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Abstract

We seek a computationally efficient model for a collection of time series arising from multiple
interacting entities (a.k.a. “agents”). Recent models of temporal patterns across individuals
fail to incorporate explicit system-level collective behavior that can influence the trajectories
of individual entities. To address this gap in the literature, we present a new hierarchical
switching-state model that can be trained in an unsupervised fashion to simultaneously
learn both system-level and individual-level dynamics. We employ a latent system-level
discrete state Markov chain that provides top-down influence on latent entity-level chains
which in turn govern the emission of each observed time series. Recurrent feedback from the
observations to the latent chains at both entity and system levels allows recent situational
context to inform how dynamics unfold at all levels in bottom-up fashion. We hypothesize
that including both top-down and bottom-up influences on group dynamics will improve
interpretability of the learned dynamics and reduce error when forecasting. Our hierarchical
switching recurrent dynamical model can be learned via closed-form variational coordinate
ascent updates to all latent chains that scale linearly in the number of entities. This is
asymptotically no more costly than fitting a separate model for each entity. Analysis of both
synthetic data and real basketball team movements suggests our lean parametric model can
achieve competitive forecasts compared to larger neural network models that require far
more computational resources. Further experiments on soldier data as well as a synthetic
task with 64 cooperating entities show how our approach can yield interpretable insights
about team dynamics over time.

1 Introduction

We consider the problem of jointly modeling a collection of multivariate time series arising from individual
entities that can influence each other’s behavior over time and might share goals. Each series in the collection
describes the evolution of one entity, sometimes also called an “agent” (Yuan et al., 2021). All entities are
observed over the same time period within a shared environment or system. Our work is motivated by the
need to capture an essential property of such data in many applications: the temporal behaviors of the
individual entities are coordinated in a systematic but fundamentally latent (i.e., unobserved) manner.

As a motivating example, consider the dynamics of a team sport like basketball (Terner & Franks, 2021). To
accomplish a team goal, one player might set a “screen,” physically blocking a defender to allow a teammate an
open drive to the basket. This screen could be preplanned or arise as players act on an in-moment opportunity.
As another example, consider marching band players that practice moving together in a coordinated fashion

Open-source code: https://github.com/tufts-ml/team-dynamics-time-series/
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across a field. Most movements are planned out by a coach. However, in some cases, situational adjustments
are needed: when enough individuals make mistakes in their own trajectories, the coach may decide to rein
in all of the players and reset. Our experiments directly cover basketball and marching band case studies
later in Sec. 5.2 and Sec. 5.3, respectively. Similar group dynamics arise in many other domains, such as
businesses in a common economic system (van Dijk et al., 2002), animals in a shared habitat (Sun et al.,
2021), biological cells sharing copy-number mutations (Babadi et al., 2023), or students in a collaborative
problem-solving session (Odden & Russ, 2019; Earle-Randell et al., 2023).

In all these examples, the dynamics of the individuals are far from independent. Instead, the observed
trajectories exhibit “top-down” patterns of coordination that are planned in advance or learned from extensive
training together. They also exhibit “bottom-up” adaptations of the individuals and the group to evolving
situational demands. We seek to build a model that can infer how group dynamics evolve over time given
only entity-level sensory measurements, while taking into account top-down and bottom-up influences.

While modeling individual time series has seen many recent advances (Linderman et al., 2017; Gu et al.,
2022; Farnoosh et al., 2021), there remains a need for improved models for coordinated collections of time
series. To try to model a collection of time series, a simple approach could repurpose models for individual
time series. As a step beyond this, some efforts pursue personalized models that allow custom parameters
that govern each entity’s dynamics while sharing information between entities via common priors on these
parameters (Severson et al., 2020; Linderman et al., 2019; Alaa & van der Schaar, 2019), often using mixed
effects (Altman, 2007; Liu et al., 2011). But personalized models allow each sequence to unfold asynchronously
without interaction. In contrast, our goal is to specifically model coordinated behavior within the same time
period. Others have pursued this goal with complex neural architectures that can jointly model “multi-agent”
trajectories (Zhan et al., 2019; Alcorn & Nguyen, 2021; Xu et al., 2022). Instead, we focus on parametric
methods that are easier to interpret and more likely to provide sample-efficient quality fits in applications
with only a few minutes of available data (such as the data described in Sec. 5.4).

One potential barrier to modeling coordination across entities is computational complexity. For instance, a
model with discrete hidden states which allows interactions among entities has a factorial structure with
inference that scales exponentially in the number of entities (see Sec. 3). In this paper we present a tractable
framework for modeling collections of time series that overcomes this barrier. All estimation can be done
with cost linear in the number of entities, making our model’s asymptotic runtime complexity no more costly
than fitting separate models to each entity.

The first key modeling contribution is an explicit representation of the hierarchical structure of group
dynamics, modeled via a latent system-level state that exerts “top-down” influence on each individual time
series. We use well-known switching-state models (Rabiner, 1989) as a building block for both system-level
and individual-level dynamics. As shown in Fig. 1, our model posits two levels of latent discrete state chains:
a system-level chain shared by all entities and an entity-level chain unique to each entity. We assume that
the system-level chain is the sole mediator of cross-entity coordination; each entity-level chain is conditionally
independent of other entities given the system-level chain. Our model achieves “top-down” coordination
via the system-level chain’s influence on entity-level state transition dynamics. In turn, an emission model
produces each entity’s observed time series given the entity-level chain.

The second key modeling contribution is to allow “bottom-up” adjustments to recent situational demands
at all levels of the hierarchy. In our assumed generative model in Fig. 1, the next system-level state and
entity-level state both depend on feedback from per-entity observed data at the previous timestep. In the
basketball context, this feedback captures how a basketball player driving to the basket switches to another
behavior after reaching their goal. Critically, with our model that situational change in one player can quickly
influence the trajectories of other players. We refer to observation-to-latent feedback as recurrent, following
Linderman et al. (2017). Note that this recurrent feedback also allows the model to learn state duration
distributions that are more expressive than the geometric distributions that would be implied otherwise
(Ansari et al., 2021). Previously, Linderman et al. (2017) incorporated such recurrent feedback into a model
with a flat single-level of switching states. We show how recurrent feedback can inform a two-level hierarchy
of system-level and entity-level states, so that entity-level observations can drive system-level transitions in a
computationally efficient manner.
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Figure 1: Graphical model representation of our hierarchical switching recurrent dynamical model (HSRDM) for a system
of J interacting entities. Colored edges highlight key insights behind our flexible transition models of system-level
hidden states s and entity-level hidden states z. Transitions to the next system state depend via blue arrows on the
current system state and recurrent feedback from observations of all entities (up-diagonal). Transitions to the next
entity state depend via red arrows on the next system-level state (down arrow), current entity state (horizontal), and
recurrent feedback from that entity’s observations (up-diagonal).

Our overall contribution is thus a proposed framework – hierarchical switching recurrent dynamical models – by
which our two key modeling ideas provide a natural and cost-effective solution to the problem of unsupervised
modeling of coordinated time series. Unlike other models, our framework allows each entity’s next-step
dynamics to be driven by both a system-level discrete state (“top-down” influence) and recurrent feedback
from previous observations (“bottom-up” influence). Optional exogenous features (e.g. the ball position in
basketball) can also be incorporated. We further provide a variational inference algorithm for simultaneously
estimating model parameters and approximate posteriors over system-level and entity-level chains. Each
chain’s posterior maintains the model’s temporal dependency structure while remaining affordable to fit
via efficient dynamic programming that incorporates recurrent feedback. We conduct experiments on two
synthetic datasets as well as two real-world tasks to demonstrate the model’s superior capability in discovering
hidden dynamics as well as its competitive forecasts obtained at low computational cost.

2 Model Family

Here we present a family of hierarchical switching recurrent dynamical models (HSRDMs) to describe a collection
of time series gathered from J entities that interact over a common time period (discretized into timesteps
t ∈ {0, 1, 2, . . . , T}) and in a common environment or system. For each entity, indexed by j ∈ {1, . . . , J}, we
observe a time series of feature vectors {x(j)

t ∈ RD, t = 0, 1, 2, . . . , T}.

Our HSRDM represents the j-th entity via two random variables: the observed or “emitted” features x(j)
0:T and

a hidden entity-level discrete state sequence zj0:T = {z(j)
t ∈ {1, . . . ,Kj}, t = 0, . . . , T}. We further assume

a system-level latent time series of discrete states s0:T={st ∈ {1, . . . , L}, t = 0, . . . , T}. The complete joint
density of all random variables across all J entities factorizes according to the graphical model in Figure 1 as

p(x(1:J)
0:T , z

(1:J)
0:T , s0:T | θ) = p(s0 | θ)︸ ︷︷ ︸

system state init.

T∏
t=1

p(st | st−1,x
(1:J)
t−1 , θ)︸ ︷︷ ︸

system state transitions

·
J∏
j=1

p(x(j)
0:T , z

(j)
0:T | s0:T , θ)︸ ︷︷ ︸

per-entity states and emissions

. (2.1)

Here, θ denotes all model parameters, and superscript (1:J) denotes the concatenation of variables over all
entities. For a specific entity at index j, its individual states and emitted data factorize as

p(x(j)
0:T , z

(j)
0:T | s0:T , θ) = p(z(j)

0 | s0, θ)︸ ︷︷ ︸
entity state init.

T∏
t=1

p(z(j)
t | z

(j)
t−1,x

(j)
t−1, st, θ)︸ ︷︷ ︸

entity state transitions

· p(x(j)
0 | z(j)

0 , θ)︸ ︷︷ ︸
emission init.

T∏
t=1

p(x(j)
t | x

(j)
t−1, z

(j)
t , θ)︸ ︷︷ ︸

emission dynamics

.

The design principle of HSRDMs is to coordinate the switching-state dynamics of multiple entities so they
receive top-down influence from system-level state as well as bottom-up influence via recurrent feedback from
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entity observations (diagonal up arrows in Fig. 1). Under the generative model, the next entity-level state
depends on the interaction of three sources of information: the next state of the system, the current state of
the entity, and the current entity observation. Likewise, the next system state depends on the current system
state and observations from all entities.

Transition models. To instantiate our two-level discrete state transition distributions, we use categorical
generalized linear models to incorporate each source of information via additive utilities

st | st−1,x
(1:J)
t−1 ∼ Cat-GLML

(
Π̃Test−1︸ ︷︷ ︸

transition preferences

+ Λ gψ
(
x

(1:J)
t−1 ,υt−1

)︸ ︷︷ ︸
recurrent feedback

)
, (2.2a)

z
(j)
t | z

(j)
t−1,x

(j)
t−1,st ∼ Cat-GLMK

(
(P̃ (st)

j )Te
z

(j)
t−1︸ ︷︷ ︸

transition preferences

+ Ψ(st)
j fφ

(
x

(j)
t−1,u

(j)
t−1
)︸ ︷︷ ︸

recurrent feedback

)
. (2.2b)

Across levels, common sources of information drive these utilities. First, the state-to-state transition term
selects an appropriate log transition probability vector from matrices Π̃, P̃ via a one-hot vector ek indicating
the previous state k. Second, recurrent feedback governs the next term, via featurization functions for the
system gψ : RDJ → RR̃ and for entities fφ : RD → RD̃ with parameters ψ, φ (known or learned) and weights
Λ,Ψj .

Some applications may benefit from using available exogenous covariates to inform recurrent feedback, such as
using the location of the ball itself or the remaining time on the game clock to better model future basketball
player movement. Our general framework denotes such covariates at the system-level as υt−1 or entity-level
as u(j)

t−1. When available, these covariates can drive transition probabilities; if no such variables exist they can
be left out. Note that inference (Sec. 3) applies not merely to Equation 2.2, but to arbitrary instantiations.

Emission model. We generate the next observation for entity j via a state-conditioned autoregression:

x
(j)
t | x

(j)
t−1, z

(j)
t ∼ Hζ , where ζ = ζ(x(j)

t−1, z
(j)
t ). (2.3)

Users can select the emission distribution H to match the domain of observed features x(j)
t : our later

experiments use Gaussians for real-valued vectors and Von-Mises distributions for angles. The parameter
ζ = ζ(x(j)

t−1, z
(j)
t ) of the chosen H depends on the previous observation x(j)

t−1 and current entity-level state
z

(j)
t . We focus on lag 1 autoregression here, though extensions that condition on more than just one previous
timestep are possible.

Priors. The Appendix describes prior distributions p(θ) on parameters assumed for the purpose of regular-
ization. We use a “sticky" Dirichlet prior (Fox et al., 2011) to obtain smoother system-level segmentations.

Specification. To apply HSRDM to a concrete problem, a user must select the number of system states L and
entity states K as well as functional forms of g, f . We assume that g can be evaluated in O(J).

Special cases. If we remove the top-level system states s0:T (or equivalently set L = 1), our HSRDM reduces
to separate models for each of J entities, where each per-entity model is a recurrent autoregressive HMM
(rAR-HMM) as in Linderman et al. (2017). If we remove the recurrence from our HSRDM, we obtain a
multi-level autoregressive HMM that we refer to as a hierarchical switching dynamical model (HSDM). Later
on, we compare our model to both ablations in several experiments.

3 Inference

Given observed time series x(1:J)
0:T , we now explain how to simultaneously estimate parameters θ and infer

approximate posteriors over hidden states s0:T for the system and hidden states z(1:J)
0:T for all J entities.

Because all system-level and entity-level states are unobserved, the marginal likelihood p(x0:T | θ) is a natural
objective for parameter estimation. However, exact computation of this quantity, by marginalizing over all
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hidden states, is intractable. Given L system-level states and K entity-level states, computing p(x0:T | θ)
naively via the sum rule requires a sum over (LKJ)T values. While the forward algorithm (Rabiner, 1989)
resolves the exponential dependence in time, the exponential dependence in the number of entities persists:
TLK2J operations are required to do forward-backward on HSRDMs. This exponential dependence remains
prohibitively costly even in moderate settings; for instance, when (T, J, L,K) = (100, 10, 2, 4), a direct
application of the forward algorithm requires around 220 trillion operations.

Instead, we will pursue a structured approximation q to the true (intractable) posterior over hidden states.
Following previous work (Alameda-Pineda et al., 2021; Linderman et al., 2017), we define

q(s0:T , z
(1:J)
0:T ) = q(s0:T ) q(z(1:J)

0:T ), (3.1)

intending q(s0:T , z
(1:J)
0:T ) ≈ p(s0:T , z

(1:J)
0:T | x(1:J)

0:T , θ). Each factor of q is parameterized separately, without
dependence on θ or other random variables in the model. Each factor retains temporal dependency structure,
avoiding the simplistic independence assumptions of complete mean-field inference (Barber et al., 2011).

Using this approximate posterior q, we can form a variational lower bound on the marginal log likelihood
VLBO ≤ log p(x(1:J)

0:T | θ), defined as VLBO [θ, q] = Eq
[

log p(x(1:J)
0:T , z

(1:J)
0:T , s0:T | θ)

]
+ H

[
q(z(1:J)

0:T , s0:T )
]
. As

shown in the Appendix, computation of this bound scales as O(TJL2K2), crucially linear rather than
exponential in the number of entities J . This reduces the approximate number of operations required for
inference on the earlier moderate example setting (T=100, J=10, L=2,K=4) from 220 trillion to 64 thousand.

To estimate θ and q given data x0:T , we pursue coordinate ascent variational inference (CAVI; (Blei et al.,
2017)) on the VLBO , known as variational expectation maximization (Beal, 2003) when θ is approximated
with a point mass. Given a suitable initialization, we alternate between specialized update steps to each
variational posterior or parameter:

q(s0:T ) ∝ exp
{
E
q(z(1:J)

0:T )[log p(x(1:J)
0:T , z

(1:J)
0:T , s0:T | θ)]

}
, (3.2)

q(z(1:J)
0:T ) ∝ exp

{
Eq(s0:T )[log p(x(1:J)

0:T , z
(1:J)
0:T , s0:T | θ)]

}
,

θ = arg max
θ

{
E
q(z(1:J)

0:T )q(s0:T )

[
log p(x(1:J)

0:T , z
(1:J)
0:T , s0:T | θ)

]
+ log p(θ)

}
.

The updates above define the variational E-S step (VES step), variational E-Z step (VEZ step), and M-step,
respectively. The first two formulas in equation 3.2 are derived by following the well-known generic variational
recipe for optimal updates (Blei et al., 2017). The M-step allows the inclusion of an optional prior on
some or all parameters. We’ve worked out efficient ways to achieve the optimal update for each step, as
described below. Full details about each step, as well as recommendations for initialization, are in the
Appendix. We also share code via the link at bottom of page 1, built upon JAX for efficient automatic
differentiation (Bradbury et al., 2018).

VES step for system-level state posteriors. We can show the VES step reduces to updating the
posterior of a surrogate Hidden Markov Model with J independent autoregressive categorical emissions.
Optimal variational parameters for this posterior can be computed via a dynamic-programming algorithm
that extends classic forward-backward for an AR-HMM to handle recurrence. The runtime required is
O
(
TJ(K2 +KD +KL+KM) + TL2).

VEZ step for entity-level state posteriors. We can show that the VEZ update reduces to updating
the posterior of separate surrogate Hidden Markov Models for each entity j with autoregressive categorical
emissions which recurrently feedback into the transitions. Given a fixed system-level factor q(s0:T ), we can
update the state posterior for entity j independently of all other entities. This means inference is linear
in the number of entities J , despite the fact that the HSRDM couples entities via the system-level sequence.
The linearity arises even though our assumed mean-field variational family of Equation 3.1 did not make
an outright assumption that q(z(1:J)

0:T ) =
∏J
j=1 q(z

(j)
0:T ). Optimal variational parameters for this posterior can

again be computed by dynamic programming that extends the forward-backward algorithm. The runtime
required to update each entity’s factor is O

(
T
[
K2 +KD2 +KL+KM

])
.
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M step for transition/emission parameters. Updates to some parameters, particularly for emission
model parameters when H has exponential family structure (such as the Gaussian or Von-Mises AR likelihoods
we use throughout experiments), can be done in closed-form. Otherwise, in general, we optimize θ by gradient
ascent on the VLBO objective. This gradient ascent has the same per-iteration cost as the computation of the
VLBO , with runtime O(TJL2K2). If the recurrence function parameters ψ or φ are learnable, these can also
be updated in the M step.

Like many variational methods, the alternating update algorithm in equation 3.2 provides a useful guarantee.
Each successive step will improve the VLBO objective (or if incorporating priors, the modified objective
VLBO+ log p(θ)) until convergence to a local maximum. This improvement assumes any M step that uses
gradient ascent relies on a suitable implementation that guarantees a non-decrease in utility.

4 Related Work

Below we review several threads of the scientific literature in order to situate our work.

Continuous representations of individual sequences. Other efforts focus on latent continuous repre-
sentations of individual time series. These can produce competitive predictions, but do not share our goal
of providing a segmentation at the system and entity level into distinct and interpretable discrete regimes.
Probabilistic models with continuous latent state representations are often based on classic linear dynamical
system (LDS) models (Shumway & Stoffer, 1982). Deep generative models like the Deep Markov Model
(Krishnan et al., 2017) and DeepState (Rangapuram et al., 2018) extend the LDS approach with more flexible
transitions or emissions via neural networks.

Discrete state representations of individual sequences. Our focus is on discrete state representations
which provide interpretable segmentations of available data, a line of work that started with classic approaches
to entity-level-only sequence models like hidden Markov models (HMM) (Rabiner, 1989) and autoregressive
hidden Markov models (AR-HMM) (Ghahramani & Hinton, 2000), later extended to include both discrete and
continuous latent representations as in switching-state linear dynamical systems (SLDS) (Alameda-Pineda
et al., 2021). Recent efforts such as DSARF (Farnoosh et al., 2021) and DS3M (Xu et al., 2025) have
extended such base models to non-linear transitions and emissions via neural networks. All of these efforts
still represent each time series with only entity-level (not system-level) dynamics, and do not incorporate
recurrent feedback to guide the evolution of latent variables.

Discrete states via recurrence on continuous observations. Linderman et al. (2017) add a notion
of recurrence to classic AR-HMM and SLDS models, increasing the flexibility in each timestep’s transition
distribution by allowing dependence on the previous continuous features, not just the previous discrete states.
Later work has extended recurrence ideas in several directions that improve entity-level sequence modeling,
such as multi-scale transition dependencies via the tree-structured construction of the TrSLDS (Nassar et al.,
2019), recurrent transition models via SNLDS (Dong et al., 2020), or recurrent transition models that can
explicitly model state durations via RED-SDS (Ansari et al., 2021). To model multiple recordings of worm
neural activity, Linderman et al. (2019) pursue recurrent state space models that are described as hierarchical
because they encourage similarity between each worm entity’s custom dynamics model via common parameter
priors in hierarchical Bayesian fashion. Their model assumes only entity-level discrete states.

Multi-level discrete representations. Stanculescu et al. (2014) developed a hierarchical switching linear
dynamical system (HSLDS) for modeling the vital sign trajectories of individual infants in an intensive care
unit. The root level of their directed graphical model assumes a discrete state sequence (analogous to our
s) indicating whether disease was present or absent in the individual over time, while lower level discrete
states (analogous to our z) indicate the occurrence of specific “factors” representing clinical events such as
brachycardia or desaturation. While their graphical model also contains a multi-level discrete structure, we
emphasize three key differences. First, they require fully-supervised data for training, where each timestep t
is labeled with top-level and factor-level states. In contrast, our structured VI routines to simultaneously
estimate parameters and hidden states in the unsupervised setting are new. Second, their model does not
incorporate recurrent feedback from continuous observations. Finally, they model individual time series not
multiple interacting entities.
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More recently, hierarchical time series models composed of Recurrent Neural Networks (RNNs) have been
proposed for dynamical systems reconstitution (Brenner et al., 2025). Different from our work, this framework
is not designed for modeling entity interactions within a single system, but modeling shared properties among
multi-domain dynamical systems for time series transfer learning.

Lastly, Hierarchical Hidden Markov Models (HHMMs) (Fine et al., 1998) and their extensions (Bui et al.,
2004; Heller et al., 2009) describe a single entity’s observed sequence with multiple levels of hidden states.
The chief motivation of the HHMM is to model different temporal length scales of dependency within an
individual sequence. While HHMMs have been applied widely to applications like text analysis (Skounakis
et al., 2003) or human behavior understanding (Nguyen et al., 2005), to our knowledge HHMMs have not
been used to coordinate multiple entities overlapping in time.

Models of teams in sports analytics. Terner & Franks (2021) survey approaches to player-level and
team-level models in basketball. Miller & Bornn (2017) apply topic models to tracking data to discover how
low-level actions (e.g. run-to-basket) might co-occur among teammates during the same play. Metulini et al.
(2018) model the convex hull formed by the court positions of the 5-player team throughout a possession via
one system-level hidden Markov model. In contrast, our work provides a coordinated two-level segmentation
representing the system as well as individuals.

Personalized models. Several switching state models assume each sequence in a collection have unique
or personalized parameters, such custom transition probabilities or emission distributions (Severson et al.,
2020; Alaa & van der Schaar, 2019; Fox et al., 2014). In this style of work, entity time series may be collected
asynchronously, and entities are related by shared priors on their parameters. In contrast, we focus on entities
that are synchronous in the same environment, and relate entities directly via a system-level discrete chain
that modifies entity-level state transitions.

Models of coordinated entities. Several recent methods do jointly model multiple interacting entities
or “agents”, often using sophisticated neural architectures. Zhan et al. (2019) develop a variational RNN
where trajectories are coordinated in short time intervals via entity-specific latent variables called “macro-
intents”. Yuan et al. (2021) develop the AgentFormer, a transformer-inspired stochastic multi-agent trajectory
prediction model. Alcorn & Nguyen (2021) develop baller2vec++, a transformer specifically designed to
capture correlations among basketball player trajectories. Xu et al. (2022) introduce GroupNet to capture
pairwise and group-wise interactions. Unlike these approaches, ours builds upon switching-state models with
closed-form posterior inference and produces discrete segmentations. Our approach may also be more sample
efficient for applications with only a few minutes of data, as in Sec. 5.4.

Models of interaction graphs. Some works (Wu et al., 2020; Löwe et al., 2022) seek to learn an interaction
graph from many entity-level time series. In such a graph, nodes correspond to entities and edge existence
represents a direct, pairwise interaction between entities. Other works (Kipf et al., 2018; Webb et al., 2019)
assume a fully-connected graph, but can learn to annotate each edge with a different discrete type representing
different kinds of interaction. One possible type may be hard-coded to mean a ”non-edge” for no interaction.
Intentional priors can control the graph sparsity (frequency of non-edge labels). Recently, the GRAph Switch-
ing dynamical Systems (GRASS) approach (Liu et al., 2023) models interactions via a latent graph whose
edges change dynamically over time.

For some applications, discovering possible pairwise interactions or interaction types that influence data is
an explicit goal. In our chosen applications (e.g. basketball player movements), domain expertise indicates
the graph is fully-connected. Moreover, when the graph is fully connected, interaction graph approaches
burdensomely require runtimes that are quadratic in the number of entities J . In contrast, our approach
models system-level dynamics explicitly with a more affordable runtime cost that is linear in J . Very recent
work by Wang & Pang (2024) offers a different route to scaling to J in the hundreds. Their approach can
estimate directed graph structure by combining a variational dynamics encoder with partial correlation ideas.

5 Experiments

We now demonstrate our model’s utility across several experiments. As we aim to highlight our model across
two tasks - multi-step-ahead forecasting and interpretability of system dynamics - we show one of each on
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synthetic and real datasets. In all but the first task, the data generation model is either unknown or not the
same as the HSRDM. Within each task, we compare our model’s performance to task-specific competitive
baselines. We also compare to ablations that remove either the top-down influence of system-level hidden
states or bottom-up recurrent feedback from observations. Overall, we see that our compact and efficient
HSRDM is able to outperform alternatives with respect to discovering hidden system dynamics and maintain
similar or better prediction performance than computationally intensive neural network methods.

5.1 FigureEight: Synthetic task of forecasting coordinated 2D trajectories

To illustrate the potential of our HSRDM for the purpose of high-quality forecasting of several coordinated
entities, we study a synthetic dataset we call FigureEight. In the true generative process (detailed in App. D.3),
each entity switches between clockwise motion around a top loop and counter-clockwise motion around a
bottom loop. The overall observed entity-level 2D spatial trajectory over time approximates the shape of an “8”
as in Fig. 2. Each entity has two true states, one for each loop, with a specific Gaussian vector autoregression
process for each. Transition between these loop states depends on both top-down and bottom-up signals
in the data-generating process. For top-down, a binary system-level state sets which loop is favored for all
entities at the moment. For bottom-up, switches between loop states are only probable when the entity’s
current position is near the origin, where the loops intersect. Though coordinated, entity trajectories are not
perfectly synchronized, varying due to individual rotation speeds and initial positions.

We generate data for 3 entities over 400 total timesteps. For training, we provide complete data for the first
two entities (times 1-400) and partial data for the last entity (times 1-280). The prediction task of interest is
entity-specific partial forecasting: estimate the remaining trajectory of entity j = 3 for times 281-400 (120
time steps), given partial information (timesteps 1-280) for that entity and full information (1-400) for other
entities. The true trajectory for this heldout window is illustrated in Fig. 2: we see a smooth transition over
time from the top loop to the bottom loop of the "8". We wish to compare our method to competitors at
estimating this heldout trajectory.

Baseline selection. To show the benefits of modeling system-level dynamics, we compare to baseline
methods that can produce high-quality forecasts with discrete latent variables, yet only model entity-level
(not system-level) dynamics and can do partial forecasts. First, we select the deep switching autoregressive
factorization model (DSARF; (Farnoosh et al., 2021)). This model represents recent state-of-the-art forecasting
performance and uses deep neural networks to flexibly define transition and emission structures yet still can
produce discrete segmentations. Second, we compare to a recurrent autoregressive hidden Markov model
(rAR-HMM; (Linderman et al., 2017)). This is an ablation of our method that removes our system-entity
hierarchy. This experiment requires partial forecasting of one entity at times 281-400 given context from
other entities. Some neural net baselines like Agentformer and GroupNet considered in later experiments do
not easily handle such partial forecasting in released code, so we exclude them here on this task.

Entity-to-system strategy. Since DSARF and rAR-HMM baselines each only model entity-level dynamics,
for each one we try three different entity-to-system strategies to convert any entity-only model to handle a
system of entities. First, complete Independence fits a separate model to each entity’s data only, with no
information flow between entities. Next, complete Pooling fits a single model on N ′ = N ∗ J total sequences,
treating each sequence n from each entity j as an i.i.d. observation. Finally, Concatentation models a
multivariate time series of expanded dimension D′ = J · D constructed by stacking up all entity-specific
feature vectors x(1)

t ,x
(2)
t , . . .x

(J)
t at each time t.

Method configuration. For the HSRDM, we set L = 2 system states and K = 2 entity states. For emission
model, we pick a Gaussian autoregressive to match the true process. We do not use any system-level recurrence
g as the true data generating process does not have this feedback. We set entity-level recurrence f to a radial
basis function indicating distance from the origin. While we do not expect this f to improve training fit, we
do expect it to improve forecasting, as it captures a key aspect of the true process: that switches between
loops are only probable near the origin.

For all baselines (DSARF and rAR-HMM), we set the number of entity states at K = 2 to match the intended
ground truth. The rAR-HMM uses the same emission model and entity-level recurrence f as our HSRDM.
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Independent Pooling Concatenation

Ground Truth 

rAR-HMM

Independent Pooling Concatenation

Model Best MSE Avg. MSE 
(Trial w/ best sample)

Mdn. MSE 
(Trial sample avgs.)

HSRDM 0.0028 0.105 (0.002) 0.01
No Recurrent Feedback 0.05 2.41 (0.78) 2.41

rAR-HMM Independent 0.05 2.08 (0.55) 2.08
rAR-HMM Pooling 1.11 1.67 (0.19) 2.56

rAR-HMM Concatenation 0.67 1.32 (0.31) 1.19

DSARF Independent 0.31 1.73 (0.27) 2.12

DSARF Pooling 0.94 1.89 (0.19) 1.91

DSARF Concatenation 1.15 4.43 (1.56) 3.01

HSRDM DSARF 

Figure 2: Predictions for the heldout time segment of one entity in FigureEight task. Models were trained on all data
(1-400) from entities 1-2 and times 1-280 for entity 3, then asked to forecast the heldout period (times 281-400) for
entity 3. Colors correspond to individual time steps, shown in the bar on the bottom left. X-marks in each panel show
the ground truth trajectory; solid dots show the model forecast. Top left: Our best HSRDM prediction closely matches
the ground truth at all time points. Top right: Best overall sample for the DSARF baseline under each strategy.
Bottom right: Best overall sample for the rAR-HMM baseline, under each strategy (Indep., Pool, and Concat.,
defined in Sec. 5.1) for adapting an entity-only model to our hierarchical setting. rAR-HMM Independent is a “no
system state” ablation of our model. Bottom left: Table reports for each model: best mean-squared-error (MSE)
across independent trials and forecast samples, average MSE (with standard error in parens) across the samples from
the trial with the best MSE, and median MSE across sample averages from all trials. This table includes ablation
results for a version of our HSRDM with no recurrent feedback. Its forecasting plot can be found in App. D.3.

Hyperparameter tuning. Optimal hyperparameters for each model and entity-to-system strategy are
determined independently. For DSARF, we tune its number of spatial factors and the lags indicating how the
next timestep depends on the past. We don’t tune any specific hyperparameters of our HSRDM or the rAR-HMM.

Training. For each tested method (where method means a model and (if needed) entity-to-system strategy), at
each hyperparameter we train via 5 separate trials with different random seeds implying distinct initializations
of parameters. This helps avoid local optima common to models with latent discrete state. DSARF is
intentionally allowed more trials (10) to stress fair evaluation to external baselines. All DSARF models were
trained with 500 epochs and a learning rate of 0.01. The HSRDM and its ablations are trained with 10 CAVI
iterations. All models required similar training time on this small dataset: < 1 minute per run. Reproducible
details for all methods (including specific hyperparameters) are in the Appendix and released code.

Forecasting. To forecast, from each trial’s fit model we draw 5 samples of the heldout trajectory x3
281:400

for target entity j = 3 over the time period of interest. We keep the “best” sample, meaning the sample
with lowest mean squared error (MSE) compared to the true (withheld) trajectory. Each method can be
represented by the trial and hyperparameter setting with lowest best-sample MSE, or via summary statistics
across samples, trials, and hyperparameters.

Results: Quantitative error. For each method, we report the best-sample MSE in Fig. 2 (bottom left).
Our HSRDM outperforms others by a wide margin, scoring a best-sample MSE less than 0.003 compared to the
next-best value of 0.05 and values of 0.31 - 1.75 among others. To indicate reliability across forecast samples,
we further report the average sample MSE from the trial that produces the best sample (with standard
errors to indicate variation). This average is useful to distinguish between a trial that consistently produces
quality forecasts from a trial that “gets lucky.” While the rAR-HMM Independent model achieves a relatively
low best MSE, the average MSE across all 5 samples from that trial is much worse than our method (2.08 vs.
0.105). Note that the rAR-HMM Independent model is a “no system state” ablation of the regular HSRDM. Our
approach also outperforms a “no recurrent feedback” ablation (qualitative results in App. D.3).
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To understand whether MSE is consistent across trials, we also report the median across trials of the average-
sample MSE. For our HSRDM, the median-over-trials MSE is quite low (0.01), indicating that the HSRDM is
typically reliable. The HSRDM’s best-sample trial happened to also yield one of the worst samples, which is
why that trial’s average-sample MSE is higher than the median. Comparing the best column to the median
column, all methods show wide gaps indicating variation in quality across trials. There is a clear need to
avoid local optima by considering many random initializations.

Results: Visual quality. Fig. 2 also shows the best sampled trajectory from each method. The forecast
from our proposed HSRDM looks quite similar to the true trajectory. In contrast, every competitor struggles to
reproduce the truth. The closest competitor method is the rAR-HMM with the Independent entity-to-system
strategy. The main difference lies in how that model produced a larger outer circle for the bottom loop.

5.2 NBA Basketball: Real task of forecasting 2D player trajectories

We next aim to evaluate the HSRDM’s forecasting capabilities on real movements of professional basketball
team. Specifically, we model the 5 players of the NBA’s Cleveland Cavaliers (CLE), together with their
5 opponents, across multiple games in an open-access dataset (Linou, 2016) of player positions over time
recorded from CLE’s 2015-2016 championship season. To better evaluate the ability to model specific entities,
we focused exclusively on 29 games involving one of CLE’s four most common starting lineups. We randomly
assigned these games to training (20 games), validation (4 games), and test (5 games) sets.

We split each game into non-overlapping basketball event segments, typically lasting 20 seconds to 3 minutes.
Event segments contain periods of uninterrupted play (e.g. shot block → rebound offense → shot made) from
the raw data, ending when there is an abrupt break in player motion or a sampling interval longer than the
nominal sampling rate. Each event segment gives 2D court positions over time for all 10 players that form
a multi-entity emission sequence x(1:J)

0:T . Each such sequence is modeled as an independent draw from our
proposed HSRDM or competitor models. We standardized the court so that CLE’s offense always faces the
same direction (left), and downsampled the data to 5 Hz.

Baseline selection. We compare the forecasting performance of the HSRDM to multiple competitors. Because
of DSARF’s poor prediction performance on even our synthetic task, here we instead explore SNLDS (Dong
et al., 2020) as a neural network baseline which can provide a flexible model of complex time series. Because
the SNLDS baseline is restricted to entity-level (not system-level) dynamics, we fit an independent SNLDS model
to each player. To exemplify neural network methods that can predict trajectories of groups directly, we
select GroupNet (Xu et al., 2022) and Agentformer (Yuan et al., 2021), given GroupNet and Agentformer’s
leading reputations for high-quality forecasting of multiple entities (Xu et al., 2022; Yuan et al., 2021).

We further consider two ablations of our method. First, removing system-level states yields an independent
rAR-HMM (Linderman et al., 2017) for each player. Second, we remove recurrent feedback. As in Yeh et al.
(2019), we also try a simple but often competitive fixed velocity baseline.

Model configuration. The ground truth number of states is unknown; we pick K = 10 entity states
and L = 5 system states. For our HSRDM and its ablations, our emissions distribution is a Gaussian vector
autoregression with entity-state-dependent parameters (see Sec. E). System-level recurrence g reports all
player locations x(1:J)

t to the system-level transition function, allowing future latent states to depend on player
locations. Following Linderman et al. (2017), our entity-level recurrence function f reports an individual
player’s location x(j)

t and out-of-bounds indicators to that player’s entity-level transition function, allowing
each player’s next state probability to vary over the 2D court. We use a sticky prior for system-level state
transitions with α = 1 and κ = 50 (see Sec. E.2 for details).

Hyperparameters. Optimal hyperparameters for each model and strategy are determined independently.
For GroupNet, we used hyperparameters recommended by Xu et al. (2022) from their own basketball
models. For Agentformer, we use the recommended architecture and training settings from Yuan et al.
(2021), adjusting learning rates and number of epochs for our data (see App. E). For SNLDS, we use the
architecture and training settings from Ansari et al. (2021) to model an electricity dataset, adjusting certain
hyperparameters to match the HSRDM well (see App. E). We don’t tune any hyperparameters of our HSRDM or
its ablations. Ablations inherit hyperparameters like number of states where applicable.
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Table 1: Quantitative evaluation on Basketball.

n = 1 n = 5 n = 20
GroupNet 11.6 (0.5) 3 12.2 (0.4) 3 12.4 (0.3) 3
HSRDM (ours) 15.5 (—) 13.8 (—) 13.4 (—)
No system state (rARHMMs) 15.9 (0.3) 15.4 (0.4) 7 15.9 (0.3) 7
No recurrent feedback (HSDM) 16.7 (0.4) 7 16.0 (0.3) 7 16.0 (0.3) 7
SNLDSs 17.2 (0.7) 7 16.0 (0.8) 7 16.1 (0.8) 7
Fixed velocity 17.0 (0.6) 7 17.0 (0.6) 7 17.0 (0.5) 7
Agentformer 33.1 (0.4) 7 21.3 (0.7) 7 25.9 (0.4) 7
(a) Forecast error (in feet) vs. train set size (num. games n).

Directional Variation % In Bounds
HSRDM (ours) .449 .954
No system state (rARHMMs) .631 (.013) 7 .908 (.003) 7
No recurrent feedback (HSDM) .469 (.017) .814 (.008) 7

(b) Statistical comparisons to ablations.

Lebron James Kevin Love T. Mozgov J. Smith M. Williams

GroupNet

HSRDM

No system state
(rARHMMs)

No recurrent
feedback (HSDM)

SNLDSs

Agentformer

Figure 3: Sample forecasts of NBA player location trajectories. Grey tracks show true player trajectories from the
6-second forecasting window of the test event on which our model had median forecasting error. In color are three
sampled forecasts from each model; purple/red/green indicate 1st/5th/10th best forecasting error (from 20 samples).
Time runs from light to dark.

Training time. Our HSRDM is more computationally efficient for this task. Training an HSRDM on a 2023
Macbook with Apple M2 Pro chip on n = 1, 5, 20 training games took 2, 15, and 45 minutes, respectively.
Training Agentformer on an Intel Xeon Gold 6226R CPU took 1.5, 6, and 13 hours, respectively. That is,
our HSRDM was 17-45 times faster to train. We saw similar gains with the other neural network baselines; on
the same 2023 Macbook, HSRDM trained 120 times faster than GroupNet and 10-50 times faster than SNLDS.

Model size. Our compact HSRDM has 9,930 parameters. In contrast, GroupNet has over 3.2 million parameters
(320x larger) and Agentformer has over 6.5 million (650x larger). The collection of SNLDS models has about
0.5 million parameters (50x larger), even though this approach does not model cross-entity interactions.

Evaluation procedure. We randomly select a 6 second forecasting window within each of the 75 test set
events. Preceding observations in the event are taken as context, and postceding observations are discarded.
We sample 20 forecasts from each method for the 5 starting players on the Cavaliers. We report the mean
distance in feet from forecasts to ground truth, with the mean taken over all events, samples, players,
timesteps, and dimensions. We perform paired t-tests on the per-event differences in mean distances between
our model vs competitors, using Benjamini & Hochberg (1995)’s correction for multiple comparisons over
positively correlated tests. All tests were performed at the .05 significance level for two-sided tests.

Results: Quantitative error. Tab. 1a reports the mean distance in feet from forecasts to ground truth for
each method. Methods whose forecasting error are significantly better (worse) than HSRDM according to the
hypothesis tests are marked with a green check (red x). The standard error of the difference in means is given
in parentheses. Our first key finding is that HSRDM provides better forecasts than ablations, supporting the
utility of incorporating multi-level recurrent feedback and top-level system states into switching autoregressive
models of collective behavior. Second, HSRDM provides better forecasts than some neural network baselines
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(SNLDSs and Agentformer), as well as the fixed velocity baseline. Third, a neural network method designed
to model coordinated entities (GroupNet) does provide the best overall forecasts in terms of error alone. Yet
we consider our results “competitive” in that on a basketball court measuring 94x50 feet, our n = 20 forecasts
are on average only one foot further off in terms of error while using a simple interpretable model that is
roughly 320x smaller and 120x faster to train.

Results: Qualitative forecasts. Fig. 3 shows sampled forecasts from our model and baselines. As a
first key finding, HSRDM forecasts are qualitatively more similar to GroupNet than the forecasts of other
baselines. Second, system-level switches appear to help coordinate entities; players move in more coherent
directions under HSRDM than the no system state ablation. Third, our multi-level recurrent feedback supports
location-dependent state transitions; players are more likely to move to feasible in-bounds locations under
HSRDM than without recurrence.

Results: Statistical comparisons. To corroborate the above conclusions from visual inspection, we
examine two statistics on the entire test set: Directional Variation, which measures the coherence of
movements by a basketball team via the variance across players of the movement direction on the unit circle
between the first and last timesteps in the forecasting window, and % In Bounds, the mean percentage
of each forecast that is in bounds. We report these statistics for the HSRDM and its ablations in Tab. 1b.
Methods significantly different from the HSRDM baseline according to hypothesis testing are marked with a
red “x.” These results corroborate the intended purpose of each of our modeling contributions. Removing the
system-level states significantly increases the directional variation across players, indicating lack of top-down
coordination. Removing recurrence significantly reduces the percentage of forecasts that remain in bounds.
Removing system states also significantly reduces the in bounds percentage, although to a lesser extent. We
suggest that greater coordination in the player movement also helps keep the players in bounds.

5.3 MarchingBand: Synthetic task of interpreting marching band routines

Beyond the forecasting evaluations of earlier subsections, we now evaluate the HSRDM’s capabilities to discover
useful and interpretable discrete system dynamics in systems with many (J = 64) entities. To do this, we
introduce a synthetic dataset, MarchingBand, consisting of individual marching band players (“entities”)
moving across a 2D field in a coordinated routine to visually form a sequence of letters. Each observation is a
position x(j)

t ∈ R2 of player j at a time t within the unit square centered at (0.5, 0.5) representing the field.

By design, player movement unfolds over time governed by both top-down and bottom-up signals. The
team’s goal is to spell out the word "LAUGH". An overall discrete system state sends the top-down signal of
which particular letter, one of "L", "A", "U", "G", or "H", the players form on the field via their coordinated
movements. Each entity has an assigned vertical position on the field (when viewed from above), and moves
horizontally back and forth to “fill in” the shape of the current letter. Example frames are shown in Fig. 4.
Each state is stable for 200 timesteps before transitioning in order to the next state.

Each entity’s position over time on the unit square follows the current letter’s top-down prescribed movement
pattern perturbed by small-scale i.i.d. zero-mean Gaussian noise. When reaching a field boundary, typically
the player is reflected back in bounds instantaneously. However, there is a small chance an entity will continue
out-of-bounds (OOB, xt1 /∈ (0, 1)). When enough players go OOB, this bottom-up signal triggers the system
state immediately to a special “come together and reset” state, denoted "C". This reset state does not form
the letter "C". Instead, in state "C" all players move to the center for the next 50 timesteps, then return to
repeat the most recent letter before continuing on to remaining letters.

Altogether, we build a dataset of N = 10 independently sampled sequences of "LAUGH" each with J = 64
marching band players. Each sequence contains a different number of time-steps, ranging from 1000 to 1100,
depending on how many reset segments occur. To trigger reset state "C", we use a threshold of 11 players
OOB as this generates a moderate number of 6 "C" segments distributed across the 10 sequences.

Research goal. We seek to understand whether our proposed model or competitors can discover the overall
discrete system-level dynamics, as measured by discrete segmentation quality. The true data-generating
process, while similar to the HSRDM in using top-down and bottom-up signals, is not strictly an HSRDM generative
model because each state has fixed duration. Thus, all methods are somewhat misspecified here.
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L A U G H
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HSRDM No System State (rAR-HMM)Ground Truth 

HSRDM No Recurrent Feedback 

DSARF Concatenation 

Figure 4: System-level segments for all models on the MarchingBand task. Top left: An example snapshot in time of
ground truth entity observations for each system-state letter (spells "LAUGH"). Bottom left: The ground truth
segmentation across all 10 sequences as well as the HSRDM segmentation. Right side: Results for ablations (no system
state (rAR-HMM), no recurrent feedback) as well as DSARF.

Baseline selection. We focus on methods that can produce an estimated discrete segmentation at the
system-level. Using this criteria, our primary external competitor is DSARF (Farnoosh et al., 2021). Neither
GroupNet nor Agentformer can produce a segmentation or offer interpretable discrete system states.

Additionally, we compare to two ablations of our method: removing the system-level state (leaving an
rAR-HMM) and removing the recurrent feedback (leaving a multi-level HMM). For both DSARF and rAR-HMM,
we obtain system-level segmentations in two steps. First, we use the Independent strategy ( Sec. 5.1) to
obtain entity-level segmentations. Next, for each timestep we concatenate the one-hot indicator vectors of
each entity to form a longer vector of size J ×K. These per-time features are clustered via k-means to obtain
a system-level segmentation. This should favor clustering timesteps that share entity state assignments.

Model configuration. For all methods, we fairly provide knowledge of the true number of system states,
6 = |{L, A, U, G, H, C}|. Models with system states (HSRDM and its recurrent ablation) have L = 6 system
states and K = 4 entity states. Models with only entity-level states (DSARF and rAR-HMM) are fit with K = 6
entity states, imagining one state per letter, followed by k-means to discover 6 system-level states. For HSRDM,
we set system-level recurrence g to count the number of entities out of bounds. For HSRDM and rAR-HMM, we
set entity-level recurrence f to the identity function. The emission model is set to a Gaussian Autoregressive.

Hyperparameter tuning. For DSARF, we again select the number of spatial factors and the lags, via grid
search (see Appendix F.4). Ultimately, we select 25 spatial factors and the set of lags {1, ..., 200}, suggesting
long-range dependency is useful to compensate for lack of recurrence. For our HSRDM and ablations, no specific
hyperparameter search was done. Methods were trained with similar epochs/iterations as the FigureEight
data, with reasonable convergence verified by trace plots. To avoid local optima, for each method we take the
best trial (in terms of segmentation accuracy) of 5 possible seeds controlling initialization.

Table 2: Accuracy of system-level segmentation on Marching-
Band, compared to ground-truth after alignment.

Method Best Acc. Median Acc.
HSRDM 88% 83%

No Recur. Feedback (HSDM) 80% 69%
No System State (rAR-HMM) 48% 42%

DSARF 38% 32%

Results: segmentation quality. Fig. 4 al-
lows visual comparison of the ground truth
system-level segmentation and the estimated
segmentations from various methods. Esti-
mated states are aligned to truth by minimizing
classification accuracy (Hamming distance of
one-hot indicators) via the Munkres algorithm
(Munkres, 1957). The visualized segmentations
depict each model’s best classification accuracy
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over multiple training trials with different random initializations. DSARF was given 10 chances and all others
5 in an attempt to provide DSARF with a more-than-fair chance. As reported in Tab. 2, our HSRDM obtains
88% accuracy overall, with clear recovery of each of the 6 states in visuals. In contrast, other methods
struggle, delivering 38 − 80% accuracy and notably worse segmentations in Fig. 4. Even with respect to
median accuracy across trials (also in Tab. 2), the HSRDM outperforms its competitors. Inspecting Fig. 4, the
HSRDM recovers each true state most of the time. In contrast, the next-best method, the no recurrence ablation,
completely misses capturing the “U” system-level state across examples even in its best trial. This experiment
highlights the HSRDM as a natural model to recover hidden system dynamics when many individuals influence
collective behavior. We provide supplemental results for accurate estimation of system states for a larger
number of entities (J = 200) and a larger number of dimensions (D = {10, 30}) in the Appendix F.3.

5.4 Soldier Training: Real task of interpreting risk mitigation strategies

For our final experiment, we model a squad of active-duty U.S. Army soldiers during a training exercise
designed to improve team coordination. Our goal is to demonstrate the HSRDM’s capability to reveal useful
and interpretable group dynamics in a real application. For simplicity and to highlight our model’s capability
as an explanatory tool, we focus on interpreting one model’s fit rather than comparisons to alternatives.

In this training exercise, the squad’s task is to maintain visual security of their entire perimeter while
simulated enemy fire comes primarily from the south. Focus on the south creates a potential blindside to the
north. If this blindside is left unchecked for a sufficiently long time, this leaves the squad vulnerable to a
blindside attack. Among several goals, the squad was instructed that a primary goal was mitigating overall
risk with visual security as a key sub-task. As a way to mitigate risk, the squad should periodically plan to
have at least one soldier briefly turn their head to the north to regain visibility and reduce vulnerability to a
blindside attack. Strong performance at this sub-task requires coordination across all soldiers in the squad.
Our modeling aim is to utilize the HSRDM to interpret the soldiers’ risk mitigation strategy with respect to
checking their blindside as they complete the overall task.

The data consists of univariate time series of heading direction angles x(j)
t recorded at 130 Hz from each

soldier’s helmet inertial measurement unit (IMU), downsampled to 6.5 Hz. We have one 12 minute recording
of one squad of 8 soldiers. Raw data from the first minute of contact is illustrated in Fig. 5. Due to privacy
concerns, the dataset is not shareable. This study was approved by the U.S. Army Combat Capabilities
Development Command Armaments Center Institutional Review Board and the Army Human Research
Protections Office (Protocol #18-003).

Model configuration. Our HSRDM captures the risk mitigation strategies of the group by setting the
system-level recurrence function g to the normalized elapsed time since any one of the J soldiers looked
within the north quadrant of the circle. No entity-level recurrence f was included. Soldier headings must
remain on the unit circle throughout time, so we use a Von Mises autoregression as the emission model Hζ

for the k-th state of the j-th soldier:

x
(j)
t | x

(j)
t−1, {z

(j)
t =k} ∼ VM

(
µj,k

(
x

(j)
t−1
)
, κj,k

)
,where µj,k(x(j)

t−1) = αj,k x
(j)
t−1 + δj,k. (5.1)

The Von Mises distribution (Banerjee et al., 2005; Fisher & Lee, 1994), denoted VM(µ, κ), is a exponential
family distribution over angles on the unit circle, governed by mean µ and concentration κ > 0. Here, αj,k is
an autoregressive coefficient, δj,k is a drift term, and κj,k is a concentration for entity j in state k.

We set the number of entity- and system-level states to K = 4 and L = 3, based on a quick exploratory
analysis. We use a sticky Dirichlet prior for system-level transitions, as in Equation B.2, with α = 1.0 and
κ = 50.0, so that the prior puts most probability mass on self-transition probabilities between .90 and .99.

Training. We applied the CAVI inference from Sec. 3, observing suitable convergence after 10 iterations.

Results. Fig. 5 visualizes key results. Inspection of the inferred system-level states, entity-level states, and
learned transition probabilities suggests that the model learns a special risk mitigation strategy for Soldier 6.
Specifically, the model learns a “turn north” state (blue) for Soldier 6 that is particularly probable when the
entire squad reaches a system-level “high elapsed time since any blindside check” state (red).
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Figure 5: Modeling the heading directions of a squad of soldiers engaged in simulated battle. Top left: Heading
directions (in degrees) of a squad of soldiers over time. Each color represents a different soldier. Time moves from
center of circle to boundary. Top right: Inferred squad-level states s0:T (colors) superimposed over black curve
representing the squad’s cumulative security risk in the north direction (elapsed time since any soldier checked their
blindside) as a function of time. The learned red squad state seems to indicate high security risk. These squad states
can modulate soldier-level heading dynamics. Bottom right: Inferred entity-level states z0:T (colors) for Soldier
6, superimposed on observed time series of heading direction from that soldier’s helmet IMU. The light blue state’s
autoregressive emission dynamics produce a rapid turn to the north. Twice this state persisted long enough for the
soldier to reduce security risk in the north (around 19:03 and 19:20). Bottom left: The learned probability that
Soldier 6 turns to the north from various soldier-specific states (z, rows) depends upon the squad-level states (s,
columns). The soldier is most likely to persist in turning north when the squad has a security vulnerability (s is red).

6 Discussion & Conclusion

We have introduced a cost-efficient family of models for capturing the dynamics of individual entities evolving
in coordinated fashion within a shared environment over the same time period. These models admit efficient
structured variational inference in which coordinate ascent can alternate between E-step dynamic programming
routines similar to classic forward-backward recursions to infer hidden state posteriors at both system- and
entity-levels and M-step updates to transition and emission parameters that also use closed-form updates
when possible. Across several datasets, we have shown our approach represents a natural way to capture
both top-down system-to-entity and bottom-up entity-to-system coordination while keeping costs linear in
the number of entities.

Limitations. Our method intentionally prioritizes discrete latent variables for interpretability and efficiency.
For some tasks, this choice may be less flexible than more rich continuous representations. We further assume
interactions between entities are moderated by a top-level discrete variable. This choice allows runtime to
be linear in the number of entities J , but may be less expressive than direct pairwise interaction. Several
coordinate ascent steps in any per-entity rAR-HMM with Gaussian emissions scale quadratically in D due to our
choice to parameterize via a full covariance matrix. Scaling beyond a few dozen features may require diagonal
or low-rank parameterizations. Furthermore, the parametric forms of both transitions and emissions in our
model allow tractability but clearly limit expressivity compared to deep probabilistic models that integrate
non-linear neural nets (Krishnan et al., 2017). Scaling to many more entities would require extensions of our
structured VI to process minibatches of entities (Hoffman et al., 2013; Hughes et al., 2015). Scaling to much
longer sequences might require processing randomly sampled windows (Foti et al., 2014).

When to favor HSRDM over alternatives? Readers may wonder when to expect our HSRDM has advantages
over more flexible non-linear models. We suggest that our approach may be favorable when there is clear
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top-down coordination among 5-200 entities that could be expressed via simple discrete segmentations by a
domain expert, and there is interest in both the forecasting and explanatory purposes of the model. When
bottom-up coordination alone dominates, interaction graph approaches or neural net methods like GroupNet
or AgentFormer may be better. Our basketball case study highlights this: GroupNet slightly outperforms
our model in forecasting accuracy. We think this is in part because basketball play is driven by dynamically
responding to in-moment conditions (pairwise interactions) rather than rigidly following the prescribed plays
called by a coach. Our parameter-efficient approach also has advantages when number of available time series
is relatively limited (say a few hundred recordings or less). When abundant data exists, flexible function
approximation methods for forecasting may be preferred.

Future directions. For some applied tasks, it may be promising to extend our two-level system-entity
hierarchy to even more levels (e.g. to represent nested structures of platoons, squads, and individual soldiers
all pursing the same mission). Additionally, we could extend from rARHMMs to switching linear dynamical
systems by adding an additional latent continuous variable sequence between discretes z and observations x
in the graphical model, or avoid first-order Markov dependency in generating state sequences via more flexible
distributions parameterized by recurrent neural nets. Lastly, we can add selective and adaptive recurrence
functions for modeling entity interactions where current observations influence the type of signal that would
be useful feedback for the hidden states.

Broader Impacts

Our work attempts to provide a fundamental framework for modeling interacting entities via explicit
mechanisms for top-down and bottom-up influences on group dynamics. As with many technological
innovations, for specific applications there may be positive and negative downstream consequences. It is
important for researchers to take an active role to avoid misuse and harm.

Many possible applications involve human subjects. We strongly recommend all researchers follow appropriate
local regulations and best practices for human subjects research. Each application must carefully consider
ethical principles such as respect for persons and beneficence (maximizing benefits while minimizing risks).
When using this model for human subjects research, please use care when making specific decisions about
what covariates to include. Consider de-identification whenever possible to preserve the privacy of individuals.

Some potential applications of our work involve modeling human teams working in military applications.
Our present work focuses exclusively on deidentified data from simulated training exercises via a research
plan that was approved by a U.S. Army institutional review board. We strongly recommend similar ethics
oversight and care in future use cases.
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Code

Source code for running our proposed HSRDM and reproducing experiments in this paper can be found at
https://github.com/tufts-ml/team-dynamics-time-series/

A ARHMM Method Details

As detailed below in Sec. A.1, a recurrent autoregressive Hidden Markov Model (rAR-HMM) generalizes a
standard Hidden Markov Model by adding autoregressive and recurrent edges to the probabilistic graphical
model. Although rAR-HMM models have been previously proposed in the literature (Linderman et al., 2017), we
do not know of any explicit proposition (or justification) describing how to perform posterior state inference
for these models. The literature provides such a proposition for (non-recurrent) autoregressive Hidden Markov
Model (ARHMMs; e.g., see (Hamilton, 1994)), but not for rARHMMs. Hence, we provide the missing propositions
with proofs here; see Props. A.2.1 and A.2.2. We believe that these explicit propositions can be useful when
composing recurrence into more complicated constructions. Indeed, we use them throughout the supplement
in order to derive inference for our HSRDMs; for example, see the VES step in Sec. B.2 or the VEZ step in
Sec. B.3. In fact, we also utilize the proofs of these propositions when describing how to perform inference
with HSRDMs when the dataset is partitioned into multiple examples; see Sec. B.7.

A.1 Model

The complete data likelihood for a (K,m, n)-order recurrent AR-HMM (rAR-HMM) is given by Radon-Nikodỳm
density

p(x1:T , z1:T | θ) = p(z1 | θ)p(x1 | z1, θ)︸ ︷︷ ︸
initialization

T∏
t=2

p(zt | zt−1,x(t−m):(t−1), θ)︸ ︷︷ ︸
transitions

p(xt | zt,x(t−n):(t−1), θ)︸ ︷︷ ︸
emissions

(A.1)

where x1:T are the observations, z1:T ∈ {1, . . . ,K} are the discrete latent states, and θ are the parameters.
The rAR-HMM generalizes the standard HMM (Rabiner, 1989), which contains neither autoregressive emissions
(blue) nor recurrent feedback (red) from emissions to states. The (K,m, n)-order rAR-HMM gives a (K,n)-order
autoregressive HMM (ARHMM) in the special case where

p(zt | zt−1,(((
((x(t−m):(t−1) , θ) = p(zt | zt−1, θ) (A.2)

See Fig. A.1 for a probabilistic graphical model representation in the special case of first-order recurrence
(m = 1) and autoregression (n = 1).
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z0 z1 z2 z3

x0 x1 x2 x3

Discrete states

Observations

(a) Recurrent Autoregressive Hidden Markov Model
(rAR-HMM).

z0 z1 z2 z3

x0 x1 x2 x3

(b) Autoregressive Hidden Markov Model (ARHMM).

Figure A.1: Probabilistic graphical model representation of a Recurrent Autoregressive HMM (rAR-HMM), and its
special case, an Autoregressive HMM (ARHMM). For simplicity the illustration assumes first-order autoregression and
recurrence, but higher-order dependencies can also be accomodated (see Equation A.1 and Props. A.2.1 and A.2.2).
Autoregressive edges are shown in blue and recurrent edges are shown in red.

Remark A.1.1. (On generalizing a HMM with autoregressive emissions and recurrent state transitions.) Let
us highlight how a rAR-HMM model generalizes a conventional HMM:

• Recurrence: A lookback window of n previous observations xt−m:t−1 can influence the transitions
structure for the current state zt.

pa(zt) = {zt−1} ∪ {x(t−m):(t−1)}︸ ︷︷ ︸
if recurrent

• Autoregression: A lookback window of m previous observations xt−n:t−1 can influence the emissions
structure for the current observation xt.

pa(xt) = {zt} ∪ {x(t−n):(t−1)}︸ ︷︷ ︸
if autoregressive

Note in particular that each node (observation xt or state zt) can have many parents among previous
observation variables x1:t, but only one parent among state variables z1:t (namely, the closest in time from
the present or past).1 This assumption will be important when deriving the smoother in Sec. A.2. 4

A.2 State Estimation

Here we discuss state estimation for the rAR-HMM. We begin with some notation.
Notation A.2.1. Given a sequence of observations up to some time t, we can define the conditional
probability of the state zs at a target time s ∈ {1, 2, . . . T} via the probability vector ξs | t ∈ ∆K−1 ⊂ RK .
The k-th element of this vector is given by pθ(zs = k | x1:t). That is,

ξs | t , pθ(zs | x1:t) =
[
pθ(zs = 1 | x1:t), . . . , pθ(zs = K | x1:t)

]T
Using this notation, we can define three common inferential tasks:

1. Filtering. Infer the current state given observations ξt | t = pθ(zt | x1:t).

2. Smoothing. Infer a past state given observations ξs | t = pθ(zs | x1:t), where s < t.

3. Prediction. Predict a future state given observations, ξu | t = pθ(zu | x1:t), where u > t.

4

Now we can give Props. A.2.1 and A.2.2, which parallel the presentation of the Kalman filter and smoother
in the context of state space models (Shumway & Stoffer, 2000; Hamilton, 1994). In particular, we will
present the forward algorithm in terms of a measurement update (which uses the observation xt to transform

1What if we wanted to relax the specification so that the emissions could depend on a finite number M of previous
states p(xt | zt, zt−1, . . . , zt−M ,x1:t−1, φ)? This situation can be handled by simply redefining the states in terms of tuples
z∗t = (zt, zt−1, . . . zt−M ), such that z∗t takes on KM possible values, one for each sequence in the look-back window (Hamilton,
2010, pp.8).
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ξt | t−1 into ξt | t) and a time update (which transforms ξt | t into ξt+1 | t, without requiring an observation).
These propositions show that filtering and smoothing can be done using the same recursions as used in a
classical HMM (Hamilton, 1994), except that the variable interpretations differ for both the emissions step
and transition step. In the statements and proofs below, we continue to use the same color scheme as was used
in Equation A.1 and Fig. A.1, whereby blue designates autoregressive edges and red designates recurrence
edges in the graphical model. These colors highlight differences from classic HMMs, which lack both types of
edges.
Proposition A.2.1. (Filtering a Recurrent Autoregressive HMM.) Filtered probabilities ξt | t ,
pθ(zt | x1:t) for a Recurrent Autoregressive Hidden Markov Model can be obtained by recursively updating
some initialization ξ1 | 0 by

• Measurement update.

ξt | t =
(ξt | t−1 � εt)

1T (ξt | t−1 � εt)

• Time update.
ξt+1 | t = At ξt | t

where here εt = (εt1, . . . εtk) = (pθ(xt | zt = k,x1:t−1))Kk=1 is the (K × 1) vector whose k-th element is the
emissions density, At represents the (K ×K) transition matrix whose (k, k′)-th element is pθ(zt+1 = k′ | zt =
k,x1:t), 1 represents a (K × 1) vector of 1s, and the symbol � denotes element-by-element multiplication
(Hadamard product).

Proof.

• Measurement update.

ξt | t = pθ(zt | x1:t) Notation

∝ pθ(zt,xt | x1:t−1) Conditional density
= pθ(zt | x1:t−1)︸ ︷︷ ︸

, ξt | t−1

� pθ(xt | zt,x1:t−1)︸ ︷︷ ︸
, εt

Chain rule of probability

=⇒ ξt | t =
(ξt | t−1 � εt)

1T (ξt | t−1 � εt)
Normalize

• Time update.

ξt+1 | t = pθ(zt+1 | x1:t) Def.

=
K∑
k=1

pθ(zt+1, zt = k | x1:t) Law of Total Prob.

=
K∑
k=1

pθ(zt+1 | zt = k,x1:t) pθ(zt = k | x1:t) Chain rule of probability

=
K∑
k=1

[
At

]
k,:︸ ︷︷ ︸

kth row of At

[ξt | t]k︸ ︷︷ ︸
kth element of ξt | t

Notation

= At ξt | t Def. matrix multiplication

Remark A.2.1. (Initializing the filtering algorithm in Prop. A.2.1.) Inspired by Hamilton (1994, pp.693),
we provide some suggestions for initializing the filtering algorithm of Prop A.2.1. In particular, we can set
ξ1 | 0 to

23



Published in Transactions on Machine Learning Research (08/2025)

• Any reasonable probability vector, such as the uniform distribution K−11.

• The maximum likelihood estimate.

• The steady state transition probabilities, if they exist.

4
Proposition A.2.2. (Smoothing a Recurrent Autoregressive Hidden Markov Model.) Smoothed
probabilities ξt | T , pθ(zt | x1:T ) for a Hidden Markov Model can be obtained by the recursion

ξt | T = ξt | t �
{
ATt ·

[
ξt+1 | T (÷) ξt+1 | t

]}
where the formula is initialized by ξT | T (obtained from the filtering algorithm of Prop. A.2.1) and is then
iterated backwards for t = T − 1 , T − 2 , . . . , 1, in a step analogous to the backward pass of the classic forward-
backward recursions for plain HMMs (Rabiner, 1989). Here, At represents the (K ×K) transition matrix
whose (k, k′)-th element is pθ(zt+1 = k′ | zt = k,x1:t), the symbol � denotes element-wise multiplication, and
the symbol (÷) denotes element-wise division.

Proof. 2

We proceed in steps:

• Step 1 We show pθ(zt | zt+1,x1:T ) = pθ(zt | zt+1,x1:t) . That is, the current state zt depends on
future observations xt+1:T only through the next state zt+1.

– Step 1a We show pθ(zt | zt+1,x1:t+1) = pθ(zt | zt+1,x1:t) .
pθ(zt | zt+1,x1:t+1) = pθ(zt | zt+1,xt+1,x1:t) split off term from sequence

=
pθ(zt,xt+1 | zt+1,x1:t)
pθ(xt+1 | zt+1,x1:t)

conditional density

= ((((
((((

(
pθ(xt+1 | zt, zt+1,x1:t)p(zt | zt+1,x1:t)

(((
((((

(
pθ(xt+1 | zt+1,x1:t)

chain rule

= p(zt | zt+1,x1:t) FPOBN

In the last line, the two canceled terms are equal by FPOBN (the Fundamental Property of
Bayes Networks).3

– Step 1b We show pθ(zt | zt+1,x1:t+2) = pθ(zt | zt+1,x1:t+1) . By the same argument as in
step 1a (splitting up the sequence, conditional density, chain rule), but replacing

x1:t+1 ← x1:t+2 , xt+1 ← xt+2

the proposition holds if

p(xt+2 | zt, zt+1,x1:t+1) = p(xt+2 | zt+1,x1:t+1)
that is if we get the same cancelation. And we see

p(xt+2 | zt, zt+1,x1:t+1) =
K∑
k=1

p(xt+2, zt+2 = k | zt, zt+1,x1:t+1) LTP

=
K∑
k=1

p(xt+2 | zt+2 = k,�zt , zt+1,x1:t+1) p(zt+2 = k |�zt , zt+1,x1:t+1) chain rule, FPOBN

=
K∑
k=1

p(xt+2, zt+2 = k | zt+1,x1:t+1) undo chain rule

= p(xt+2 | zt+1,x1:t+1) undo LTP
2Our proof is inspired by the proof given by Hamilton (1994, pp.700-702) for the ARHMM (i.e, the special case of rAR-HMM in

which there are no recurrent edges).
3The Fundamental Property of Bayes Networks is: A node is independent of its non-descendants given its parents. In

particular, since zt is a non-descendent of xt+1, it is independent of xt+1 given its parents zt+1 and x1:t.
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– Conclusion The claim follows from Steps 1a and 1b by an induction argument.

• Step 2. We show that p(zt, zt+1 | x1:T )︸ ︷︷ ︸
smoothed pairwise

= p(zt+1 | x1:T )︸ ︷︷ ︸
smoothed

p(zt+1 | zt,x1:t)︸ ︷︷ ︸
transition

p(zt | x1:t)︸ ︷︷ ︸
filtered

p(zt+1 | x1:t)︸ ︷︷ ︸
predicted

. We have

p(zt, zt+1 | x1:T ) = p(zt+1 | x1:T ) p(zt | zt+1,x1:T ) chain rule
= p(zt+1 | x1:T ) p(zt | zt+1,x1:t) Step 1

= p(zt+1 | x1:T )
p(zt | x1:t) p(zt+1 | zt,x1:t)

p(zt+1 | x1:t)
Bayes rule (on 2nd term)4

• Step 3. We prove the proposition.

p(zt | x1:T ) =
K∑
k=1

p(zt, zt+1 = k | x1:T ) Law of Total Prob.

ξt | T =
K∑
k=1

[
ξt+1 | T

]
k

[
At

]
:,zt+1=k

ξt | t[
ξt+1 | t

]
k

Step 2, Notation

= ξt | t

K∑
k=1

[
At

]
:,zt+1=k

[
ξt+1 | T

]
k[

ξt+1 | t

]
k

Pull out constant

= ξt | t �
{
ATt ·

[
ξt+1 | T (÷) ξt+1 | t

]}
Def. matrix multiplication

Remark A.2.2. As we saw in Step 1, the derivation of the smoother in Prop. A.2.2 relies on the fact that
while each node (observation or state) can have many observation parents, it can have only one state parent
(namely, the closest in time from the present or past). 4
Remark A.2.3. The filtering (Prop A.2.1) and smoothing (Prop A.2.2) formulae reveal that state estimation
for rAR-HMM can be handled for :

• any order of recurrence and/or autoregression5

• any functional form of emissions and transitions

Furthermore, although it was not explicitly represented here, the same formulae hold when there are

• Modulation of transitions and emissions by exogenous covariates.6

4

B HRSDM Method Details

We now review modeling and inference details for our proposed HSRDM, in the following sections
4To justify the application of Bayes rule, imagine that zt plays the role of the parameter and zt+1 plays the role of the

observed data. The term x1:t is just a conditioning set throughout.
5In fact, the proof reveals that the order can increase with timestep t, opening the door to constructions involving exponential

weighted moving averages.
6A sequence of vectors {ut} is considered to be a sequence of exogenous covariates if each ut contains no information about

zt that is not contained in x1:t−1 (Hamilton, 1994, pp.692).
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B.1 Priors on model parameters

The symbol θ denotes all model parameters for our HSRDM. Using the structure of our model in Equation 2.1,
we can expand θ into constituent components: θ = (θss, θes, θee, θinit), where θss are the parameters that
govern the system-level discrete state transitions, θes govern the entity-level discrete state transitions, θee
govern the entity-level emissions, and θinit govern the initial distribution for states and regimes.
We define a prior over θ whose factorization structure reflects this decomposition:

p(θ) = p(θss) p(θes) p(θee) p(θinit) (B.1)

As we see in Sec. B.4, this choice of prior simplifies the M-step.
Prior on system-level state transition parameters θss. For the system-level transition probability
matrix Π, a L × L matrix whose entries are all non-negative and rows sum to one, we assume a sticky
Dirichlet prior (Fox et al., 2011) to encourage self-transitions so that in typical samples, one system state
would persist for long segments. Concretely, for each row we set

Πj1, . . .ΠjL ∼ Dir(α, . . . α, α+ κ, α, . . . α) (B.2)

where all L entries have a symmetric base value α = 1.0, and the added value κ that impacts the self-transition
entry (the (j, j)-th entry of the matrix) is set to 10.0. We then set the log transition probability Π̃ to the
element-wise log of Π.

Prior on entity-level state transition parameters θes. In our experiments, we used a non-informative
prior, p(θes) ∝ 1. The use of a sticky Dirichlet prior, as was used with the system-level transition parameters,
could be expected to produce smoother entity-level state segmentations. Currently, the entity-level segmenta-
tions are choppier than those at the system-level (e.g., compare the bottom-left and top-right subplots of
Fig. 5).

Prior on emissions θee. In our experiments, we used a non-informative prior, p(θee) ∝ 1.

Prior on initial states and observations θinit. For initial states at both system and entity level, we
use a symmetric Dirichlet with large concentration so that all states have reasonable probability a-priori.
This avoids the pathology of ML estimation that locks into only one state as a possible initial state early in
inference due to poor initialization.

B.2 Updating the posterior over system-level states

In this section, we discuss the update to the posterior over system-level states; that is, the variational E-S
step of Equation 3.2. We find

q(s0:T )∝̃ exp
{

log πs(s0)︸ ︷︷ ︸
init dist

+
T∑
t=1

log p(st | st−1,x
(1:J)
t−1 , θ)︸ ︷︷ ︸

transitions

+
J∑
j=1

T∑
t=1

E
q(z(1:J)

0:T )
log p(z(j)

t | z(j)
t−1,x

(j)
t−1, st, θ)︸ ︷︷ ︸

emissions

}

= πs(s0)︸ ︷︷ ︸
init state

T∏
t=1

p(st | st−1,x
(1:J)
t−1 , θ)︸ ︷︷ ︸

transitions

J∏
j=1

exp
{ K∑
k=1

log πzj (z(j)
0 = k) q(z(j)

0 = k)
}

︸ ︷︷ ︸
initial emissions

J∏
j=1

T∏
t=1

exp
{ K∑
k,k′=1

log p(z(j)
t = k′ | z(j)

t−1 = k,x
(j)
t−1, st, θ) q(z(j)

t = k′, z
(j)
t−1 = k)

}
︸ ︷︷ ︸

remaining emissions

(B.3)

This can be considered as the posterior of an input-output Hidden Markov Model with J independent autore-
gressive categorical emissions. The evaluation of the transition function is O

(
T (L2 + LDJMs)

)
, where Ms is

the dimension of the system-level covariates, and where we have assumed that the evaluation of the system-level
recurrence function g takes DJMs operations, as it would if gψ

(
x

(1:J)
t−1 ,υt−1

)
= (x(1)

t−1, . . . ,x
(J)
t−1,υt−1)T . The

evaluation of the emissions function is O
(
TJL(K2 +KDMe)

)
, where Me is the dimension of the entity-level

covariates, and where we have assumed that the evaluation of the entity-level recurrence function f takes
DMe operations, as it would if fφ

(
x

(j)
t−1,u

(j)
t−1
)

= (x(j)
t−1,u

(j)
t−1)T . Thus, by Props. A.2.1 and A.2.2, filtering
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and smoothing can be computed with O
(
TJ
[
L2 +L(K2 +DMs +KDMe)

])
runtime complexity, under mild

assumptions on the recurrence functions. As a result, so can the computation of the unary and adjacent
pairwise marginals necessary for the VES and M steps.

B.3 Updating the posterior over entity-level states

In this section, we discuss the update to the posterior over entity-level states; that is, the variational E-Z
step of Equation 3.2. We obtain

q(z(1:J)
0:T ) ∝̃

J∏
j=1

[
πzj (z(j)

0 )︸ ︷︷ ︸
initial state (∈ RK )

T∏
t=1

exp
{ L∑
`=1

log p(z(j)
t | z(j)

t−1,x
(j)
t−1, st = `, θ) q(st = `)

}
︸ ︷︷ ︸

transitions (∈ R(T̃−1)×K×K )

p(x(j)
0 | z(j)

0 , θ)︸ ︷︷ ︸
initial emission (∈ RK )

T∏
t=1

p(x(j)
t | x(j)

t−1, z
(j)
t , θ)︸ ︷︷ ︸

remaining emissions (∈ R(T̃−1)×K )

]
(B.4)

where we have defined T̃ , T + 1 to denote all timesteps after accounting for the zero-indexing. This
variational factor can be considered as posterior of J conditionally independent Hidden Markov Models
with autoregressive categorical emissions which recurrently feedback into the transitions. As per Sec. B.2,
the transition function can be evaluated with O

(
TJL(K2 +KDMe)

)
runtime complexity, where Me is the

dimension of the entity-level covariates, and where we have assumed that the evaluation of the entity-level
recurrence function f takes DMe operations, as it would if fφ

(
x

(j)
t−1,u

(j)
t−1
)

= (x(j)
t−1,u

(j)
t−1)T . The evaluation

of the emissions function is O
(
TJKD2), assuming that the emissions distribution has a density that can be

evaluated with O
(
D2) operations at each timestep. Thus, by Props. A.2.1 and A.2.2, filtering and smoothing

can be computed with O
(
TJ
[
K2 +KD2 +KDMe

])
runtime complexity, under mild assumptions on the

entity-level recurrence function and the emissions distribution. As a result, so can the computation of the
unary and adjacent pairwise marginals necessary for the VEZ and M steps.

B.4 Updating the parameters

The M-step updates the transition parameters and emission parameters θ of our HSRDM given recent estimates
of state-level posterior q(s0:T ) and entity-level posteriors q(z(1:J)

0:T ).
This update requires solving the following optimization problem

θ = arg max
θ

L(θ)

whereL(θ) , E
q(s(1:J)

0:T )q(z(1:J)
0:T )

[
log p(x(1:J)

0:T , s
(1:J)
0:T , z

(1:J)
0:T | θ)

]
︸ ︷︷ ︸

expected log complete data likelihood

+ log p(θ)︸ ︷︷ ︸
log prior

(B.5)

Based on the structure of the model in Equation 2.1, we can decompose this into separate optimization
problems over the different model pieces θ = (θss, θes, θee, θinit) by assuming an appropriately factorized
prior, as was done in Equation B.1.
To be concrete, for a HSRDM with transitions given by Equation 2.2 and Gaussian vector autoregressive
(Gaussian VAR) emissions

x
(j)
t | x(j)

t−1, z
(j)
t ∼ N

(
A

(z(j)
t

)
j x

(j)
t−1 + b

(z(j)
t

)
j , Q

(z(j)
t

)
j

)
, (B.6)

as used in Secs. 5.1 and 5.2 we have
θss = (Λ, Π̃), θes = {Ψj , P̃j}Jj=1, θee = {{Ajk, bjk,Qjk}Kk=1}Jj=1

Using this grouping of the parameters along with the complete data likelihood specification of Equation 2.1
and the prior assumption in Equation B.1, we can decompose the objective as

L(θ) = Linit(θinit) + Lss(θss) +
J∑
j=1
L(j)

es (θ(j)
es ) + +L(j)

ee (θ(j)
ee )
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We can then complete the optimization by separately performing M-steps for each of the subcomponents of θ.
For example, to optimize the parameters governing the entity-level discrete state transitions θ(j)

es for each
entity j = 1, . . . , J , we only need to optimize

L(j)
es (θ(j)

es ) ,

T∑
t=1

E
q(z(1:J)

0:T )q(s0:T )

[
log p(z(j)

t | z(j)
t−1,x

(j)
t−1, st, θes)

]
︸ ︷︷ ︸

expected log entity discrete state transitions

+ log p(θes)︸ ︷︷ ︸
log prior

=
T∑
t=1

K∑
k,k′=1

L∑
`=1

log p(z(j)
t = k′ | z(j)

t−1 = k,x
(j)
t−1, st = `, θes) q(z(j)

t = k′, z
(j)
t−1 = k) q(st = `)

+ log p(θes) (B.7)

In particular, we do not require the variational posterior over the full entity-level discrete state sequence
q(z(1:J)

0:T ), but merely the pairwise marginals q(z(j)
t = k′, z

(j)
t−1 = k), obtainable from the VEZ step in

Equation 3.2. Similarly, we do not require the variational posterior over the full system-level discrete state
sequence q(s0:T ), but merely the unary marginals q(st = `), obtainable from the VES step in Equation 3.2.

The other components of θ are optimized similarly. In general, the optimization can be performed by gradient
descent (e.g. using JAX for automatic differentiation (Bradbury et al., 2018)), although it can be useful to
bring in closed-form solutions for the M substeps in certain special cases. For instance, when Gaussian VAR
emissions are used as in Equation B.6, the entity emission parameters θee = {{Ajk, bjk,Qjk}Kk=1}Jj=1 can be
estimated with closed-form updates using the sample weights q(z(j)

t = k) available from the VEZ-step.

B.5 Variational lower bound

A lower bound on the marginal log likelihood VLBO ≤ log p(x(1:J)
0:T | θ), is given by

VLBO [θ, q] = Eq
[

log p(x(1:J)
0:T , z

(1:J)
0:T , s0:T | θ)

]︸ ︷︷ ︸
energy

+H
[
q(z(1:J)

0:T , s0:T )
]︸ ︷︷ ︸

entropy

(B.8)

The energy term Eq
[

log p(x(1:J)
0:T , z

(1:J)
0:T , s0:T | θ)

]
is identical to the relevant term in the objective function

for the M-step given in Equation B.5. Based on the structure of the model assumed in Equation 2.1, the
energy term decomposes into separate pieces for initialization, system transitions, entity transitions, and
emissions. For example, see Equation B.7 for the piece relevant to entity transitions.

Now we consider computation of the entropy H
[
q(z(1:J)

0:T , s0:T )
]
in Equation B.8. Since the variational factors

q(s0:T ) and {q(z(j)
0:T )}Jj=1 given respectively by the VES step in Sec. B.2 and the VEZ step in Sec. B.3 both

have the form of rARHMMs, we can compute the entropy H
[
q(z(1:J)

0:T , s0:T )
]

=
∑J
j=1 H

[
q(z(j)

0:T )
]

+ H
[
q(s0:T )

]
,

using for each individual term the entropy for HMMs provided in Eq. 12 of Hughes et al. (2015).

B.6 Smart initialization

We can construct a “smart" (or data-informed) initialization of a HSRDM via the following two-stage procedure:

1. We fit J bottom-level rARHMMs, one for each of the J entities. In particular, the emissions for each
bottom-level rAR-HMM are the emissions of the full HSRDM given in Equation 2.3, and the transitions
are the entity-level transitions given in Equation 2.2b.

2. We fit one top-level ARHMM. Here, the J emissions are the entity-level transitions given in Equation 2.2b.
The transitions are the system-level transitions given in Equation 2.2a. The observations are taken
to be the most-likely entity-level states as inferred by the bottom-level rARHMMs.

Below we give details on these initializations. In particular, both the bottom-level and top-level models
themselves need initializations. We use the term pre-initialization to refer to the initializations of those
models.
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B.6.1 Initialization of bottom-level rARHMMs

Here we fit J bottom-level rARHMMs, one for each of the J entities, independently. In particular, the emissions
for each bottom-level rAR-HMM are the emissions of the full HSRDM given in Equation 2.3, and the transitions
are the entity-level transitions given in Equation 2.2b.

Pre-initialization. The J bottom-level rARHMMs themselves need good (data-informed) initializations. As
an example, we describe the pre-initialization procedure in the particular case of Gaussian VAR emissions,
as given in Equation B.6. In particular, we focus on a strategy for pre-initializing these emission parame-
ters {A(k)

j , b
(k)
j ,Q

(k)
j }j,k, since the higher-level parameters in the model can be learned via the two-stage

initialization procedure.

In particular, for each j = 1, . . . , J ,

a) We assign the observations x(j)
1:T to one of K states by applying the K-means algorithm to either

the observations themselves or to their velocities (discrete derivatives) x(j)
2:T − x

(j)
1:T−1, depending

upon user specification. We use the former choice in the FigureEight data, and the latter choice for
basketball data.

b) We then initialize the parameters by running separate vector autoregressions within each of the K
clusters. In particular, for each state k = 1, . . . ,K,

a) We find state-specific observation matrix A(k)
j and biases b(k)

j by applying a (multi-outcome)
linear regression to predict x(j)

t from the x(j)
t−1 whenever x(j)

t belongs to the k-th cluster.
b) We estimate the regime-specific covariance matrices Q(k)

j from the residuals of the above vector
autoregresssion.

We initialize the entity-level transition parameters {Ψj , P̃j}Jj=1 to represent a sticky transition probability
matrix. This implies that we initialize Ψj = 0 for all j.

Expectation-Maximization. After pre-initialization, we estimate the J independent rARHMMs by using
the expectation maximization algorithm. Posterior state inference (i.e. the E-step) for this procedure is
justified in Sec. A.2. Note that the posterior state inference for these bottom-level rARHMMs can be obtained
by reusing the VEZ step of Equation B.4 by setting the number of system states to L = 1.

B.6.2 Initialization of top-level ARHMM

Here we fit a top-level ARHMM. In particular, the emissions for the ARHMM are the entity-level transitions of
the HSRDM given in Equation 2.2b, and the transitions of the ARHMM are the system-level transitions given in
Equation 2.2a. We can perform posterior state inference for the top-level ARHMM by reusing the VES step of
Equation B.3 with inputs being the posterior state beliefs on z(1:J)

0:T from the bottom-level rARHMMs.

B.7 Multiple Examples

In some datasets, we may observe the same J entities over several distinct intervals of synchronous interaction.
We call each separate interval of contiguous interaction an “example”. For example, the raw basketball dataset
from Sec. 5.2 is organized as a collection of separate plays, where each play is one separate example. Between
the end of one play and the beginning of the next, the players might have changed positions entirely, perhaps
even having gone to the locker room and back for halftime.

Let E be the number of examples. Each example, indexed by e ∈ {1, 2, . . . E}, starts at some reference time
τe and has Te total timesteps, covering the time sequence t ∈ {τe, τe + 1, . . . , τe + Te}. We’ll model each
per-example observation sequence x(1:J)

τe:τe+Te
as an iid observation from our HSRDM model.

To efficiently represent such data, we can stack the observed sequences for each example on top of one
another. This yields a total observation sequence x(1:J)

0:T that covers all timesteps across all examples, defining
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T = T1+T2+...+TE . This representation doesn’t waste any storage on unobserved intervals between examples,
easily accommodates examples of arbitrarily different lengths, and integrates well with modern vectorized
array libraries in our Python implementation. As before in the single example case, our computational
representation of x(1:J)

0:T is as a 3-d array with dimensionality (T, J,D).

For properly handling this compact representation, bookkeeping is needed to track where one example sequence
ends and another begins. We thus track the ending indices of each example in this stacked representation:
E = {t0, t1, ..., tE−1, tE}, where −1 = t0 < t1 < t2 < . . . < tE−1 < tE = T , and where te = τe + Te is the last
valid timestep observed in the e-th example for e = 1, . . . , E.

By inspecting the inference updates gives above, including the filtering and smoothing updates for rAR-HMM (see
Props. A.2.1 and A.2.2), we find that we can handle this situation as follows:

• E-steps (VEZ or VES): Whenever we get to a cross-example boundary, we replace the usual transition
function with an initial state distribution. More concretely, the transition function for the VES
step in Equation B.3 is modified so that any timestep t that represents the start of a new example
sequence (that is, satisfies t− 1 ∈ E) is replaced with πs, and the transition function for the VEZ
step in Equation B.4 at such timesteps is replaced with πzj

. Similarly, the emissions functions at
such timesteps are replaced with the initial emissions. This maneuver can be justified by noting that
for any timestep t designating the onset of a new example, the initial state distributions play the role
of At and the initial emissions play the role of εt in Props. A.2.1 and A.2.2.

• M-steps: Due to the model structure, the objective function L for the M-step can be expressed as a
sum over timestep-specific quanities; for example, see Equation B.7. Thus, in the case of multiple
examples, we simply adjust the set of timesteps over which we sum in the objective functions relative
to each M substep. We update the entity emissions parameters θee by altering the objective to
sum over timesteps that aren’t at the beginning of an example (so we sum over timesteps t where
t− 1 6∈ E). We update the system state parameters θss and entity state parameters θes by altering
the objectives to sum only over timesteps that haven’t straddled an example transition boundary.
That is, we want to ignore any pair of timesteps (t, t+ 1) where t ∈ E , so we again sum only over
timesteps t where t− 1 6∈ E . Finally, we update the initialization parameters θinit by altering the
objective to sum over all timesteps that are at the beginning of an example.

C Forecasting Methodology Details

Here we detail how we assess model fit (Sec. C.1) and compute forecasts (Sec. C.2). The primary difference
between fitting and forecasting is that only the former has access to observations from evaluated entities over
a time interval of interest. Hence, a good fit is more easily attained. A good forecast requires predictions of
the discrete latent state dynamics without access to future observations, whereas fitting can use the future
observations to infer the discrete latent state dynamics. However, model fit is still useful to investigate; for
instance, it can be useful to determine if piecewise linear dynamics (including the choice of K, the number of
per-entity states) provide a good model for a given dataset.

C.1 Model fit

To compute the fit of the model to {x(j)
t , . . .x

(j)
t+u}, the j-th entity’s observed time series over some slice of

integer-valued timepoints [t, . . . , t+ u], we initialize

µ
(j)
t−1 = x

(j)
t−1

And then forward simulate. In particular, for time τ in [t, . . . , t+ u], we do

µ(j)
τ ,

K∑
k=1

q(z(j)
τ = k)µ(j)

τ,k (C.1)
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where µ(j)
τ,k is the conditional expectation of the emissions distribution from Equation 2.3 with Radon-Nikodỳm

density p(x(j)
τ | x(j)

τ−1 = µ
(j)
τ−1, z

(j)
τ ). For example, with Gaussian vector autoregressive (VAR) emissions, we

have

µ
(j)
τ,k , Aj,k µ

(j)
τ−1,k + bj,k

The resulting sequence {µ(j)
t , . . .µ

(j)
t+u} gives the variational posterior mean for the j-th entity’s observed

time series over timepoints [t, . . . , t+ u].

C.2 Partial forecasting

By partial forecasting, we mean predicting {x(j)
t , . . .x

(j)
t+u}j∈J , the observed time series from some to-

be-forecasted entities (with indices J ⊂ [1, . . . , J ]) over some forecasting horizon of integer-valued
timepoints [t, . . . , t + u], given observations {x(j)

t , . . .x
(j)
t+u}j∈J c from the contextual entities J c ,

{j ∈ [1, . . . , J ] : j 6∈ J } over that same forecasting horizon, as well as observations from all entities over
earlier time slices {x(j)

0 , . . .x
(j)
t−1}j∈[1,...,J].

To instantiate partial forecasting, we must first adjust inference, and then perform a forward simulation.

1. Inference adjustment. The VEZ step (Sec. B.3) is adjusted so that the variational factors on
the entity-level states over the forecasting horizon {q(z(j)

t , . . . , z
(j)
t+u)}j are computed only for the

contextual entities {j ∈ J c}. Likewise, the VES step (Sec. B.2) is adjusted so that the variational
factor on the system-level states over the forecasting horizon q(st, . . . , st+u) is computed from the
observations {x(j)

t , . . .x
(j)
t+u}j and estimated entity-level states {q(z(j)

t , . . . , z
(j)
t+u)}j only from the

contextual entities {j ∈ J c}. As a result, the M-step on the system-level parameters θss automatically
exclude information from the to-be-forecasted entities J over the forecasting horizon [t, . . . , t+ u].

2. Forward simulation. Using the adjusted inference procedure from Step 1, we can use the Viterbi
algorithm (or some other procedure) to obtain estimated system-states {ŝt, . . . , ŝt+u} that do not
depend on information from the to-be-forecasted entities J over the forecasting horizon [t, . . . , t+ u].
We then make forecasts by forward simulating. In particular, for time τ in [t, . . . , t+ u], we sample

z
(j)
t ∼ p(z(j)

t | z(j)
t−1,x

(j)
t−1, ŝt, θ) (C.2)

x
(j)
t ∼ p(x(j)

t | x(j)
t−1, z

(j)
t , θ) (C.3)

for all to-be-forecasted entities j ∈ J .

Note in particular that the dependence of Equation C.2 upon ŝt allows our predictions about to-be-forecasted
entities {j ∈ J } to depend upon observations from the contextual entities {j ∈ J c} over the forecasting
horizon.

D FigureEight: Experiment Details, Settings, and Results

D.1 Data generating process

Example D.1.1. (FigureEight.) Consider a model where we directly observe continuous observations x(1:J)
0:T ,

and where each x(j)
t ∈ R2 lives in the plane (i.e. D = 2). We form “Figure Eights" by having the observed

dynamics rotate around an “upper circle" C1 with unit radius and center

(

b (1) , (0, 1)T and a “lower circle" C2

with unit radius and center

(

b (2) , (0,−1)T . Entities tend to persistently rotate around one of these circles;
however, when the observation approaches the intersection of the two circles C1 ∩ C2 = {(0, 0)}, recurrent
feedback can shift the entity’s dynamics into a new state (the other circle). These shifts occur only when the
system-level state has changed; these shifts are not predictable from the entity-level time series alone. In
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particular, we have
st | st−1︸ ︷︷ ︸

system transitions

= h(st) (D.1a)

z
(j)
t | z(j)

t−1,x
(j)
t−1, st︸ ︷︷ ︸

entity transitions

∼ Cat-GLMK

(
η

(j)
t = Ψ(st)f(x(j)

t−1)︸ ︷︷ ︸
recurrence

+ P̃Tj ez(j)
t−1︸ ︷︷ ︸

transitions

)
(D.1b)

x
(j)
t | x(j)

t−1, z
(j)
t︸ ︷︷ ︸

observation dynamics

∼ N
(
A

(z(j)
t

)
j x

(j)
t−1 + b

(z(j)
t

)
j , Q

(z(j)
t

)
j

)
(D.1c)

Here, the notation used follows that of Equation 2.2. Each line of this true data-generating process is
explained in the corresponding paragraph below.

System-level state transitions. We take the number of system states to be L = 2. We set the system state
chain {st}Tt=1 through a deterministic process h which alternates states every 100 timesteps. We emphasize
that in the true data-generating process, there is no recurrent feedback from observations x to system states
s.

Entity-level state transitions. We set entity-specific baseline transition preferences to be highly sticky,
Pj =

[
p (1− p)

(1− p) p

]
, where p is close to 1.0 (concretely, p = .999). By design, these preferences can be

overridden when an entity travels near the origin. We choose the recurrence transformation f : RD → R to
be the radial basis function f(x) = κ exp(− ||x||

2
2

2σ2 ), which returns a large value when the observation x(j)
t−1 is

close to the origin. Similarly, we set the weight vector for these recurrent features to nudge observations near
the origin to the system-preferred state. We set Ψ(`) ∈ RK so entry (Ψ(`))k = ahigh if the entity-level state k
is preferred by the system-level state `, and alow otherwise, with ahigh � alow. Concretely, We set ahigh = 2
and alow = −2.

Emissions. To construct the entity-level emission distributions for each state (indexed by k), we choose
A

(k)
j = Aj to be a rotation matrix with angle θ = (−1)r 2π

τj
for all entity-level states k, where τj is the

entity-specific periodicity and r ∈ {0, 1} determines the rotation direction. We may use a rotation matrix A
to rotate the observation around a center

(

b, by constructing dynamics of the form A(x−
(

b) +

(

b; therefore, to
construct circle centers that are specific to entity-level states using Equation D.1c, we set b(k)

j = (I −Aj)

(

b (k)

for all entities j and all entity-level states k. We set each of the observation noise covariance matrices Q(k)
j to

be diagonal, with diagonal entries equal to 0.0001.

We simulate data from the FigureEight model (Example D.1.1), where there are J = 3 entities, each with
T = 400 observations, where the periodicities for each entity are given by (τ1, τ2, τ3) = (5, 20, 40). 4

D.2 Models and Hyperparameter Tuning

HSRDM. We fit our HSRDM with transitions given in Equation 2.2 and Gaussian vector autoregressive
emissions as in Equation B.6. We set L = K = 2. We set the entity-level recurrence f to a Gaussian radial
basis function and no system-level recurrence g. We use a sticky Dirichlet prior on system-level transition
parameters (α = 1 and κ = 10). For ’smart’ initialization, the bottom-half of the model is trained for 5
iterations while the top-half is trained for 20 iterations. For the K-Means algorithm, the random state is
set to seed 120. The model is then trained for 10 CAVI iterations with 50 iterations per M-Step. We don’t
tune any specific hyperparameters of our HSRDM. The model is run across 5 independent initializations
(initialization seeds 120-124). Five forecasting samples are generated per trial (sample seeds 120-124). The
optimal MSE across all initialization trials and forecasting samples is recorded. The average MSE for the
trial containing the best sample is taken across all samples to demonstrate diversity in sample generation.

rAR-HMM. A collection of J rAR-HMM models can be fit as a special case of a HSRDM model where the
number of system states is taken to be L = 1. We train three rAR-HMM models with separate strategies:
(“Indep.”, “Pool”, and “Concat.”). For ’smart’ initialization, the bottom-half of the models are trained for 5
iterations while the top-halves are trained for 20 iterations. For the K-Means algorithm, the random state is
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set to seed 120. The models are then trained for 10 CAVI iterations with 50 iterations per M-Step. We don’t
tune any specific hyperparameters of the rAR-HMM. The models are run across 5 independent initializations
(seeds 120-124). Five forecasting samples are generated per trial (sample seeds 120-124). The optimal MSE
across all initialization trials and forecasting samples is recorded for each model. The average MSE for the
trial containing the best sample is taken across all samples from that trial to demonstrate diversity in sample
generation.

DSARF. We train the Deep Switching Autoregressive Factorization model (Farnoosh et al., 2021) with
several different parameters. We train with several different choices of lags (l) and spatial factors (K),
where the number of discrete states (S = 2) is fixed to match our data-generation. For each strategy
(“Indep.”, “Pool”, and “Concat.”), we conduct a grid search across combinations of l and K, specifically
for l = {1, ..., i},∀i ∈ {1, ..., 10} and K ∈ {1, ..., 10}. The hyperparameters that produce the optimal MSE
value are selected for further experimentation. DSARF Indep. is optimal with spacial factors K and lags
L: K = 3, L = {1, 2}; DSARF Pool is optimal with K = 9, L = {1, 2, 3, 4, 5, 6, 7}; and DSARF Concat. is
optimal with K = 5, L = {1, 2}.

Once hyperparameters are selected, each model (and strategy) is trained with 500 epochs and a learning rate
of 0.01, across 10 independent random seeds (seeds 120-129) representing different initializations and forecasts.
Two seeds produce clear outlier results (one in Indep. and one in Concat.) from very poor initializations
and were excluded from the average results in Fig. 2, as they would have drastically shifted the mean (in
a direction that demonstrates worse perofrmance for the model). Post training for each model, we use the
learned parameters to draw long-term forecasts.

D.3 Recurrence Ablation

In Fig. 2, the rAR-HMM baselines are system state ablations for the HSRDM. Here, we include a recurrence
ablation for the FigureEight task. The best MSE across 5 independent random initializations is 0.05 and the
Ave. MSE with standard error for the random initialization across forecasting samples is 2.41(0.78). The
Mdn. MSE across the independent trial sample averages is 2.41. HSRDM without recurrence still performs
worse than the HSRDM with recurrence. See the trajectory below in Fig. D.1.

Figure D.1: FigureEight No Recurrent Feedback

E Basketball: Experiment Details, Settings, and Results

E.1 Dataset

Raw dataset. We obtain NBA basketball player location data for 636 games within the 2015-2016 NBA
season from a publicly available repo (Linou, 2016). Each sample provides the quarter of the game, number
of seconds left in quarter, time on shot clock, (x,y,z) location of ball, and the (x,y) locations and IDs for the
10 players on the court. The court is represented as the rectangle [0, 96]× [0, 50] in the space of squared feet.

Selection of games. We focus on modeling the dynamics in games involving the Cleveland Cavaliers (CLE),
the 2015-2016 NBA champions. In particular, out of 40 available games containing CLE, we investigate the 31
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games containing one of the four most common starting lineups: 1. K. Irving - L. James - K. Love - J.
Smith - T. Thompson; 2. K. Irving - L. James - K. Love - T. Mozgov - J. Smith; 3. L. James
- K. Love - T. Mozgov - J. Smith - M. Williams; 4. M. Dellavedova - L. James - K. Love - T.
Mozgov - J. Smith. Two games had data errors (lack of tracking or event data), which left a total of G = 29
games for analysis.

Downsampling. The raw data is sampled at 25 Hz. Following Alcorn & Nguyen (2021), we downsample
to 5 Hz.

From plays to examples. The raw basketball dataset is represented in terms of separate plays (e.g. shot
block, rebound offense, shot made). Following Alcorn & Nguyen (2021), we preprocess the dataset so
that these plays are non-overlapping in duration. We also remove plays that do not contain one of CLE’s four
most common starting lineups. For the purpose of unsupervised time series modeling, we then convert the
plays into coarser-grained observational units. Although plays are useful for the classification task pursued by
Alcorn & Nguyen (2021), play boundaries needn’t correspond to abrupt transitions in player locations. For
example, the player coordinates are essentially continuous throughout shot block -> rebound offense ->
shot made sequence mentioned above. Hence, we concatenate consecutive plays from the raw dataset until
there is an abrupt break in player motion and/or a sampling interval longer than the nominal sampling rate.
These observational units are called events in the main body of the paper (Sec. 5.2). Functionally, these
observational units serve as examples (Sec. B.7). That is, when training models, each example is treated as
an i.i.d. sample from the assumed model. For the remainder of the Appendix, we refer to these observational
units as examples.

By construction, examples have a longer timescale than the plays in the original dataset. Examples typically
last between 20 seconds and 3 minutes. For comparison, a rebound offense play takes a fraction of a second.

At the implementational level, we infer an example boundary whenever at least one condition below is met in
a sequence of observations:

1. The wall clock difference between timesteps is larger than 1.2 times the nominal sampling rate.

2. The player’s step size on the court (given by the discrete derivative between two timesteps) is
abnormally large with respect to either the court’s length or width, where abnormally large is defined
as having an absolute z-score larger than 4.0.

Court rotation. The location of a team’s own basket changes at half time. This can switch can alter
the dynamics on the court. We would like to control for the direction of movement towards the offensive
and defensive baskets, as well as for player handedness. To control for this, we assume that the focal team
(CLE)’s scoring basket is always on the left side of the court. When it is not, we rotate the court 180 degrees
around the center of the basketball court. (Equivalently, we negate both the x and y coordinates with respect
to the center of the court.) Since the basketball court has a width of 94 feet and a length of 50 feet, its center
is located at (47, 25) when orienting the width horizontally. We prefer this normalization strategy to the
random rotations strategy of Alcorn & Nguyen (2021), because the normalization strategy allows us to learn
different dynamics for offense (movement to the left) and defense (movement to the right).

Index assignments. Each sample from our dataset gives the coordinates on the court of 10 players. Here
we describe how we map the players to entity indices. Recall that we only model the plays that consist of
starters from a focal team, CLE. We assign indices 0-4 to represent CLE starters, and indices 5-9 to represent
opponents.

Index assignment for CLE is relatively straightforward. Although we model plays from the G games
involving four different starting lineups, we can consistently interpret the indices as 0: Lebron James, 1:
Kevin Love, 2: J.R. Smith, 3: Starting Center, 4: Starting Guard. Depending on the game,
the starting center was either T. Mazgov or T. Thompson. Similarly, the starting guard was either K. Irving,
M. Williams, or M. Dellavedova.
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Index assignment for the opponents is more involved. The opponent teams can vary from game to game,
and even a fixed team substitutes players throughout a game. There are numerous mechanisms for assigning
indices in the face of such player substitutions (Raabe et al., 2023). Although role-based representations are
popular (e.g. see (Felsen et al., 2018) or (Zhan et al., 2019)) because they capture invariants lost within
identity-based representations (Lucey et al., 2013), we used a simple heuristic whereby we assign indices 5-9
based on the the player’s typical positions. The typical positions can be scraped from Wikipedia. We let the
model discover dynamically shifting roles for the players via its hierarchical discrete state representation.

One complication in assigning indices from these position labels is that the provided labels commonly blend
together multiple positions (e.g. ‘Shooting guard / small forward’ or ‘Center / power forward’). Should the
second player be labeled as a center or a forward? What if there are multiple centers? How do we discriminate
between two forwards? To solve such problems, we proceed as follows, operating on a play-by-play basis

1. Assign players to coarse position groups. We first assign players to coarse position groups (forward,
guard, center). We assume that each play has 2 forwards, 1 center, and 2 guards. We use indices 5-6
to represent the forwards, index 7 to represent the center, and indices 8-9 to represent the guards.
As noted above, a given player can be multiply classified into a coarse position group; however, a
reasonable assignment for a player can be made by considering the position labels for the other
players who are on the court at the same time. To do this, we form B, a 5× 3 binary matrix whose
rows are players on the team and whose columns represent the coarse position groups. An entry
in the matrix is set to True if the player is classified into that position group. We start with the
rarest position group (i.e. the column in B with the smallest column sum) and assign players to that
position group, starting with players who have the least classifications (i.e. the players whose rows in
B have the smallest row sum). Ties are broken randomly. We continue until we have satisfied the
specified assignments (2 forwards, 1 center, and 2 guards). If it is not possible to make such coarse
assignments, we discard the play from the dataset.

2. Order players within coarse position groups. This step is only needed for forwards and guards; there
is only 1 ordering of the single center. We use an arbitrary ordering of forward positions:

FORWARD_POSITIONS_ORDERED = [
"Small forward / shooting guard",
"Small forward / point guard",
"Small forward",
"Small forward / power forward",
"Power forward / small forward",
"Power forward",
"Power forward / center",
"Center / power forward",
"Shooting guard / small forward",

]

and guard positions by

GUARD_POSITIONS_ORDERED = [
"Small forward / shooting guard",
"Shooting guard / small forward",
"Shooting guard",
"Shooting guard / point guard",
"Point guard / shooting guard",
"Point guard",
"Combo guard",

]

For each players assigned to a position group in {forward, guard}, we order the players in terms of
their location of their position on the above lists. Ties are broken randomly.

Normalization To assist with initialization and learning of parameters, we normalize the player locations
on the court from the rectangle [0, 96]× [0, 50] in units of feet to the unit square [0, 1]× [0, 1].
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E.2 Models and Hyperparameter Tuning

HSRDM. Here we model J = 10 basketball player trajectories on the court with an HSRDM with Gaussian
vector autoregressive emissions; that is, we use

st | st−1,x
(1:J)
t−1︸ ︷︷ ︸

system transitions

∼ Cat-GLML

(
Π̃Test−1︸ ︷︷ ︸

endogenous transition preferences

+ Λ gψ
(
x

(1:J)
t−1 ,υt−1

)︸ ︷︷ ︸
bias from recurrence and covariates

)
(E.1)

z
(j)
t | z

(j)
t−1,x

(j)
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entity transitions
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j )Te
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(j)
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(E.3)

where x(j)
t ∈

(
[0, 1]× [0, 1]

)
gives player j’s location on the normalized basketball court at timestep t.

Our system-level recurrence gψ
(
x

(1:J)
t−1 ,υt−1

)
= x

(1:J)
t−1 reports all player locations x(1:J)

t to the system-
level transition function, allowing the probability of latent game states to depend on player loca-
tions. Inspired by Linderman et al. (2017), our entity-level recurrence function fφ

(
x

(j)
t−1,u

(j)
t−1
)

=
(x(j)
t−1, I[x

(j)
t−1,0 < 0.0], I[x(j)

t−1,0 > 1.0], I[x(j)
t−1,1 < 0.0], I[x(j)

t−1,1 > 1.0])T , where x(j)
t,d is the d-th coordinate of

x
(j)
t and I[·] is the indicator function, reports an individual player’s location x(j)

t−1 (and out-of-bounds indi-
cators) to that player’s entity-level transition function, allowing each player’s probability of remaining in
autoregressive regimes to vary in likelihood over the court.

We set the number of system and entity states to be L = 5 and K = 10 based on informal experimentation
with the training set; we leave formal setting of these values based on the validation set to future work. For
the sticky Dirichlet prior on system-level transitions, as given in Equation B.2, we set α = 1.0 and κ = 50.0
so that the prior would put most of its probability mass on self-transition probabilities between .90 and .99.

We initialize the model using the smart initialization strategy of Sec. B.6. We pre-initialize the entity emissions
parameters θee by applying the k-means algorithm to each player’s discrete derivatives (so long as consecutive
timesteps do not span an example boundary). We pre-initialize the entity state parameters θes by setting P̃
to be the log of a sticky symmetric transition probability matrix with a self-transition probability of 0.90, and
by drawing the entries of Ψ i.i.d from a standard normal. We pre-initialize the system state parameters θss by
setting Π̃ to be the log of a sticky symmetric transition probability matrix with a self-transition probability
of 0.95, and by drawing the entries of Λ i.i.d from a standard normal. We pre-initialize the initialization
parameters θinit by taking the initial distribution to be uniform over system states, uniform over entity
states for each entity, and standard normal over initial observations for each entity and each entity state. We
execute the two-stage initialization process via 5 iterations of expectation-maximization for the J bottom-half
rARHMMs, followed by 20 iterations for the top-half ARHMM.

We run our CAVI algorithm for 2 iterations, as informal experimentation with the training set suggested this
was sufficient for approximate ELBO stabilization.

rARHMMs. By ablating the top-level discrete "game" states (i.e., the system-level switches) in the HSRDM, we
obtain independent rARHMMs (Linderman et al., 2017), one for each of the J = 10 players. More specifically,
by removing the system transitions in Equation E.1 from the model, the entity transitions simplify as
p(z(j)

t | z
(j)
t−1,x

(j)
t−1, st) = p(z(j)

t | z
(j)
t−1,x

(j)
t−1), because the entity transition parameters simplify as P̃ (st)

j = P̃j

and Ψ(st)
j = Ψj . As a result, the J bottom-level rARHMMs are decoupled. Implementationally, this procedure

is equivalent to an HSRDM with L = 1 system states. Initialization and training is otherwise performed
identically as with HSRDM.
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HSDM. By ablating the multi-level recurrence from the HSRDM, we obtain a hierarchical switching dynamical
model (HSDM). This can be accomplished by setting gψ ≡ 0 in Equation E.1 and fφ ≡ 0 in Equation E.2.
Initialization and training is otherwise performed identically as with HSRDM.

Agentformer. AgentFormer (Yuan et al., 2021) is a multi-agent (i.e. multi-entity) variant of a transformer
model whose forecasts depend upon both temporal and social (i.e. across-entity) relationships. Unless
otherwise noted, we follow Yuan et al. (2021) in determining the training hyperparameters. In particular, our
prediction model consists of 2 stacks of identical layers for the encoder and decoder with a dropout rate of 0.1.
The dimensions of keys, queries and timestamps for the agentformer are set to 16, while the hidden dimension
of the feedforward layer is set to 32. The number of heads for the multi-head agent aware attention is 8 and
all MLPs in the model have a hidden dimension of (512,256). The latent code dimension of the CVAE is
set to 32, and the agent connectivity threshold is set to 100. Because the basketball training datasets have
many more examples than the pedestrian trajectory prediction experiments in Yuan et al. (2021) (which
only have 8 examples), we train the agentformer model and the DLow trajectory sampler for 20 epochs each
(rather than 100) to keep the computational load manageable. We therefore apply the Adam optimizer with
learning rate of 10−3 rather than 10−4 to accommodate the reduced number of epochs. Also, to match the
specifications of the evaluation strategy from Sec. E.3, we set the number of future prediction frames during
training to 30, and the number of diverse trajectories sampled by the trajectory sampler to 20. We ensure
convergence by tracking the mean-squared error.

SNLDS. At suggestion of an anonymous reviewer, we also compared to a recent non-linear model which
does not coordinate interactions across entities, but provides discrete and continuous latent variables as well
recurrent feedback: SNLDS (Dong et al., 2020).7 SNLDS inherently models only entity-level time series by design;
it is not originally designed to model many interacting entities. We tried the Independence entity-to-system
strategy (see Sec. 5.1 of our paper) to adapt it to model many entities. The precise hyperparameter settings
can be found by inspecting the basketball.yaml configurations file used to run SNLDS (see our codebase for
link). Unless otherwise noted, we follow Ansari et al. (2021)’s modeling of the electricity duration dataset
to determine the training hyperparameters (e.g. trainable covariance matrices, a transformer within the
emissions network with the same network size, etc.). Paralleling the electricity duration dataset, we set
the dimensionality of the latent continuous state (4) to be double that of the observed variables (2). For
consistency with the HSRDM , we set the number of entity states to be K = 10. We also allowed multi-level
recurrence to both the continuous and discrete latent chains to parallel the multi-level recurrence of the HSRDM.
We trained each basketball player’s model for 20,000 iterations (using the first 1,000 as warmup iterations for
setting the learning rate). We ensure convergence by examining trace plots to verify that the ELBO-based
training objective converged after many epochs, and by verifying that reconstructions of past data looked
reasonable.

E.3 Evaluation strategy

We divide the G = 29 total games into 20 games to form a candidate training set, 4 games to form a validation
set (for setting hyperparameters), and 5 games to form a test set. Of the first 20 games within our candidate
training set, we construct small (1 game), medium (5 games), and large (20 games) training sets. The small,
medium, and large training sets contained 20, 215, and 676 examples, respectively.

The test set contained 158 examples overall. However, we required that each example be at least 10
seconds long (i.e. 50 timesteps) to be included in the evaluation run. This exclusion criterion left E = 75
examples. For each such example, we uniformly select a timepoint T ∗ ∈ [Tmin-context-length, T − Tforecast-length]
to demarcate where the context window ends. We set Tmin-context-length = 4 seconds (i.e. 20 timesteps) and
Tforecast-length = 6 seconds (i.e. 30 timesteps). The first [0, T ∗] seconds are shown to the trained model as
context, and forecasts are made within the forecasting window of F := [T ∗ + 1, T ∗ + Tforecast-length] seconds.

7We used the open source implementation of the SNLDS model provided by a successor package for RED-SDS (Ansari et al.,
2021): https://github.com/abdulfatir/REDSDS. We chose this because (1) this is the newest suggested codebase, so it should
be the most “state-of-the-art”, and (2) as the newest codebase, it should be easier to install and maintain. (Older code from
2017 is often tough to get working on newer hardware, such as the non-Intel chips of newer Macbooks.)
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For a fixed example e, forecasting sample s, player j, and forecasting method m, we summarize the error in a
forecasted trajectory by mean forecasting error (MFE)

MFEm;e,s,j ,
1
|F|

∑
t∈F

√√√√ 1∑
d=0

(x̂e,t,j,d,m,s − xe,t,j,d)2 (E.4)

where xe,t,j,d is the true observation on example e at time t for player j on court dimension d, and x̂e,t,j,d,m,s
is the forecasted observation by forecasting sample s using forecasting method m. So MFEm;e,s,j gives the
average distance over the forecasting window between the forecasted trajectory and the true trajectory.
To quantify performance of forecasting methods, we define a model’s example-wise mean forecasting error as

MFEm;e ,
1
SJ

S∑
s=1

J∑
j=1

MFEm;e,s,j (E.5)

Taking the mean of MFEm;e and its standard error lets us quantify a model’s typical squared forecasting error
on an example, as well as our uncertainty, with

MFEm ,
1
E

E∑
e=1

MFEm;e, σ(MFEm) ,

√∑E

e=1(MFEm;e − MFEm)2

E
(E.6)

Although in Sec. E.1, we described normalization of basketball coordinates to the unit square for the purpose
of model initialization and training, when evaluating models, we convert the forecasts and ground truth back
to unnormalized coordinates, so that MFE has units of feet. That is, we represent observations xe,t,j,d and
forecasts x̂e,t,j,d,m,s on the basketball court (of size [0, 94]× [0, 50] feet). Thus

√
MSEm can be interpreted as a

model’s typical amount of error in feet on the court at a typical timepoint in the forecasting window (but of
course forecasting error tends to be lower at timepoints closer to T ∗ than farther from T ∗).

F Marching Band: Experiment Details, Settings, and Results

F.1 Data generating process

We introduce MarchingBand, a synthetic dataset consisting of individual marching band players (“entities”)
moving across a 2D field in a coordinated routine to visually form a sequence of letters. Each observation is a
position x(j)

t ∈ R2, with the unit square centered at (0.5, 0.5) representing the field. Each entity’s position
over time on the unit square follows the current letter’s prescribed movement pattern perturbed by small-scale
iid zero-mean Gaussian noise. Each state is stable for 200 timesteps before transitioning in order to the next
state. When reaching a field boundary, typically the player is reflected back in bounds. However, with some
small chance, an entity will continue out-of-bounds (OOB, xt1 /∈ (0, 1)). When enough players become OOB
(up to a user-controlled threshold), this bottom-up signal triggers the current system state immediately to a
special “come together and reset” state, denoted "C". During the next 50 timesteps, all players move to the
center, then return to repeat the most recent letter before continuing on to remaining letters. Note that the
true data-generating process does not come from an HSRDM generative model.

For our experiments, we set J = 64, the OOB threshold to be 11, and the letter sequence to
spell "LAUGH". We use N = 10 independent examples for fitting, where each sequence is of a
different length according to the number of "C" states triggered. We observe corresponding time
lengths for each sequence: {1000, 1050, 1050, 1000, 1000, 1000, 1050, 1050, 1000, 1100}. The total time
T across all sequences is 10300, where end-times for each example are provided to the model as
{1000, 2050, 3100, 4100, 5100, 6100, 7150, 8200, 9200, 10300}.

F.2 Models and Hyperparameter Tuning

HSRDM (with and without recurrence). For all methods, we fairly provide knowledge of the true
number of system states, S = 6 = {L,A,U,G,H,C}. Models with system states (HSRDM and its recurrent
ablation) set S = 6 and have K = 4 entity states. We set system-level recurrence g to count the number
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of entities out of bounds and the entity-level recurrence f to the identity function. The emission model
is set to a Gaussian Autoregressive. All system and entity states are initially set to uniform distributions,
and we use a sticky Dirichlet prior on system-level transition parameters (α = 1 and κ = 10). For ’smart’
initialization, the bottom-half and top-half of the model are only trained for a single iteration, such that
little to no initialization is used for this experiment. The K-Means algorithm is set to a random state with a
seed 120. The model is then trained for 10 CAVI iterations with 50 iterations per M-Step. We don’t tune
any specific hyperparameters. The model is run across 5 independent initializations (with recurrence: seeds
120-123, 126 and without recurrence: seeds 120-124). Seeds (such as 124 for the HSRDM with recurrence) that
do not lead to any effective optimization (NAN values) are discarded and an alternative seed is attempted.
This procedure is the same for all competitor models, which also tend to produce ineffective training due to
randomly poor initializations. The best system-state classification accuracy across all trials is recorded for
the models.

rAR-HMM. A collection of J rAR-HMM models can be fit as a special case of a HSRDM model where the
number of system states is taken to be L = 1. The number of entity states is taken to be K = 6 with
a uniform prior over possible states. For ’smart’ initialization, the bottom-half and top-half of the model
are only trained for a single iteration, such that little to no initialization is used for this experiment. The
K-Means algorithm is set to a random state with a seed 120. The model is then trained for 10 CAVI iterations
with 50 iterations per M-Step. We don’t tune any specific hyperparameters of the rAR-HMM. The model is
trained across 5 independent initializations (seeds 120-122 and 124-126). The resulting most likely states for
each entity at each timepoint are clustered with a K-Means algorithm (random state seed = 120), and are
compared with the ground truth system-level accuracy for each initialization. The best classification accuracy
is recorded.

DSARF. We train the Deep Switching Autoregressive Factorization model (Farnoosh et al., 2021) with
several different parameters. We train with several different choices of lags (l) and spatial factors (K), where
the number of discrete states (S = 6) is fixed to match our data-generation. We use the ‘Concat.”) strategy,
and conduct a grid search across combinations of l and K, specifically for l = {1, ..., i},∀i ∈ {1, ..., 10, 200}
and K ∈ {1, ..., 10, 15, 25, 30}. These numbers for search were selected based on prior work in Ref. (Farnoosh
et al., 2021), such that our values match the hyperparameters used for datasets with a similar size. Also,
the selections are based on the knowledge that our dataset changes discrete states around every 200 time-
steps. The hyperparameters that produce the optimal system classification accuracy are selected for further
experimentation, which we observe to be: l = l = {1, ..., 200} and K = 25.

Once hyperparameters are selected, each model is trained with 200 epochs (as indicated to be sufficient in
the hyperparameter search) and a learning rate of 0.01, across 10 independent random initializations (seeds
120-129). The resulting most likely states for each entity at each timepoint are clustered with a K-Means
algorithm (random state seed = 120), and are compared with the ground truth system-level accuracy for
each initialization. The best classification accuracy is recorded.

F.3 Experiments with up to 200 entities

To demonstrate that the HSRDM can train and learn the system-level hidden states in the MarchingBand
dataset with a larger number of entities J > 64, we run an experiment with J = 200 entities. To simplify our
experiment, we left out the cluster state C that gets triggered when a certain number of entities go out of
bounds. Instead, we only have S = 5 = {L,A,U,G,H}. All other variables (number of dimensions (D = 2),
priors, initialization procedure, and training procedure) are kept the same as in the J = 64 case. Across 5
initializations, we obtain a best system state classification accuracy of 100%, a median accuracy of 100%, and
a average accuracy of 90%. Two out of the five initializations only obtained an accuracy of about ≈ 70%,
which brought down the total average. Varying results based on unlucky initializations for this type of model
is common.
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F.4 Experiments on Larger Feature Dimensions

Experiments in the main paper focus on interpretable modeling of data with D = 2 feature dimensions
recorded each timestep. To demonstrate that the HSRDM can train and learn the system-level hidden states in
the MarchingBand dataset with a larger number of dimensions D > 2, we run experiments with D = {10, 30}
dimensions. While D = 2 is the true (x, y) position of the marching band player, D = {10, 30} are the
true positions with added gaussian noise N (0, 0.0004). To simplify this experiment, we left out the cluster
state C that gets triggered when a certain number of entities go out of bounds. Instead, we only have
S = 5 = {L,A,U,G,H}. All other variables (number of entities (J = 64), priors, initialization procedure,
and training procedure) are kept the same as in the J = 64 case.

Across 5 initializations, the average and standard deviation system level classification accuracies for D =
{2, 10, 30} are shown in Fig. F.1. We observe that the best classification accuracies remain high for all D;
however, the average decays as D increases (D = 2 : 88%, D = 10 : 80%, D = 30 : 75%). Since all D sizes were
run with the same number of initialization iterations, number of training examples, and the same number of
CAVI iterations, we hypothesize that D = 30 might achieve better performance with more careful tuning of
these hyper-parameters. In Fig. F.1, we also show the run times for a single trial of each D size in minutes
for an entire training iteration.
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Figure F.1: MarchingBand system level accuracy and runtimes for D = {2, 10, 30}.
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G Soldiers: Experiment Details, Settings, and Results

For the visual security experiment, based on a quick exploratory analysis, we set K = 4 and L = 3. For the
sticky Dirichlet prior on system-level transitions, as given in Equation B.2, we set α = 1.0 and κ = 50.0, so
that the prior would put most of its probability mass on self-transition probabilities between .90 and .99.
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