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Abstract

While large language models (LLMs) excel001
in many domains, their complexity and scale002
challenge deployment in resource-limited en-003
vironments. Current compression techniques,004
such as parameter pruning, often fail to effec-005
tively utilize the knowledge from pruned pa-006
rameters. To address these challenges, we pro-007
pose Manifold-Based Knowledge Alignment008
and Layer Merging Compression (MKA), a009
novel approach that uses manifold learning and010
the Normalized Pairwise Information Bottle-011
neck (NPIB) measure to merge similar layers,012
reducing model size while preserving essen-013
tial performance. We evaluate MKA on mul-014
tiple benchmark datasets and various LLMs.015
Our findings show that MKA not only pre-016
serves model performance but also achieves017
substantial compression ratios, outperform-018
ing traditional pruning methods. Moreover,019
when coupled with quantization, MKA delivers020
even greater compression. Specifically, on the021
MMLU dataset using the Llama3-8B model,022
MKA achieves a compression ratio of 43.75%023
with a minimal performance decrease of only024
2.82%. The proposed MKA method offers a025
resource-efficient and performance-preserving026
model compression technique for LLMs.027

1 Introduction028

Large Language Models (LLMs), such as GPT-029

4 (OpenAI et al., 2024), Llama-31, Llama-2 (Tou-030

vron et al., 2023) and Mistral (Jiang et al., 2024),031

have demonstrated remarkable proficiency in lan-032

guage understanding and generation. These mod-033

els, with billions of parameters trained on trillions034

of tokens, can handle complex tasks and exhibit035

emergent abilities (Brown et al., 2020; Chowdhery036

et al., 2023). While these models have achieved un-037

precedented success, their growing complexity and038

scale have brought to the fore significant challenges039

1https://github.com/meta-llama/llama3

in terms of computational resources, memory re- 040

quirements, and energy consumption (Bender et al., 041

2021; Bommasani et al., 2021), raising concerns 042

about their sustainability. 043

To mitigate these challenges, researchers have 044

developed various model compression techniques 045

in LLM to reduce its parameter size while pre- 046

serving performance (Cheng et al., 2017; Deng 047

et al., 2020; Ganesh et al., 2021; Zhu et al., 2023). 048

These techniques can be roughly categorized into 049

two main mainstreams (Men et al., 2024): quan- 050

tization (Gholami et al., 2021; Li et al., 2024; 051

Dettmers et al., 2022; Gong et al., 2024; Li et al., 052

2024) and pruning (LeCun et al., 1989; Han et al., 053

2016; Gupta and Agrawal, 2022; Ma et al., 2023a). 054

Quantization based methods aid in the reduction of 055

the memory consumption of weights, activations, 056

and KV caches by using the low-precision values 057

with fewer bits instead of the high-precision values. 058

However, the acceleration benefits of quantization 059

are seriously dependent on hardware support (Tao 060

et al., 2023) and sometimes require additional fine- 061

tuning to maintain performance (Dettmers et al., 062

2023; Men et al., 2024). Compared to quantization, 063

pruning, especially structural pruning (Li et al., 064

2017), eliminates redundant LLM’s parameters to 065

decrease the overall parameter count, and can be 066

applied directly to a trained LLM without retrain- 067

ing and is generally more hardware-friendly than 068

quantization approaches. While effective, pruning 069

usually risks losing valuable model structures and 070

determining how to prune the LLM with minimal 071

disruption to the origin remains an unsolved prob- 072

lem (Ma et al., 2023b). 073

To tackle this issue head-on, we delve into the 074

realm of model merging (Wortsman et al., 2022), 075

a powerful technique that seamlessly weaves to- 076

gether the strengths and knowledge of multiple 077

models, creating a robust and efficient aggregation. 078

This technique, through averaging the weights of 079

multiple models with the same architecture, can 080
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Figure 1: Manifold-Based Knowledge Alignment and Layer Merging (MKA) framework consists of two main
components: (1) The left side illustrates manifold learning for LLM knowledge extraction, where layer activations
are transformed into low-dimensional manifolds using the Diffusion Kernel algorithm. (2) The right side depicts the
similarity-based layer merging process, employing the NPIB metric to identify layers with aligned knowledge.

retain essential features without significant addi-081

tional resources (Liu et al., 2024; Wan et al., 2024).082

Furthermore, by offsetting the biases and errors083

of individual models, model merging often leads084

to greatly improved performance (Li et al., 2023).085

Additional, the number of models in the merging086

process can be gradually and naturally reduced.087

However, such a useful technology are limited to088

merging between models currently, and few studies089

pay attention on merging the same internal struc-090

tures within a model.091

This raises the question of whether model com-092

pression could be achieved by reducing the total093

number of layers through the progressive aggre-094

gation of knowledge between layers. To answer095

this question, we introduce Manifold-Based Knowl-096

edge Alignment and Layer Merging Compression097

(MKA) in this paper. MKA combines manifold098

learning and layer merging to preserve essential099

information while significantly reducing LLM pa-100

rameter size. As illustrated in Figure 1, our method101

mainly comprises two primary components:102

Manifold Learning for LLM Knowledge: We103

employ manifold learning techniques to align104

knowledge across layers by extracting layer ac-105

tivations from a LLM and applying the Diffusion106

Kernel algorithm (Tenenbaum et al., 2000) to learn107

low-dimensional manifold representations. This108

approach captures the nonlinear structure in the109

activation and achieves dimensionality reduction110

while preserving important activation features, en-111

abling more effective comparison of knowledge 112

patterns across different layers. 113

Similarity Alignment Layer Merging: Follow- 114

ing manifold learning, we use the Normalized 115

Pairwise Information Bottleneck (NPIB) measure 116

(Tishby et al., 2000) to construct a similarity ma- 117

trix that quantifies the similarity between layers by 118

maximizing their mutual information while con- 119

sidering the entropy of each layer. Based on this 120

similarity matrix, we select the most similar layer 121

pairs for merging. 122

To rigorously validate the effectiveness of MKA, 123

we conduct extensive empirical evaluations on a di- 124

verse array of benchmark datasets, like MMLU and 125

PIQA, and a wide range of state-of-the-art large 126

language models, including Llama-3 series with 127

8B and 70B parameters, Llama-2 series with 7B 128

and 13B parameters, and Mixtral-7B. Our exper- 129

imental results indicate that MKA can maintain 130

good performance while achieving a significant 131

compression ratio, outperforming existing pruning 132

methods and achieving even greater compression 133

when combined with quantization. For example, 134

on the MMLU dataset with Llama3-8B, MKA can 135

achieve a compression ratio of 43.75% with only a 136

2.82% performance drop. 137

In summary, the main contributions of this paper 138

are as follows: 139

• We introduce MKA, an innovative model com- 140

pression technique that leverages manifold learn- 141

ing to align and integrate knowledge across lay- 142

2



ers, achieving significant reductions in model143

size while preserving performance.144

• We develop a manifold-based knowledge align-145

ment approach, utilizing the Diffusion Kernel146

and Normalized Pairwise Information Bottle-147

neck (NPIB) to effectively capture and align sim-148

ilarities between layers in the parameter space.149

• We validate the efficacy of MKA through com-150

prehensive experiments on multiple benchmark151

datasets and a variety of large language models,152

demonstrating its capability to achieve substan-153

tial compression without compromising model154

performance.155

2 Manifold-Based Knowledge Alignment156

and Layer Merging157

Our MKA method relies on the redundancy present158

in the latter layers of post-training LLMs (Gromov159

et al., 2024). By merging layers with high input-160

output similarity from back to front, we maintain161

the model’s performance while reducing its size.162

In this section, we first describe the extraction and163

dimensionality reduction processes for the inter-164

mediate states, as high-dimensional intermediate165

states are challenging to analyze. Then, we pro-166

pose our layer merging method based on similarity167

alignment, which aims to maintain performance168

by aligning intermediate states through merging169

techniques.170

2.1 Manifold Learning for LLM Knowledge171

To effectively align knowledge across LLM’s lay-172

ers, MKA employs manifold learning techniques173

that can capture the intricate nonlinear dependen-174

cies within the LLM’s internal structure. This ap-175

proach allows us to compare and align layer acti-176

vations in a meaningful way, preserving essential177

information while reducing model complexity.178

The process begins with the extraction of layer179

activations H l from a LLM on the dataset D. These180

activations represent the outputs of each layer given181

a set of input samples, encapsulating the knowledge182

learned at different stages. To transform these high-183

dimensional activations into a lower-dimensional184

space that preserves their essential features and185

geometric structure, we apply the Diffusion Kernel186

algorithm (Coifman and Lafon, 2006). Here are187

the key steps involved in this process:188

Extracting Layer Activations: For each layer189

l, we extract the activations H l given input sam-190

ples. These activations Hl are computed using the191

following equation: 192

Hl = LayerNorm
(
Hl−1 + MultiHead

(
Hl−1

))
193

+ FeedForward
(
Hl−1

)
(1) 194

Constructing the Pairwise Distance Matrix: 195

Next, we calculate the pairwise Euclidean distance 196

matrix D for the activations H l. This matrix cap- 197

tures the distances between all pairs of activations, 198

serving as the basis for the manifold learning pro- 199

cess. 200

Applying the Diffusion Kernel: We apply the 201

Diffusion Kernel to transform the distance matrix 202

D into low-dimensional manifold representations 203

Φi, capturing the intrinsic geometric structure of 204

the data. The kernel function smooths the data, 205

emphasizing the intrinsic geometric structure: 206

E = EigVectorsd

Diag

∑
j

e
−
(

∥Hi−Hj∥
2

σK

)0.5
 207

−e
−
(

∥Hi−Hj∥
2

σK

)0.5
 (2) 208

where σK is the kernel bandwidth parameter, and 209

EigVectorsd refers to the eigenvectors correspond- 210

ing to the d smallest eigenvalues of the Laplacian 211

matrix L. This transformation captures the essen- 212

tial features and relationships within the activations, 213

enabling effective comparisons across different lay- 214

ers. 215

2.2 Similarity-based Layer Merging 216

Building upon the manifold learning representa- 217

tions, MKA employs a similarity-based layer merg- 218

ing approach to identify and fuse layers with highly 219

aligned knowledge. By quantifying the similarity 220

between layers using the Normalized Pairwise In- 221

formation Bottleneck (NPIB) (Tishby et al., 2000) 222

metric, we can determine which layers are most 223

suitable for merging. This process allows us to 224

reduce model size, improve inference speed, and 225

decrease GPU memory consumption. 226

The layer merging process involves several key 227

steps. First, we construct a similarity matrix using 228

the NPIB metric to compare the knowledge pat- 229

terns across layers. Next, we introduce an adaptive 230

weight allocation function to determine the optimal 231

merging ratio for each pair of layers, ensuring that 232

the merged layer retains the most critical features. 233
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Algorithm 1 Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA)

1: Input: LLMM with Layers L1, L2, . . . , LN , Layer Parameters Θ = θ1, θ2, . . . , θN , Dataset D
2: Output: Compressed ModelM∗ with Aligned Knowledge
3: H ← ExtractActivations(M,D) ▷ Extract activations for each layer on dataset D
4: D ← ComputePairwiseDistances(H) ▷ Compute pairwise Euclidean distance matrix of activations
5: E← DiffusionKernel(D,σK) ▷ Apply diffusion kernel for manifold learning
6: S ← ComputeNPIB(E) ▷ Compute NPIB similarity matrix
7: Ω← SortLayersBySimilarity(S) ▷ Sort layers by similarity for merging
8: while |Ω| > 1 do
9: (Li, Lj)← SelectTopLayerPair(Ω) ▷ Select top-ranked layer pair based on similarity

10: λm ← ComputeFusionRatio(S, Li, Lj) ▷ Compute adaptive merging ratio
11: θm ← λm · θi + (1− λm) · θj ▷ Fuse layer parameters
12: Lm ← FuseLayer(Li, Lj , θm) ▷ Create fused layer using the fused parameters
13: M← ReplaceLayer(M, Li, Lj , Lm) ▷ Update model with fused layer
14: Ω← UpdateLayerList(Ω, Li, Lj , Lm) ▷ Update layer list with the new fused layer
15: end while
16: returnM

Finally, we fuse the parameters of the selected lay-234

ers using the weighted sum and update the model235

architecture accordingly.236

Constructing the Similarity Matrix: To iden-237

tify layers suitable for merging, we first construct238

a similarity matrix S using the Normalized Pair-239

wise Information Bottleneck (NPIB) metric. NPIB240

quantifies the shared information between layers241

while normalizing their individual entropies, pro-242

viding an ideal measure for comparing knowledge243

patterns across layers:244

Sij = NPIB(Ei,Ej)

=

∑
x∈Ei

∑
y∈Ej

p(x, y) log p(x,y)
p(x)p(y)√ ∑

x∈Ei

p(x) log p(x) ·
∑

y∈Ej

p(y) log p(y)

(3)245

where p(x, y) denotes the joint probability distri-246

bution of Ei and Ej , and p(x) and p(y) represent247

the marginal probability distributions of Ei and Ej ,248

respectively. This similarity matrix helps us deter-249

mine which layers have the most aligned knowl-250

edge representations.251

Calculate Weight ratio: To determine the merg-252

ing ratio λm for each pair of layers, we introduce253

the adaptive weight allocation function Ψ. This254

function dynamically adjusts the merging ratio255

based on the similarity differences between lay-256

ers, ensuring that the merged layer retains the most257

critical features from each original layer:258

λm = Ψ(s̄i, s̄j) =
eSij∑

k ∈ ΩeSk
(4)259

The adaptive weight allocation function Ψ adjusts 260

the merging weights based on the similarity dif- 261

ference between layers. When the similarity dif- 262

ference between two layers is large, Ψ assigns a 263

higher weight to the layer with higher similarity, 264

reducing the weight of the layer with lower sim- 265

ilarity. This mechanism ensures that the merged 266

layer better preserves the knowledge from the more 267

similar layer. 268

Merging Layer Parameters: Once the merging 269

ratio λm is determined, we fuse the parameters θi 270

and θj of the selected layers using a weighted sum: 271

θ̃m = λmθi + (1− λm)θj (5) 272

The merged layer Lm is obtained through the func- 273

tion FuseLayer(Li, Lj , θ̃m), which constructs a 274

new layer based on the fused parameters θ̃m. This 275

new layer integrates the aligned knowledge from 276

the original layers, preserving essential information 277

while reducing redundancy. 278

Finally, we update the model M by replac- 279

ing the original layers Li and Lj with the 280

newly merged layer Lm, utilizing the function 281

ReplaceLayer(M, Li, Lj , Lm). This step ensures 282

that the model’s architecture is updated to reflect 283

the compression process, maintaining performance 284

while significantly reducing model size. 285

3 Experiments 286

We conduct a comprehensive set of experiments to 287

evaluate the effectiveness and generalizability of 288

our MKA method across various domains. More- 289
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Figure 2: Comparison of Accuracy (ACC) during merging and pruning on the MMLU dataset. MKA achieves
higher compression ratios (approximately 43.5% for Llama3-8B, 45% for Llama3-70B, 40% for Mistral-7B, 31.25%
for Llama2-7B, and 57.5% for Llama2-13B) while preserving 90% performance. Please see the appendix A for
details.

over, we aim to compare our approach with prun-290

ing techniques to assess whether it offers improve-291

ments and to investigate if it can be combined with292

quantization methods to achieve even higher com-293

pression ratios.294

3.1 Experimental Setup295

3.1.1 Datasets296

We conduct evaluations using the MKA methods297

across various benchmark datasets, each specif-298

ically designed to test various facets of lan-299

guage comprehension and generation. In detail,300

MMLU (Hendrycks et al., 2020) evaluates broad301

language understanding across a wide range of do-302

mains. PIQA (Bisk et al., 2020) is designed to test303

models on commonsense reasoning in the physical304

world, aiming to assess NLP models’ grasp of ev-305

eryday physical interactions. HellaSwag (Zellers306

et al., 2019) is a challenge dataset for commonsense307

natural language inference, consisting of event308

descriptions with multiple possible continuations,309

where the task is to select the most plausible one.310

RACE-H (Lai et al., 2017) is a large-scale reading311

comprehension dataset collected from English ex-312

ams for Chinese high school students, featuring a313

high proportion of questions that require reasoning.314

BoolQ (Clark et al., 2019) is a reading comprehen-315

sion dataset focusing on naturally occurring yes/no316

questions that often query for complex, non-factoid317

information and require difficult entailment-like318

inference to answer correctly.319

3.1.2 LLMs320

In our experiments, we employ the Llama-2 (Tou-321

vron et al., 2023), Llama-3, and Mistral-7B (Jiang322

et al., 2023) models, each distinct in their capabili-323

ties and configurations: Llama-2: Encompassing324

models from 7 billion to 70 billion parameters, ex-325

hibits superior performance and safety on diverse326

benchmarks. Llama-3: Featuring models with 8327

billion and 70 billion parameters, Llama3 offers 328

state-of-the-art performance and advanced reason- 329

ing capabilities. Mistral-7B: a 7-billion-parameter 330

model that surpasses Llama-2 and Llama-1 in per- 331

formance and efficiency, leveraging grouped-query 332

and sliding window attention mechanisms for opti- 333

mal inference across lengthy sequences. 334

3.1.3 Baselines 335

In this study, we assess the effectiveness of our 336

proposed method, MKA, through two distinct com- 337

parative analyses. Firstly, we evaluate MKA di- 338

rectly against several well-established pruning tech- 339

niques to gauge its standalone efficacy in reducing 340

model size while maintaining performance. Sec- 341

ondly, we extend the comparison to include sce- 342

narios where both the traditional pruning methods 343

and MKA are further enhanced through quantiza- 344

tion. The baseline methods included in our analy- 345

sis are: SparseGPT (Frantar and Alistarh, 2023): 346

An efficient one-shot pruning method that can in- 347

duce high sparsity levels in large language models 348

with billions of parameters while preserving ac- 349

curacy, by reducing the pruning problem to a set 350

of large-scale sparse regression instances solved 351

by a novel approximate solver. ShortGPT (Men 352

et al., 2024): A pruning method that removes redun- 353

dant layers from large language models based on a 354

Block Influence metric, which assesses the signifi- 355

cance of each layer. Reverse Pruning: A heuristic 356

approach where the importance of layers is con- 357

sidered inversely proportional to their order in the 358

model, prioritizing the retention of earlier layers. 359

SmoothQuant (Xiao et al., 2023): SmoothQuant is 360

a training-free post-training quantization solution 361

that enables efficient 8-bit weight and activation 362

quantization for large language models, offering 363

up to 1.56× speedup and 2× memory reduction 364

with minimal accuracy loss. GPTQ (Frantar et al., 365

2022): A one-shot weight quantization method 366
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that uses approximate second-order information367

to maintain high accuracy even with severe weight368

reduction. AWQ (Lin et al., 2023): A novel quan-369

tization approach that protects salient weights by370

adjusting per-channel scaling based on activation371

observations rather than weight Magnitudes.372

3.2 In what ways does MKA surpass373

conventional pruning techniques?374

We compare the performance of MKA with base-375

line compression methods on the MMLU dataset376

using the Llama3-8B, Llama3-70B, Mistral-7B,377

Llama2-7B, and Llama2-13B models. The eval-378

uation metric is Accuracy (ACC) during merging379

and pruning. The results are presented in Figure 2.380

We compare the performance of MKA with base-381

line compression methods on the MMLU dataset382

using the Llama3-8B, Llama3-70B, Mistral-7B,383

Llama2-7B, and Llama2-13B models. The eval-384

uation metrics include Accuracy (ACC) during385

merging and pruning. The results are presented386

in Figure 2. We can observe that, across all models,387

our method improves the compression ratio while388

maintaining performance. Specifically, the com-389

pression ratio2 for Llama3-8B reach 43.5%, for390

Mistral-7B it reaches 40%, and for Llama2-13B it391

reaches an impressive 57.5%. Additionally, we ob-392

serve several phenomena: both methods experience393

a collapse in model performance, but the model394

merging method can delay the layer collapse to395

some extent and stabilize the model’s performance396

very well. Since our strategy is based on Reverse397

Prune, the scores for the Llama3-8B, Llama2-7B,398

and Llama2-13B models are very close to the Re-399

verse Prune. Our hypothesis is that the pruning400

or merging of these models is similar, but model401

merging can adjust the merging ratio to surpass the402

effect of pruning. Moreover, for the Llama3-70B403

and Mistral-7B models, we noticed that the results404

do not closely match the Reverse Prune.405

3.3 How Does MKA Combined with406

Quantization Perform Compared to407

Pruning Combined with Quantization?408

We compare the performance of MKA with the409

baseline pruning method, ShortGPT (Men et al.,410

2024), on the MMLU dataset using the Llama3-8B,411

2Note that, the compression ratio is calculated as:(
Ltotal −

(
Lretained

Q

))
/Ltotal, where Ltotal is the total num-

ber of layers before compression, Lretained is the number of
retained layers, and Q is the quantization factor.

Model Method Retained layers
(Compression Ratio) Acc

Llama3-8B

Vanilla Model 32 (0.00%) 66.29
ShortGPT+Smooth 18(85.94%) 26.54
ShortGPT+GPTQ 18(85.94%) 25.98
ShortGPT+AWQ 18(85.94%) 26.22
MKA (Ours) + Smooth 18(85.94%) 64.20 (+37.66)
MKA (Ours) + GPTQ 18(85.94%) 62.98 (+37.00)
MKA (Ours) + AWQ 18(85.94%) 61.66 (+35.44)

Mistral-7B

Vanilla Model 32(0.00%) 63.87
ShortGPT+Smooth 20(84.38%) 24.32
ShortGPT+GPTQ 20(84.38%) 23.16
ShortGPT+AWQ 20(84.38%) 23.96
MKA (Ours) + Smooth 20(84.38%) 56.92 (+32.60)
MKA (Ours) + GPTQ 20(84.38%) 56.12 (+32.96)
MKA (Ours) + AWQ 20(84.38%) 55.34 (+31.38)

Llama2-7B

Vanilla Model 32(0.00%) 46.67
ShortGPT+Smooth 16(87.50%) 25.67
ShortGPT+GPTQ 16(87.50%) 25.82
ShortGPT+AWQ 16(87.50%) 26.01
MKA (Ours) + Smooth 16(87.50%) 35.66 (+9.99)
MKA (Ours) + GPTQ 16(87.50%) 35.91 (+10.09)
MKA (Ours) + AWQ 16(87.50%) 36.23 (+10.22)

Llama2-13B

Vanilla Model 40 (0.00%) 55.62
ShortGPT+Smooth 20 (87.50%) 25.89
ShortGPT+GPTQ 20 (87.50%) 25.35
ShortGPT+AWQ 20 (87.50%) 23.83
MKA (Ours) + Smooth 20 (87.50%) 46.82 (+20.93)
MKA (Ours) + GPTQ 20 (87.50%) 45.44 (+20.09)
MKA (Ours) + AWQ 20 (87.50%) 45.86 (+22.03)

Table 1: Performance comparison of MKA and
ShortGPT pruning with quantization (SmoothQuant,
GPTQ, AWQ) on MMLU using Llama3-8B, Mistral-
7B, Llama2-7B, and Llama2-13B. MKA outperforms
ShortGPT in accuracy across all models and quantiza-
tion methods at similar compression ratios with int4.
The calculation of the compression ratio only considers
the number of hidden layers in the model without con-
sidering the embedding layer.

Llama3-70B, Mistral-7B, Llama2-7B, and Llama2- 412

13B models. The results are shown in Table 1. 413

We can see that the pruned models are able to be 414

further quantized and maintain performance with 415

a higher compression ratio. Notably, at a high 416

compression ratio of around 50%, MKA signif- 417

icantly outperforms ShortGPT. Additionally, we 418

achieve excellent results with various quantization 419

methods. For example, on Llama3-8B, at a com- 420

pression ratio of 43.75%, MKA with SmoothQuant 421

achieves 64.20%, far exceeding ShortGPT with 422

SmoothQuant at 37.66%. Similarly, with the GPTQ 423

quantization method, we achieve 62.98%, sur- 424

passing ShortGPT’s 37.00%, and with AWQ, we 425

achieve 61.66%, exceeding ShortGPT’s 35.44%. 426

3.4 MKA vs. Other Pruning Methods on 427

varies benchmarks 428

We compared the performance of MKA and several 429

other pruning methods on the LLama3-8B model 430

using multiple benchmark datasets at compression 431

ratios of 21.875% and 45.75%. The results are 432

shown in Table 2. From the results, we can ob- 433

6



Compression Ratio = 34.375% Compression Ratio = 37.5%

Method MMLU PIQA HellaSwag RACE-H BoolQ MMLU PIQA HellaSwag RACE-H BoolQ

Vanilla Model 66.29 81.12 74.54 66.07 66.79 66.29 81.12 74.54 66.07 66.79
SparseGPT 44.45 58.77 32.14 35.06 48.29 41.95 56.23 28.63 37.84 52.40
ShortGPT 42.95 60.99 33.00 41.68 51.96 44.80 61.70 38.69 40.05 57.09

MKA (Ours) 64.87 67.79 51.32 55.20 63.36 62.05 66.26 50.16 49.49 63.46

Table 2: Comparison of MKA and pruning methods across MMLU, PIQA, HellaSwag, RACE-H, and BoolQ
datasets and on different compression ratios.
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Figure 3: Similarity matrices for Llama-3-8B, Llama-3-70B, Mistral-7B, Llama-2-7B, and Llama-2-13B before and
after MKA. Later layers show high similarity, supporting layer merging.

serve that, similar to the previous section, the per-434

formance of Reverse Pruning and our method are435

quite similar. However, model fusion can retain per-436

formance better compared to pruning. Relative to437

SparseGPT and ShortGPT, our method can achieve438

better performance retention, with significant im-439

provements across all datasets. For example, at440

a compression ratio of 34.375% on the MMLU441

dataset, our method can outperform ShortGPT by442

21.92% and SparseGPT by 20.42%. Similarly, on443

the HellaSwag dataset, our proposed method can444

surpass ShortGPT by 18.32% and SparseGPT by445

18.32%.446

3.5 Are Inter-Layer Knowledge Alignment447

Similarity Matrices Consistent Across448

Different Large Models?449

We generate layer similarity heatmaps for dif-450

ferent models before and after applying MKA.451

These heatmaps visualize the knowledge align-452

ment and layer merging effects of MKA on var-453

ious models. Figure 3 presents the similarity454

heatmaps for Llama-3-8B, Llama-3-70B, Mistral-455

7B, Llama-2-7B, and Llama-2-13B. We observe456

that the heatmaps for the later layers of each model457

exhibit high similarity values, indicating that inter-458

layer similarity is consistently high in the later lay-459

ers across different models. This observation sup-460

ports our layer merging approach. Additionally,461

when merging the earlier layers, we notice a col-462

lapse of the matrix in the final figure, suggesting463

that earlier layers have a significant influence on 464

later layers. Thus, simple merging operations on 465

the earlier layers of the model are not feasible. 466

4 Discussion 467

4.1 Extension to Multimodal and Specialized 468

Models 469

Layer

La
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Layer
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Figure 4: The similarity matrix of Mixtral-8x7B and
Jamba model.

In addition to its application to large language 470

models, the MKA method shows promising poten- 471

tial for broader adoption across a variety of deep 472

learning architectures. This includes Mixture-of- 473

Experts (MoE) (Jiang et al., 2024), and Mamba (Gu 474

and Dao, 2023; Lieber et al., 2024) models, which 475

can exhibit similar redundancies in their process- 476

ing layers.The results show in Figure 4. Initial 477

experiments conducted on these diverse architec- 478

tures have reinforced the viability of our approach. 479

For instance, the similarity matrices generated on 480

jamba (Lieber et al., 2024) and Mixtral-8x7B (Jiang 481
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Figure 5: Similarity matrices for various measures in the Llama3-8B model, showing different patterns and
effectiveness in capturing layer relationships, with none fully matching the expected merging patterns.

et al., 2024) applying MKA have shown that Our482

method can also be generalized to other similar483

models, but the similarity distributions of jamba484

and Mixtral-8x7B are slightly different from LLM,485

and we do not yet know the reason. These exper-486

iments further validates the effectiveness of our487

method across different model types.488

4.2 Analysis of Similarity Measures489

In our evaluation of the Llama3-8B model, we ex-490

plored several similarity measures: Cosine Simi-491

larity, Mahalanobis Distance, Euclidean Distance,492

t-SNE Similarity, and Autoencoder Similarity. The493

similarity matrices are shown in Figure 5. From the494

results, we observe that Cosine Similarity, Maha-495

lanobis Distance, and Euclidean Distance display496

similar distribution patterns with vertical stripes497

and varied heat values. However, Mahalanobis498

Distance shows irregular heat values within these499

stripes, indicating a misalignment with the fused500

layer data structure. t-SNE Similarity appears ran-501

dom and lacks consistent patterns. For Autoen-502

coder Similarity, the high heat values do not corre-503

spond to suitable merging areas or expected high-504

similarity regions.505

4.3 Variations in Accuracy Across Different506

MMLU Subjects During Layer Merging507
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Figure 6: Different MMLU dataset subjects ACC
change during merging.

We examine the impact of model merging on508

performance across various academic subjects in509

the MMLU benchmark. Figure 6 shows the ac- 510

curacy changes across subjects such as College 511

Medicine, College Biology, High School Psychol- 512

ogy, and College Physics during different stages 513

of merging model layers. From our results, we ob- 514

serve that High School Psychology maintained a 515

stable accuracy with only minor fluctuations, sug- 516

gesting a consistent performance and low sensitiv- 517

ity to the merging process. In contrast, College 518

Biology experiences a significant drop in accuracy 519

at the 12.5% merging ratio, followed by a recov- 520

ery. College Physics exhibits frequent fluctuations 521

in accuracy, pointing to a high sensitivity to layer 522

merging. Conversely, College Medicine experi- 523

ences a steady increase in performance with only 524

minor variations. 525

5 Conclusion 526

In this paper, we have proposed Manifold-Based 527

Knowledge Alignment and Layer Merging Com- 528

pression (MKA), a novel model compression tech- 529

nique specifically designed to efficiently reduce the 530

size of large language models (LLMs) while main- 531

taining their performance. MKA leverage mani- 532

fold learning techniques to align knowledge across 533

layers and utilizes the Normalized Pairwise Infor- 534

mation Bottleneck (NPIB) measure to identify the 535

most similar layers for merging. By capturing the 536

intricate nonlinear dependencies within LLMs and 537

integrating knowledge from similar layers, MKA 538

achieves remarkable compression ratios without 539

sacrificing model accuracy. We have conducted 540

extensive experiments on a diverse set of bench- 541

mark datasets and various state-of-the-art LLMs to 542

rigorously evaluate the effectiveness of MKA in 543

preserving model performance while significantly 544

reducing model size. Our empirical results demon- 545

strate that MKA consistently outperforms existing 546

pruning methods and can achieve even higher com- 547

pression ratios when combined with quantization 548

techniques. 549
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Limitations550

The quality of the manifold learning process in551

MKA heavily depends on the diversity and repre-552

sentativeness of the layer activations extracted from553

the input dataset. In our experiments, we used σ554

value of 8 and selected the first question from the555

57-question MMLU dataset to extract activations.556

We observed that the number of questions sampled557

can significantly impact the manifold learning re-558

sults. Ensuring the Condition Number remains be-559

low 2000 is crucial for maintaining the integrity of560

the learned manifold representations. If the dataset561

used for extracting activations does not adequately562

cover the model’s operational range, the learned563

manifold representations might fail to capture the564

true geometric structure of the data.565

The current implementation of MKA has been566

primarily tested on transformer-based architectures.567

Although we believe that deep neural networks in-568

herently contain redundancies, the applicability and569

effectiveness of MKA on other neural network ar-570

chitectures, such as convolutional neural networks571

(CNNs) or recurrent neural networks (RNNs), have572

not been thoroughly explored. Future research can573

investigate these architectures to confirm whether574

MKA can achieve similar compression benefits575

across different types of neural networks.576
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Model Methods 0 0.03125 0.0625 0.09375 0.125 0.15625 0.1875 0.21875 0.25 0.28125 0.3125 0.34375 0.375 0.40625 0.4375 0.46875 0.5

Llama3_8b
ACC (Reverse) 66.29 66.12 66.33 66.15 66.21 65.31 64.96 62.91 64.28 65.00 63.99 64.71 62.04 63.52 64.51 30.31 29.07
ACC (Ours) 66.29 65.96 66.26 66.15 58.08 62.94 64.96 62.92 64.28 65.01 63.99 64.87 62.05 63.42 64.42 30.29 29.05

Llama2_7b
ACC (Reverse) 46.67 44.37 46.71 46.09 46.89 46.51 46.79 43.33 45.90 45.22 35.33 40.58 42.33 37.34 39.26 39.53 35.65
ACC (Ours) 46.67 44.45 46.74 46.07 46.93 46.52 46.84 43.41 45.85 45.09 35.25 40.67 42.40 37.38 39.41 39.45 35.71

Table 3: ACC during the compression process of Ours and Reverse Prune on Llama3-8b and Llama2-7b models.

Methods 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

ACC (Reverse) 55.62 55.24 55.21 55.12 54.44 54.02 55.63 55.27 53.87 53.66 53.17 51.89 51.56 51.56 51.48 50.75 50.28 48.37 45.18 48.59 46.78

ACC (Ours) 55.62 55.24 55.21 55.12 54.44 54.02 55.63 55.27 53.87 53.66 53.17 51.89 51.56 51.56 51.49 50.75 50.28 48.37 45.18 48.59 46.78

Table 4: ACC during the compression process of Ours and Reverse Prune on Llama2-13b model.

A More Results861
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