborate to form an efficient and robust continual learning system.

In terms of workflow, streaming spatio-temporal data is sequentially fed into the STBP. During
the initial incremental training phase, the backbone and contextual pattern bank are jointly trained
to capture spatio-temporal correlations from current data. In later stages, the backbone is frozen
(denoted by a snowflake) to retain knowledge learned from historical data, while the contextual
pattern bank is updated (denoted by a flame) through expansion and fine-tuning. These updates serve
as prompts, guiding the frozen backbone to adapt to new data distributions. This continual learning
process, driven by the interplay between backbone and contextual pattern bank, enables the model to
progressively enhance its representation power and adaptability while preserving core functionality.
For detailed workflow steps, refer to Algorithm [I)in Appendix

4.2 CONTEXTUAL PATTERN BANK

Recent studies (Shao et al.l [2022a Dong et al., 2024; (Chen & Liang| [2025) have shown that
incorporating node-specific trainable parameters into STGNN s can significantly enhance forecasting
performance. Following this insight, we propose an expandable contextual pattern bank
P, € RV74 composed of trainable parameters, to consolidate historical spatio-temporal patterns
and generalize to new ones, thereby mitigating catastrophic forgetting and continuously adapting to
new incremental scenarios, where d denotes the feature dimension.

We posit that the model can utilize P, to effectively distinguish both the relevance and hetero-
geneity of nodes, enabling a more nuanced understanding of the underlying data structures. Here,
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Figure 2: The overall workflow and architecture of STBP.
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As shown in Figure IZL given an stream spatio-

temporal input X, € RV=*T» the backbone model My, and contextual pattern bank P, € RN7*4,
the incremental learning process is formulated as:

Y, = My(X,,P,). 3)

At the initial training stage (7 = 1), both the backbone and contextual pattern bank are jointly
trained (denoted with flame). For subsequent stages (7 > 1), the backbone is frozen (denoted with
snowflake), and only the contextual pattern bank is updated through expansion:

P =P, || AP, )

where AP, € RWW-—N--1)xd represents newly introduced parameters for the current incremental
period. Only the expanded contextual pattern bank P, € R ~x(d) s fine-tuned during training.
This strategy ensures that the backbone retains previously acquired knowledge, while the contextual
pattern bank continually adapts to evolving distributions. It incrementally expands to represent an
increasingly diverse set of environmental patterns, thereby avoiding the inadequacy exhibited by fixed
models in novel scenarios.

Distinct from existing work (Wang et al., [2023a} [Chen & Liang| 2025} Wang et al 2023b), we
introduce a Prompt-Based Guidance(Peebles & Xie), [2023;Zhang et al., 2023) mechanism to enhance

P ’s capacity to model both node-level relevance and heterogeneity. Specifically, the contextual
pattern bank comprises three groups of trainable parameters: P(Tl) € RVN=*d fori € 0,1,2. As
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illustrated in Figurd?2] these components interact with the backbone’s hidden representation H, via
the following prompt-based gating function:

H, =P hy(H, - PY), )
where hg denotes an arbitrary submodule within the backbone. This gating mechanism enables

adaptive modeling of node heterogeneity. Additionally, Pg) acts as a key embedding in the attention
module, guiding the backbone to generalize correlation-aware information under task constraints. Im-
portantly, since the contextual pattern bank encodes high-level abstractions rather than raw historical
data, our method supports knowledge retention without revisiting prior data—offering advantages in
privacy protection and storage efficiency.

4.3  GENERAL SPATIO-TEMPORAL BACKBONE

While the contextual pattern bank mitigates catastrophic forgetting in continual learning, it lacks the
ability to model dynamic spatio-temporal correlations and handle out-of-distribution generalization.
To address this, we design a general spatio-temporal backbone aimed at handling distributional
drift, spatio-temporal correlation modeling, and graph scalability during continual learning. The term
general implies that the backbone is independent of the number of nodes and does not rely on any
predefined adjacency matrix, making it adaptable to arbitrary spatio-temporal data structures.

As shown in Figure [2] the backbone operates as follows: input spatio-temporal data first pass
through a frequency-domain network (FreNet), which maps it into high-dimensional temporal
representations and extracts stable components via frequency domain analysis. A dual-stream
linear graph attention (DLG2) module then captures dynamic spatial correlations, followed by a
feedforward layer with a multilayer perceptron for enhanced nonlinear expressivity. Finally, the
features are reconstructed to their original shape by another FreNet and passed through a prediction
layer. We detail the FreNet and DLGA modules below.

Frequency-Domain Network. Spatio-temporal data in evolving environments often suffer from
distributional drift (Wang et al., [2024; Ji et al.| 2025} |[Zhou et al.| 2023). Although the contex-
tual pattern bank helps retain stable knowledge, we further address this issue through a dedicated
frequency-domain analysis (Xia et al 2023). FreNet is designed to capture temporal correla-
tions while emphasizing stable components in the data, such as periodicity and trends, which are
more resilient to distributional changes (Liu & Zhang, [2025). Specifically, STBP employs two
FreNets—one at the beginning and one at the end of the backbone (Figure [2). The first maps input
data X, € RN7*Th through a linear layer into a high-dimensional representation H, € RN~x4,
which is then transformed to the frequency domain using a Fast Fourier Transform (FFT). A learnable
frequency-domain embedding F.. € cle+D) adaptively highlights stable features. This process is
formalized as:

H/ = IFFT(FFT(H,) © F,), (©6)
where H € RN~*4 is further processed by a linear layer. The second FreNet performs an inverse
operation, restoring the feature shape to RV~ *7». Compared to traditional temporal modules like
RNNS (L1 et al.l 2018} |Bai et al., |2020) or TCNs (Zheng et al., 2023} [Fang et al., [2023)), FreNet
offers higher computational efficiency and improved ability to extract stable components, thereby
alleviating the impact of distributional drift.

Dual-Stream Linear Graph Attention. After obtaining stable components, it remains essential
to capture complex spatial interactions and time-varying node correlations. An effective spatial
module must adaptively learn node correlations in a data-driven manner, maintain computational
efficiency, and scale to growing graphs. Graph attention mechanisms (Velickovi¢ et al.,2018)) have
emerged as promising solutions, enabling dynamic correlation modeling without relying on fixed
adjacency matrices. However, conventional graph attention (Zheng et al.| 2020} Jiang et al.| | 2023a;
Liu et al., 2023a)) incurs O(N?) complexity, limiting its scalability. To overcome this, we propose
DLGA (Figure[2), which improves efficiency using a random feature mapping-based linear attention
mechanism (Katharopoulos et al.|[2020). Moreover, DLGA introduces a dual-stream structure by
incorporating the contextual pattern bank Pg) € R4 a5 an additional key. This enables the model
to assess the relationship between evolving input patterns and stored knowledge. Formally:

Q=W,H, K=W,H, V=WH, 7
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Hi/ = Attention(Q, K, V, P(TQ))

8
= Softmax(QK " + Q(P{?) ")V, ®

Attention(Q, K, V, P?)) = (6(Q)o(K) " + ¢(Q)o(P) )V
©))

= 6(Q) (4(K) TV +9(PP) V).

Here, W,, W, and W,, are trainable projection matrices. H; and Hf_/ € RN~*4 denote the input
and the spatially enriched representation passed to the feedforward layer of the DLGA module,
respectively. The function ¢(-) denotes a random feature mapping, with Softmax used for approxima-
tion in our implementation. For further details on the approximation derivation, see Appendix
Notably, the linear attention approximation does not explicitly construct an adjacency matrix. Instead,
it implicitly models dynamic correlations by reordering operations in the attention computation.
DLGA reduces computational complexity from quadratic to linear, while preserving dynamic spatial
modeling and seamlessly integrating prompt-based knowledge from the contextual pattern bank.

5 EXPERIMENT
5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our model on three real-world streaming spatio-temporal datasets from
the traffic and meteorology domains. The traffic datasets, PEMS-Stream (Chen et al.,2001) and
CA-Stream (Liu et al., 2023b), consist of traffic flow measurements provided by the California
Department of Transportation (CalTrans) with a sampling interval of 5 minutes. The meteorological
dataset, Air-Stream (Chen & Liang} 2025), is derived from urban air quality platform of the Chinese
Environmental Monitoring Center [, with hourly sampling intervals. To ensure fair evaluation, all
datasets are split into training, validation, and test sets using a fixed ratio of 6:2:2. For each prediction
task, the model is trained to forecast the next 12 time steps based on the previous 12 observations.
Detailed dataset statistics are provided in Table [3]in Appendix

Baselines and Metrics. We select representative models from two categories as baselines: >
Conventional spatio-temporal forecasting models, including lightweight spatio-
temporal architectures such as GWNet (Wu et al., [2019), STID (Shao et al.| 2022a), and iTrans-
former (Liu et al., |2024). These models are adapted specifically for incremental training in our
experiments. > Continual spatio-temporal forecasting models, including Traf-
ficStream, STKEC (Wang et al.||2023a), and EAC (Chen & Liang} 2025)). The performance of all
models is evaluated using the following metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE). More details on this are included in

Appendix [A.4.7]
5.2 MAIN RESULTS

Overall results. The main experimental results are summarized in Table[I] which lists the average
metrics for all incremental periods, including the averages for the 3rd, 6th, and 12th time steps, as
well as the overall average. In terms of overall performance, our proposed STBP outperforms all other
models. Compared to the best baseline, STBP improves the average MAE by 18.46%, 16.69 %, and
5.1% on the PEMS-Stream, CA-Stream, and Air-Stream datasets, respectively. This improvement
is attributed to the bridge established between STGNNs and CSTF methods, where the carefully
designed general spatio-temporal backbone and contextual pattern bank effectively capture dynamic
spatio-temporal correlations, mitigating catastrophic forgetting and addressing distributional drift.

Results of conventional methods. STGNNSs, including GWNet and STID, rely on static graph
assumptions and are not designed for continual learning tasks. Consequently, a new spatio-temporal
backbone is trained for each data stage, with each model trained only on current stage data for
prediction. In contrast, iTransformer is trained on the complete node data of the current spatio-
temporal graph and initializes with weights from the previous period, allowing fine-tuning across the
entire model. As shown in Table[I, STGNNs trained from scratch show mediocre performance at
each dataset. While these methods perform well under static assumptions, they fail to leverage past

"https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
*https://air.cnemc.cn: 18007/
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Table 1: Main experimental results. Bold: best, underline: second best.

Dataset | Metric | Horizon | GWNet STID iTransformer | TrafficStream  STKEC EAC | sTBP
3 16.6040.24 13.7140.17 13.5940.23 12.7640.12 12.79410.05 12.6740.12 | 10.7040.05
MAE 6 16.5310.16  14.9310.10 14.491¢.38 13.8940.10 13.9010.04 13414015 | 10.9940.04
12 16.7710.25 17.4540.12 16.2910.70 16.1840.13 16.1410.05 14.7940.20 | 11.4510.04
Avg. 16.6210.14 15.1440.12 14.6219.40 14.06+0.10 14.0710.04 13.4940.15 | 11.0040.04
3 26.9940.30 21.8940.24 21.38.40.41 20.59+0.16 20.6540.05 20.1640.13 | 17.5110.07
PEMS-Stream RMSE 6 26.954021 24114018 23.1040.73 22.6610.18 22.6910.06 21.524019 | 18.1540.06
12 27371035 28.4410.30 26.3641.35 26.6110.25 26.5810.06 23.854+0.20 | 19.1010.08
Avg. | 27.071020 24414020  23.294077 22904005 22.934005 2L6010.19 | 18.1540.06
3 25.464064 21.414936 30.8841.31 17.5710.42 17.704038 18.67410.05 | 14.224 008
MAPE 6 25.22 1052 22.83103r  32.221154 19.142085 18974049 19.582000 | 14.50450.11
(%) 12 25.634138 26.124996 35.87+1.06 22.67+0.61 22.004051 21.274092 | 14.9810.10
Avg. | 25401087 23174042  32.6541 53 19484041 19204042 19.69:0.90 | 14.5220.09
3 19.7411.05 18.8910.34 17.3240.44 16.3340.14 16.3540.17 16.9040.30 | 14.4610.06
MAE 6 19.9610.62 21.43+0.53 18.5040.44 17.7940.12 17.8140.17 17.7640.21 | 14.9240.05
12 20.6040.31 26.17+0.73 20.7810.72 20.7240.12 20.7340.17  19.621092 | 15.6110.05
Avg. 20.0541057 21.7410.592 18.6510.46 18.0140.13 18.0310.17 17914024 | 14.924 005
3 31281193 28.654037  27.1010.64 25.8740.16 25914027 26.094032 | 23.3540.10
CA-Stream RMSE 6 31664120 32.2640.60 29.0640.69 28.2840.13 28.371030 27.5840.22 | 24.18.0.10
12 32.6510.48 39.0710.88 32.8341.20 32.9210.15 33.0340.31 30.3740.26 | 25.3640.12
Avg. 31.7841.11  32.7240.60 29.3140.73 28.59+0.14 28.6710.09 27.7340.25 | 24.1719.09
3 20.0340.78  19.5647117 18.0710.58 15.774+0.12 15.691037 16.6310.29 | 14.0510.47
MAPE 6 20.244+050 21.8541.17 19.2149.50 16.9640.11 16.904+0.33 17.301+0.22 | 14.3940.40
(%) 12 20.8710.091 26.68+7115 21.7440.32 19.60+0.25 19.511030 19.0640.923 | 14.961¢ 39
Avg. | 20.3310.49 22.284116 19454045 17.200013 17134033 17494024 | 14.4150.42
3 23.51408s 20.941131  19.1840.3 18.7140.46 19.2640.32  18.0340.38 | 16.7140.25
MAE 6 25.2000.60 23424097  21.9410.33 21661045  22.064047 20.9940.24 | 20.0310.2
12 | 27254089 26425077 2502102 24915045 251410141 24274095 | 23.5810.42
Avg. 25.1140.60  23.27+0.96 21.7140.34 21.4240.44 21.8540.36  20.77+0.24 | 19.7140.24
3 36.6041.00 32.2041.86 29.8940.71 29.0140.69 29.6540.56 26.9340.44
Air-Stream RMSE 6 39.4710.82 36.89+1 44 34.5840.49 34.3840.64 34.8440.70 32.8310.51
12 42.6940.40 41.9241.01 39.3710.34 39.7440.56 40.03+0.91 38.5210.57
Avg. 39.214088 36.384+1.46 34.0140.54 33.7210.64 34.2240.70 32.0210.47
3 29.724108 24574111 24.3740.58 23.2140.74 23.73+0.38 21.1040.17
MAPE 6 32224070 27754087  28.3Ta044 27095075  2741i09s 25.13.0.23
(%) 12 35.46140.48 31.80+0.62 33.39+0.40 31.9540.73 32.06+0.33 . 29.8540.32
Avg. 32164078 27.6440.84 28.2540.48 26.99.40.73 27.3540.34 26.774039 | 24.8610.20

spatio-temporal knowledge, resulting in suboptimal performance. In contrast, iTransformer performs
better by utilizing historical spatio-temporal knowledge through online training, though it still suffers
from catastrophic forgetting, making it a less optimal solution.

Results of CSTF methods. The best-performing models are those that can effectively address
catastrophic forgetting, such as CSTF models, TrafficStream, STKEC, and EAC. It is worth noting
that despite EAC adopting parameter expansion and fine-tuning strategies, it performs poorly due
to neglecting the specific design of the spatio-temporal backbone. In extreme incremental training
scenarios, such as with the CA-Stream dataset, EAC’s parameter expansion strategy is less effective
than the regularization and memory replay strategies used by TrafficStream and STKEC. More
detailed experimental results can be found in Appendix [A.4.4]

5.3 ABLATION STUDY & PARAMETER SENSITIVITY ANALYSIS

Ablation Study Settings. To validate the core contributions of STBP, we designed the following
variants for ablation experiments: @ Retrain: The contextual pattern bank is removed. Similar to
GWNet and STID, a new backbone is trained for each incremental period using the spatio-temporal
graph data of that period, with the corresponding model predicting the results for the current test
set. @ Online: The contextual pattern bank is removed. Similar to iTransformer, the model is
trained on the complete node data of the current spatio-temporal graph and initialized with the model
from the previous period, allowing for adjustments across the entire model. ® w/o Backbone: The
contextual pattern bank is retained, but the spatio-temporal backbone is replaced with the ones used
in TrafficStream, STKEC, and EAC—i.e., replacing FreNet and DLGA with CNN and GCN. @ w/o
DGLA: The DLGA module in the spatio-temporal backbone is ablated. ® EAC: We also included
EAC, which follows a similar approach, for comparison in the ablation study.

Ablation findings. The ablation results are shown in Figure[d The Retrain and Online results
demonstrate that expanding contextual pattern bank parameters and distinguishing and prompting
spatio-temporal patterns are crucial for mitigating catastrophic forgetting in continual learning. No-
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Figure 5: Results of parameter experiments.

tably, even without the contextual pattern bank, the spatio-temporal backbone achieves performance
comparable to EAC through online training, highlighting the importance of real-time dynamic
correlation modeling and mitigating temporal distributional drift in adapting to new incremental
periods. The w/o Backbone and w/o DGLA variants further confirm the indispensability of both
the general backbone and the contextual pattern bank. Removing the DLGA module significantly
degrades performance, validating its role in capturing dynamic spatial correlations and integrating
prompt-based knowledge. Additionally, the FreNet module in backbone improves computational
efficiency and enhances the extraction of stable temporal components.

Parameter Sensitivity Analysis. Additionally, we performed a sensitivity analysis on the adjustable
hyperparameter d in STBP. In STBP, d represents the feature dimension for each module’s feature
mapping, as well as the feature dimension of parameters in the contextual pattern bank. The analysis
results are shown in Figure [5] Increasing d enhances the model’s overall parameter count and
improves its expressive power. However, the performance gains from increasing d do not grow
indefinitely; after reaching a certain threshold, the performance gain stabilizes. Further increases
in d not only fail to improve performance but may also lead to negative effects, causing parameter
redundancy. More parameter sensitivity analysis can be found in Appendix [A.4.5]

5.4 CASE STUDY

To provide a more intuitive explanation of the contextual pattern bank’s distinction and expandability
in STBP, we perform dimensionality reduction and clustering analysis on P, € RV~ %4 using t-SNE
on the PEMS-Stream dataset. Each scatter in Figure [f] represents a node in the spatio-temporal
graph. The figure shows that the untrained contextual pattern bank exhibits a random, chaotic
distribution, unable to effectively distinguish nodes with different patterns. After multiple incremental
training periods, the contextual pattern bank parameters gradually form distinct clusters. By randomly
selecting nodes from the same cluster and visualizing their real traffic data, we observe similar
patterns, with shared periodic and trend-based characteristics.

In contrast, nodes from different clusters, such as Clusters 1, 2, and 3 in Figure@ show significantly
different patterns. For the 2011 PEMS-Stream dataset, which consists of 655 nodes, when the
incremental training reaches 2017, Cluster 1 classifies newly emerging nodes into the current cluster.
Nodes 693, 809, and 834, for example, are generalize into Cluster 1 after training on the 2017 data.
This demonstrates that the contextual pattern bank, through the fine-tuning of trainable parameters,
effectively distinguishes between different patterns and generalizes new ones, continuously adapting
to changes. Additional case studies on other datasets can be found in Appendix [A.4.6

5.5 EFFICIENCY STUDY

An effective CSTF method balances scalability, computational cost, and performance. We compare the
efficiency of STBP with baselines under identical settings. Figure[7]shows the average computational
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Figure 7: Efficiency comparison.

cost per period across PEMS-Stream and AIR-Stream, with scatter size indicating GPU memory
usage. We also evaluate the impact of linear attention, full attention, and the contextual pattern bank’s
absence on model efficiency using synthetic datasets. Results on PEMS-Stream and AIR-Stream
show that non-continual methods, such as GWNet, STID, and iTransformer, require global parameter
adjustments at each phase, reducing efficiency. iTransformer, in particular, suffers from high memory
consumption due to quadratic attention complexity. Even lightweight non-continual methods struggle
with efficiency during incremental training.

In contrast, CSTF methods like EAC, TrafficStream, and STKEC are more efficient, thanks to
lightweight backbones and non-global parameter fine-tuning. Despite its complex backbone, STBP
incurs minimal cost compared to models like EAC, due to optimizations like frequency-domain
processing and linear attention. STBP achieves substantial performance gains with minimal overhead.
Synthetic dataset results further confirm that linear attention reduces cost, and as node count increases,
the contextual pattern bank adds minimal burden, demonstrating scalability.

6 CONCLUSION

In this work, we propose STBP, a novel framework for continual spatio-temporal forecasting. By
combining a general-purpose backbone with a scalable contextual pattern bank, STBP efficiently
mitigates catastrophic forgetting while capturing dynamic spatio-temporal correlations. It adapts to
evolving urban data without retraining from scratch, making it suitable for real-time applications.
Validated on multiple datasets, STBP demonstrates strong continual learning capabilities. Neverthe-
less, STBP currently supports continual learning in a single-task setting. In the future, we plan to
extend its application to cross-domain continual spatio-temporal forecasting, which will be a crucial
step towards developing a foundational spatio-temporal model.
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A APPENDIX

A.1 NOTATIONS

Table [2| summarizes the notations frequently used throughout this manuscript.

Table 2: The notations that are commonly used in the manuscript.

Notation Definition

G={G.}_,; Streaming spatio-temporal graph
X Inputs for the 7 period
Y, Prediction for the 7 period
P, contextual pattern bank for the 7 period
P, Expanded contextual pattern bank
H. Hidden representation for the 7 period
My Spatio-Temporal backbone
F. Frequency domain embedding
H/ Representation after frequency-domain processing
W, Trainable parameter weights
Wi, Trainable parameter weights
W, Trainable parameter weights
o() Random mapping function
H; Input of the DLGA module
HY Output of the DLGA module

A.2 RELATED WORK DETAILS
A.2.1 SPATIO-TEMPORAL FORECASTING

Spatio-temporal forecasting aims to support decision-making in critical domains such as intelligent
transportation and smart cities by uncovering dynamic correlations embedded in spatio-temporal data.
These data typically exhibit strong spatial-temporal correlations and pronounced heterogeneity. In
recent years, deep learning-based STGNNs have emerged as effective tools for such forecasting tasks.
STGNNSs generally employ temporal modules (e.g., recurrent neural networks (RNNs) (Li et al.}
2018; Jiang et al.| [2023b; Shao et al.,2022b) and convolutional neural networks (CNNs)) (Yu et al.,
2018} |Liu & Zhang| |2024b;a)) to capture temporal correlations, while leveraging spatial modules
(e.g., graph neural networks (GNNs)) (Velickovic et al., 2018 [Song et al.,|2020) to model spatial
relationships.

Early STGNNSs, such as STGCN (Yu et al., 2018) and DCRNN (Li et al., [2018]), combined basic
temporal and spatial components for forecasting tasks, often relying on predefined geographic
adjacency matrices. However, these static assumptions hinder their ability to model dynamically
changing spatial correlations in a data-driven manner. Subsequent works—such as GWNet (Wu et al.|
2019), DGCRN (Li et al.}2023)), and MegaCRN (Jiang et al., 2023b)—introduced adaptive adjacency
matrices or learned spatial correlations directly from data, significantly improving prediction accuracy.
More recent advances, including STID (Shao et al.l [2022a), STAEformer (Liu et al.l [2023a), and
HimNet (Dong et al.,|2024), have highlighted the importance of spatial pattern distinction in enhancing
forecasting performance. These models incorporate trainable mechanisms such as spatial embeddings,
parameter pools, and contextual pattern banks to distinguish spatial patterns more precisely, thereby
improving both accuracy and adaptability.

Despite these advancements, most existing STGNNs are built on static assumptions and are not
designed to operate in dynamic, continually evolving spatio-temporal environments—limiting their
applicability in continual learning scenarios.

A.2.2 CONTINUAL SPATIO-TEMPORAL LEARNING

Early research in continual learning primarily focused on computer vision (Lee & Park, [2024])) and
natural language processing (Caccia et al.,|2020). With the rapid development of IoT and intelligent
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transportation systems, attention has increasingly shifted toward CSTL (Chen et al., 2021; [Wang
et al., [2023a; |Chen & Liang, [2025; [Wang et al., [2023bj Miao et al., |2025), which addresses the
challenges of dynamically evolving and expanding spatio-temporal data. CSTL aims to enable models
to continuously learn and adapt to new patterns and knowledge in changing environments, while
minimizing forgetting of previously acquired information or performance degradation.

One of the earliest frameworks in this domain, TrafficStream (Chen et al., 2021)), pioneered the
integration of spatio-temporal modeling with continual learning. It employed strategies such as
historical data replay and parameter smoothing to handle long-term streaming traffic data, achieving
accurate traffic flow forecasting. Subsequently, the STKEC (Wang et al.| [2023a)) introduced an
influence-based knowledge expansion strategy and a memory-augmented knowledge consolidation
mechanism to better accommodate the growth of transportation networks while mitigating catastrophic
forgetting. The EAC (Chen & Liang,2025) further advanced the field by incorporating prompt tuning,
enabling CSTL with a small number of trainable parameters. Its dynamic prompt pool, which
supports both “expansion” and “compression,” enhances adaptability to new nodes while preserving
historical knowledge, improving both generalization and computational efficiency. In addition, the
UFCL (Miao et al.l 2025) leveraged federated learning to preserve data privacy and introduced
a global replay buffer for synthetic spatio-temporal data, addressing the challenges of distributed
streaming environments.

Despite these advancements, most existing methods primarily focus on alleviating knowledge for-
getting, while overlooking the critical role of the spatio-temporal backbone in continual learning
scenarios.

A.3 FURTHER METHODS DETAILS
A.3.1 APPROXIMATION DERIVATION OF EQ.[9]

An approximate derivation of the attention mechanism in the dual-stream linear graph attention is
presented below:

. al exp (qq;rkv) Vy al exp (QIPU) Vy
Attention (g, kv, Uy, Pv) = Z ~ = + Z ~ =
v=1 Zw:l eXp (q'u. kw) v=1 Zw:l exp (qu pw)

~ Zf}\’:l o (Qu)T ¢ (ky) vy + Ziv:l ¢ (‘Iu)T ® (Pv) Vo
SN b(g) ¢ke) XN 0(q) b (pu) (10)
ACHIDIETILY vI] . V (g)" Sul1 6 () v]

¢ (qu)’ Sony ¢ (Kw) ¢ (qu)’ Sn_1 ¢ (Pw)

Term 1: Representation-based aggregation Term 2: Prompt-based aggregation

where g, is the query tensor of node u; k,, and v, are the key and value tensors of node v, respectively;
and p, represents the prompt information for node v.

A.3.2 ALGORITHM WORKFLOW

The overall workflow of STBP for continual spatio-temporal forecasting is presented in a more
intuitive manner in Algorithm I}

A.4 ADDITIONAL EXPERIMENT DETAILS
A.4.1 DATASET DETAILS

Table [3| and Table |4 jointly summarize the characteristics of the three continual spatio-temporal
datasets used in this study: PEMS-Stream, CA-Stream, and Air-Stream. These datasets differ
in domain (traffic vs. weather), temporal span, and topological evolution, collectively covering a
broad spectrum of real-world non-stationary scenarios suitable for evaluating continual learning
models. PEMS-Stream contains highway traffic sensor readings collected across California from
July 2011 to September 2017. It spans seven periods with a gradual increase in the number of sensor
nodes—from 655 to 871—resulting in a +33% relative growth. This dataset simulates realistic,
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Algorithm 1 The workflow of STBP for continual spatio-temporal forecasting

Require: Spatio-temporal backbone My, contextual pattern bank {P1,Po, ..., P}, streaming
train data {X,X, ..., X, }.
Ensure: Optimized backbone My~ and contextual pattern bank {P7,...,P*}

Initialize: My < {}, P1 < {}

for each period 7 in {1,2,3,...,7} do

if i == 1 then

> Initial training phase <
Construct the initial contextual pattern bank P

Optimize backbone and contextual pattern bank with initial data X :

(Mp+, P1) < argming My (X4, P)

else

> Streaming learning phase N
Expand contextual pattern bank P;: P, < P;_1 || AP;

Inherit parameters: (Mg, P;) < (Mg~,P}_;)

Freeze backbone parameters My: 6 < freeze(0)

Fine-tune P; with backbone My on X;:

P! « argminy, My(X;,P;)

Table 3: Overview of continual spatio-temporal forecasting datasets.

Dataset Domain Time Range Period| Node Expansion |Frequency

655 — 715 — 786
PEMS-Stream | Traffic |07/10/2011 - 09/08/2017| 7 |— 822 — 834 —850| 5 min

871
CA-Stream | Traffic |01/01/2019 - 04/30/2019| 4 | #0761 =175 1 o o
5 1698
Air-Stream | Weather | 01/01/2016 - 12/31/2019| 4 1087 = 1154 | hour

— 1193 — 1202

long-term infrastructure expansion and serves as a benchmark for evaluating model adaptability under
progressive and stable topological changes. CA-Stream, also in the traffic domain, covers a much
shorter period (January to April 2019) but features a sharp and sudden node expansion—from 480 to
1,698—corresponding to a +254% relative increase. This explosive growth introduces significant
distributional shifts, making CA-Stream a challenging testbed for assessing model robustness under
rapidly evolving conditions. Air-Stream focuses on urban air quality and environmental measurements
from 2016 to 2019. It exhibits modest but steady node growth—from 1,087 to 1,202 (+10%)—and
represents a relatively stable expansion setting. Its distinct domain and smoother structural changes
make it particularly suitable for evaluating cross-domain generalization and robustness to gradual
environmental variation.

To further assess non-stationarity, we conducted Maximum Mean Discrepancy (MMD) tests across
different periods, separately evaluating original nodes (present from the beginning) and added nodes
(introduced during expansion), as shown in Table[5] A distribution shift is considered significant
when MMD > 0.1 or p < 0.05. Across all datasets, added nodes consistently exhibit stronger
distributional shifts, reflecting the spatial disruptions caused by topological expansion. For instance,
CA-Stream shows a substantial shift for added nodes (MMD = 0.3361, p = 0.0010), consistent with
its rapid growth. Interestingly, Air-Stream records the highest MMD among original nodes (0.3324,
p = 0.001), despite minimal structural change—indicating notable temporal drift in environmental
data. This highlights Air-Stream’s importance for evaluating robustness to evolving distributions
even under stable topology. By contrast, PEMS-Stream shows only moderate drift among original
nodes (MMD = 0.0939), aligning with its smoother expansion. CA-Stream presents weaker drift in
original nodes (MMD = 0.0792, p = 0.1119), likely due to its limited temporal span. These results
underscore the dual challenge in continual spatio-temporal learning: managing both spatial shifts
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Table 4: Topological dynamics and evaluation purposes of the datasets.

Dataset | Topology Change | ANodes | Relative Change | Primary Purpose
PEMS-Stream | Gradual expansion 216 +33% Realistic progressive growth
CA-Stream Explosive expansion 1,218 +254% Extreme incremental stress test
AIR-Stream Stable expansion 115 +10% Cross-domain validation
Table 5: Distribution shift analysis based on MMD tests.
Type PEMS-Stream | AIR-Stream CA-Stream
P MMD | p |MMD | p | MMD | p
Original Node | 0.0939 | 0.008 | 0.3324 | 0.001 | 0.0792 | 0.1119
Added Node | 0.2958 | 0.001 | 0.2679 | 0.001 | 0.3361 | 0.0010

induced by node expansion and temporal non-stationarity inherent to dynamic environments, with
their nature and intensity varying across domains.

A.4.2 BASELINES AND METRICS DETAILS

In this paper, we provide a detailed comparison with two categories of representative models:

Conventional Spatio-Temporal Forecasting Models. @ GWNet (Wu et al.,2019): A STGNN
model based on an adaptive adjacency matrix that can adaptively capture latent spatial dependencies.
This model combines graph convolutional networks and temporal convolutions to effectively capture
spatio-temporal correlations in the data. @& STID (Shao et al., 2022a): An efficient multilayer
perceptron model that solves the problem of sample non-separability using trainable embeddings,
showing outstanding performance in spatio-temporal forecasting tasks. ® iTransformer (Liu et al.,
2024)): A time-series model that does not rely on a static graph structure. By modeling the interactions
between variables, it captures temporal features and is effectively applied to multivariate time series
forecasting tasks.

Continual Spatio-Temporal Forecasting Models. These models are designed to handle time-
varying data and are suitable for continual training tasks. Like STBP, they belong to the category of
continual learning models. We selected the following three representative models for comparison:
@ TrafficStream (Chen et al.,[2021): The first model for CSTF, it employs a traffic pattern fusion
approach, historical data replay, and parameter smoothing strategies to efficiently integrate and
learn new spatio-temporal patterns in the continuously expanding and evolving traffic network. @
STKEC (Wang et al 2023a)): A traffic forecasting model based on the continual learning paradigm.
Through an influence-based knowledge expansion strategy and a memory-augmented knowledge
consolidation mechanism, STKEC helps the model effectively integrate new spatio-temporal traffic
patterns in an ever-expanding road network while retaining previously learned spatio-temporal
patterns. ® EAC (Chen & Liang, 2025): A CSTF based on prompt tuning. By integrating a base
STGNN with a continual prompt pool, it efficiently addresses incremental learning and catastrophic
forgetting in streaming data using lightweight trainable parameters.

The Excluded Models. Some baselines that might be considered relevant for comparison were
excluded, and we provide explanations for their exclusion below. @ STAEformer (Liu et al., [2023a):
a widely recognized baseline, was not included in our comparison due to non-convergence observed
when applying the same experimental setting as used for GWNet and STID on the selected three
datasets. To ensure fair and unambiguous evaluation, we excluded it from the results and have
provided the corresponding training logs in the anonymous code repository. @ UFCL (Miao et al.|
2025)): The CSTF method UFCL is not included in the comparison due to differences in experimental
settings, which prevent a fair evaluation.

17



Under review as a conference paper at ICLR 2026

Table 6: Comparison of prediction performance for each incremental period on PEMS-Stream. Bold:
best, underline: second best.

Model | Metric | PEMS-Stream Period

‘ ‘ 2011 2012 2013 2014 2015 2016 2017 Avg.
MAE 16481062  16.59+062  15.2311.03 15504080 17431106 15304033  19.77+132  16.6210.14
GWNet RMSE 25.8240.81 26.0110.75 25444136 24814113 28314138 26.69+0.62 32.4041.76 27.07+0.20

MAPE (%) | 23.81+138 24.6311.90 214411314 23.931154  27.6643.19  24.021490  32.291103  25.4040.87

MAE 16.2610.34 15891068 14.541116 14871015 14444006 14731052 15244045 15144012
STID RMSE 24.2610.42 24994084  23.824180 24131035 23.7T4020 25.7610.73 24124024  24.4140.20
MAPE (%) | 23.27+196 21.60+168 19.85+190 21.7041.40 19.794126 21.844547 34134850 23174232

MAE 14471000 14.0610.46  14.371041 15371062 14514030  14.031047 15531066  14.6210.40
iTransformer | RMSE | 21.751041  21.7010.83  22.65:072  24.291127  23.36:077 24371072 24954103  23.29:0.77
MAPE (%) | 30.14138>  30.181946  36.45134s8  34.894951  32.19i344 31944973 32.7941:1 32654153

MAE 14141016 13.784019  13.6010.10 14474000 14114013  13.524011  14.794007  14.0640.10
TrafficStream RMSE 21.8140.220 21714028 21934021  23.3210.13  23.084022  24.0540.16 24414015 22904018
MAPE (%) | 19.144081 19481070 19554001  20.301071  20.074103 18164043 19.661061  19.4840.41

MAE 14.014010 13911023 13.64100s 14511011 14.024005 13454006  14.891011  14.0740.04
STKEC RMSE | 21534021 21761043 22020011 23.584023 22.96100s 24132005 24531010  22.9340.05
MAPE (%) | 18.5440.43 18.9040.26 19.6441 90 19.3940.73 20.3141.13 18.204058  20.0547.17 19.2940.42

13.4940.15
EAC RMSE 20.0640.15  20.61l40.23  22.0010.37 21.7840.24  23.0040.16 +0.23  21.6040.19
MAPE (%) 18.441¢.69 19.23.1¢.82 20.8040.96 20.70+1.05 18.6311.06 22.2947 85 19.6910.90

MAE 11.124007 10.714909 10481008 11.354008 10.961006 10.351005 12.044005 11.0040,04
STBP RMSE 17.044007 16.861011 17.091016 18304012 17.941008 19.651000 20.144004 18.154006
MAPE (%) | 14444021 14.054015 13.751011 14.8741006 14.494003 13.171007 16.881026 14.524¢.09

MAE 13.2640.05 129740911  12.95:014 139140922  13.5640.17 13.0149.16
20.1

Metrics Details. Additionally, the performance metrics used in the experiments to evaluate the
model, namely MAE, RMSE, and MAPE, are defined as follows:

1 n
MAE = — i — G 11
=Dl — 4l (11)

i=1

(12)

Yi — Ui

Yi

1 n
MAPE = — 100 13
-2 x 100% (13)

i=1

where n represents the number of observed samples, y; denotes the i-th real sample, and ¢; is the
corresponding predicted value.

A.4.3 IMPLEMENTATION DETAILS

All experiments are conducted on a machine with an NVIDIA Tesla V100 GPU and 32 GB of
memory. The Adam optimizer, with an initial learning rate of 0.01, is used to optimize the training
process. The batch size is set to 64, the number of training epochs is set to 200, and an early stopping
mechanism is implemented to ensure efficient convergence. The reported results for all baselines are
the average of five repeated runs.

A.4.4 EXPERIMENT RESULTS

Tables [6] and [7] present more detailed experimental results, including the prediction performance
metrics for each incremental training period. The metrics for each period represent the average
predictions over 12 time steps. The results demonstrate that, both in terms of overall CSTF per-
formance across all stages and in each individual incremental period, STBP exhibits outstanding
continual spatio-temporal learning capabilities. This advantage can be attributed to its well-designed
spatio-temporal backbone structure and the effective support provided by the contextual pattern bank
in consolidating and inductively incorporating both historical and new spatio-temporal knowledge.

To further evaluate the robustness of the proposed model under low-resource scenarios, we constructed
a few-shot training setting and compared it against existing baselines. Specifically, we simulated a
few-shot environment in which the sample size of the first incremental period was kept unchanged,
while the training set size for subsequent periods was reduced to only 10% of the original. The test
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Table 7: Comparison of prediction performance for each incremental period on CA-Stream and
AIR-Stream. Bold: best, underline: second best.

Model | Metric | CA-Stream Period | AIR-Stream Period
| | Jan Feb Mar Apr Avg. | 2016 2017 2018 2019 Avg.
MAE 22391080 21081085 17.96:1055 18.78:075  20.054057 | 26821078 27104042  25.29:1011 2122061 25114064
GWNet RMSE | 35.731135 33611162 28741133  29.041135 31781111 | 42981108 40861333 41.0610s1 31954074 392108

MAPE (%) | 20.1041.10 21.784179  19.41i047  20.031031  20.3310.40 | 28.9540.50  30.604313  39.741176  29.344062 32164078

MAE 24204050 25874152 19.98:001 16931012 21744052 | 29.094008  26.2343096  18.501290 19241110  23.2740.06
STID RMSE 36414060 38241168  30.39+120 25861020 32721060 | 45.104241  38.674492 32284583  29.47i1n1 36.3841.46
MAPE (%) | 22.68+136 23.96+32s  23.27T+0s3 19194174 22284136 | 30124106  28.364357  26.214420  25.891140  27.641084

MAE | 21350085 19.055037 17.332040 16882038 18651040 | 28.194117  23.38:077 16722051  18.552043 21711051
iTransformer | RMSE | 33.144120 3051055 274dsos 26141050 29311073 | 44.85115s 34.61e111  28.54s051  28.0d103 34011054
MAPE (%) | 20.924121 19801105  18.9041.01 194540045 | 31541191  28.2320ss  26.122026  27.10072 28251045

MAE 19.884090 18.614023 16.9750.10 18.0140.13 23485108 16620050 18625004 21420044
TrafficStream | RMSE | 31435025 30.06102s  27.0410.6 28.5940.14 34391155 28925071 28131100 33.7210.64
MAPE (%) | 17125045  17.931066 17054008 17.204013 27611007 25685185 25.89:080  26.991073

MAE 19.6840.26  18.671032  17.011013  16.76:0.11  18.0310.a7 | 27.9841923 24341078 16.661062 1841068 21.8510.36
STKEC RMSE 311440028 30254060 27171026 26144015  28.67+020 | 44.584153  35.284108  29.31i1.45 34.2240.70
MAPE (%) | 17.344150 17.584020 17.284056 16.324010 17134033 | 29.154080  28.784158  25.0840.53 27.3540.34

MAE 19.18.40.18

17192035 17452051 17914024 | 28.131051 21681055
EAC RMSE 30.06+0.32 26.384030  26.0710.50 31025 | 45211082 3
MAPE (%) | 17.1940.54 17.5040.41 18.044054 17494024 | 29.3540.40

MAE 16.724023 15.034006 13.99400s 13.944007 14.924005 | 26.5240.092 20494033 14954025 16.894036 19.7140.24
STBP RMSE | 27.200057 25164008 22571014 21.73100r 24174009 | 43264174 31764055 26414035 26.67s041 32.024047
MAPE (%) | 14.871081 14524055 13.904021 14.3342017 14.41s040 | 27154005 24.184037 23.99:1045 24154047 24.8640.20

Table 8: Comparison of few-shot forecasting results. Bold: best, underline: second best.
| PEMS-Stream (10%) | CA-Stream (10%) \ AIR-Stream (10%)

Model
| MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE
GWN 20.73  34.13  29.04% | 28.69 4485 30.72% | 32.62 4798  53.04%
STID 2432 3953  39.68% | 31.94 4890 34.72% | 40.30 58.64 61.88%
iTransformer | 19.22 30.66 43.26% | 26.94 40.51 31.48% | 31.38 4543 55.33%
TrafficStream | 14.09 22.81 19.73% | 18.17  28.68 16.89% | 28.54 4238 43.97%
STKEC 14.14  23.01 19.20% | 18.12  28.63 16.67% | 23.73  36.61 32.71%
EAC 1383 2194 20.48% | 19.12 29.15 19.10% | 21.21 3324  29.52%
STBP | 11.86 1948 15.95% | 17.17 2717 16.32% | 2046 32.64 28.48%

set size remained fixed throughout. As shown in Table[8] STBP consistently outperforms all other
methods, highlighting its strong ability to extract meaningful patterns from limited data. Continual
baselines such as TrafficStream, STKEC, and EAC are more resilient to low-resource conditions than
conventional STGNNS (e.g., GWNet, STID), yet they still suffer from performance drops, especially
on AIR-Stream and CA-Stream, which exhibit strong distributional drift (Table |§|)

Existing continual spatio-temporal learning methods typically test the model immediately after
training each incremental period, rather than conducting a unified evaluation on all historical periods
once all incremental training has been completed. In other words, current practices do not directly
assess the model’s ability to retain historical knowledge. To address this, we reevaluated the model
on the test sets from all historical periods after completing the full incremental training, in order to
assess the extent of forgetting. The results in the Figure [§| below show that all continual learning
methods showed varying degrees of performance degradation in this post-hoc evaluation, indicating
catastrophic forgetting of old tasks as new nodes and data were introduced. Nevertheless, STBP
achieved the best overall performance, demonstrating its relative advantage in mitigating forgetting.

A.4.5 PARAMETER SENSITIVITY ANALYSIS

Beyond the feature dimension d, we further investigated the sensitivity of two key architectural
hyperparameters: the number of DLGA layers and attention heads. As shown in Figure[9] increasing
either parameter yields marginal gains at best, and in some cases, even leads to slight performance
degradation. Overall, apart from the feature dimension, model performance remains relatively
insensitive to these hyperparameter variations.

A.4.6 ADDITIONAL CASE STUDY

To maintain consistency with the case study on PEMS-Stream, we also conducted case studies on
the CA-Stream and Air-Stream datasets to further validate the expansion and distinction capabilities
of the contextual pattern bank in STBP. The experimental results for CA-Stream are shown in
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Figure 8: Comparison of historical knowledge forgetting at each incremental period.
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Figure 9: Additional Results of parameter experiments.

Figure[I0] Even in the more challenging task of node increment, STBP ’s contextual pattern bank
effectively distinguishes and consolidates different spatio-temporal patterns, incorporating new
patterns introduced by newly added nodes into the existing pattern clusters.

Figure [TT] presents the results on Air-Stream. Compared to traffic flow data, the spatio-temporal pat-
terns in this dataset exhibit more complex periodic and trend changes. Nonetheless, STBP continues
to accurately differentiate and consolidate diverse patterns, indicating that its contextual pattern bank
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Figure 10: Case Study on CA-Stream.
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Figure 11: Case Study on AIR-Stream.

has adaptive inductive capabilities for various types of spatio-temporal patterns, independent of the
specific dataset type. This mechanism enables STBP to exhibit greater flexibility and adaptability in
CSTF tasks.

A.4.7 EFFICIENCY STUDY

Figure[12] provides additional experiments assessing the efficiency and scalability of STBP. Overall,
these results confirm that STBP achieves favorable scalability and efficiency, and that its linear-
attention design and modular contextual pattern bank structure enable it to handle large-scale spatio-
temporal graphs in continual learning settings.

A.5 LIMITATION

Despite the excellent performance of the STBP model on several benchmark datasets, there remain
several theoretical and practical limitations that warrant further exploration. Firstly, current continual
learning research, including this work, generally assumes an idealized scenario where all tasks pro-
cessed during incremental learning come from the same or highly similar data domains. However, this
assumption significantly deviates from the dynamic, complex, and diverse environments encountered
in the real world. Cross-domain distribution shifts can introduce dual challenges when the model
faces new tasks, including feature space mismatch and exacerbated catastrophic forgetting.
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Figure 12: Additional efficiency comparison.

For instance, in intelligent transportation systems, when the model is applied to new urban traffic
data with significant distributional differences, it must not only dynamically expand its spatio-
temporal feature extraction capabilities but also develop effective representations of cross-domain
invariant features. Although road network structures may vary across cities, certain microscopic
traffic dynamics (e.g., traffic flow propagation speed, congestion formation mechanisms) could have
inherent universality. How to construct a continual learning framework with domain adaptation
capabilities, which can accurately distinguish domain-specific features from cross-domain shared
features, will be a key breakthrough in improving the model’s cross-domain generalization abilities.

A.6 BROADER IMPACT

STBP, with its carefully designed general spatio-temporal backbone structure and contextual pattern
bank expansion mechanism tailored for dynamic scenario changes, effectively achieves continual
spatio-temporal forecasting. This approach demonstrates that the spatio-temporal backbone can
serve as a stable infrastructure, consistently retaining the ability to model general spatio-temporal
dependencies. When facing new or evolving scenarios, there is no need to retrain the backbone
network. Instead, by introducing scalable parameters relevant to the current scenario, the model can
rapidly adapt to new tasks.

Building on this concept, we aim to further explore the development of a spatio-temporal foundational
model. This approach involves continuously training a unified backbone model with spatio-temporal
data from multiple heterogeneous domains, thereby enhancing its spatio-temporal representational
capacity. As data from various domains are continuously integrated and trained, the spatio-temporal
foundational model will evolve, enabling efficient generalization and adaptation to entirely new
scenarios or tasks by incorporating only a small number of additional parameters. Such a model
holds the potential to benefit society by improving intelligent transportation through more accurate
traffic forecasting and supporting climate resilience via advanced environmental modeling.

A7 LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
we used an LLM (ChatGPT) solely for the purpose of improving the grammar, clarity, and fluency
of the manuscript. The content, structure, technical contributions, experiments, analysis, and all
scientific writing were entirely conceived, drafted, and validated by the human authors. The LLM was
not involved in research ideation, experimental design, data analysis, or any aspect of the scientific
content creation. All outputs generated by the LLM were reviewed and edited by the authors to ensure
accuracy and correctness. We confirm that no hidden prompts, prompt injections, or LLM-generated
falsehoods were introduced in the manuscript, and all use of LLMs complies with the ICLR Code of
Ethics.
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