
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHARLUMA: EFFICIENT MULTI-LANGUAGE CHART-
TO-CODE GENERATION WITH LOW-RANK SUBSPACE
ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Chart-to-code generation involves translating a chart image into an executable
plotting script. However, prior work has largely focused on Python-only solu-
tions, limiting real-world applicability and leaving the learning signals inherent
in cross-language equivalences untapped. We argue that aligned multi-language
scripts serve as complementary “views” of the same chart, providing mutual guid-
ance to regularize the visual-to-code mapping. As an instantiation of this idea,
we introduce CharLuMA – a multimodal large language model (MLLM) that
integrates a language-guided mixture of low-rank subspaces into its multimodal
projector. This architecture enables parameter-efficient adaptation via dynamic
routing to language-specific subspaces, while preserving shared visual-semantic
representations of charts. To facilitate training and evaluation at scale, we present
Chart2NCode, a dataset of 176k Chart–Python–R–LaTeX quadruples that main-
tain consistent visual equivalence across languages. Experiments on multiple
benchmarks demonstrate that CharLuMA achieves state-of-the-art performance
among open-source MLLMs and even surpasses some proprietary systems. Crit-
ically, training with more diverse and balanced language sets yields consistent
and substantial improvements across all languages by leveraging the rich super-
visory signals embedded in cross-language equivalences. Subspace activation
analysis further reveals a hybrid allocation pattern, with compact shared cores
complemented by broader language-specific zones, while stronger models exhibit
smoother and more balanced allocations. Taken together, these results establish
multi-language alignment as an effective supervision paradigm for achieving uni-
versal chart-to-code generation1.

1 INTRODUCTION

Chart-to-code generation is the task of translating charts into executable plotting scripts that ac-
curately reconstruct the underlying data and visual design, positioned at the intersection of visual
understanding, code generation, and cross-modal reasoning (Shi et al., 2025). The demand for au-
tomated chart reproduction is increasing in various domains such as science, finance, and biology.
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive per-
formance across a wide range of vision–language tasks, even approaching human-level capability
(Yue et al., 2024; Lu et al., 2023; Wang et al., 2025b; Zhang et al., 2025). Nevertheless, chart-to-
code generation remains a particularly demanding problem, requiring models to recover structured
data, interpret intricate visual encodings, and produce precise, executable code with strict fidelity.

Existing works focus on translating charts into single-language codes, predominantly using mat-
plotlib in Python (Shi et al., 2025; Zhao et al., 2025; Wu et al., 2025; Belouadi et al., 2024b;a).
For example, ChartMimic (Shi et al., 2025) introduced a benchmark with human-curated matplotlib
scripts for chart reconstruction, and ChartCoder (Zhao et al., 2025) trained a code-focused large lan-
guage model (LLM) on large-scale chart–Python pairs. While effective within the Python ecosys-
tem, this line of research overlooks the diversity of plotting libraries and languages used in prac-
tice—analysts in many fields rely on R (ggplot2) or LaTeX (TikZ), among others, to create charts.

1Codes and data are available at https://anonymous.4open.science/r/CharLuMA-226D.

1

https://anonymous.4open.science/r/CharLuMA-226D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Router
- R

Linear
MLP

Vision Encoder

Language Model

…

Text Instruction

import matplotlib.pyplot as plt
cats = ["Carbon Sequestration","Biodiversity","Water
Quality","Soil Health","Climate Adaptation"]
vals = [50, 80, 60, 40, 75]
cols = ['#8A2BE2','#F0F8FF','#00BFFF','#D2691E','#1E90FF']
fig, ax = plt.subplots(figsize=(8,5))
ax.bar(cats, vals, color=cols, width=0.8)
ax.set_facecolor("#dce3ef")
ax.grid(True, axis=“both”, linewidth=0.8)
for s in ax.spines.values(): s.set(color="black", linewidth=0.8)
ax.set_title("Ecological Metrics", fontsize=12,
fontweight="normal")
ax.set_xlabel("Category", fontsize=12, fontweight="bold")
ax.set_ylabel("Value", fontsize=12, fontweight="bold")
plt.tight_layout(); plt.show()

Chart-to-Python
Router
-Python

Router
- LaTeX

Chart-to-R

\documentclass{standalone}\n\usepackage{pgfplots}
\n\pgfplotsset{compat=1.18}\n\usepackage[x11names,rgb]{xcolor}
\foreach \c/\h in {c00/8A2BE2, c01/F0F8FF, c02/00BFFF, c03/D2691E,
c04/1E90FF, cb/DCE3EF}\n{\definecolor{\c}{HTML}{\h}}
\begin{document}\n\begin{tikzpicture}
\begin{axis}[ybar, width=8.5cm, height=5.5cm, title={Ecological
Metrics}, xlabel={Category}, ylabel={Value}, xtick={0,...,4},
\nxticklabels={Carbon Sequestration,Biodiversity,Water Quality,Soil
Health,Climate Adaptation}, enlarge x limits=0.2, ymin=0, grid=major,
axis lines=box, axis background/.style={fill=cb},\ntitle
style={font=\small}, x tick label
style={font=\small\bfseries,align=center},\ny tick label
style={font=\small\bfseries}]
\addplot+[fill=c00] coordinates {(0,50)}; \addplot+[fill=c01]
coordinates {(1,80)};\n\addplot+[fill=c02] coordinates {(2,60)};
\addplot+[fill=c03] coordinates {(3,40)};\n\addplot+[fill=c04]
coordinates {(4,75)};\n\end{axis}\n\end{tikzpicture}\n\end{document}

Chart-to-LaTeX

library(ggplot2)
tick_labels <- c('Carbon Sequestration', 'Biodiversity', 'Water
Quality', 'Soil Health', 'Climate Adaptation')
values <- c(50.0, 80.0, 60.0, 40.0, 75.0)
colors <- c('#8a2be2', '#f0f8ff', '#00bfff', '#d2691e', '#1e90ff')
data <- data.frame(Category = factor(tick_labels, levels =
tick_labels), Value = values, Fill = colors)
ggplot(data, aes(Category, Value, fill = Fill)) +
 geom_bar(stat = "identity", width = 0.8, show.legend = FALSE) +
 scale_fill_identity() +
 labs(title = "Ecological Metrics", x = "Category", y = "Value") +
 theme(plot.title = element_text(size = 12), axis.title =
element_text(size = 12, face = "bold"), panel.background =
element_rect(fill = "#dce3ef"), panel.grid.major =
element_line(color = "grey"), panel.border = element_rect(colour =
"black", fill = NA, size = 0.5))

Visual Equivalent

Language Specific

…

Language-guided Routing

Low-rank
Projector

Subspace Pool

Chart Image

Target
Language:

LaTeX

0 1 2

N-2

N-1

Top-r
Activation

rank=r

This plot looks great-could
you help me reproduce it in
Python/R/LaTeX/… code?

Figure 1: Overview of chart-to-code generation task and CharLuMA architecture. We introduce
CharLuMA, a multimodal large language model for chart-to-code generation that augments the mul-
timodal projector with a language-guided mixture of low-rank subspaces.

This single-language focus limits real-world applicability and overlooks a key opportunity: cross-
language alignment. If a chart is faithfully expressed in different programming languages, those
parallel code snippets essentially offer different “views” of the same visualization. Prior works have
left the rich learning signal from such cross-language equivalence untapped.

To address these limitations, we introduce CharLuMA, a MLLM for chart-to-code generation that
is explicitly trained across multiple programming languages. CharLuMA extends a LLaVA-style ar-
chitecture (Liu et al., 2023) by enhancing its multimodal projector with a language-guided mixture
of low-rank subspaces (Figure 1). In essence, we equip the multimodal projector with a low-rank
adapter composed of lightweight subspaces, together with a routing mechanism that activates the
appropriate combination according to the target language. This design enables parameter-efficient
cross-language adaptation: the model learns to share core visual–semantic representations of charts
while dynamically adjusting its internal representation to the syntax and conventions of each spe-
cific language. By routing through language-specialized subspaces, CharLuMA strikes a balance
between cross-language generality and fine-grained language-specific fidelity in code generation.
Moreover, training and evaluating a multi-language chart-to-code model requires data that are pre-
cisely aligned across languages. Hence, we present Chart2NCode, a large-scale dataset of chart
images paired with visually equivalent plotting scripts in Python, R, and LaTeX. Chart2NCode con-
tains 176k examples, including a 1k test set, with each example provided as a quadruple: one chart
image and three parallel code scripts that faithfully render the same visualization. By enforcing
visual consistency across languages, these aligned quadruples offer a rich supervisory signal for
learning robust cross-language chart representations.

We demonstrate the effectiveness of our approach through extensive experiments on multiple
chart-to-code benchmarks, where CharLuMA achieves state-of-the-art results among open-source
MLLMs and even surpasses Claude-Haiku-3.5 and GPT-4o-mini on most metrics. Notably, training
with more diverse language sets consistently improves chart-to-code performance, as shown in Fig-
ure 4, not only by enhancing cross-language generalization but also by strengthening in-language ro-
bustness. When training data are imbalanced across languages, however, the model develops a clear
bias toward dominant languages, which limits its universality. This underscores that the learning
signals inherent in cross-language equivalences are essential for chart-to-code generation. Subspace
activation analysis further shows that CharLuMA allocates subspace capacity in a hybrid manner,
with compact clusters shared across languages and broader regions devoted to language-specific
specialization, while stronger models exhibit smoother and more balanced allocations.

In summary, our work establishes multi-language alignment as a powerful new paradigm for chart-
to-code generation. CharLuMA, together with the Chart2NCode dataset, represents a significant
step toward more universal and adaptable chart-to-code models. By leveraging complementary
views of the same chart across languages, we show that it is possible to regularize the visual-to-
code mapping and achieve more robust, accurate results than ever before. These contributions open
the door to chart-to-code systems that can serve a broader range of users and software ecosystems,
moving beyond Python-only solutions toward truly language-flexible chart generation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multimodal Large Language Models. MLLMs employ multimodal projectors to bridge vision
encoders with large language models, enabling reasoning across modalities. Models such as BLIP-2
(Li et al., 2022), Flamingo (Alayrac et al., 2022), mPLUG-Owl (Ye et al., 2024), and Qwen-VL
(Bai et al., 2023) adopt Q-Formers or resamplers to compress visual tokens for efficient alignment
on large-scale image–text corpora. LLaVA (Liu et al., 2023; 2024) extends the instruction-tuning
paradigm to the visual domain, demonstrating that a simple MLP projector with one-to-one map-
ping can effectively align modalities without discarding visual information. Some works (Tong
et al., 2024; Lin et al., 2023) explore the combination of various vision encoder to enhance visual
representations. More recent work has scaled MLLMs by substituting dense MLP projectors with
sparsely gated mixture-of-experts architectures (Xu et al., 2025; Li et al., 2025), which parallelize
multiple MLP blocks but incur significant parameter overhead.

Chart-to-code generation task requires models to translate chart images into executable plotting
scripts, challenging MLLMs with demands in visual understanding, code generation, and cross-
modal reasoning. Prior efforts have primarily focused on chart-to-Python generation. Shi et al.
(2025) introduced a benchmark of manually curated matplotlib scripts, while Zhao et al. (2025)
released a large-scale training corpus. Yang et al. (2024) and Goswami et al. (2025) incorporate user
instructions and agent-based methods to enhenace the faithful code synthesis. Other studies untilize
chart-to-Python generation for aligning multimodal projectors (Xu et al., 2025) or constructing chart
question answering datasets (Zhang et al., 2024b; He et al., 2025). Beyond chart, Belouadi et al.
(2024a) and Belouadi et al. (2024b) have developed datasets for image-to-LaTeX generation towards
vector graphics. Nevertheless, these efforts remain restricted to single-language settings, which
limits practical applicability and overlooks the learning signals in cross-language equivalences.

3 THE CHART2NCODE DATASET

We present Chart2NCode, the first large-scale dataset that aligns chart-code pairs across multiple
programming languages. With 176k Chart-Python-R-LaTeX quadruples, Chart2NCode establishes
a comprehensive resource for developing and evaluating multi-language chart-to-code models.

3.1 AUTOMATIC ANNOTATION

We construct multi-language plotting scripts through an automatic annotation pipeline consisting
of metadata extraction, template instantiation, and post-debugging (Figure 2). We start by collect-
ing single-language plotting scripts as the source data. ChartCoder (Zhao et al., 2025) provides
large-scale Python plotting scripts, while DaTikZ (Belouadi et al., 2024a) contributes extensive
TikZ-based codes of scientific vector graphics in LaTeX, from which we extract only the subset
corresponding to charts. We further complement these resources by curating 40k R plotting scripts
from online platforms and chart galleries (see Appendix B.1).

Metadata Extraction. We extract language-agnostic metadata from single-language plotting scripts
at the figure, axis, and object levels. The figure level captures global attributes that determine the
overall layout and presentation of the chart. The axis level records structural elements that define
the coordinate system and its descriptive properties. The object level encodes graphical primitives
together with their visual styles, ensuring precise representation of chart content. Metadata are ob-
tained from plotting objects in each language (e.g., matplotlib.axes in Python), while LaTeX
scripts are processed via regular-expression parsing. Collectively, these layers yield a comprehensive
and lossless description of each chart, enabling faithful reconstruction across multiple languages.

Template Instantiation. We synthesize multi-language plotting scripts by identifying and filling
language-specific templates based on object-level patterns in the metadata. For instance, a horizontal
bar chart is characterized at the object level by rectangles of equal height and varying width, which
are organized into a data table and matched to the corresponding templates in different languages.
Our library comprises 202 human-curated templates spanning 33 chart subtypes in Python, R, and
LaTeX, derived from systematic observations of the source data. Once the appropriate template is
identified, it is instantiated with structured metadata such as titles, axis ticks, and data values. We

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Python Script

Figure-level

Axis-level

Object-level Find Templates
R

Script

LaTex
Script

Fill with Metadata

2

21

Excute

Failure in
Source Data Metadata Template Instantisation Post debugging

Chart Image

Global Title
Plot Size

Axis Label&Tick
Legend Location

Coordinate
Color&Style

Chart Type?

R
TemplateLaTex

Template

Reproduced
Image

Template
Bank

Orientation?

1

or

LLM assistance

Figure 2: Overview of the automatic annotation pipeline of Chart2NCode.

also add an attribute-mapping process during instantiation to maintain cross-language consistency,
such as mapping the bold font style in Python to the bfseries directive in LaTeX.

Post Debugging. In situations where template identifying is unsuccessful or script execution errors
occur, we incorporate an LLM-assisted debugging module powered by GPT-4o (OpenAI, 2024b). If
no suitable template exists, the module translates the available single-language script into the target
languages; if an instantiated template fails, it applies error correction to restore executability. Scripts
that remain invalid or produce deprecated figures are discarded to maintain dataset quality.

3.2 HUMAN QUALITY CHECKING

We conduct human evaluation to assess the cross-language fidelity of Chart2NCode. A random
sample of 1,000 quadruples is independently evaluated by three annotators across four dimen-
sions—structural fidelity, data integrity, semantic consistency, and stylistic coherence—with each
dimension rated on a 1–5 scale. The proportion of examples with an average score of at least 4
reaches 97.6% for structural fidelity, 91.6% for data integrity, 95.7% for semantic consistency, and
95.6% for stylistic coherence (see Appendix B.3). These results highlight the robust cross-language
consistency of Chart2NCode and its reliability for advancing chart-to-code generation research.

3.3 DATA STATISTICS

Chart2NCode encompasses a total of 176k Chart–Python–R–LaTeX quadruples through our auto-
matic pipeline, with 14.7% are refined via LLM-assisted debugging. The dataset spans 15 standard
chart types, including bar (18.8%), line (17.1%), scatter (13.2%), radar (5.73%), histogram (4.59%),
and box (4.43%). We constructed a test set of 1,000 randomly sampled examples that achieved
average scores of at least 4 across all quality aspects in Section 3.2. The average code lengths are
3,998.5 and 4,229.3 characters for the training and test sets, respectively. Comprehensive statistics
and details regarding the annotation pipeline are provided in Appendix B.2 and Appendix B.4.

4 THE CHARTLUMA MODEL

We propose CharLuMA, a chart-to-code MLLM that extends a LLaVA-style architecture with a
novel low-rank subspace adapter for efficient multi-language adaptation. The model is optimized
through a progressive training strategy that combines alignment pretraining with instruction tuning.

4.1 ARCHITECTURE

CharLuMA is composed of a vision encoder and a LLM backbone, connected through a two-layer
MLP projector augmented with a novel low-rank subspace adapter. The adapter is governed by a
language-guided routing policy that dynamically selects subspace experts based on both the chart’s
image features and the target language token, enabling language-specific specialization while main-
taining shared visual understanding, as illustrated in Figure 3.

Vision Encoder. We adopt SigLIP (Zhai et al., 2023a) as the vision encoder, configured with an
input resolution of 384 × 384. Pretrained on millions of image–text pairs, it provides strong priors
for extracting semantically meaningful visual features. Formally, given a chart input Xv , the vision
encoder gv(·) generates its corresponding representation Zv , i.e. Zv = gv(Xv).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Linear
MLP

Vision Encoder

Language Model

…

Text Instruction

Routers

Low-rank
Projector

Subspaces

Chart Image

Router - R

Router -
Python

Router -
Latex

Subspace Pool

Low-rank Projector

<Target_
Language>

… …

… …

Router

Language-
Specific
Routers

…
Alignment

Pretraining

Instruction
Tuning

Freezing

Warm-up

Training
Stages

Router -
R

Router -
Python

Router -
Latex

<latexit sha1_base64="2oPod++bRlFiMZsn+E7nYLR8OGw=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURqW6EohtXUsE+oIlhMp20QycPZiZCDfkSNy4UceunuPNvnLZZaOuBC4dz7uXee/yEM6ks69sorayurW+UNytb2zu7VXNvvyPjVBDaJjGPRc/HknIW0bZiitNeIigOfU67/vh66ncfqZAsju7VJKFuiIcRCxjBSkueWXUy32NO7mXs0s4fbj2zZtWtGdAysQtSgwItz/xyBjFJQxopwrGUfdtKlJthoRjhNK84qaQJJmM8pH1NIxxS6Wazw3N0rJUBCmKhK1Jopv6eyHAo5ST0dWeI1UguelPxP6+fquDCzViUpIpGZL4oSDlSMZqmgAZMUKL4RBNMBNO3IjLCAhOls6roEOzFl5dJ57RuN+qNu7Na86qIowyHcAQnYMM5NOEGWtAGAik8wyu8GU/Gi/FufMxbS0YxcwB/YHz+AH/ckwA=</latexit>

{bi}N
i=1

<latexit sha1_base64="QVQ7J0KA6ByRrFS/HF+uXVGqmbs=">AAAB+HicbVBNS8NAEJ34WetHox69LBahgpSkSPUiVL14kgr2A9pYNttNu3Q3CbsboZb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wM8+POVPacb6tpeWV1bX1zEZ2c2t7J2fv7tVVlEhCayTikWz6WFHOQlrTTHPajCXFwue04Q+uJ37jkUrFovBeD2PqCdwLWcAI1kbq2LnLi9uCc9JWrCfwQ+m4Y+edojMFWiRuSvKQotqxv9rdiCSChppwrFTLdWLtjbDUjHA6zrYTRWNMBrhHW4aGWFDljaaHj9GRUbooiKSpUKOp+ntihIVSQ+GbToF1X817E/E/r5Xo4NwbsTBONA3JbFGQcKQjNEkBdZmkRPOhIZhIZm5FpI8lJtpklTUhuPMvL5J6qeiWi+W703zlKo0jAwdwCAVw4QwqcANVqAGBBJ7hFd6sJ+vFerc+Zq1LVjqzD39gff4AkeORwg==</latexit>

A = N(0, �2)

<latexit sha1_base64="XGrzNXNcFpJyinXt/N0K5s9weB8=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiQi1Y1Q6sZlBfuANobJdNoOnUzCzI1YQnZu/BU3LhRx6y+482+cPhbaeuDC4Zx7ufeeIBZcg+N8W7ml5ZXVtfx6YWNza3vH3t1r6ChRlNVpJCLVCohmgktWBw6CtWLFSBgI1gyGV2O/ec+U5pG8hVHMvJD0Je9xSsBIvn1YvewAe4CURtJomZ9y3OESj+5EFvjct4tOyZkALxJ3Ropohppvf3W6EU1CJoEKonXbdWLwUqKAU8GyQifRLCZ0SPqsbagkIdNeOvkjw8dG6eJepExJwBP190RKQq1HYWA6QwIDPe+Nxf+8dgK9Cy/lMk6ASTpd1EsEhgiPQ8FdrhgFMTKEUMXNrZgOiCIUTHQFE4I7//IiaZyW3HKpfHNWrFRnceTRATpCJ8hF56iCrlEN1RFFj+gZvaI368l6sd6tj2lrzprN7KM/sD5/AD+CmZI=</latexit>

B = concati2ylbi

…

<latexit sha1_base64="5pwXjBsNVp6ESOO3zpjopoNRd7A=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ad0xpJJM21okhmSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7GmnEnaNsxw2ksUxSLktBtObnO/+0SVZrF8MNOEBgKPJIsYwcZKvi+wGSuRdWePfFCtuXV3DrRKvILUoEBrUP3yhzFJBZWGcKx133MTE2RYGUY4nVX8VNMEkwke0b6lEguqg2yeeYbOrDJEUazskwbN1d8bGRZaT0VoJ/OMetnLxf+8fmqi6yBjMkkNlWRxKEo5MjHKC0BDpigxfGoJJorZrIiMscLE2JoqtgRv+curpHNR9xr1xv1lrXlT1FGGEziFc/DgCppwBy1oA4EEnuEV3pzUeXHenY/FaMkpdo7hD5zPH3bRkfs=</latexit>

Wl

Top-r Activation
rank = r

Visual Feature

Output

Figure 3: Overview of the CharLuMA architecture and training strategy. The adapter leverages
a language-guided routing policy combined with a mixture of low-rank subspaces. The training
proceeds through three stages: alignment pretraining, warm-up, and instruction tuning.

Multimodal Projector. The standard multimodal projector in LLaVA-style architectures (Liu et al.,
2023) is a two-layer MLP block W that performs a one-to-one transformation, mapping visual
features Zv into the embedding space of the LLM backbone. The resulting output, Hbase = WZv ,
serves as a shared base representation across languages.

To enable efficient language adaptation while preserving visual understanding, we augment this
linear MLP block with a low-rank subspace adapter (Ding et al., 2025; Wu et al., 2024; Chen et al.,
2023). The adapter comprises three components: a low-rank projector A, a language-specific router
Wl, and a subspace pool {bi}Ni=1. Given the visual features Zv , the projector A maps them into
a compact rank-r representation (r < N). The router then determines which subspaces to activate
for the target language l ∈ {Python,R,LaTeX}, as specified in the text instruction. Concretely,
the router Wl applies a language-specific transformation to the mean-pooled visual feature Zv ,
yielding a probability distribution over the subspace pool. The top-r subspaces are then selected,
yl = topr(softmax(WlZv)) where yl denotes their indices, and concatenated to form the matrix
B = concati∈ylbi. The reconstruction matrix B is combined with the low-rank projector A to map
the visual features into the LLM embedding space, yielding an language-adaptable representation.
The final visual tokens injected into the LLM consists of visual tokens that merge the base and
language-adaptable representations:

Hv = Hbase +Hadapt = WZv +ABZv.

Large Language Model. We use DeepSeek-Coder (Guo et al., 2024) as the LLM backbone, with
1.3B and 6.7B variants named CharLuMA-1.3B and CharLuMA-6.7B. The visual tokens Hv pro-
duced by the multimodal projector are concatenated with the text tokens Ht to construct the input
sequence for the LLM gL(·). The final output is then obtained as gL(Hv;Ht).

4.2 TRAINING STRATEGY

Alignment Pretraining. We initialize the multimodal projector by pretraining the linear MLP block
W on ChartMoE-Align (Xu et al., 2025), a dataset covering 900k Chart–JSON pairs that capture
structural elements such as tables, annotations, and styles. The vision encoder and LLM backbone
remain frozen during this stage, ensuring that W learns to align visual features of charts with textual
schema representations without altering pretrained components (Yan et al., 2024).

Instruction Tuning. We augment the multimodal projector with the proposed low-rank subspace
adapter and fine-tune the model on Chart2NCode. We first warm up the language-specific routers
Wl (l ∈ {Python,R,LaTeX}) and the subspace pool {bi}Ni=1 over fixed steps, while keeping the
MLP block, vision encoder, and LLM backbone frozen. The low-rank projector A is randomly
initialized and kept frozen throughout training, ensuring that adaptation capacity is directed toward
language-specific diversities rather than redundantly modeling visual commonalities (Ding et al.,
2025; Tian et al., 2025). We then unfreeze the LLM backbone and continue training jointly with the
routers and subspace pool, while keeping the MLP block, vision encoder, and A frozen. This pro-
gressive protocol stabilizes routing and subspace specialization in the early phase, and subsequently
enables the LLM to effectively leverage language-adaptive visual tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENT

We demonstrate the effectiveness of CharLuMA through comprehensive experiments, which achieve
consistent improvements in multi-language chart-to-code generation across diverse benchmarks and
surpass competitive baselines.

5.1 IMPLEMENTATION DETAILS

During alignment pretraining, we train the MLP block for 1 epoch on 900k Chart–JSON pairs from
ChartMoE-Align (Xu et al., 2025), while keeping the vision encoder and LLM frozen, with a learn-
ing rate of 2e-4. During instruction tuning, we warm up the subspace pool and language-specific
routers for 274 steps, and then continue with full fine-tuning of the LLM backbone for 1 epoch on the
Chart2NCode training set, which contains 175k Chart–Python–R–LaTeX quadruples, while keeping
the MLP block and vision encoder frozen. The learning rates are set to 2e-4 for the warm-up phase
and 2e-5 for fine-tuning. We set the subspace size N = 32 and the rank r = 16, with detailed anal-
ysis provided in Section 6.1. All experiments are conducted with a global batch size of 128 on 8×
NVIDIA L40S GPUs. The total training cost is approximately 82 GPU hours for CharLuMA-1.3B
and 321 GPU hours for CharLuMA-6.7B. More details are provided in Appendix C.1.

5.2 EVALUATION SETTINGS

Datasets. We evaluate CharLuMA and the baselines on three chart-to-code datasets. The
Chart2NCode test set provides 1,000 charts paired with plotting scripts in Python, R, and LaTeX, en-
abling multi-language evaluation. ChartMimic (Shi et al., 2025) includes 2,400 charts with human-
curated matplotlib scripts in Python, spanning 22 chart types. Plot2Code (Wu et al., 2025) contains
132 high-quality matplotlib plots across 6 plot types.

Evaluation Metrics. We assess chart-to-code generation performance from three perspectives: ex-
ecutability, code similarity, and image fidelity. Execution Rate (ER) measures the proportion of
generated scripts that run successfully. CrystalBLEU (CB) (Eghbali & Pradel, 2022), a BLEU vari-
ant tailored for code, assesses code-level similarity. For image-level fidelity, we adopt DreamSim
(DS) (Fu et al., 2023), a fine-tuned metric for perceptual similarity. For Python scripts, we re-
port the averaged F1 score across text, layout, type, and color attributes (Shi et al., 2025), where
unexecutable scripts are assigned with zero values. To avoid code similarity inflation for models
trained on in-distribution data, we employ image-side GPT-4o scoring (GS) (Shi et al., 2025) on the
Chart2NCode test set, where unexecutable scripts are assigned with zero values as well.

5.3 BASELINES

General MLLMs. We evaluate both closed-source and open-source MLLMs as general-purpose
baselines. The closed-source group includes GPT-4o (OpenAI, 2024b), GPT-4o-mini (OpenAI,
2024a), GPT-5-mini (OpenAI, 2025), Claude-3.5-Sonnet (Anthropic, 2024), and Claude-Sonnet-4
(Anthropic, 2025). The open-source group covers representative vision–language models includ-
ing Qwen3-VL (Team, 2025), InternVL-3.5 (Wang et al., 2025a), GLM-4.5v (Team et al., 2025),
DeepSeek-VL (Lu et al., 2024), Phi-3.5-Vision (Abdin et al., 2024), and LLaVA-1.5 (Liu et al.,
2023).

Chart MLLMs. We also compare against chart-specialized MLLMs tailored for chart reasoning
and chart-to-code generation. ChartLlama (Han et al., 2023) extends the LLaVA-v1.5 framework
with instruction tuning on multiple chart reasoning tasks. TinyChart (Zhang et al., 2024a) is built
on TinyLLaVA (Zhou et al., 2024) for efficient chart understanding. ChartMoE (Xu et al., 2025)
advances chart understanding through a mixture-of-experts multimodal projector, integrating chart-
to-code generation as a core modality alignment task. ChartCoder (Zhao et al., 2025) directly targets
chart-to-code generation by employing a code LLM as its language backbone.

5.4 MAIN RESULTS

Existing MLLMs exhibit pronounced disparities in chart-to-code generation across different pro-
gramming languages, as shown in Table 1. ChartCoder, the state of the art among open-source

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on ChartMimic, Plot2Code, and Chart2NCode test set. ER ⇑ denotes execu-
tion rate, CB ⇑ denotes the code-similarity score CrystalBLEU, DS ⇑ denotes the image-similarity
score DreamSim, F1 ⇑ denotes the heuristic F1 score for Python scripts, and GS ⇑ denotes the
image-similarity GPT-4o scoring. A “-” indicates that no executable script is generated.

Models
ChartMimic Plot2Code Chart2NCode
Chart2Python Chart2Python Chart2Python Chart2R Chart2LaTeX

ER CB DS F1 ER CB DS F1 ER GS DS F1 ER GS DS ER GS DS
Propriety Multimodal Large Language Models

GPT-5-mini 86.8 13.6 86.9 71.5 93.2 8.9 85.9 72.8 85.2 80.0 89.0 67.5 90.3 81.2 82.5 49.7 41.1 75.2
GPT-4o-mini 89.0 9.0 77.5 70.2 90.2 20.7 77.8 67.0 94.8 79.8 81.2 74.5 89.5 70.3 75.4 94.7 70.4 61.2
GPT-4o 93.2 10.2 83.5 79.0 92.4 24.2 83.6 75.4 98.5 87.4 85.0 80.9 94.5 78.3 78.8 88.4 69.8 72.4
Claude-Haiku-3.5 88.0 7.5 76.2 65.7 87.1 16.2 72.8 56.8 91.3 76.7 81.6 68.8 93.0 73.9 76.2 78.2 55.3 57.3
Claude-Sonnet-4 96.2 13.7 83.3 79.5 95.5 12.9 81.2 76.8 98.3 88.0 86.8 81.4 93.9 83.1 82.0 92.7 72.2 76.0

Open-source Multimodal Large Language Models
Qwen3-VL-2B 59,0 6.2 68.9 40.4 68.9 13.0 64.2 50.1 74.0 59.6 78.0 61.0 56.5 42.0 52.4 56.0 37.4 60.8
Qwen3-VL-4B 78.8 7.6 71.9 59.7 77.3 12.9 66.4 55.4 87.6 77.2 83.2 76.1 75.4 60.9 66.4 62.4 45.2 68.6
Qwen3-VL-8B 81.8 7.9 72.5 64.0 78.8 14.2 68.1 56.9 91.1 80.8 83.7 80.6 73.6 57.2 72.7 77.3 57.1 66.8
InternVL3.5-2B 51.2 4.4 67.0 32.3 61.4 12.2 55.7 44.2 69.8 53.2 76.1 53.1 61.8 44.9 53.4 9.6 4.7 52.6
InternVL3.5-4B 66.6 7.7 70.1 46.0 62.1 13.3 58.8 42.7 77.9 63.4 78.4 63.0 66.8 51.5 56.4 25.7 14.7 55.5
InternVL3.5-8B 74.0 8.1 70.9 51.7 74.2 13.9 61.0 49.1 82.5 67.5 79.6 67.0 67.0 48.2 67.6 81.1 53.3 57.1
DeepSeek-VL-7B 41.3 4.7 67.8 19.0 64.4 13.3 59.4 47.0 65.9 52.5 74.2 44.6 58.8 40.6 57.0 17.5 12.3 49.8
Phi-3.5-vision-4B 66.7 6.9 44.1 38.6 72.7 14.9 63.8 42.6 68.8 56.1 53.3 34.2 47.0 33.5 52.5 7.9 5.1 42.9
LLaVA-v1.5-7B 33.0 0.7 49.6 6.7 34.9 7.1 52.1 10.4 32.9 40.2 51.9 8.9 41.4 31.0 50.7 19.4 11.7 41.0
GLM-4.5v-108B 88.4 8.7 73.3 67.6 83.3 13.3 80.8 56.2 85.0 79.5 85.6 77.3 85.3 70.3 77.2 80.8 63.8 62.6
ChartLlama-13B 70.8 0.0 45.0 15.9 81.8 4.1 50.1 22.4 65.3 14.8 46.0 16.2 13.0 6.2 44.8 81.7 49.2 32.5
TinyChart-3B 84.1 8.1 60.8 53.9 81.1 12.1 64.0 54.0 92.1 86.3 46.5 55.2 - - - - - -
ChartMoE-8B 55.0 1.3 56.9 25.7 70.5 6.7 58.9 26.9 69.5 40.2 64.2 35.4 39.3 25.5 52.9 17.1 11.1 27.9
ChartCoder-7B 88.9 8.8 61.3 59.3 87.9 13.9 65.7 56.6 96.2 86.4 48.1 56.1 - - - 17.9 10.6 39.1
CharLuMA-1.3B 84.8 7.3 75.1 57.5 83.3 14.5 64.3 47.2 94.4 78.4 86.5 76.9 94.5 73.3 78.9 84.5 65.1 71.3
CharLuMA-6.7B 91.8 8.6 79.2 70.3 96.2 15.8 68.3 60.5 98.0 88.1 88.7 83.5 96.5 80.9 81.8 89.0 74.2 72.5

systems for chart-to-Python generation, achieves 86.4 GS and 48.1 DS on the Python subset of
Chart2NCode, while its performance deteriorates significantly on other languages, with the execu-
tion rate dropping to 17.9 on the LaTeX subset and failing to generate valid R scripts. General-
purpose open-source models such as DeepSeek-VL-7B and Phi-3.5-Vision show larger imbalances
on Chart2NCode, achieving execution rates above 65 on Python but falling below 20 on LaTeX.
DeepSeek-VL-7B further exhibits sharp degradation in chart quality, with DreamSim dropping from
74.2 in Python to 57.0 in R and 54.2 in LaTeX. Proprietary models display the same tendency in
a more moderate form, as GPT-5-mini and Claude-Haiku-3.5 achieve execution rates above 85 and
heuristic F1 scores above 65 on Python, while their performance declines when extended to LaTeX.

CharLuMA effectively addresses the cross-language disparity and establishes itself as the most
capable open-source MLLM for general chart-to-code generation. CharLuMA-6.7B delivers the
strongest results on well-established chart-to-Python benchmarks among open-source models,
achieving 79.2 DS and 70.3 F1 on ChartMimic, and 68.3 DS and 60.5 F1 on Plot2Code. The
smaller CharLuMA-1.3B also performs competitively, with 75.1 DS and 57.5 F1 on ChartMimic,
and 64.3 DS and 47.2 F1 on Plot2Code, indicating its parameter efficiency. On the multi-language
Chart2NCode test set, both models sustain robust and balanced performance across Python, R, and
LaTeX. CharLuMA-6.7B achieves 88.7 DS and 83.5 F1 on Python, 81.8 DS and 80.9 GS on R, and
72.5 DS and 74.2 GS on LaTeX, demonstrating consistent generalization beyond Python. Notably,
CharLuMA-6.7B outperforms Claude-Haiku-3.5 on most metrics across all benchmarks and delivers
performance comparable to GPT-4o-mini on ChartMimic and Chart2NCode. These results under-
score CharLuMA’s ability to advance open-source chart-to-code generation beyond single-language
dominance, narrowing the gap with proprietary systems.

6 FURTHER STUDY

We conduct ablation studies and in-depth analyses to disentangle the contributions of different com-
ponents in CharLuMA, demonstrating its robustness and interpretability.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of alternative multimodal
projector architectures during the instruction
tuning stage of CharLuMA-1.3B and -6.7B on
the Chart2NCode test set. Results are averaged
over all three languages.

Model
Size

Projector
Architecture

Chart2NCode
ER CB DS

1.3B
Linear MLP 88.1 14.8 76.9

Mixture-of-MLP 87.9 13.8 75.1
Subspace Adapter 91.1 23.2 78.9

6.7B
Linear MLP 91.0 20.3 78.2

Mixture-of-MLP 91.9 19.3 77.4
Subspace Adapter 94.5 24.5 81.0

Table 3: Ablation study of subspace settings,
router configurations, and training choices in
CharLuMA-1.3B on the Chart2NCode test set,
with results averaged over all three languages.

Total
Subspace

Activated
Subspace

Total
Router

Chart2NCode
ER CB DS

16 8 3 88.9 21.4 77.6
32 8 3 89.4 22.1 77.8
64 32 3 87.8 19.6 75.6
32 16 1 86.1 17.1 75.1
32 32 0 85.8 16.6 73.2
32 16 3 91.1 23.2 78.9

w/o warming up before finetuning 87.1 18.8 75.6
w/o freezing A matrix of adapter 90.2 21.9 78.0

6.1 MODEL ARCHITECTURE ABLATION

We conduct ablation studies on CharLuMA-1.3B with the Chart2NCode test set to examine alterna-
tive architectures, subspace–router configurations, and training choices.

Alternative Architecture. We compare our low-rank subspace adapter with two alternative projec-
tor designs in Table 2. The linear MLP block serves as a standard baseline (Belouadi et al., 2024b;a;
Zhao et al., 2025) but yields modest improvements, with the 1.3B model staying 88.1 ER and 14.8
CB. The Mixture-of-MLP design (Li et al., 2025; Xu et al., 2025) replaces the MLP block with a
sparsely gated mixture-of-experts, each initialized from a pretrained MLP block, and we adapt it
with a hard-routing policy that always activates the language-specific and shared experts (see Ap-
pendix C.2). This raises the execution rate to 91.9 but leads to reduced code and image similarity
on the 6.7B model. In contrast, our low-rank subspace adapter achieves the strongest results across
both model sizes, combining language-aware specialization with parameter efficiency.

Effect of Subspace Number. We compare CharLuMA-1.3B under different total and activated
subspace settings. In Table 3, rows 1–3 demonstrate that moderate scaling from 16 to 32 subspaces
improves diversity and performance, while further expansion to 64 leads to degradation in code
accuracy and visual similarity. These results suggest that the 32–16 configuration provides the best
balance between expressiveness and efficiency for subspace specialization.

Effect of Routing Policy. We compare different routing strategies for activating subspaces in
CharLuMA-1.3B. In Table 3, rows 4–5 show that replacing the three language-specific routers with
a single shared router reduces CrystalBLEU from 23.2 to 17.1, while removing routers altogether
lowers it further to 16.6. These results confirm the importance of language-guided routing policy for
maintaining code fidelity and cross-language alignment.

Effect of Training Choices. In Table 3, row 7 shows that removing the warming-up stage lowers
CrystalBLEU from 23.2 to 18.8 and DreamSim from 78.9 to 75.6, underscoring its role in stabilizing
subspace and router specialization. Row 8 shows that unfreezing the A matrix reduces CrystalBLEU
to 21.9 and DreamSim to 78.0, indicating that freezing A helps maintain a compact low-rank repre-
sentation while supporting effective language-specific specialization.

Table 4: Ablation study of backbone choices in Char-
LuMA on the Chart2NCode test set, with results aver-
aged over all three languages.

Language Model Vision
Encoder

Chart2NCode
ER CB DS

DeepSeek-LLM-7B SigLIP 88.6 21.8 77.1
DeepSeek-Coder-6.7B CLIP 88.8 22.0 79.2
DeepSeek-Coder-6.7B SigLIP 94.5 24.5 81.0

Effect of Backbone Choices. We exam-
ine the effect of backbone choices in Char-
LuMA by modifying the language model
and vision encoder separately. First,
we replace DeepSeek-Coder-6.7B with
the general-purpose DeepSeek-LLM-7B
while keeping the vision encoder fixed.
Second, we replace SigLIP with CLIP-
Large with an input resolution of 336 ×
336 while retaining the original language
model. As reported in Table 4, the default
configuration with DeepSeek-Coder-6.7B

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Python+R+LaTeX

Python+R+LaTeX

Python+R+LaTeX

Python+R

Python+LaTeX

R+LaTeX

Python

R
LaTeX

Python+R

Python+LaTeX

R+LaTeX

Imbalance

Imbalance

Imbalance

Training Language Structure

40%
65%
90%

Exec. Rate

Python

LaTeX
R

Language

Figure 4: Ablation study of language structure us-
ing CharLuMA-1.3B on Chart2NCode.

CharLuMA-6.7B CharLuMA-1.3B w/o warm-up
adapter (1.3B)

w/o freeze
A matrix (1.3B)

w/o language
balance (1.3B)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sh
ar

ed
-s

ub
sp

ac
e

ra
tio

Mean
Median 95% Confidence Interval

Figure 5: Distribution of shared-subspace ratios
across CharLuMA and ablated models.

and SigLIP achieves the strongest execution rate, CrystalBLEU, and DreamSim scores, whereas
each alternative substitution leads to a consistent drop in performance across all metrics.

6.2 LANGUAGE STRUCTURE ABLATION

We study the effect of language diversity and balance on the general chart-to-code generation ca-
pability of MLLMs by varying the number of programming languages during training, with the
number of routers matched to the number of languages. All language configurations are trained with
the same strategy and number of steps as CharLuMA-1.3B (see Section 5.1 and Appendix C.2) and
evaluated on the Chart2NCode test set restricted to the languages included in training. As shown
in Figure 4, greater language diversity leads to substantial improvements. Models trained on three
languages achieve the highest execution rates and the strongest code- and image-level similarity
scores across all target languages, whereas two-language and single-language settings fall behind by
large margins. Moreover, training on the diverse but imbalanced source distribution (76.6% Python,
19.2% R and 4.2% LaTeX) further skews the model toward the dominant language and degrades
its performance on the other languages. These results demonstrate that language diversity enhances
both cross-language generalization and in-language robustness by leveraging the learning signals
inherent in cross-language equivalences. At the same time, balanced supervision is critical, as im-
balances in the training data introduce systematic biases that undermine universality. Together, these
findings underscore the importance of Chart2NCode as the first balanced multi-language dataset for
enabling robust and equitable chart-to-code generation.

6.3 SUBSPACE ACTIVATION ANALYSIS

(a) CharLuMA-1.3B (b) CharLuMA-6.7B

Figure 6: Heatmap of subspace activa-
tion frequency for CharLuMA.

We visualize the subspace activation patterns of
language-specific routers in CharLuMA-1.3B and
CharLuMA-6.7B in Figure 6. The heatmaps display
the normalized activation frequency of 32 subspaces
for each language and reveal a hybrid allocation of the
subspace pool, with compact shared clusters alongside
broader language-specific zones. In CharLuMA-1.3B,
subspaces 21, 23, and 30 are frequently activated
across all languages, while subspace 1 is used primarily
for Python, 18 for R, and 17 for LaTeX. In contrast,
CharLuMA-6.7B shows a more balanced distribution,
with most subspaces—such as 8, 20, and 29—exhibiting
intermediate activation frequencies across the three
languages, indicating smoother cross-language integration.

We compute the shared-subspace ratio to quantify the cross-language allocation of experts. For
each chart, it is defined as the proportion of experts simultaneously activated by all language-specific
routers relative to the total set of experts activated (see Appendix C.2). Figure 5 reports the distribu-
tion of this ratio over a random 1k sample from Chart2NCode. CharLuMA-1.3B achieves a median
ratio of 0.19, corresponding to roughly 5 experts shared within a total activation pool of about 27,
indicating a compact shared core complemented by broad language-private allocation. CharLuMA-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.7B shows a similar pattern with a median of 0.18, where about 4.9 experts are shared out of 27.5
on average, suggesting that scaling preserves and slightly reinforces this balanced allocation. In
contrast, the ablated 1.3B variants exhibit inflated ratios (0.23–0.24), where more experts are pulled
into shared use while the overall activated pool shrinks, indicating weakened specialization.

6.4 QUALITATIVE ANALYSIS

We conduct a qualitative analysis that combines error diagnosis of CharLuMA-6.7B and compar-
isons with GPT-4o and ChartCoder across multiple benchmarks. For error analysis, we find that
execution failures often stem from mismatched data dimensions or undefined variables in Python
and R, and from syntax issues such as missing braces in LaTeX, while successful runs may still
diverge due to missing annotations, misclassified chart subtypes, or stylistic inconsistencies. For
model comparison, case studies from Chart2NCode and ChartMimic demonstrate that CharLuMA
consistently produces faithful outputs across Python, R, and LaTeX, whereas GPT-4o shows re-
duced reliability in R and LaTeX, and ChartCoder frequently fails to produce valid code in these
two languages. More details are provided in Appendix C.4 and Appendix C.5.

7 CONCLUSION

We introduced CharLuMA, a multimodal LLM for chart-to-code generation with a language-guided
mixture of low-rank subspaces in its multimodal projector, and Chart2NCode, a dataset of 176k visu-
ally aligned Chart–Python–R–LaTeX quadruples. CharLuMA achieves state-of-the-art performance
among open-source MLLMs, with ablation studies showing that balanced multi-language training
enhances cross-language generalization and mitigates bias toward dominant languages. Subspace
analyses further reveal a hybrid allocation of shared and language-specific regions that supports
both transfer and fidelity. By leveraging parallel code views of the same chart across languages, we
show that cross-language alignment provides a powerful supervisory signal for robust and accurate
code generation. These contributions pave the way toward universal, language-flexible chart-to-code
systems that better reflect the diverse software ecosystems in practice.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza

10

https://arxiv.org/abs/2404.14219

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 23716–23736. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude-4.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile
abilities. ArXiv, abs/2308.12966, 2023. URL https://api.semanticscholar.org/
CorpusID:263875678.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. AutomaTikZ: Text-guided synthesis of scientific
vector graphics with TikZ. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=v3K5TVP8kZ.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. Detikzify: Synthesizing graphics pro-
grams for scientific figures and sketches with tikz. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024b. URL https://openreview.net/forum?
id=bcVLFQCOjc.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 17300–17311, 2023. doi:
10.1109/ICCV51070.2023.01591.

Chenhao Ding, Jiangyang Li, SongLin Dong, Xinyuan Gao, Yuhang He, and Yihong Gong. Su-
LoRA: Subspace low-rank adaptation for parameter-efficient fine-tuning. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2025, pp. 5334–5349, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
findings-acl.278. URL https://aclanthology.org/2025.findings-acl.278/.

Aryaz Eghbali and Michael Pradel. Crystalbleu: precisely and efficiently measuring the similarity of
code. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, ICSE ’22, pp. 341–342, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392235. doi: 10.1145/3510454.3528648. URL https:
//doi.org/10.1145/3510454.3528648.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data. In Advances in Neural Information Processing Systems, volume 36, pp. 50742–50768,
2023.

Kanika Goswami, Puneet Mathur, Ryan Rossi, and Franck Dernoncourt. Plotgen: Multi-agent llm-
based scientific data visualization via multimodal retrieval feedback. In Companion Proceedings
of the ACM on Web Conference 2025, WWW ’25, pp. 1672–1676, New York, NY, USA, 2025.
Association for Computing Machinery. ISBN 9798400713316. doi: 10.1145/3701716.3716888.
URL https://doi.org/10.1145/3701716.3716888.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://api.semanticscholar.org/CorpusID:263875678
https://api.semanticscholar.org/CorpusID:263875678
https://openreview.net/forum?id=v3K5TVP8kZ
https://openreview.net/forum?id=bcVLFQCOjc
https://openreview.net/forum?id=bcVLFQCOjc
https://aclanthology.org/2025.findings-acl.278/
https://doi.org/10.1145/3510454.3528648
https://doi.org/10.1145/3510454.3528648
https://doi.org/10.1145/3701716.3716888
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. Chartllama: A multimodal llm for chart understanding and generation, 2023.

Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang,
and Xuanjing Huang. Distill visual chart reasoning ability from llms to mllms, 2025. URL
https://arxiv.org/abs/2410.18798.

Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey
Shi, and Longyin Wen. Cumo: scaling multimodal llm with co-upcycled mixture-of-experts.
In Proceedings of the 38th International Conference on Neural Information Processing Systems,
NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, 2022. URL https://api.semanticscholar.org/
CorpusID:246411402.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
Shao, Keqin Chen, Jiaming Han, Siyuan Huang, Yichi Zhang, Xuming He, Hongsheng Li, and
Yu Qiao. Sphinx: The joint mixing of weights, tasks, and visual embeddings for multi-modal
large language models, 2023. URL https://arxiv.org/abs/2311.07575.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=w0H2xGHlkw.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
26286–26296, 2024. doi: 10.1109/CVPR52733.2024.02484.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-
vl: Towards real-world vision-language understanding, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun yue Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In International Conference on Learning Representations,
2023. URL https://api.semanticscholar.org/CorpusID:264491155.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024a. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence.

OpenAI. Hello gpt-4o, 2024b. URL https://openai.com/index/hello-gpt-4o.

OpenAI. Gpt-5 is here, 2025. URL https://openai.com/gpt-5/.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang. Chart-
mimic: Evaluating LMM’s cross-modal reasoning capability via chart-to-code generation. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=sGpCzsfd1K.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan

12

https://arxiv.org/abs/2410.18798
https://api.semanticscholar.org/CorpusID:246411402
https://api.semanticscholar.org/CorpusID:246411402
https://arxiv.org/abs/2311.07575
https://openreview.net/forum?id=w0H2xGHlkw
https://openreview.net/forum?id=w0H2xGHlkw
https://api.semanticscholar.org/CorpusID:264491155
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/hello-gpt-4o
https://openai.com/gpt-5/
https://openreview.net/forum?id=sGpCzsfd1K
https://openreview.net/forum?id=sGpCzsfd1K
https://arxiv.org/abs/2505.09388

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025. URL https://arxiv.org/abs/2507.01006.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: an asymmetric
lora architecture for efficient fine-tuning. In Proceedings of the 38th International Conference on
Neural Information Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates
Inc. ISBN 9798331314385.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fer-
gus, Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric ex-
ploration of multimodal llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Pro-
cessing Systems, volume 37, pp. 87310–87356. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
9ee3a664ccfeabc0da16ac6f1f1cfe59-Paper-Conference.pdf.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang
Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
Changyao Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
Wenhai Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
ity, reasoning, and efficiency, 2025a. URL https://arxiv.org/abs/2508.18265.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv:
charting gaps in realistic chart understanding in multimodal llms. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS ’24, Red Hook, NY,
USA, 2025b. Curran Associates Inc. ISBN 9798331314385.

Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 3006–3028,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
89176-195-7. doi: 10.18653/v1/2025.findings-naacl.164. URL https://aclanthology.
org/2025.findings-naacl.164/.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adap-
tation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 7880–7899, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.450. URL https://aclanthology.org/2024.emnlp-main.
450/.

Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, Chengjin Xu, Chun Yuan, and Jian Guo. Chart-
moe: Mixture of diversely aligned expert connector for chart understanding. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=o5TsWTUSeF.

Pengyu Yan, Mahesh Bhosale, Jay Lal, Bikhyat Adhikari, and David Doermann. Chartreformer:
Natural language-driven chart image editing. In Document Analysis and Recognition - IC-
DAR 2024: 18th International Conference, Athens, Greece, August 30–September 4, 2024,

13

https://arxiv.org/abs/2507.01006
https://proceedings.neurips.cc/paper_files/paper/2024/file/9ee3a664ccfeabc0da16ac6f1f1cfe59-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9ee3a664ccfeabc0da16ac6f1f1cfe59-Paper-Conference.pdf
https://arxiv.org/abs/2508.18265
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2025.findings-naacl.164/
https://aclanthology.org/2024.emnlp-main.450/
https://aclanthology.org/2024.emnlp-main.450/
https://openreview.net/forum?id=o5TsWTUSeF
https://openreview.net/forum?id=o5TsWTUSeF

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proceedings, Part I, pp. 453–469, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-
031-70532-8. doi: 10.1007/978-3-031-70533-5 26. URL https://doi.org/10.1007/
978-3-031-70533-5_26.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. MatPlotAgent:
Method and evaluation for LLM-based agentic scientific data visualization. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 11789–11804, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.701. URL https://aclanthology.org/
2024.findings-acl.701/.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qi Qian,
Ji Zhang, Fei Huang, and Jingren Zhou. mplug-owl: Modularization empowers large language
models with multimodality, 2024. URL https://arxiv.org/abs/2304.14178.

Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 9556–9567, 2024. doi: 10.1109/CVPR52733.2024.00913.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 11941–11952, 2023a. doi: 10.1109/ICCV51070.2023.01100.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training, 2023b.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei
Huang. TinyChart: Efficient chart understanding with program-of-thoughts learning and vi-
sual token merging. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
1882–1898, Miami, Florida, USA, November 2024a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.112. URL https://aclanthology.org/2024.
emnlp-main.112/.

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna Wang, Yongliang Shen, Zeqi Tan, Guiyang
Hou, Mingqian He, Yanna Ma, Weiming Lu, and Yueting Zhuang. Multimodal self-instruct: Syn-
thetic abstract image and visual reasoning instruction using language model. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 19228–19252, Miami, Florida, USA, November
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1072.
URL https://aclanthology.org/2024.emnlp-main.1072/.

Zhihan Zhang, Yixin Cao, and Lizi Liao. XFinBench: Benchmarking LLMs in complex finan-
cial problem solving and reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 8715–8758, Vienna, Austria, July 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.457. URL
https://aclanthology.org/2025.findings-acl.457/.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun.
ChartCoder: Advancing multimodal large language model for chart-to-code generation. In
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 7333–7348, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.363. URL
https://aclanthology.org/2025.acl-long.363/.

14

https://doi.org/10.1007/978-3-031-70533-5_26
https://doi.org/10.1007/978-3-031-70533-5_26
https://aclanthology.org/2024.findings-acl.701/
https://aclanthology.org/2024.findings-acl.701/
https://arxiv.org/abs/2304.14178
https://aclanthology.org/2024.emnlp-main.112/
https://aclanthology.org/2024.emnlp-main.112/
https://aclanthology.org/2024.emnlp-main.1072/
https://aclanthology.org/2025.findings-acl.457/
https://aclanthology.org/2025.acl-long.363/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
A framework of small-scale large multimodal models, 2024. URL https://arxiv.org/
abs/2402.14289.

A LLM USAGE

Large Language Models (LLMs) were utilized in this work solely as auxiliary tools for linguistic
refinement. Their function was restricted to enhancing grammar, clarity, and stylistic consistency of
text that had been originally drafted by the authors. At no stage did LLMs contribute to research
ideation, methodological design, data collection, analysis, or interpretation of results. All intellec-
tual contributions, scientific content, and conclusions presented in this paper are entirely attributable
to the authors. The authors accept full responsibility for the accuracy, originality, and integrity of
the submission, including sections of text that may have been refined with the assistance of LLMs.

B DATASET

B.1 DATA ACQUISITION

We collect single-language plotting scripts from established datasets and publicly available repos-
itories as our source data. ChartCoder (Zhao et al., 2025) contributes approximately 160k chart-
to-Python scripts, while DaTikZ (Belouadi et al., 2024a) provides 49k vector-graphics-to-Python
scripts, of which 8.8k correspond to charts with explicit axis structures. In addition, we curated 40k
R plotting scripts from widely used online resources including R gallery 2 and stack overflow 3. To
handle deprecated or non-executable scripts encountered during crawling, we employed GPT-4o as
an automated debugging assistant, guided by the prompt instructions in Figure 8, with a total API
cost of 132.2 USD.

B.2 ANNOTATION PIPELINE

Metadata Structure and Extraction. We adopt a hierarchical metadata schema to capture chart
information at three levels: figure, axis, and object. This structure provides a standardized represen-
tation of chart elements across languages while preserving both global properties and fine-grained
graphical details. At the figure level, metadata records global properties such as the overall title,
background color and legend, plot size (width, height, and units), twin-axis relationships, and sub-
plot layout. For each axis, metadata focuses on type-agnostic attributes including axis titles, x- and
y-axis labels, tick values and labels, legends, grids, panel boxes, background color, and annota-
tions. At the object level, metadata captures fine-grained properties of graphical elements grouped
into patches, lines, collections, and images. For each object, visual properties such as color, trans-
parency, line width, marker style, and hatch patterns are recorded, together with precise geometric
information such as rectangle bounds, circle centers and radii, polygon vertices, line coordinates,
scatter offsets, and heatmap arrays. Cleaned labels are associated with color or stylish values where
available, ensuring consistency with legends and categorical encodings.

Metadata is extracted by executing or parsing plotting scripts in their native environments. For
Python plotting scripts, each script is executed in an isolated runtime, and the figure is in-
spected using fig.get axes(). Axis-level attributes are gathered through standard APIs
such as ax.get title(), ax.get xlabel(), and ax.get yticks(). Object-level el-
ements are obtained by iterating over ax.patches, ax.lines, ax.collections and so
on. For R scripts based on ggplot, code is evaluated to collect the plotting object p built via
ggplot build(). We extract axis-level metadata from structures such as p$labels$title,
p$mapping$y, and p$theme$panel.border, while object-level metadata is obtained by it-
erating over p$layers. For base R graphics, we wrap high-level functions like barplot, hist,
and boxplot, as well as low-level commands such as text, legend, and grid, to capture

2https://r-graph-gallery.com/all-graphs.html
3Retrieved using StackAPI with keywords representative of R plotting functions and libraries, including

ggplot, plot ly, geom, plot(, hist, boxplot and so on.

15

https://arxiv.org/abs/2402.14289
https://arxiv.org/abs/2402.14289

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Instruction Prompt for Handling Missing Templates in Post-Debugging

You are provided with a {original language} plotting script as shown below. Your
task is to transform it to {target language} language, starting with “‘{target
language symbol} and ending with “‘.
{original plotting script}

Figure 7: Instruction Prompt for Handling Missing Templates in Post-Debugging

metadata during execution. For LaTeX, we use the regular-expression parsing to detect axis en-
vironments while drawing commands are parsed to recover object geometries such as rectangles,
circles, and paths.

Template Design. The templates are parameterized chart skeletons that translate extracted metadata
into executable plotting code. Each template specifies placeholders for chart elements such as titles,
axis labels, ticks, grids, legends, annotations, and objects, which are directly filled from metadata.
The overall structure is consistent across languages, but implementation details differ. Taking the
bar type for example, Python uses functions like ax.bar or ax.barh in matplotlib, R employs
geom bar in ggplot, and LaTeX relies on declarative PGFPlots options such as xbar, ybar and
addplot using TikZ.

To maintain cross-language consistency during template instantiation, we employ an attribute-
mapping process that normalizes visual properties across Python, R, and LaTeX. Legend locations
are aligned so that values such as “upper right” in Python correspond to “right” in R and “north east”
in LaTeX. Font styles are unified by mapping bold and italic settings into Python’s weight and style
fields, R’s fontface descriptors, or LaTeX commands like bfseries and itshape. Font sizes
are standardized by converting numeric values in Python and R into LaTeX size categories such
as small or Large. Annotation alignment is harmonized by translating Python’s top, bottom,
and center into equivalent justification values in R and LaTeX. Marker and line styles are also con-
solidated through shared dictionaries, ensuring that a logical style such as circle, dashed, or cross is
rendered consistently across all languages. This mapping guarantees that semantic attributes are pre-
served even when the syntax differs, allowing metadata extracted in one language to be instantiated
in another without loss of fidelity.

Metadata-Template Matching. A critical step in our automatic pipeline is to identify the correct
template once the metadata of a chart has been extracted. We address this by assigning each chart
a type and subtype based on patterns in the object-level metadata. Taking bar charts for example,
we examine the geometry of rectangular patches: overlapping intervals reveal stacked bars, repeated
clusters of equal size indicate grouped bars, with other cases default to base bars. For pie charts,
subtype inference is based on patch geometry and offsets: the presence of an inner radius or nonzero
x position signals a donut chart, displaced segment centers indicate exploded pies, and their combi-
nation yields donut–exploded pies. These inference rules allow the system to automatically select
the most appropriate template across chart variants without manual intervention.

LLM-assisted Debugging. We incorporate an LLM-assisted debugging module based on GPT-4o
to handle cases where no suitable template can be identified or when an instantiated template fails
to execute. Instruction prompts for these two scenarios are provided in Figure 7 and Table 8. The
total expenditure on the OpenAI API amounts to 316.6 USD.

Our automatic pipeline finally generates 176K Chart-Python-R-LaTex quadruples, with 14.7% are
refined via LLM-assisted debugging. A randomly sampled set of 1,000 examples is reserved as the
test set. The average code lengths are 3998.5 and 4229.3 characters for the training and test sets,
respectively. The dataset covers a broad range of chart types, including bar (18.8%), line (17.1%),
scatter (13.2%), pie (7.3%), ring (5.1%), radar (5.73%), histogram (4.59%), box (4.43%), heatmap
(3.56%), violin (3.13%), error point (2.94%), area (2.81%), density (2.79 %), error bar (2.68%),
bubble (2.2%), and others (3.64 %).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Instruction Prompt for Failed Template Execution in Post-Debugging

You are provided with two code snippets. The first is the original code, a {original
language} plotting script serving as the reference implementation. The second is the
transformed code, a version of the original script translated into {target language},
which is currently unexecutable due to syntax or logic errors.
Original Code: {original plotting script}
Transformed Code: {failed template}
Your task is to identify and correct all errors in the transformed code that prevent it from
executing. The corrected script must produce a chart that is semantically equivalent to the
one generated by the original code. High-level chart semantics such as axis labels, tick
values, bar orientation, or grouping should remain unchanged unless modification is
required for successful execution. You may reorder code lines, fix syntax issues, and adjust
function arguments as needed. Please output only the corrected code, starting with
“‘{target language symbol} and ending with “‘.

Figure 8: Instruction Prompt for Failed Template Execution in Post-Debugging

B.3 QUALITY ASSURANCE

We conduct a human evaluation to systematically assess the cross-language fidelity of Chart2NCode.
We randomly sample 1,000 chart–Python–R–LaTeX quadruples from the Chart2Ncode dataset,
which are independently annotated by three annotators. All annotators were recruited on campus,
with eligibility requiring prior experience in data visualization and programming in Python, R, and
LaTeX. They were compensated in accordance with the institution’s standard remuneration policies
for academic work. We conduct pairwise evaluations for each quadruple, comparing the repro-
duced charts in Python, R, and LaTeX against the original image, and annotators assess their fidelity
across four dimensions. Structural fidelity measures whether the geometric arrangement of the chart
is preserved, including the number and configuration of subplots as well as axis orientation. Data
integrity evaluates whether the underlying quantitative values are reproduced exactly, meaning that
the reconstructed chart reflects the same data table as the original. Semantic consistency assesses
whether textual and categorical information is maintained, ensuring that titles, axis labels, legends,
and annotations convey the same meaning without omissions, substitutions, or hallucinations. Stylis-
tic coherence concerns the visual presentation, requiring that non-semantic design elements—such
as color palettes, font attributes, line styles, gridline visibility, and panel borders—remain consistent
with the original chart. All dimensions are rated on a 1–5 scale, where 1 denotes severe mismatch
and 5 denotes perfect alignment.

Table 5: Proportion (%) of examples with average rat-
ing ≥ 4 on 1,000 sampled quadruples, reported per an-
notator and averaged across annotators. Overall row
averages the four dimensions.

Dimension Ann. 1 Ann. 2 Ann. 3 Avg.

Structural fidelity 98.3 97.1 97.5 97.6
Data integrity 90.5 91.5 92.8 91.6
Semantic consistency 94.9 96.6 95.7 95.7
Stylistic coherence 96.2 95.0 95.5 95.6

Overall 95.0 94.3 94.6 94.6

We compute the average per-dimension
score across annotators for each exam-
ple, and report the proportion of exam-
ples achieving an average score of at least
4. As shown in Table 5, the evalua-
tion results confirm high fidelity across di-
mensions: 97.6% of examples exceed the
threshold for structural fidelity, 91.6% for
data integrity, 95.7% for semantic consis-
tency, and 95.6% for stylistic coherence.
To further assess reliability, we compute
Fleiss’ κ on binarized labels (rating ≥ 4
vs. < 4). The resulting average Fleiss’ κ
of 0.83 indicates substantial agreement be-
yond chance, representing a strong and practical level of consistency for human judgment in chart
reproduction tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

"object": {
"patches": [
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": -0.3, "y": 0.0, "width": 0.2, "height": 120.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 0.7, "y": 0.0,"width": 0.2, "height": 150.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 1.7, "y": 0.0, "width": 0.2, "height": 170.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 2.7, "y": 0.0, "width": 0.2, "height": 200.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 3.7, "y": 0.0, "width": 0.2, "height": 210.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": -0.1, "y": 0.0, "width": 0.2, "height": 60.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 0.9, "y": 0.0, "width": 0.2, "height": 80.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 1.9, "y": 0.0, "width": 0.2, "height": 90.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 2.9, "y": 0.0, "width": 0.2, "height": 100.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 3.9, "y": 0.0, "width": 0.2, "height": 110.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 0.1, "y": 0.0, "width": 0.2, "height": 30.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 1.1, "y": 0.0, "width": 0.2, "height": 50.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 2.1, "y": 0.0, "width": 0.2, "height": 40.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 3.1, "y": 0.0, "width": 0.2, "height": 70.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid",
"hatch": null, "geometry": {"x": 4.1, "y": 0.0, "width": 0.2, "height": 60.0}}],
"lines": [], "collections": [], "images": []}}}

import matplotlib.pyplot as plt
import numpy as np

dates = ['2023-10-01', '2023-10-02', '2023-10-03', '2023-10-04', '2023-10-05']
posts = [120, 150, 170, 200, 210]
comments = [60, 80, 90, 100, 110]
shares = [30, 50, 40, 70, 60]

fig, ax = plt.subplots(figsize=(8, 6))

bar_width = 0.2
x = np.arange(len(dates))
palette = ['#FFDAB9', '#191970', '#DEB887']
edge_color = 'black'
bars1 = ax.bar(x - bar_width, posts, width=bar_width, color=palette[0],
edgecolor=edge_color, label='Posts')
bars2 = ax.bar(x, comments, width=bar_width, color=palette[1], edgecolor=edge_color,
label='Comments')
bars3 = ax.bar(x + bar_width, shares, width=bar_width, color=palette[2],
edgecolor=edge_color, label='Shares')

ax.set_title('Social Media Engagement over Days', fontsize=15)
ax.set_xticks(x)
ax.set_xticklabels(dates)
ax.set_ylabel('Count', fontsize=12)
ax.set_xlabel('Date', fontsize=12)
ax.grid(True, which='both', axis='y', linestyle='--', alpha=0.7)
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels, loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
plt.tight_layout()
plt.show()

library(ggplot2)

tick_labels <- c('2023-10-01','2023-10-02','2023-10-03','2023-10-04','2023-10-05')
group_labels <- c('Posts','Comments','Shares')
values <- list(c(120,150,170,200,210), c(60, 80, 90,100,110), c(30, 50, 40, 70,
60))
colors <- c('#ffdab9','#191970','#deb887')
df <- data.frame(
 Category = factor(rep(tick_labels, times = length(group_labels)), levels =
tick_labels),
 Group = factor(rep(group_labels, each = length(tick_labels)), levels =
group_labels),
 Value = unlist(values)
)

p <- ggplot(df, aes(x = Category, y = Value, fill = Group)) +
 geom_bar(stat = "identity", position = position_dodge(width = 0.8), width = 0.8,
show.legend = TRUE) +
 scale_fill_manual(values = colors, breaks = group_labels, labels = group_labels) +
 labs(title = "Social Media Engagement over Days", x = "Date", y = "Count", fill =
"Group") +
 theme(
 plot.title = element_text(size = 15, hjust = 0.5, face = "plain"),
 axis.title.x = element_text(size = 12, face = "plain"),
 axis.title.y = element_text(size = 12, face = "plain"),
 panel.background = element_rect(fill = "#ffffff"),
 panel.grid.major = element_line(color = "grey"),
 panel.border = element_rect(colour = "black", fill = NA, size = 0.5),
 legend.position = "right"
)
p <- p + scale_y_continuous(breaks = c(0.0, 25.0, 50.0, 75.0, 100.0, 125.0, 150.0,
175.0, 200.0, 225.0), labels = c('0', '25', '50', '75', '100', '125', '150', '175',
'200', '225'))
p <- p + guides(fill = guide_legend(ncol = 1))
print(p)

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepgfplotslibrary{groupplots}
\usepackage[x11names, rgb]{xcolor}
\definecolor{c00}{HTML}{FFDAB9}
\definecolor{c01}{HTML}{191970}
\definecolor{c02}{HTML}{DEB887}
\definecolor{cb}{HTML}{FFFFFF}

\begin{document}
\begin{tikzpicture}
\begin{axis}[
 ybar, bar width=0.2, width=8.0in, height=6.0in,
 title=Social Media Engagement over Days, title style={font=\large, align=center},
 xlabel=Date, x tick label style={font=\small, align=center},
 ylabel=Count, y tick label style={font=\small, align=center},
 xtick={0, 1, 2, 3, 4}, xticklabels={{2023-10-01}, {2023-10-02}, {2023-10-03},
{2023-10-04}, {2023-10-05}},
 xtick align=center, enlarge x limits=0.2, ymin=0, grid=major, axis lines=box,
 legend style={legend pos=north east, legend columns=1}, axis
background/.style={fill=cb}
]

\addplot+[ybar, fill=c00, bar shift=-0.180] coordinates {
 (0, 120.0) (1, 150.0) (2, 170.0) (3, 200.0) (4, 210.0)};
\addplot+[ybar, fill=c01, bar shift=0.000] coordinates {
 (0, 60.0) (1, 80.0) (2, 90.0) (3, 100.0) (4, 110.0)};
\addplot+[ybar, fill=c02, bar shift=0.180] coordinates {
 (0, 30.0) (1, 50.0) (2, 40.0) (3, 70.0) (4, 60.0)};
\legend{ {Posts}, {Comments}, {Shares} }

\end{axis}
\end{tikzpicture}
\end{document}

{ "plot_size": {"width": 8.0, "height": 6.0, "unit": "inch"},
 "twin_axes": {},
 "axes_layout": { "n_row": 1, "n_col": 1},
 "facecolor": "#ffffff",
 "ax_0": {
 "type_agnostic": {
 "axis": {"type": "rectilinear", "aspect": "auto"},
 "title": {"content": "Social Media Engagement over Days",
 "size": 15.0, "style": "normal,normal"},
 "x_label": {"content": "Date", "size": 12.0,
 "style": "normal,normal"},
 "y_label": {"content": "Count", "size": 12.0,
 "style": "normal,normal"
 },
 "x_ticks": [{"text": "2023-10-01", "position": ["0",0]},
 {"text": "2023-10-02", "position": ["1",0]},
 {"text": "2023-10-03", "position": ["2",0]},
 {"text": "2023-10-04", "position": ["3",0]},
 {"text": "2023-10-05", "position": ["4",0]}],
 "y_ticks": [{"text": "0", "position": [0,0.0]},

 {"text": “25”, "position": [0,25.0]},
 {"text": “50”, "position": [0,50.0]},
 {"text": “75”, "position": [0,75.0]},
 {"text": “100”, "position": [0,100.0]},
 {"text": “125”, "position": [0,125.0]},
 {"text": “150”, "position": [0,150.0]},
 {"text": “175”, "position": [0,175.0]},
 {"text": “200”, "position": [0,200.0]},
 {"text": “225”, "position": [0,225.0]},],

 "legend": {"exist": true, "loc": 1,"ncol": 1},
 "grid": {"x": true, "y": true},
 "panel_box": true,
 "background_color": "#ffffff",
 "annotation": [],
 "label_to_color": {"Posts": "#ffdab9",
 "Comments": "#191970","Shares": "#deb887"},
 "container_type": [
 "BarContainer","BarContainer","BarContainer"]
 },

"type_specific": {
 "type": ["bar"], "sub_type": "grouped-bar", "orientation": "vertical",
 "template": ["bar_grouped_vertical_r.jinja", "bar_grouped_vertical_latex.jinja"]}

Source Script in Python

Metadata
Metadata-Template

Matching

Script in R Script in LaTex

Figure 9: Case study of annotation pipeline in a vertical grouped bar chart.

B.4 CASE STUDY

We present two illustrative cases in Figure 9 and Figure 10 to demonstrate the functionality of our
annotation pipeline.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

{
 "object": {
 "patches": [],
 "lines": [
 {"object_type": "GeomLine", "color": "#6FB585", "linewidth": 0.5, "linestyle": 1,
 "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y": [2.1,2.3,2.8,3.2,3.7,4.1,4.6,4.9,5.4,5.9]}},
 {"object_type": "GeomLine", "color": "#E8BF80", "linewidth": 0.5, "linestyle": 1,
 "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y":
[2.25,2.3,2.4,2.5,2.6,2.675,2.8,2.9,2.975,3.075]}},
 {"object_type": "GeomLine", "color": "#A8BF85", "linewidth": 0.5, "linestyle": 1,
 "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y":
[1.875,1.95,2.05,2.125,2.25,2.325,2.4,2.475,2.575,2.625]}}
],
 "collections": [
 {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#6FB585"]*10,
 "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
 "geometry": [[1,2.1],[2,2.3],[3,2.8],[4,3.2],[5,3.7],[6,4.1],[7,4.6],[8,4.9],[9,5.4],
[10,5.9]]},
 {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#E8BF80"]*10,
 "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
 "geometry": [[1,2.25],[2,2.3],[3,2.4],[4,2.5],[5,2.6],[6,2.675],[7,2.8],[8,2.9],[9,2.975],
[10,3.075]]},
 {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#A8BF85"]*10,
 "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
 "geometry": [[1,1.875],[2,1.95],[3,2.05],[4,2.125],[5,2.25],[6,2.325],[7,2.4],[8,2.475],
[9,2.575],[10,2.625]]}
],
 "images": []
 }
}

library(ggplot2)

data <- data.frame(
 D = 1:10,
 R = c(2.1, 2.3, 2.8, 3.2, 3.7, 4.1, 4.6, 4.9, 5.4, 5.9),
 M = c(5.5, 5.7, 6.1, 6.5, 6.9, 7.2, 7.7, 8.1, 8.4, 8.8),
 A = c(4.0, 4.3, 4.7, 5.0, 5.5, 5.8, 6.1, 6.4, 6.8, 7.0)
)

ggplot(data, aes(x = D)) +
 geom_line(aes(y = R), color = "#6FB585") +
 geom_point(aes(y = R), size = 3, color = "#6FB585") +
 geom_line(aes(y = M * 0.25 + 0.875), color = "#E8BF80") +
 geom_point(aes(y = M * 0.25 + 0.875), size = 3, color = "#E8BF80") +
 geom_line(aes(y = A * 0.25 + 0.875), color = "#A8BF85") +
 geom_point(aes(y = A * 0.25 + 0.875), size = 3, color = "#A8BF85") +
 scale_y_continuous(name = 'R', sec.axis = sec_axis(~(.-0.875)/0.25, name = 'M and
A')) +
 labs(
 title = "Relationship between D and R, M, A",
 x = "D",
 y = "R"
) +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))
dev.off()

import matplotlib.pyplot as plt

num_group = 3
x_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y_values = [[2.1, 2.3, 2.8, 3.2, 3.7, 4.1, 4.6, 4.9, 5.4, 5.9], [2.25, 2.3, 2.4,
2.5, 2.6, 2.675, 2.8, 2.9, 2.975, 3.075], [1.875, 1.95, 2.05, 2.125, 2.25, 2.325,
2.4, 2.475, 2.575, 2.625]]
line_color = ['#6fb585', '#e8bf80', '#a8bf85']
line_style = ['-', '-', '-']
line_width = [1.0, 1.0, 1.0]
marker_color = ['#6fb585', '#e8bf80', '#a8bf85']
marker_style = ['o', 'o', 'o']
marker_size = [8, 8, 8]

fig, ax = plt.subplots(figsize=(7, 7))

for i in range(num_group):
 ax.plot(
 x_values,
 y_values[i],
 color=line_color[i],
 linestyle=line_style[i],
 linewidth=line_width[i],
 marker=marker_style[i],
 markersize=marker_size[i],
 markerfacecolor=marker_color[i]
)

ax.set_xlabel("D", fontsize=12, fontweight="normal", fontstyle="normal")
ax.set_ylabel("R", fontsize=12, fontweight="normal", fontstyle="normal")
ax.set_title("Relationship between D and R, M, A", fontsize=14, fontweight="bold",
fontstyle="normal")
ax.set_yticks([2.0, 3.0, 4.0, 5.0, 6.0])
ax.set_yticklabels(['2', '3', '4', '5', '6'])
ax.grid(True)
for spine in ax.spines.values():
 spine.set_visible(False)
ax.set_facecolor("#ffffff")

plt.tight_layout()
plt.show()

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepgfplotslibrary{fillbetween}
\usepackage[x11names, rgb]{xcolor}
\definecolor{c00}{HTML}{6FB585}
\definecolor{c01}{HTML}{E8BF80}
\definecolor{c02}{HTML}{A8BF85}
\definecolor{cb}{HTML}{FFFFFF}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
 width=7in, height=7in,
 title=Relationship between D and R, M, A, title style={font=\normalsize\bfseries},
 xlabel=D, x tick label style={font=\normalsize, align=center},
 ylabel=R, y tick label style={font=\normalsize, align=center},
 ytick={2.0, 3.0, 4.0, 5.0, 6.0}, yticklabels={{2},{3},{4},{5},{6},},
 enlarge x limits=0.05, enlarge y limits=0.05,
 grid=major, axis lines=none, axis background/.style={fill=cb}
]
\addplot+[
 color=c00, mark=o, mark options={fill=c00, scale=3pt},
 line width=0.2pt, style=solid
] coordinates {
 (1, 2.1) (2, 2.3) (3, 2.8) (4, 3.2) (5, 3.7) (6, 4.1) (7, 4.6) (8, 4.9) (9, 5.4) (10,
5.9)};
\addplot+[
 color=c01, mark=o, mark options={fill=c01, scale=3pt},
 line width=0.2pt, style=solid
] coordinates {
 (1, 2.25) (2, 2.3) (3, 2.4) (4, 2.5) (5, 2.6) (6, 2.675) (7, 2.8) (8, 2.9) (9, 2.975)
(10, 3.075)};
\addplot+[
 color=c02, mark=o, mark options={fill=c02, scale=3pt},
 line width=0.2pt, style=solid
] coordinates {
 (1, 1.875) (2, 1.95) (3, 2.05) (4, 2.125) (5, 2.25) (6, 2.325) (7, 2.4) (8, 2.475) (9,
2.575) (10, 2.625)};
\end{axis}
\end{tikzpicture}
\end{document}

{ "plot_size": {"width": 7, "height": 7, "unit": "inch"},
"twin_axes": [],
"axes_layout": { "n_row": 1, "n_col": 1},
"facecolor": "#ffffff",
"ax_0": {

"type_agnostic": {
"axis": {"position": null, "type": "cartesian", "aspect": null},
"title": {"content": "Relationship between D and R, M, A",

"size": 14, "style": "bold"},
"x_label": {"content": "D", "size": "NA", "style": null},
"y_label": {"content": "R", "size": "NA", "style": null},
"x_ticks": [{"text": "2.5", "position": [2, 0]},

{"text": "5", "position": [3, 0]},
{"text": "7.5", "position": [4, 0]},
{"text": "10", "position": [5, 0]}], "

y_ticks": [{"text": "2", "position": [0, 1]},
{"text": "3", "position": [0, 2]},
{"text": "4", "position": [0, 3]},
{"text": "5", "position": [0, 4]},
{"text": "6", "position": [0, 5]}],

"legend": {"exist": false, "loc": null, "ncol": null},
"grid": {"x": true, "y": true},
"panel_box": false,
"background_color": "#ffffff",
"annotation": [],
"label_to_color": []

},

"type_specific": {
 "type": ["line"], "sub_type": "dotted-line", "orientation": "vertical",,
 "template": ["line_multi_marker_python.jinja", "line_multi_marker_latex.jinja"]}

Source Script in R

Metadata Metadata-Template Matching

Script in Python Script in LaTex

Figure 10: Case study of annotation pipeline in a dotted line chart.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL SETTINGS AND RESULTS

C.1 TRAINING AND EVALUATION SETTINGS

We adopt SigLIP (Zhai et al., 2023b) as the vision encoder and DeepSeek-Coder (Guo et al., 2024)
as the LLM backbone, yielding two variants of our model: CharLuMA-1.3B and CharLuMA-6.7B.
The multimodal connector is implemented as a standard two-layer MLP block augmented with our
low-rank subspace adapter.

For alignment pretraining, we train the MLP block for one epoch on 900k chart–JSON pairs from
ChartMoE-Align (Xu et al., 2025), while freezing both the vision encoder and LLM, with a learning
rate of 2e-4. During instruction tuning, we first warm up the subspace pool and language-specific
routers for 274 steps, and then perform full fine-tuning of the LLM backbone for one epoch on 175k
chart–Python–R–LaTeX quadruples from Chart2NCode. In this stage, the vision encoder and MLP
block remain frozen, the adapter is updated, and the learning rates are set to 2e-4 for warm-up and
2e-5 for fine-tuning. The low-rank projector within the adapter remains frozen throughout. Each
training batch is constructed to include all three languages.

All training experiments are conducted with a global batch size of 128 on 8× NVIDIA L40S GPUs.
The total training cost for CharLuMA-1.3B is approximately 82 GPU hours, consisting of 35 GPU
hours for pretraining, 6 GPU hours for warm-up, and 41 GPU hours for fine-tuning. For CharLuMA-
6.7B, the total cost is about 321 GPU hours, including 109 GPU hours for pretraining, 18 GPU hours
for warm-up, and 193 GPU hours for fine-tuning. More training hyperparameters are in Table 6.

Table 6: Training hyperparameters for CharLuMA across stages in Section 5.1.
Hyperparameter Alignment Pretraining Warm-up Instruction Tuning

Learning rate 2e-4 2e-4 2e-5
LR schedule Cosine decay Cosine decay Cosine decay
Optimizer AdamW AdamW AdamW
Max tokens 2,048 2,048 2,048
Vision encoder Frozen Frozen Frozen
LLM Frozen Frozen Trainable
MLP Block Trainable Frozen Frozen
Adapter Frozen Trainable Trainable

For evaluation, we follow a standardized setup across all baselines, fixing the maximum
token length to 2,048. The prompting format for the chart-to-code generation task is
shown in Figure 11, adapted from Shi et al. (2025). Proprietary MLLMs evaluated in-
clude gpt-4o-2024-08-06, gpt-4o-mini-2024-07-18, gpt-5-mini-2025-08-07,
claude-3-5-haiku-20241022, and claude-sonnet-4-20250514, all accessed
through their official APIs. For open-source MLLMs, we directly run released checkpoints on
NVIDIA L20 GPUs.

C.2 DETAILED ANALYSIS SETTING

Alternative Architecture. We compare our language-guided low-rank subspace adapter with two
alternative connector architectures: a linear MLP and a Mixture-of-MLP. In the linear MLP setting,
the pretrained MLP block, initialized on chart–JSON pairs, is directly fine-tuned on Chart2NCode.
In the Mixture-of-MLP setting, four experts are initialized from the pretrained MLP block, one of
which is frozen as a shared expert, while the remaining three serve as language-specific experts.
Hard routing is applied such that, in a Python generation task, the Python-specific expert is activated
jointly with the shared expert. This setup mirrors the configuration with four experts in total, of
which two are activated for each time, as reported in prior studies Li et al. (2025); Xu et al. (2025).
Warm-up training is also employed in this setting, followed by continued training with the LLM
backbone.

Language Structure Ablation. We conduct a language structure ablation to examine the impact of
varying the number of plotting languages and corresponding routers during training, while strictly
controlling the total number of training steps. In the full three-language configuration, the model
is trained on 175k chart images paired with 175 × 3 = 525k plotting scripts, evenly split across

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Python, R, and LaTeX. For the single-language setting, we keep the dataset size constant by training
on 175k chart–script pairs but increase the number of epochs to three. For the two-language setting,
we preserve the same number of training steps by randomly duplicating half of the available plot-
ting scripts to reach the equivalent scale. This ensures that all configurations—one, two, or three
languages—are trained under comparable conditions. For the imbalanced configuration, we train
on the source data described in Appendix B.1, and maintain the same number of training steps by
randomly duplicating samples, as in the two-language setting. The training strategy for all language
configurations are the same in Section 4.2.

Shared Subspace Ratio. The shared-subspace ratio is a statistic we design to quantify how much
different language-specific routers rely on the same experts when processing the same chart. For-
mally, for each chart example c, let Sc,l ⊆ {0, . . . , N −1} denote the set of activated experts chosen
by the router for language l, with N = 32 in our standard setting. Each router activates a fixed num-
ber of experts (top–k, with k = 16 in our experiments). Given the set of languages Lc available for
chart c, we define Ic =

⋂
l∈Lc

Sc,l and Uc =
⋃

l∈Lc
Sc,l, where Ic is the set of experts shared across

all languages and Uc is the total set of experts activated by any language. The shared-subspace ratio
for chart c is then Rc =

|Ic|
|Uc| , which lies in [0, 1]. A high value indicates that most experts are shared

across languages, while a low value indicates that only a few experts are shared and the rest are
language-specific.

C.3 PROMPT SENSITIVITY STUDY

Table 7: Sensitivity study of evaluation prompt
on Chart2NCode test set using Phi-3.5-vision and
CharLuMA-1.3B.

Model Prompt
Version

Chart2NCode
ER CB DS

Phi-3.5-vision
Default 41.2 7.7 49.6

Version 1 41.4 7.5 49.9
Version 2 41.0 7.5 49.6

CharLuMA-1.3B
Default 91.1 23.2 78.9

Version 1 91.0 23.1 79.1
Version 2 91.2 22.9 79.0

We adopt the prompt used in ChartMimic (Shi
et al., 2025) to maintain experimental consis-
tency, as illustrated in Figure 11. To ensure
that the inclusion of the phrase “a STEM paper”
does not introduce unintended bias, we conduct
a targeted prompt sensitivity analysis. Specif-
ically, we evaluate two variants: (i) removing
only the phrase “a STEM paper,” and (ii) re-
moving the entire sentence in which it appears.
Both ChartLuMA-1.3B and Phi-3.5-vision are
assessed on the Chart2NCode test set under
these modified prompts. The results in Table 7
indicate that these variations yield no substan-
tive differences in performance, confirming the
robustness of our evaluation prompt.

C.4 ERROR ANALYSIS

We conduct an error analysis to identify the common sources of execution failures and reproduction
limitations of CharLuMA-6.7B. In terms of execution failures, Python and R scripts most frequently
break due to mismatched data dimensions or the use of undefined variables, whereas LaTeX scripts
typically fail because of syntax omissions, such as missing braces. For example, the Python case
in Figure 13(a) produces incompatible x–y list lengths when calling the ax.plot function. The R
case in Figure 13(b) invokes an undefined variable angle in a geom polygon call. The LaTeX
case in Figure 13(c) fails due to an omitted closing curly brace in the title and x-tick label definition.

For reproduction limitations, the generated code executes but yields charts that diverge from the ref-
erence in various ways. We observe three recurring patterns: (i) annotation errors, such as missing
legends or hallucinated axis labels; (ii) chart type errors, where the model misclassifies the intended
chart subtype; and (iii) stylistic errors, including incorrect color palettes, font settings, or line styles.
For instance, the reproduced chart in Figure 13(a) from ChartMimic mislabels a group name (“AI-
Dive” instead of “AIDeepDive”) and incorrectly overlays an additional filled area in the radar plot
that does not exist in the gold chart. Figure 13(b), also from ChartMimic, shows a subtype recog-
nition error, where stacked error bars are generated in place of grouped error bars. The case in
Figure 13(c) from Chart2NCode using R demonstrates malformed x-tick labels (a missing “=”) and
an ordering of bars inconsistent with the gold chart. Finally, the LaTeX example in Figure 13(d)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt Template of Chart-to-code Generation Task enhanced

You are an expert {target language} developer who specializes in writing matplotlib
code based on a given picture. I found a very nice picture in a STEM paper, but there is no
corresponding source code available. I need your help to generate the {target
language} code that can reproduce the picture based on the picture I provide.
Now, please give me the matplotlib code that reproduces the picture below, starting with
”“‘{target language symbol}” and ending with ”“‘”.

Figure 11: Prompt Template of Chart-to-code Generation Task

Prompt Template of GPT-4o Scoring enhanced

You are an excellent judge at evaluating visualization chart plots. The first image (reference
image) is created using ground truth matplotlib code, and the second image (AI-generated
image) is created using matplotlib code generated by an AI assistant. Your task is to score
how well the AI-generated plot matches the ground truth plot.
Scoring Methodology:
The AI-generated image’s score is based on the following criteria, totaling a score out of
100 points: 1. Chart Types (20 points): Does the AI-generated image include all chart types
present in the reference image (e.g., line charts, bar charts, etc.)? 2. Layout (10 points):
Does the arrangement of subplots in the AI-generated image match the reference image
(e.g., number of rows and columns)? 3. Text Content (20 points): Does the AI-generated
image include all text from the reference image (e.g., titles, annotations, axis labels),
excluding axis tick labels? 4. Data (20 points): How accurately do the data trends in the
AI-generated image resemble those in the original image and is the number of data groups
the same as in the reference image? 5. Style (20 points): Does the AI-generated image
match the original in terms of colors (line colors, fill colors, etc.), marker types (point
shapes, line styles, etc.), legends, grids, and other stylistic details? 6. Clarity (10 points): Is
the AI-generated image clear and free of overlapping elements?
Evaluation:
Compare the two images head to head and provide a detailed assessment. Use the following
format for your response: — Comments: - Chart Types: ${your comment and subscore} -
Layout: ${your comment and subscore} - Text Content: $your comment and subscore -
Data: ${your comment and subscore} - Style: ${your comment and subscore} - Clarity:
${your comment and subscore} Score: ${your final score out of 100} — Please use the
above format to ensure the evaluation is clear and comprehensive.

Figure 12: Prompt Template of Chart-to-code Generation Task

from Chart2NCode exhibits an incorrect color scheme and hallucinates additional text annotations
within a pie chart.

C.5 EXAMPLES

We qualitatively compare CharLuMA-6.7B with GPT-4o and ChartCoder on representative cases
drawn from both the Chart2NCode test set and ChartMimic. In the Chart2NCode examples (Fig-
ure 15, Figure 16, and Figure 17), CharLuMA-6.7B consistently reproduces high-quality charts
across Python, R, and LaTeX, whereas GPT-4o exhibits reduced reliability in R and LaTeX, and
ChartCoder frequently fails to generate valid scripts in these languages. We also present four chart-
to-Python examples from ChartMimic (Figure 18), which highlight CharLuMA-6.7B’s strong chart
reproduction ability in Python, performing on par with GPT-4o and ChartCoder, the current state-
of-the-art among open-source MLLMs for chart-to-Python generation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

import matplotlib.pyplot as plt
import numpy as np
categories_1 = ['Cost Reduction', 'Eco Factor', 'User Options', 'Long-term', 'Short-
term']
values_1 = [
 [2500, 3000, 3500],
 [3200, 3600, 4000],
 [3800, 4200, 4600],
 [2800, 3100, 3400],
 [3000, 3300, 3600]
]
categories_2 = ['Technology', 'Throughput', 'Latency', 'Speed', 'Scalability']
values_2 = [
 [8000, 12000, 15000],
 [10000, 14000, 16000],
 [11000, 15000, 17000],
 [9000, 13000, 14000],
 [9500, 13500, 15500]
]
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
bar_width = 0.35
index = np.arange(len(categories_1))
bars1 = ax1.bar(index, [v[0] for v in values_1], bar_width, label='Method 1')
bars2 = ax1.bar(index + bar_width, [v[1] for v in values_1], bar_width,
label='Method 2')
ax1.set_xlabel('Categories', fontsize=10)
ax1.set_ylabel('Values', fontsize=10)
ax1.set_title('Efficiency Analysis', fontsize=14)
ax1.set_xticks(index + bar_width / 2)
ax1.set_xticklabels(categories_1, fontsize=8, rotation=45)
ax1.legend(loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
ax1.grid(True, which='major', axis='y', linestyle='--', linewidth=0.7)
for i, (v1, v2) in enumerate(zip(values_2, values_2)):
 ax2.plot(categories_2, v1, marker='o', linestyle='-', label='Method 1' if i == 0
else "")
 ax2.plot(categories_2, v2, marker='s', linestyle='--', label='Method 2' if i ==
0 else "")
ax2.set_xlabel('Measures', fontsize=10)
ax2.set_ylabel('Performance Metrics', fontsize=10)
ax2.set_title('Performance Evaluation', fontsize=14)
ax2.legend(loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
ax2.grid(True, which='major', axis='y', linestyle='-.', linewidth=0.7)
plt.tight_layout()

(a) Error Case for Python

library(ggplot2)
library(dplyr)
data_labels <- c('3500', '4200', '5100')
data <- data.frame(
 resource = c(3500, 4200, 5100),
 resource = c(3700, 4300, 5200),
 resource = c(3900, 4400, 5300)
)
data <- data %>%
 mutate(angle = seq(0, 2 * pi, length.out = ncol(data) + 1)[-1])
data_long <- data %>%
 tidyr::pivot_longer(cols = everything(), names_to = "variable", values_to =
"value")
ggplot(data_long, aes(x = angle, y = value, group = variable, color = variable)) +
 geom_polygon(fill = "green", alpha = 0.25) +
 geom_line(size = 1) +
 scale_x_continuous(breaks = data$angle, labels = data_labels) +
 coord_polar() +
 theme_minimal() +
 theme(
 axis.text.x = element_text(size = 12, family = "sans"),
 axis.title = element_blank(),
 legend.position = "right",
 legend.title = element_blank()
) +
 labs(title = "Supply Chain Resources")
dev.off()

(b) Error Case for R (c) Error Case for LaTex

\documentclass{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{groupplots}
\usepgfplotslibrary{colorbrewer}
\usepackage{xcolor}
\usepgfplotslibrary{colormaps}
\definecolor{cb}{HTML}{FFFFFF}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
 axis equal image,
 width=10.0in,
 height=8.0in,
 title=Economic Indicators,
 title style={font=\large},
 xtick=data,
 ytick=data,
 xticklabels={
 {GDP Growth Rate (\
 {Unemployment Rate (\
 {Inflation Rate (\
},
 yticklabels={{2018}, {2019}, {2020}, {2021}, {2022}},
 enlarge x limits=0.05,
 enlarge y limits=0.05,
 grid=major,
 nodes near coords,
 axis lines=box,
 colormap/Blues,
 point meta=explicit,
 colorbar,
 axis background/.style={fill=cb}
]
\addplot[
 matrix plot*,
 shader=flat corner,
 draw=none,
 mesh/cols=3,
 point meta=explicit
] table[row sep=\\, meta=value] {

 x y value \\
 1 1 3.5 \\
 2 1 5.2 \\
 3 1 2.1 \\
 1 2 3.0 \\
 2 2 4.8 \\
 3 2 1.8 \\
 1 3 -1.9 \\
 2 3 2.4 \\
 3 3 1.2 \\
 1 4 2.3 \\
 2 4 6.0 \\
 3 4 2.5 \\
 1 5 3.7 \\
 2 5 5.1 \\
 3 5 3.0 \\
};
\end{axis}
\end{tikzpicture}
\end{document}

ValueError: x and y must have same first
dimension, but have shapes (5,) and (3,)

Error in `geom_polygon()`:
! Problem while computing aesthetics.
ℹ Error occurred in the 1st layer.
Caused by error:
! object 'angle' not found

(Continue)

(Continue)

Runaway argument?
 axis equal image, width=10.0in, height=8.0in,
title=Economic Indicat\ETC.

Figure 13: Case study of execution errors in generated code for CharLuMA-6.7B.

(a) Case from
ChartMimic using

Python

Gold Chart Reproduced Chart

(b) Case from
ChartMimic using

Python

(c) Case from
Chart2NCode using

R

(d) Case from
Chart2NCode using

LaTex

Figure 14: Case study of reproduction errors in generated charts for CharLuMA-6.7B.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute

Figure 15: Case study of a grouped bar chart input and generated outputs from the Chart2NCode
test set across three plotting languages.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute Fail to Execute

Figure 16: Case study of a box chart input and generated outputs from the Chart2NCode test set
across three plotting languages.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute Fail to Execute

Figure 17: Case study of a two-subplot chart input and generated outputs from the Chart2NCode
test set across three plotting languages.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Gold Chart CharLuMA-6.7BGPT-4o ChartCoder

Figure 18: Case study of model inputs and generated outputs from ChartMimic in Python.

27

	Introduction
	Related Work
	The Chart2NCode Dataset
	Automatic Annotation
	Human Quality Checking
	Data Statistics

	The ChartLuMA Model
	Architecture
	Training Strategy

	Experiment
	Implementation Details
	Evaluation Settings
	Baselines
	Main Results

	Further Study
	Model Architecture Ablation
	Language Structure Ablation
	Subspace Activation Analysis
	Qualitative Analysis

	Conclusion
	LLM Usage
	Dataset
	Data Acquisition
	Annotation Pipeline
	Quality Assurance
	Case Study

	Experimental Settings and Results
	Training and Evaluation Settings
	Detailed Analysis Setting
	Prompt Sensitivity Study
	Error Analysis
	Examples

