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Abstract

Spatial transcriptomics is used to identify gene expression levels in certain locations across
a tissue sample, preserving important spatial information in cancerous tissue samples for
downstream clinical decision making. However, this technology is currently too expensive
to be used in a routine clinical pathways. On the other hand, digital images of haema-
toxylin and eosin stained histology slides are routinely generated from tissue biopsy sam-
ples. Here, we develop a generative cross-modal method to predict spatial transcriptomics
from histology images by aligning the latent space of two VQ-VAEs for each modality. We
benchmark our approach on multiple sequencing technologies (Visium and ST) and can-
cer types (breast, brain, spinal cord and skin) from two public datasets, using 142 slides
with 820,407 spots from STImage-1K4M (Chen et al., 2024a) and 568 slides with 254,812
spots from HEST-1k (Jaume et al., 2024). Across the resulting cohorts, our model achieves
superior performance to state-of-the-art models in half, whilst providing an interpretable
framework for understanding which genetic expressions of a cancer tumour can be captured
from the morphology observed in corresponding locations of the histology image.
Keywords: computational pathology, spatial transcriptomics, multimodal Al

1 Introduction

With the recent progression of spatial transcriptomics technology, this data modality has
become more widely available in both the public and private domains. Spatial transcrip-
tomics allows the user to read expression levels of multiple specified genes from biopsy
tissues, whilst also recording the corresponding location in the image of such expressions.
Such information can be useful to quantify the tumour microenvironment landscape and
address the issue of predicting patient outcomes in the context of personalised medicine for
cancer treatment (Williams et al., 2022). However, the methods for reading spatial tran-
scriptomics are still prohibitively expensive for regular use in the clinic (Smith et al., 2024),
and so our research focuses on the task of predicting these spatial gene expressions from the
corresponding histology whole slide image, a routinely taken biopsy which is stained with
haematoxylin and eosin (H&E) before being scanned by a microscope at high resolution.
While other approaches have been developed to predict ST expressions from the corre-
sponding histology image (Nonchev et al., 2025; Xie et al., 2023; He et al., 2020; Yang et al.,
2024; Pang et al., 2021; Zeng et al., 2022; Min et al., 2024; Shulman et al., 2025; Dawood
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et al., 2021; Chen et al., 2025), ours is the first to develop such a generative AI approach
to this problem, aligning the two modalities in their latent spaces while ensuring the gen-
erated outputs remain realistic. Our method simultaneously trains two Vector Quantized
Variational Autoencoders (VQ-VAE) models (Van Den Oord et al., 2017) end to end for
each modality, and uses additional loss terms to align the latent space of the two generative
models and ensure that the genes can be generated from the latent space of the image.
Contrasting to the vanilla VAE used in Starfysh (He et al., 2025), we choose to work with
discrete generative models, VQ-VAEs, for more interpretable and robust representations
(Van Den Oord et al., 2017). At inference, the image encoder part of the model provides
a low-dimensional cross-modal aligned representation of the image, which the gene model
can decode for a corresponding prediction of the spatial gene expressions.

Our approach learns a low-dimensional representation at the intersection of two objec-
tively dissimilar modalities, which can capture the underlying spatial biology and be used
for downstream analysis such as clustering. A benefit of our method is that it can provide
image reconstructions from the image model, to give insight into the relevant morphology
captured in the shared latent space and used in the prediction of the gene expressions.

2 Related Work

Wang et al. (2025b) perform a thorough benchmarking of multiple methods which predict
the spatial gene expression from histology images. Their analysis tests the models on
breast cancer, kidney cancer and cutaneous squamous cell carcinoma, using both Spatial
Transcriptomics (ST) and 10X Visium data. The results from this work demonstrate the
difficulty of the task at hand, since the Pearson correlation coefficient between the true and
predicted gene expressions in each spatial location rarely goes above 0.6 across the various
experiments performed.

A best-performing model in this review is ST-Net (He et al., 2020). This simple ap-
proach uses a DenseNet121 neural network to encode the image, adding a classifier layer
to output a prediction for each gene in the dataset. To better predict the sparse labels,
they use the mean gene expression from the training set as an initial value for the bias in
their final classifier layer in their prediction model, prior to training, further biasing their
model towards the training domain. Another model, BLEEP, is similar to our approach in
that they aim to align the latent space of the matching image and gene expression pairs
(Xie et al., 2023), using a ResNet50 as their image encoder. One disadvantage of this ap-
proach, however, becomes more pronounced at inference, where they directly impute the
spatial transcriptomics expression for an unseen image as an explicit computation on latents
from the reference training data, resulting in a costly operation. Models mclSTExp and
OmiCLIP (Min et al., 2024; Chen et al., 2025) align the latent space of the two modalities
with the CLIP training approach (Radford et al., 2021), with OmiCLIP further training
a downstream model for prediction of ST from histology, with modest results. DeepSpot
(Nonchev et al., 2025) incorporates surrounding tissue in the histology image to help train
the model. A histology foundation model (such as UNI, Chen et al., 2024b) is used as the
image encoder, but for a single spot they additionally consider image features from cropped
tiles contained within that spot, as well as from other neighbouring spots.
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Other approaches choose to remove the raw or transformed expression counts entirely by
ranking the genes in terms of the highest to lowest expressed for a single spot location, then
proceed to use a natural language processing (NLP) model to encode these gene ‘sentences’,
with each ranked gene name separated with a space (Levine et al., 2024; Min et al., 2024).
While the argument is that this method deals well with batch effects, it removes the value
of the gene expression which is what we aim to predict in this work.

3 Methods

3.1 Target Gene Panel Selection

To construct a unified and biologically informative gene panel for model training and evalu-
ation, we implement a two-stage selection process that first filters datasets and then defines
the target gene panel. We use data from two public datasets, STImage-1K4M (Chen et al.,
2024a) and HEST-1k (Jaume et al., 2024), with spatial gene expressions derived from two
sequencing technologies: ST and Visium. The ST data has a capture area of 6.2x6.6 mm,
with spots of size 100 pm, and the comparatively higher resolution Visium data has a
capture area of 6.5x6.5 or 11x11 mm with spots of size 55 pm.

Tiling

Target Gene Panel
Technology: Visium or ST

| 9999 |
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S

Figure 1. Illustration of the gene panel selection strategy. For each tissue-technology cohort, we
take the union of genes consistently present across all slides (common genes) and genes that are
highly variable or highly expressed (HVGs and HEGs). This results in a cohort-specific gene panel
that balances biological diversity with technical robustness.
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For each dataset we initially separate the slides based on the technology used.We focus on
Visium and ST slides with relatively larger field of view, lower spatial resolution, and higher
gene resolution that are more sensible for histomorphology-based gene expression prediction.
Within each technology, we further separate the slides according to organ type. Only organ-
specific cohorts with more than 40 slides were retained to ensure statistical robustness. For
STImage-1K4M, we apply an additional quality control step on the resolution of the H&E-
stained images. Since the image resolution varies across slides in this dataset, we retain
only Visium slides with a pixel radius of at least 32 pixels, and ST slides with a pixel radius
of at least 64 pixels, for sufficient image quality.
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After applying these filtering steps, we select six tissue-technology cohorts for our study
and define a consistent target gene panel for each, designed to capture both biologically
informative and technically robust genes. These panels are constructed by taking the union
of the two following gene subsets, as seen in Figure 1.

Common genes: The set of genes that are consistently measured across all slides
within the cohort.

Highly variable and highly expressed genes: For each slide, the top 100 highly
variable genes (HVGs) and top 100 highly expressed genes (HEGs) are computed. We then
take the union of these 200 genes across all slides within the cohort.

Including common genes and unions over slide-level HVGs and HEGs ensures that the
tissue gene panel is not biased toward sample-specific panels, promoting consistency in
predictions across diverse tissue types and conditions.

Dataset ‘ # Slides # Spots Gene Panel Size
STImage-ST-Breast 102 45,304 8,645
STImage-Visium-Brain 40 775,103 4,267
HEST-ST-Brain 87 37,215 4,721
HEST-ST-Breast 108 45,305 11,440
HEST-ST-Spinal 302 74,104 13,923
HEST-Visium-Skin 71 98,188 7,643

Table 1. Overview of selected tissue-technology cohorts and their respective gene panel sizes and
spot counts.

3.2 Bimodal Dictionary-based Autoencoder

We propose a bimodal autoencoder architecture that leverages shared dictionary-based
latent representations for both spatial gene expression profiles and histology image tiles.
Each modality is encoded separately into a set of coefficients, which are used to compute a
weighted combination of atoms from learnable codebooks—referred to as the gene codebook
and image codebook, respectively. These codebooks serve as modality-specific dictionaries
of latent basis vectors that support both inter-modal and intra-modal reconstruction.

By designing the inference method such that image-derived coefficients can be applied
directly to the gene codebook, we enable a cross-modal reconstruction for predicting gene ex-
pression from histology alone. This cross-modality alignment is encouraged during training
through a combination of reconstruction losses and latent alignment objectives, resulting
in a unified latent space structure that supports interpretable and efficient inference across
modalities. The training and inference processes are illustrated in Figure 2.

3.2.1 GENE BRANCH

The gene branch encodes each log-normalised gene expression vector x4 € R& into a set of
latent coefficients ¢, € R via a multi-layer perceptron (MLP) encoder. These coefficients
are used to construct a low-dimensional latent representation z4 € R% through a weighted
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Figure 2. Schematic of the bimodal dictionary-based autoencoder architecture and training strat-
egy. The model consists of separate autoencoders for gene expression profiles and histology im-
age tiles, each using a learnable codebook (dictionary) and a set of modality-specific encoders
and decoders. During training, both intra-modal (self-reconstruction) and inter-modal (cross-
reconstruction) objectives are used, including swapping of latent coefficients from image encoder
to gene decoder. The image branch features an attention-based pooling to generate global coef-

ficients. At inference, only the histology image is required to predict gene expression via image
encoder, gene codebook, and gene decoder.

combination of K learnable dictionary atoms from a gene codebook B, € R%*K  Formally,

K

2g = Bycg = ch,k bék).
k=1

The latent vector z4 is then decoded back to gene expression space using an MLP decoder
to obtain the reconstruction Z,. The training objective for this branch is the mean squared
error (MSE) reconstruction loss, £, = ||, — z,4|3-

3.2.2 IMAGE BRANCH

The image branch processes histology tiles x; € R3*#*W ysing a convolutional encoder
based on a ResNet-50 backbone, pre-trained on ImageNet (Deng et al., 2009). We choose to
use this backbone instead of a foundation model for a fairer, more independent comparison
across benchmarks, as discussed in Section 5. The encoder outputs a feature tensor F €
REXTXT This feature map is split into two sub-branches, as follows.

Sub-branch 1 (Global Latents) We apply attention-based pooling over spatial dimen-
sions to produce a global coefficient vector, ¢; € RX, representing the image in terms of
dictionary weights. Specifically,

w
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H
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where Xj, ,, € RE is the feature vector at spatial location (h,w), and Ap,, is the corre-
sponding attention score.

Sub-branch 2 (Spatial Latents) A 1 x 1 convolutional head outputs spatial coefficient
maps C; € REXTX7 These coefficients are used to compute local latent features, Z; via a
learnable image codebook B; € R%*K:

K
ZCZ (k,u,v) k) e R%, Vu,w.
k=1

The resulting spatial latent tensor Z; € R%*7%7 is passed through a symmetric convo-

lutional (transposed convolution) decoder to reconstruct the image #;. The reconstruction
loss for the image branch is £; = ||#; — z4]|3.

3.2.3 CROSS-MODAL AUTOENCODING AND INFERENCE

To enable prediction of gene expression directly from histology images, we perform cross-
modal decoding by aligning the image latent coefficients with the gene codebook. Specifi-
cally, the attention-derived image coefficients ¢; € R¥ are used to select and combine atoms
from the gene codebook B, € R%*K  producing a cross-modal latent representation:

Zi—sg = BgCZ' S Rdg.

This latent vector is then decoded via the gene decoder D, to yield a predicted gene
expression vector £, = Dgy(zi—4). To align the two modalities, we introduce the following
loss terms.

Cross-modal reconstruction loss
A 2
Ecm — ”xg - xg||2>

which ensures the predicted gene expression from the image-derived latent vector matches
the ground truth.

Latent alignment loss
£align = sz—>g - ZgH%;
which encourages the cross-modal latent z;_,, to be close to the encoded gene latent z,.

Coefficient similarity loss

-
G Cg

Leoet =1 —cos(c;,cg) =1 — —2———
(€i¢) =1~ [alaTeall2”

which enforces cosine similarity between the latent coefficient vectors across modalities in
the shared coefficient space.

The total training objective is defined as the weighted sum of all reconstruction and
alignment components, £ = L; + L4 + AemLem + AalignLalign + AcoetLeoef, Where we set
Aem = 1.0, Aalign = 0.1, and Acoef = 0.1 in all experiments, ensuring the end to end training
for each modality whilst allowing for learned alignment in the latent space.
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Inference At inference time, only the histology image x; is required. The image encoder
produces the coefficient vector ¢;, which is then used to generate the gene latent vector via
the gene codebook, T, = Dy(Byc;), yielding a single forward-pass prediction of the spatial
gene expression at a given location. This design enables efficient, scalable inference without
requiring reference retrieval or post-processing.

4 Experiments

4.1 Preprocessing

Preprocessing of the gene expression data is a critical step to ensure the comparability
and interpretability of the input-output mappings during model training. For the spatial
transcriptomics data from each selected tissue-technology cohort, we follow a consistent and
minimal preprocessing pipeline inspired by standard single-cell transcriptomics workflows,
resulting in cohort-specific gene panels with sizes ranging from approximately 4,000 to over
13,000 genes as seen in Table 1. For the images, we use a 224x224 crop around each spot,
and apply standard augmentation methods. Full details can be found in Appendix A.

At the slide-level we split each dataset into training (70%), validation (10%), and test
(20%) sets, repeating this process randomly five times for different folds.

4.2 Results

Metrics To comprehensively evaluate predicted gene expression from H&E, we report the
following metrics: L1 Error, mean absolute difference between predicted and true expression
values, averaged over all genes and spots; Pearson Correlation, correlation across the entire
gene panel, reflecting overall linear association; Spearman Rank Correlation, correlation
within the top 50, 200, and 1000 most highly expressed genes, capturing the preservation of
gene expression ordering; Recall at Top-k, fraction of truly top-k expressed genes recovered
in the model’s top-k predictions for each spot.

Benchmarks We compare our proposed method to other qualified methods in the liter-
ature, such as established methods ST-Net (He et al., 2020) and BLEEP (Xie et al., 2023),
which have shown good results in more than one publication or competition. We imple-
ment DeepSpot (Nonchev et al., 2025), incorporating all spot, subspot and neighbourhood
regions, the latter defined by a radius of 3 spots. We use the UNI foundation model (Chen
et al., 2024b) to encode the images in the DeepSpot implementation, for better comparison
with our benchmark of an MLP trained on top of the frozen UNI features (UNI-MLP). We
implement CLIP (Radford et al., 2021) with our GenST autoencoder models as an alter-
native method to align the modalities in the latent space, as used also in the mclSTExp
model (Min et al., 2024). We also compare the results to the gene-only VQ-VAE from our
GenST model, titled gene2gene. All models were trained for 100 epochs using the RAdam
optimizer (Liu et al., 2020) with learning rate 0.0001 and weight decay 0.0001.

Results for our primary metric, mean Pearson correlation across the five folds, are given
in Table 2. Full results for all metrics are visualised in Appendix B. Our GenST model
outperforms other benchmarks in 3/6 datasets, with the UNI-MLP model performing best
in the other 3/6 datasets. No models reach the performance of the gene2gene autoencoder,
showing that there is more information in the spatial transcriptomics data that we cur-
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rently cannot extract from the histology image with the methods studied here. We also
reason that our Pearson correlation scores, superior across benchmark models compared to
other experiments in the literature, are due to our Target Gene Panel Selection method in
Section 3.1.

Dataset | ST-Net BLEEP CLIP DeepSpot UNI-MLP GenST |gene2gene

STImage
ST-Breast 0.757+£0.01 0.6404+0.01 0.715£0.01 0.752+0.01 0.743+0.01 0.763+0.01| 0.832+0.01
Visium-Brain | 0.785+0.07 0.542+0.05 0.609+0.35 0.800£0.09 0.77540.11 0.804+0.08 | 0.92240.02

HEST
ST-Brain 0.908+0.01 0.89440.01 0.904%0.00 0.913+£0.00 0.91340.00 0.90540.00 | 0.933+£0.00
ST-Breast 0.573£0.08 0.52940.04 0.582+0.03 0.635+0.04 0.642+0.06 0.568+0.07 | 0.854+0.01
ST-Spinal 0.731+£0.01 0.68940.01 0.720+0.01 0.726+0.01 0.737+0.01 0.73240.01 | 0.776£0.01
Visium-Skin |0.69940.09 0.522+0.07 0.585+£0.25 0.603+0.13 0.720£0.07 0.72440.06 | 0.835+0.03

Table 2. Mean Pearson correlation with standard deviation over five test folds from all models on
all dataset cohorts.

5 Discussion

We develop a robust and interpretable approach to predicting spatial transcriptomics ex-
pressions from the histology image, effectively conserving and combining information from
both modalities. We also perform clustering analysis on our predictions, as seen in Ap-
pendix C, which demonstrates the spatial robustness of our GenST model.

While the UNI-MLP also performed well in our experiments, it should be noted that the
UNI pathology foundation model (Chen et al., 2024b) was released by the same research
group as the HEST-1k dataset (Jaume et al., 2024). The foundation model was trained
partly on unspecified internal hospital data while the HEST-1k dataset was also collected
from internal data cohorts, suggesting potential similarities between images in the HEST-1k
dataset and those seen in training the UNI model. This would skew comparative perfor-
mance of the UNI model on the HEST-1k dataset here, which is used in both the UNI-MLP
and DeepSpot benchmarks.

To develop this work further, we suggest experimenting with foundation models for
both the image and gene encoders (Wang et al., 2025a), curating a list of genes rel-
evant to the clinical setting, trying different approaches for the cross modal computa-
tion in the latent space and domain adaptation across data cohorts. To better enable
this, we make our code publicly available at https://github.com/ox-ibme-bio-imaging/
GenST-workshop-version.

Acknowledgments and Disclosure of Funding

RW acknowledges funding from the EPSRC Doctoral Prize. Views expressed are those of
the authors and not necessarily those of EPSRC, UKRI and Innovate UK.


https://github.com/ox-ibme-bio-imaging/GenST-workshop-version
https://github.com/ox-ibme-bio-imaging/GenST-workshop-version

GENST: PREDICTING SPATIAL TRANSCRIPTOMICS FROM HISTOLOGY IMAGES

Appendix A. Data Processing

First, for the spatial transcriptomics data, we applied total count normalization across each
spot, followed by log transformation to stabilize variance and reduce the dynamic range
of the data. This preprocessing ensures that gene expression values are on a comparable
scale across spots and slides, enabling effective training of both gene autoencoders and
cross-modal prediction models. Following normalization, we constructed the target gene
panel for each cohort as described in Section 3.1. This resulted in a cohort-specific set of
genes used as prediction targets, allowing the model to flexibly adapt to differences in gene
coverage across datasets while maintaining meaningful biological representation.

While many existing approaches in this field restrict training and evaluation to the top
250 or 1000 highly variable or highly expressed genes (Nonchev et al., 2025; Zeng et al.,
2022; Min et al., 2024; He et al., 2020), thereby excluding sparsely measured genes, we
adopt a more comprehensive strategy. For each tissue-technology cohort, we construct a
cohort-specific gene panel that includes both biologically informative (highly variable and
highly expressed) genes and genes commonly measured across slides. This results in panel
sizes ranging from approximately 4,000 to over 13,000 genes, enabling a more challenging
yet thorough evaluation setting. Our approach facilitates the potential discovery of novel
biomarkers, including those with lower expression levels that are often omitted in prior
work.

For the corresponding histology image, we use an image crop around each spot lo-
cation and resize to 224x224 if required. The following augmentations (from the torchvi-
sion.transforms.v2 Python library) were used on these images in training: a random vertical
flip with probability 0.5; a random horizontal flip with probability 0.5; colour jitter with
brightness 0.02, contrast 0.05, saturation 0.1 and hue 0.1; random sharpness adjustment
with sharpness factor 0.2 and probability 0.2; random autocontrast with probability 0.5;
random rotation by multiples of 90 degrees. Additionally, as on the validation and test
datasets, we normalised the images per channel by mean (0.485, 0.456, 0.406) and standard
deviation (0.229, 0.224, 0.225).

Appendix B. Results

Full results for all metrics are visualised in Figure 3. Each metric captures a different
aspect of model performance. L1 error is sensitive to prediction scale and magnitude.
Pearson correlation measures global linear trends but is dominated by highly expressed
genes. Spearman and Top-k recall are rank-based, better reflecting relative ordering and
recovery of key genes, but do not account for absolute error. Reporting all these metrics
ensures fair and complete assessment of both quantitative accuracy and biological relevance.

Preprocessing of the gene expression counts is a crucial stage for successful predictions
with most models, and that the scaling of these counts is an important step that can be
done differently. For example, taking the log transform of the counts is standard, but these
can then be scaled by a factor, ranging anywhere from 10,000-1,000,000 (Nonchev et al.,
2025; Min et al., 2024). Therefore, we provide the L1 metric for comparison between models
presented here, for which the data was processed identically.
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Figure 3. Test results shown per metric, coloured by model and grouped into columns by tissue-

technology cohort, shown over all five folds to demonstrate the variance in results.

Note the

gene2gene model is the gene-only autoencoder part of our model, GenST, and is provided as a
proxy for the best metrics that can be achieved from our cross-modal approach.
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Appendix C. Clustering

Dataset ‘ Metric ‘ DeepSpot GenST ST-Net
STimage-ST-Breast Hungarian Accuracy | 0.477 (0.010) 0.497 (0.015) 0.486 (0.011)
ARI 0.172 (0.014) 0.190 (0.023) 0.179 (0.020)
NMI 0.240 (0.016) 0.231 (0.015) 0.201 (0.014)
STimage-Visium-Brain | Hungarian Accuracy | 0.363 (0.004) 0.361 (0.008) 0.343 (0.006)
ARI 0.164 (0.010) 0.179 (0.006) 0.166 (0.005)
NMI 0.235 (0.014) 0.248 (0.011) 0.235 (0.008)
HEST-ST-Brain Hungarian Accuracy | 0.529 (0.007) 0.518 (0.007) 0.515 (0.007)
ARI 0.271 (0.011) 0.279 (0.009) 0.277 (0.012)
NMI 0.368 (0.008) 0.349 (0.007) 0.358 (0.009)
HEST-ST-Breast Hungarian Accuracy | 0.485 (0.011) 0.488 (0.013) 0.488 (0.009)
ARI 0.196 (0.017) 0.191 (0.022) 0.182 (0.011)
NMI 0.253 (0.012) 0.249 (0.015) 0.224 (0.010)
HEST-Visium-Skin Hungarian Accuracy | 0.414 (0.003) 0.393 (0.005) 0.388 (0.005)
ARI 0.159 (0.005) 0.149 (0.006) 0.140 (0.005)
NMI 0.261 (0.010) 0.253 (0.008) 0.221 (0.006)

Table 3. Mean clustering metric scores with variance provided in brackets across datasets.

Mosaic H&E tiles

Figure 4. Example spatial clustering results on HEST-Visium-Skin. From left to right: (1) H&E
mosaic image reconstructed from tiles, followed by clusters from (2) Ground truth gene expression,
(3) GenST predictions, (4) ST-Net predictions, (5) DeepSpot predictions. Cluster assignments are
visualized as distinct colors and mapped back to their original spatial locations, illustrating that

Truth

Ours

STNet

GenST recovers spatial domains closely matching the ground truth structure.

To assess whether our model’s predicted gene expression profiles preserve meaningful
spatial and biological structure, we performed unsupervised clustering on the predicted
expression matrices and compared the resulting clusters to those derived from ground-truth
gene expression. For each tissue-technology cohort, clustering was performed using Leiden
algorithm on both true and predicted gene expression, and the results were mapped back to
the original spatial locations. Cluster agreement was evaluated using Hungarian Accuracy

11

DeepSpot
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(i.e. the optimal matching accuracy after aligning cluster assignments between methods
using the Hungarian algorithm), Adjusted Rand Index (ARI), and Normalized Mutual
Information (NMI), as reported in Table 3.

Across all cohorts, GenST achieves competitive clustering metrics, with the highest ARI
in 3 out of 5 settings (Table 3), indicating that the predicted gene profiles largely capture
the underlying spatial organization. DeepSpot, which leverages neighborhood information,
often yields stronger spatial clustering structure, although this does not necessarily translate
to higher spot-level prediction accuracy (as shown in previous evaluation results). Visual-
izations in Figure 4 show that clusters inferred from predictions are broadly aligned with
those from ground truth expression.
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