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ABSTRACT

Chart-to-code generation involves translating a chart image into an executable
plotting script. However, prior work has largely focused on Python-only solu-
tions, limiting real-world applicability and leaving the learning signals inherent
in cross-language equivalences untapped. We argue that aligned multi-language
scripts serve as complementary “views” of the same chart, providing mutual guid-
ance to regularize the visual-to-code mapping. As an instantiation of this idea,
we introduce CharLuMA – a multimodal large language model (MLLM) that
integrates a language-guided mixture of low-rank subspaces into its multimodal
projector. This architecture enables parameter-efficient adaptation via dynamic
routing to language-specific subspaces, while preserving shared visual-semantic
representations of charts. To facilitate training and evaluation at scale, we present
Chart2NCode, a dataset of 176k Chart–Python–R–LaTeX quadruples that main-
tain consistent visual equivalence across languages. Experiments on multiple
benchmarks demonstrate that CharLuMA achieves state-of-the-art performance
among open-source MLLMs and even surpasses some proprietary systems. Crit-
ically, training with more diverse and balanced language sets yields consistent
and substantial improvements across all languages by leveraging the rich super-
visory signals embedded in cross-language equivalences. Subspace activation
analysis further reveals a hybrid allocation pattern, with compact shared cores
complemented by broader language-specific zones, while stronger models exhibit
smoother and more balanced allocations. Taken together, these results establish
multi-language alignment as an effective supervision paradigm for achieving uni-
versal chart-to-code generation1.

1 INTRODUCTION

Chart-to-code generation is the task of translating charts into executable plotting scripts that ac-
curately reconstruct the underlying data and visual design, positioned at the intersection of visual
understanding, code generation, and cross-modal reasoning (Shi et al., 2025). The demand for au-
tomated chart reproduction is increasing in various domains such as science, finance, and biology.
Recent advances in multimodal large language models (MLLMs) have demonstrated impressive per-
formance across a wide range of vision–language tasks, even approaching human-level capability
(Yue et al., 2024; Lu et al., 2023; Wang et al., 2025b; Zhang et al., 2025). Nevertheless, chart-to-
code generation remains a particularly demanding problem, requiring models to recover structured
data, interpret intricate visual encodings, and produce precise, executable code with strict fidelity.

Existing works focus on translating charts into single-language codes, predominantly using mat-
plotlib in Python (Shi et al., 2025; Zhao et al., 2025; Wu et al., 2025; Belouadi et al., 2024b;a).
For example, ChartMimic (Shi et al., 2025) introduced a benchmark with human-curated matplotlib
scripts for chart reconstruction, and ChartCoder (Zhao et al., 2025) trained a code-focused large lan-
guage model (LLM) on large-scale chart–Python pairs. While effective within the Python ecosys-
tem, this line of research overlooks the diversity of plotting libraries and languages used in prac-
tice—analysts in many fields rely on R (ggplot2) or LaTeX (TikZ), among others, to create charts.

1Codes and data are available at https://anonymous.4open.science/r/CharLuMA-226D.
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import matplotlib.pyplot as plt
cats = ["Carbon Sequestration","Biodiversity","Water 
Quality","Soil Health","Climate Adaptation"]
vals = [50, 80, 60, 40, 75]
cols = ['#8A2BE2','#F0F8FF','#00BFFF','#D2691E','#1E90FF']
fig, ax = plt.subplots(figsize=(8,5))
ax.bar(cats, vals, color=cols, width=0.8)
ax.set_facecolor("#dce3ef")
ax.grid(True, axis=“both”, linewidth=0.8)
for s in ax.spines.values(): s.set(color="black", linewidth=0.8)
ax.set_title("Ecological Metrics", fontsize=12, 
fontweight="normal")
ax.set_xlabel("Category", fontsize=12, fontweight="bold")
ax.set_ylabel("Value", fontsize=12, fontweight="bold")
plt.tight_layout(); plt.show()

Chart-to-Python
Router 
-Python

Router 
- LaTeX

Chart-to-R

\documentclass{standalone}\n\usepackage{pgfplots}
\n\pgfplotsset{compat=1.18}\n\usepackage[x11names,rgb]{xcolor}
\foreach \c/\h in {c00/8A2BE2, c01/F0F8FF, c02/00BFFF, c03/D2691E, 
c04/1E90FF, cb/DCE3EF}\n{\definecolor{\c}{HTML}{\h}}
\begin{document}\n\begin{tikzpicture}
\begin{axis}[ybar, width=8.5cm, height=5.5cm, title={Ecological 
Metrics}, xlabel={Category}, ylabel={Value}, xtick={0,...,4},
\nxticklabels={Carbon Sequestration,Biodiversity,Water Quality,Soil 
Health,Climate Adaptation}, enlarge x limits=0.2, ymin=0, grid=major, 
axis lines=box, axis background/.style={fill=cb},\ntitle 
style={font=\small}, x tick label 
style={font=\small\bfseries,align=center},\ny tick label 
style={font=\small\bfseries}]
\addplot+[fill=c00] coordinates {(0,50)}; \addplot+[fill=c01] 
coordinates {(1,80)};\n\addplot+[fill=c02] coordinates {(2,60)}; 
\addplot+[fill=c03] coordinates {(3,40)};\n\addplot+[fill=c04] 
coordinates {(4,75)};\n\end{axis}\n\end{tikzpicture}\n\end{document}

Chart-to-LaTeX

library(ggplot2)
tick_labels <- c('Carbon Sequestration', 'Biodiversity', 'Water 
Quality', 'Soil Health', 'Climate Adaptation')
values <- c(50.0, 80.0, 60.0, 40.0, 75.0)
colors <- c('#8a2be2', '#f0f8ff', '#00bfff', '#d2691e', '#1e90ff')
data <- data.frame(Category = factor(tick_labels, levels = 
tick_labels), Value = values, Fill = colors)
ggplot(data, aes(Category, Value, fill = Fill)) +
  geom_bar(stat = "identity", width = 0.8, show.legend = FALSE) +
  scale_fill_identity() +
  labs(title = "Ecological Metrics", x = "Category", y = "Value") +
  theme(plot.title = element_text(size = 12), axis.title = 
element_text(size = 12, face = "bold"), panel.background = 
element_rect(fill = "#dce3ef"), panel.grid.major = 
element_line(color = "grey"),  panel.border = element_rect(colour = 
"black", fill = NA, size = 0.5))
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Figure 1: Overview of chart-to-code generation task and CharLuMA architecture. We introduce
CharLuMA, a multimodal large language model for chart-to-code generation that augments the mul-
timodal projector with a language-guided mixture of low-rank subspaces.

This single-language focus limits real-world applicability and overlooks a key opportunity: cross-
language alignment. If a chart is faithfully expressed in different programming languages, those
parallel code snippets essentially offer different “views” of the same visualization. Prior works have
left the rich learning signal from such cross-language equivalence untapped.

To address these limitations, we introduce CharLuMA, a MLLM for chart-to-code generation that
is explicitly trained across multiple programming languages. CharLuMA extends a LLaVA-style ar-
chitecture (Liu et al., 2023) by enhancing its multimodal projector with a language-guided mixture
of low-rank subspaces (Figure 1). In essence, we equip the multimodal projector with a low-rank
adapter composed of lightweight subspaces, together with a routing mechanism that activates the
appropriate combination according to the target language. This design enables parameter-efficient
cross-language adaptation: the model learns to share core visual–semantic representations of charts
while dynamically adjusting its internal representation to the syntax and conventions of each spe-
cific language. By routing through language-specialized subspaces, CharLuMA strikes a balance
between cross-language generality and fine-grained language-specific fidelity in code generation.
Moreover, training and evaluating a multi-language chart-to-code model requires data that are pre-
cisely aligned across languages. Hence, we present Chart2NCode, a large-scale dataset of chart
images paired with visually equivalent plotting scripts in Python, R, and LaTeX. Chart2NCode con-
tains 176k examples, including a 1k test set, with each example provided as a quadruple: one chart
image and three parallel code scripts that faithfully render the same visualization. By enforcing
visual consistency across languages, these aligned quadruples offer a rich supervisory signal for
learning robust cross-language chart representations.

We demonstrate the effectiveness of our approach through extensive experiments on multiple
chart-to-code benchmarks, where CharLuMA achieves state-of-the-art results among open-source
MLLMs and even surpasses Claude-Haiku-3.5 and GPT-4o-mini on most metrics. Notably, training
with more diverse language sets consistently improves chart-to-code performance, as shown in Fig-
ure 4, not only by enhancing cross-language generalization but also by strengthening in-language ro-
bustness. When training data are imbalanced across languages, however, the model develops a clear
bias toward dominant languages, which limits its universality. This underscores that the learning
signals inherent in cross-language equivalences are essential for chart-to-code generation. Subspace
activation analysis further shows that CharLuMA allocates subspace capacity in a hybrid manner,
with compact clusters shared across languages and broader regions devoted to language-specific
specialization, while stronger models exhibit smoother and more balanced allocations.

In summary, our work establishes multi-language alignment as a powerful new paradigm for chart-
to-code generation. CharLuMA, together with the Chart2NCode dataset, represents a significant
step toward more universal and adaptable chart-to-code models. By leveraging complementary
views of the same chart across languages, we show that it is possible to regularize the visual-to-
code mapping and achieve more robust, accurate results than ever before. These contributions open
the door to chart-to-code systems that can serve a broader range of users and software ecosystems,
moving beyond Python-only solutions toward truly language-flexible chart generation.
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2 RELATED WORK

Multimodal Large Language Models. MLLMs employ multimodal projectors to bridge vision
encoders with large language models, enabling reasoning across modalities. Models such as BLIP-2
(Li et al., 2022), Flamingo (Alayrac et al., 2022), mPLUG-Owl (Ye et al., 2024), and Qwen-VL
(Bai et al., 2023) adopt Q-Formers or resamplers to compress visual tokens for efficient alignment
on large-scale image–text corpora. LLaVA (Liu et al., 2023; 2024) extends the instruction-tuning
paradigm to the visual domain, demonstrating that a simple MLP projector with one-to-one map-
ping can effectively align modalities without discarding visual information. Some works (Tong
et al., 2024; Lin et al., 2023) explore the combination of various vision encoder to enhance visual
representations. More recent work has scaled MLLMs by substituting dense MLP projectors with
sparsely gated mixture-of-experts architectures (Xu et al., 2025; Li et al., 2025), which parallelize
multiple MLP blocks but incur significant parameter overhead.

Chart-to-code generation task requires models to translate chart images into executable plotting
scripts, challenging MLLMs with demands in visual understanding, code generation, and cross-
modal reasoning. Prior efforts have primarily focused on chart-to-Python generation. Shi et al.
(2025) introduced a benchmark of manually curated matplotlib scripts, while Zhao et al. (2025)
released a large-scale training corpus. Yang et al. (2024) and Goswami et al. (2025) incorporate user
instructions and agent-based methods to enhenace the faithful code synthesis. Other studies untilize
chart-to-Python generation for aligning multimodal projectors (Xu et al., 2025) or constructing chart
question answering datasets (Zhang et al., 2024b; He et al., 2025). Beyond chart, Belouadi et al.
(2024a) and Belouadi et al. (2024b) have developed datasets for image-to-LaTeX generation towards
vector graphics. Nevertheless, these efforts remain restricted to single-language settings, which
limits practical applicability and overlooks the learning signals in cross-language equivalences.

3 THE CHART2NCODE DATASET

We present Chart2NCode, the first large-scale dataset that aligns chart-code pairs across multiple
programming languages. With 176k Chart-Python-R-LaTeX quadruples, Chart2NCode establishes
a comprehensive resource for developing and evaluating multi-language chart-to-code models.

3.1 AUTOMATIC ANNOTATION

We construct multi-language plotting scripts through an automatic annotation pipeline consisting
of metadata extraction, template instantiation, and post-debugging (Figure 2). We start by collect-
ing single-language plotting scripts as the source data. ChartCoder (Zhao et al., 2025) provides
large-scale Python plotting scripts, while DaTikZ (Belouadi et al., 2024a) contributes extensive
TikZ-based codes of scientific vector graphics in LaTeX, from which we extract only the subset
corresponding to charts. We further complement these resources by curating 40k R plotting scripts
from online platforms and chart galleries (see Appendix B.1).

Metadata Extraction. We extract language-agnostic metadata from single-language plotting scripts
at the figure, axis, and object levels. The figure level captures global attributes that determine the
overall layout and presentation of the chart. The axis level records structural elements that define
the coordinate system and its descriptive properties. The object level encodes graphical primitives
together with their visual styles, ensuring precise representation of chart content. Metadata are ob-
tained from plotting objects in each language (e.g., matplotlib.axes in Python), while LaTeX
scripts are processed via regular-expression parsing. Collectively, these layers yield a comprehensive
and lossless description of each chart, enabling faithful reconstruction across multiple languages.

Template Instantiation. We synthesize multi-language plotting scripts by identifying and filling
language-specific templates based on object-level patterns in the metadata. For instance, a horizontal
bar chart is characterized at the object level by rectangles of equal height and varying width, which
are organized into a data table and matched to the corresponding templates in different languages.
Our library comprises 202 human-curated templates spanning 33 chart subtypes in Python, R, and
LaTeX, derived from systematic observations of the source data. Once the appropriate template is
identified, it is instantiated with structured metadata such as titles, axis ticks, and data values. We
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Figure 2: Overview of the automatic annotation pipeline of Chart2NCode.

also add an attribute-mapping process during instantiation to maintain cross-language consistency,
such as mapping the bold font style in Python to the bfseries directive in LaTeX.

Post Debugging. In situations where template identifying is unsuccessful or script execution errors
occur, we incorporate an LLM-assisted debugging module powered by GPT-4o (OpenAI, 2024b). If
no suitable template exists, the module translates the available single-language script into the target
languages; if an instantiated template fails, it applies error correction to restore executability. Scripts
that remain invalid or produce deprecated figures are discarded to maintain dataset quality.

3.2 HUMAN QUALITY CHECKING

We conduct human evaluation to assess the cross-language fidelity of Chart2NCode. A random
sample of 1,000 quadruples is independently evaluated by three annotators across four dimen-
sions—structural fidelity, data integrity, semantic consistency, and stylistic coherence—with each
dimension rated on a 1–5 scale. The proportion of examples with an average score of at least 4
reaches 97.6% for structural fidelity, 91.6% for data integrity, 95.7% for semantic consistency, and
95.6% for stylistic coherence (see Appendix B.3). These results highlight the robust cross-language
consistency of Chart2NCode and its reliability for advancing chart-to-code generation research.

3.3 DATA STATISTICS

Chart2NCode encompasses a total of 176k Chart–Python–R–LaTeX quadruples through our auto-
matic pipeline, with 14.7% are refined via LLM-assisted debugging. The dataset spans 15 standard
chart types, including bar (18.8%), line (17.1%), scatter (13.2%), radar (5.73%), histogram (4.59%),
and box (4.43%). We constructed a test set of 1,000 randomly sampled examples that achieved
average scores of at least 4 across all quality aspects in Section 3.2. The average code lengths are
3,998.5 and 4,229.3 characters for the training and test sets, respectively. Comprehensive statistics
and details regarding the annotation pipeline are provided in Appendix B.2 and Appendix B.4.

4 THE CHARTLUMA MODEL

We propose CharLuMA, a chart-to-code MLLM that extends a LLaVA-style architecture with a
novel low-rank subspace adapter for efficient multi-language adaptation. The model is optimized
through a progressive training strategy that combines alignment pretraining with instruction tuning.

4.1 ARCHITECTURE

CharLuMA is composed of a vision encoder and a LLM backbone, connected through a two-layer
MLP projector augmented with a novel low-rank subspace adapter. The adapter is governed by a
language-guided routing policy that dynamically selects subspace experts based on both the chart’s
image features and the target language token, enabling language-specific specialization while main-
taining shared visual understanding, as illustrated in Figure 3.

Vision Encoder. We adopt SigLIP (Zhai et al., 2023a) as the vision encoder, configured with an
input resolution of 384 × 384. Pretrained on millions of image–text pairs, it provides strong priors
for extracting semantically meaningful visual features. Formally, given a chart input Xv , the vision
encoder gv(·) generates its corresponding representation Zv , i.e. Zv = gv(Xv).

4
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Figure 3: Overview of the CharLuMA architecture and training strategy. The adapter leverages
a language-guided routing policy combined with a mixture of low-rank subspaces. The training
proceeds through three stages: alignment pretraining, warm-up, and instruction tuning.

Multimodal Projector. The standard multimodal projector in LLaVA-style architectures (Liu et al.,
2023) is a two-layer MLP block W that performs a one-to-one transformation, mapping visual
features Zv into the embedding space of the LLM backbone. The resulting output, Hbase = WZv ,
serves as a shared base representation across languages.

To enable efficient language adaptation while preserving visual understanding, we augment this
linear MLP block with a low-rank subspace adapter (Ding et al., 2025; Wu et al., 2024; Chen et al.,
2023). The adapter comprises three components: a low-rank projector A, a language-specific router
Wl, and a subspace pool {bi}Ni=1. Given the visual features Zv , the projector A maps them into
a compact rank-r representation (r < N ). The router then determines which subspaces to activate
for the target language l ∈ {Python,R,LaTeX}, as specified in the text instruction. Concretely,
the router Wl applies a language-specific transformation to the mean-pooled visual feature Zv ,
yielding a probability distribution over the subspace pool. The top-r subspaces are then selected,
yl = topr(softmax(WlZv)) where yl denotes their indices, and concatenated to form the matrix
B = concati∈ylbi. The reconstruction matrix B is combined with the low-rank projector A to map
the visual features into the LLM embedding space, yielding an language-adaptable representation.
The final visual tokens injected into the LLM consists of visual tokens that merge the base and
language-adaptable representations:

Hv = Hbase +Hadapt = WZv +ABZv.

Large Language Model. We use DeepSeek-Coder (Guo et al., 2024) as the LLM backbone, with
1.3B and 6.7B variants named CharLuMA-1.3B and CharLuMA-6.7B. The visual tokens Hv pro-
duced by the multimodal projector are concatenated with the text tokens Ht to construct the input
sequence for the LLM gL(·). The final output is then obtained as gL(Hv;Ht).

4.2 TRAINING STRATEGY

Alignment Pretraining. We initialize the multimodal projector by pretraining the linear MLP block
W on ChartMoE-Align (Xu et al., 2025), a dataset covering 900k Chart–JSON pairs that capture
structural elements such as tables, annotations, and styles. The vision encoder and LLM backbone
remain frozen during this stage, ensuring that W learns to align visual features of charts with textual
schema representations without altering pretrained components (Yan et al., 2024).

Instruction Tuning. We augment the multimodal projector with the proposed low-rank subspace
adapter and fine-tune the model on Chart2NCode. We first warm up the language-specific routers
Wl (l ∈ {Python,R,LaTeX}) and the subspace pool {bi}Ni=1 over fixed steps, while keeping the
MLP block, vision encoder, and LLM backbone frozen. The low-rank projector A is randomly
initialized and kept frozen throughout training, ensuring that adaptation capacity is directed toward
language-specific diversities rather than redundantly modeling visual commonalities (Ding et al.,
2025; Tian et al., 2025). We then unfreeze the LLM backbone and continue training jointly with the
routers and subspace pool, while keeping the MLP block, vision encoder, and A frozen. This pro-
gressive protocol stabilizes routing and subspace specialization in the early phase, and subsequently
enables the LLM to effectively leverage language-adaptive visual tokens.
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5 EXPERIMENT

We demonstrate the effectiveness of CharLuMA through comprehensive experiments, which achieve
consistent improvements in multi-language chart-to-code generation across diverse benchmarks and
surpass competitive baselines.

5.1 IMPLEMENTATION DETAILS

During alignment pretraining, we train the MLP block for 1 epoch on 900k Chart–JSON pairs from
ChartMoE-Align (Xu et al., 2025), while keeping the vision encoder and LLM frozen, with a learn-
ing rate of 2e-4. During instruction tuning, we warm up the subspace pool and language-specific
routers for 274 steps, and then continue with full fine-tuning of the LLM backbone for 1 epoch on the
Chart2NCode training set, which contains 175k Chart–Python–R–LaTeX quadruples, while keeping
the MLP block and vision encoder frozen. The learning rates are set to 2e-4 for the warm-up phase
and 2e-5 for fine-tuning. We set the subspace size N = 32 and the rank r = 16, with detailed anal-
ysis provided in Section 6.1. All experiments are conducted with a global batch size of 128 on 8×
NVIDIA L40S GPUs. The total training cost is approximately 82 GPU hours for CharLuMA-1.3B
and 321 GPU hours for CharLuMA-6.7B. More details are provided in Appendix C.1.

5.2 EVALUATION SETTINGS

Datasets. We evaluate CharLuMA and the baselines on three chart-to-code datasets. The
Chart2NCode test set provides 1,000 charts paired with plotting scripts in Python, R, and LaTeX, en-
abling multi-language evaluation. ChartMimic (Shi et al., 2025) includes 2,400 charts with human-
curated matplotlib scripts in Python, spanning 22 chart types. Plot2Code (Wu et al., 2025) contains
132 high-quality matplotlib plots across 6 plot types.

Evaluation Metrics. We assess chart-to-code generation performance from three perspectives: ex-
ecutability, code similarity, and image fidelity. Execution Rate (ER) measures the proportion of
generated scripts that run successfully. CrystalBLEU (CB) (Eghbali & Pradel, 2022), a BLEU vari-
ant tailored for code, assesses code-level similarity. For image-level fidelity, we adopt DreamSim
(DS) (Fu et al., 2023), a fine-tuned metric for perceptual similarity. For Python scripts, we re-
port the averaged F1 score across text, layout, type, and color attributes (Shi et al., 2025), where
unexecutable scripts are assigned with zero values. To avoid code similarity inflation for models
trained on in-distribution data, we employ image-side GPT-4o scoring (GS) (Shi et al., 2025) on the
Chart2NCode test set, where unexecutable scripts are assigned with zero values as well.

5.3 BASELINES

General MLLMs. We evaluate both closed-source and open-source MLLMs as general-purpose
baselines. The closed-source group includes GPT-4o (OpenAI, 2024b), GPT-4o-mini (OpenAI,
2024a), GPT-5-mini (OpenAI, 2025), Claude-3.5-Sonnet (Anthropic, 2024), and Claude-Sonnet-4
(Anthropic, 2025). The open-source group covers representative vision–language models includ-
ing Qwen3-VL (Team, 2025), InternVL-3.5 (Wang et al., 2025a), GLM-4.5v (Team et al., 2025),
DeepSeek-VL (Lu et al., 2024), Phi-3.5-Vision (Abdin et al., 2024), and LLaVA-1.5 (Liu et al.,
2023).

Chart MLLMs. We also compare against chart-specialized MLLMs tailored for chart reasoning
and chart-to-code generation. ChartLlama (Han et al., 2023) extends the LLaVA-v1.5 framework
with instruction tuning on multiple chart reasoning tasks. TinyChart (Zhang et al., 2024a) is built
on TinyLLaVA (Zhou et al., 2024) for efficient chart understanding. ChartMoE (Xu et al., 2025)
advances chart understanding through a mixture-of-experts multimodal projector, integrating chart-
to-code generation as a core modality alignment task. ChartCoder (Zhao et al., 2025) directly targets
chart-to-code generation by employing a code LLM as its language backbone.

5.4 MAIN RESULTS

Existing MLLMs exhibit pronounced disparities in chart-to-code generation across different pro-
gramming languages, as shown in Table 1. ChartCoder, the state of the art among open-source
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Table 1: Performance on ChartMimic, Plot2Code, and Chart2NCode test set. ER ⇑ denotes execu-
tion rate, CB ⇑ denotes the code-similarity score CrystalBLEU, DS ⇑ denotes the image-similarity
score DreamSim, F1 ⇑ denotes the heuristic F1 score for Python scripts, and GS ⇑ denotes the
image-similarity GPT-4o scoring. A “-” indicates that no executable script is generated.

Models
ChartMimic Plot2Code Chart2NCode
Chart2Python Chart2Python Chart2Python Chart2R Chart2LaTeX

ER CB DS F1 ER CB DS F1 ER GS DS F1 ER GS DS ER GS DS
Propriety Multimodal Large Language Models

GPT-5-mini 86.8 13.6 86.9 71.5 93.2 8.9 85.9 72.8 85.2 80.0 89.0 67.5 90.3 81.2 82.5 49.7 41.1 75.2
GPT-4o-mini 89.0 9.0 77.5 70.2 90.2 20.7 77.8 67.0 94.8 79.8 81.2 74.5 89.5 70.3 75.4 94.7 70.4 61.2
GPT-4o 93.2 10.2 83.5 79.0 92.4 24.2 83.6 75.4 98.5 87.4 85.0 80.9 94.5 78.3 78.8 88.4 69.8 72.4
Claude-Haiku-3.5 88.0 7.5 76.2 65.7 87.1 16.2 72.8 56.8 91.3 76.7 81.6 68.8 93.0 73.9 76.2 78.2 55.3 57.3
Claude-Sonnet-4 96.2 13.7 83.3 79.5 95.5 12.9 81.2 76.8 98.3 88.0 86.8 81.4 93.9 83.1 82.0 92.7 72.2 76.0

Open-source Multimodal Large Language Models
Qwen3-VL-2B 59,0 6.2 68.9 40.4 68.9 13.0 64.2 50.1 74.0 59.6 78.0 61.0 56.5 42.0 52.4 56.0 37.4 60.8
Qwen3-VL-4B 78.8 7.6 71.9 59.7 77.3 12.9 66.4 55.4 87.6 77.2 83.2 76.1 75.4 60.9 66.4 62.4 45.2 68.6
Qwen3-VL-8B 81.8 7.9 72.5 64.0 78.8 14.2 68.1 56.9 91.1 80.8 83.7 80.6 73.6 57.2 72.7 77.3 57.1 66.8
InternVL3.5-2B 51.2 4.4 67.0 32.3 61.4 12.2 55.7 44.2 69.8 53.2 76.1 53.1 61.8 44.9 53.4 9.6 4.7 52.6
InternVL3.5-4B 66.6 7.7 70.1 46.0 62.1 13.3 58.8 42.7 77.9 63.4 78.4 63.0 66.8 51.5 56.4 25.7 14.7 55.5
InternVL3.5-8B 74.0 8.1 70.9 51.7 74.2 13.9 61.0 49.1 82.5 67.5 79.6 67.0 67.0 48.2 67.6 81.1 53.3 57.1
DeepSeek-VL-7B 41.3 4.7 67.8 19.0 64.4 13.3 59.4 47.0 65.9 52.5 74.2 44.6 58.8 40.6 57.0 17.5 12.3 49.8
Phi-3.5-vision-4B 66.7 6.9 44.1 38.6 72.7 14.9 63.8 42.6 68.8 56.1 53.3 34.2 47.0 33.5 52.5 7.9 5.1 42.9
LLaVA-v1.5-7B 33.0 0.7 49.6 6.7 34.9 7.1 52.1 10.4 32.9 40.2 51.9 8.9 41.4 31.0 50.7 19.4 11.7 41.0
GLM-4.5v-108B 88.4 8.7 73.3 67.6 83.3 13.3 80.8 56.2 85.0 79.5 85.6 77.3 85.3 70.3 77.2 80.8 63.8 62.6
ChartLlama-13B 70.8 0.0 45.0 15.9 81.8 4.1 50.1 22.4 65.3 14.8 46.0 16.2 13.0 6.2 44.8 81.7 49.2 32.5
TinyChart-3B 84.1 8.1 60.8 53.9 81.1 12.1 64.0 54.0 92.1 86.3 46.5 55.2 - - - - - -
ChartMoE-8B 55.0 1.3 56.9 25.7 70.5 6.7 58.9 26.9 69.5 40.2 64.2 35.4 39.3 25.5 52.9 17.1 11.1 27.9
ChartCoder-7B 88.9 8.8 61.3 59.3 87.9 13.9 65.7 56.6 96.2 86.4 48.1 56.1 - - - 17.9 10.6 39.1
CharLuMA-1.3B 84.8 7.3 75.1 57.5 83.3 14.5 64.3 47.2 94.4 78.4 86.5 76.9 94.5 73.3 78.9 84.5 65.1 71.3
CharLuMA-6.7B 91.8 8.6 79.2 70.3 96.2 15.8 68.3 60.5 98.0 88.1 88.7 83.5 96.5 80.9 81.8 89.0 74.2 72.5

systems for chart-to-Python generation, achieves 86.4 GS and 48.1 DS on the Python subset of
Chart2NCode, while its performance deteriorates significantly on other languages, with the execu-
tion rate dropping to 17.9 on the LaTeX subset and failing to generate valid R scripts. General-
purpose open-source models such as DeepSeek-VL-7B and Phi-3.5-Vision show larger imbalances
on Chart2NCode, achieving execution rates above 65 on Python but falling below 20 on LaTeX.
DeepSeek-VL-7B further exhibits sharp degradation in chart quality, with DreamSim dropping from
74.2 in Python to 57.0 in R and 54.2 in LaTeX. Proprietary models display the same tendency in
a more moderate form, as GPT-5-mini and Claude-Haiku-3.5 achieve execution rates above 85 and
heuristic F1 scores above 65 on Python, while their performance declines when extended to LaTeX.

CharLuMA effectively addresses the cross-language disparity and establishes itself as the most
capable open-source MLLM for general chart-to-code generation. CharLuMA-6.7B delivers the
strongest results on well-established chart-to-Python benchmarks among open-source models,
achieving 79.2 DS and 70.3 F1 on ChartMimic, and 68.3 DS and 60.5 F1 on Plot2Code. The
smaller CharLuMA-1.3B also performs competitively, with 75.1 DS and 57.5 F1 on ChartMimic,
and 64.3 DS and 47.2 F1 on Plot2Code, indicating its parameter efficiency. On the multi-language
Chart2NCode test set, both models sustain robust and balanced performance across Python, R, and
LaTeX. CharLuMA-6.7B achieves 88.7 DS and 83.5 F1 on Python, 81.8 DS and 80.9 GS on R, and
72.5 DS and 74.2 GS on LaTeX, demonstrating consistent generalization beyond Python. Notably,
CharLuMA-6.7B outperforms Claude-Haiku-3.5 on most metrics across all benchmarks and delivers
performance comparable to GPT-4o-mini on ChartMimic and Chart2NCode. These results under-
score CharLuMA’s ability to advance open-source chart-to-code generation beyond single-language
dominance, narrowing the gap with proprietary systems.

6 FURTHER STUDY

We conduct ablation studies and in-depth analyses to disentangle the contributions of different com-
ponents in CharLuMA, demonstrating its robustness and interpretability.
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Table 2: Performance of alternative multimodal
projector architectures during the instruction
tuning stage of CharLuMA-1.3B and -6.7B on
the Chart2NCode test set. Results are averaged
over all three languages.

Model
Size

Projector
Architecture

Chart2NCode
ER CB DS

1.3B
Linear MLP 88.1 14.8 76.9

Mixture-of-MLP 87.9 13.8 75.1
Subspace Adapter 91.1 23.2 78.9

6.7B
Linear MLP 91.0 20.3 78.2

Mixture-of-MLP 91.9 19.3 77.4
Subspace Adapter 94.5 24.5 81.0

Table 3: Ablation study of subspace settings,
router configurations, and training choices in
CharLuMA-1.3B on the Chart2NCode test set,
with results averaged over all three languages.

Total
Subspace

Activated
Subspace

Total
Router

Chart2NCode
ER CB DS

16 8 3 88.9 21.4 77.6
32 8 3 89.4 22.1 77.8
64 32 3 87.8 19.6 75.6
32 16 1 86.1 17.1 75.1
32 32 0 85.8 16.6 73.2
32 16 3 91.1 23.2 78.9

w/o warming up before finetuning 87.1 18.8 75.6
w/o freezing A matrix of adapter 90.2 21.9 78.0

6.1 MODEL ARCHITECTURE ABLATION

We conduct ablation studies on CharLuMA-1.3B with the Chart2NCode test set to examine alterna-
tive architectures, subspace–router configurations, and training choices.

Alternative Architecture. We compare our low-rank subspace adapter with two alternative projec-
tor designs in Table 2. The linear MLP block serves as a standard baseline (Belouadi et al., 2024b;a;
Zhao et al., 2025) but yields modest improvements, with the 1.3B model staying 88.1 ER and 14.8
CB. The Mixture-of-MLP design (Li et al., 2025; Xu et al., 2025) replaces the MLP block with a
sparsely gated mixture-of-experts, each initialized from a pretrained MLP block, and we adapt it
with a hard-routing policy that always activates the language-specific and shared experts (see Ap-
pendix C.2). This raises the execution rate to 91.9 but leads to reduced code and image similarity
on the 6.7B model. In contrast, our low-rank subspace adapter achieves the strongest results across
both model sizes, combining language-aware specialization with parameter efficiency.

Effect of Subspace Number. We compare CharLuMA-1.3B under different total and activated
subspace settings. In Table 3, rows 1–3 demonstrate that moderate scaling from 16 to 32 subspaces
improves diversity and performance, while further expansion to 64 leads to degradation in code
accuracy and visual similarity. These results suggest that the 32–16 configuration provides the best
balance between expressiveness and efficiency for subspace specialization.

Effect of Routing Policy. We compare different routing strategies for activating subspaces in
CharLuMA-1.3B. In Table 3, rows 4–5 show that replacing the three language-specific routers with
a single shared router reduces CrystalBLEU from 23.2 to 17.1, while removing routers altogether
lowers it further to 16.6. These results confirm the importance of language-guided routing policy for
maintaining code fidelity and cross-language alignment.

Effect of Training Choices. In Table 3, row 7 shows that removing the warming-up stage lowers
CrystalBLEU from 23.2 to 18.8 and DreamSim from 78.9 to 75.6, underscoring its role in stabilizing
subspace and router specialization. Row 8 shows that unfreezing the A matrix reduces CrystalBLEU
to 21.9 and DreamSim to 78.0, indicating that freezing A helps maintain a compact low-rank repre-
sentation while supporting effective language-specific specialization.

Table 4: Ablation study of backbone choices in Char-
LuMA on the Chart2NCode test set, with results aver-
aged over all three languages.

Language Model Vision
Encoder

Chart2NCode
ER CB DS

DeepSeek-LLM-7B SigLIP 88.6 21.8 77.1
DeepSeek-Coder-6.7B CLIP 88.8 22.0 79.2
DeepSeek-Coder-6.7B SigLIP 94.5 24.5 81.0

Effect of Backbone Choices. We exam-
ine the effect of backbone choices in Char-
LuMA by modifying the language model
and vision encoder separately. First,
we replace DeepSeek-Coder-6.7B with
the general-purpose DeepSeek-LLM-7B
while keeping the vision encoder fixed.
Second, we replace SigLIP with CLIP-
Large with an input resolution of 336 ×
336 while retaining the original language
model. As reported in Table 4, the default
configuration with DeepSeek-Coder-6.7B
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Figure 4: Ablation study of language structure us-
ing CharLuMA-1.3B on Chart2NCode.
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Figure 5: Distribution of shared-subspace ratios
across CharLuMA and ablated models.

and SigLIP achieves the strongest execution rate, CrystalBLEU, and DreamSim scores, whereas
each alternative substitution leads to a consistent drop in performance across all metrics.

6.2 LANGUAGE STRUCTURE ABLATION

We study the effect of language diversity and balance on the general chart-to-code generation ca-
pability of MLLMs by varying the number of programming languages during training, with the
number of routers matched to the number of languages. All language configurations are trained with
the same strategy and number of steps as CharLuMA-1.3B (see Section 5.1 and Appendix C.2) and
evaluated on the Chart2NCode test set restricted to the languages included in training. As shown
in Figure 4, greater language diversity leads to substantial improvements. Models trained on three
languages achieve the highest execution rates and the strongest code- and image-level similarity
scores across all target languages, whereas two-language and single-language settings fall behind by
large margins. Moreover, training on the diverse but imbalanced source distribution (76.6% Python,
19.2% R and 4.2% LaTeX) further skews the model toward the dominant language and degrades
its performance on the other languages. These results demonstrate that language diversity enhances
both cross-language generalization and in-language robustness by leveraging the learning signals
inherent in cross-language equivalences. At the same time, balanced supervision is critical, as im-
balances in the training data introduce systematic biases that undermine universality. Together, these
findings underscore the importance of Chart2NCode as the first balanced multi-language dataset for
enabling robust and equitable chart-to-code generation.

6.3 SUBSPACE ACTIVATION ANALYSIS

(a) CharLuMA-1.3B (b) CharLuMA-6.7B

Figure 6: Heatmap of subspace activa-
tion frequency for CharLuMA.

We visualize the subspace activation patterns of
language-specific routers in CharLuMA-1.3B and
CharLuMA-6.7B in Figure 6. The heatmaps display
the normalized activation frequency of 32 subspaces
for each language and reveal a hybrid allocation of the
subspace pool, with compact shared clusters alongside
broader language-specific zones. In CharLuMA-1.3B,
subspaces 21, 23, and 30 are frequently activated
across all languages, while subspace 1 is used primarily
for Python, 18 for R, and 17 for LaTeX. In contrast,
CharLuMA-6.7B shows a more balanced distribution,
with most subspaces—such as 8, 20, and 29—exhibiting
intermediate activation frequencies across the three
languages, indicating smoother cross-language integration.

We compute the shared-subspace ratio to quantify the cross-language allocation of experts. For
each chart, it is defined as the proportion of experts simultaneously activated by all language-specific
routers relative to the total set of experts activated (see Appendix C.2). Figure 5 reports the distribu-
tion of this ratio over a random 1k sample from Chart2NCode. CharLuMA-1.3B achieves a median
ratio of 0.19, corresponding to roughly 5 experts shared within a total activation pool of about 27,
indicating a compact shared core complemented by broad language-private allocation. CharLuMA-
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6.7B shows a similar pattern with a median of 0.18, where about 4.9 experts are shared out of 27.5
on average, suggesting that scaling preserves and slightly reinforces this balanced allocation. In
contrast, the ablated 1.3B variants exhibit inflated ratios (0.23–0.24), where more experts are pulled
into shared use while the overall activated pool shrinks, indicating weakened specialization.

6.4 QUALITATIVE ANALYSIS

We conduct a qualitative analysis that combines error diagnosis of CharLuMA-6.7B and compar-
isons with GPT-4o and ChartCoder across multiple benchmarks. For error analysis, we find that
execution failures often stem from mismatched data dimensions or undefined variables in Python
and R, and from syntax issues such as missing braces in LaTeX, while successful runs may still
diverge due to missing annotations, misclassified chart subtypes, or stylistic inconsistencies. For
model comparison, case studies from Chart2NCode and ChartMimic demonstrate that CharLuMA
consistently produces faithful outputs across Python, R, and LaTeX, whereas GPT-4o shows re-
duced reliability in R and LaTeX, and ChartCoder frequently fails to produce valid code in these
two languages. More details are provided in Appendix C.4 and Appendix C.5.

7 CONCLUSION

We introduced CharLuMA, a multimodal LLM for chart-to-code generation with a language-guided
mixture of low-rank subspaces in its multimodal projector, and Chart2NCode, a dataset of 176k visu-
ally aligned Chart–Python–R–LaTeX quadruples. CharLuMA achieves state-of-the-art performance
among open-source MLLMs, with ablation studies showing that balanced multi-language training
enhances cross-language generalization and mitigates bias toward dominant languages. Subspace
analyses further reveal a hybrid allocation of shared and language-specific regions that supports
both transfer and fidelity. By leveraging parallel code views of the same chart across languages, we
show that cross-language alignment provides a powerful supervisory signal for robust and accurate
code generation. These contributions pave the way toward universal, language-flexible chart-to-code
systems that better reflect the diverse software ecosystems in practice.
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A LLM USAGE

Large Language Models (LLMs) were utilized in this work solely as auxiliary tools for linguistic
refinement. Their function was restricted to enhancing grammar, clarity, and stylistic consistency of
text that had been originally drafted by the authors. At no stage did LLMs contribute to research
ideation, methodological design, data collection, analysis, or interpretation of results. All intellec-
tual contributions, scientific content, and conclusions presented in this paper are entirely attributable
to the authors. The authors accept full responsibility for the accuracy, originality, and integrity of
the submission, including sections of text that may have been refined with the assistance of LLMs.

B DATASET

B.1 DATA ACQUISITION

We collect single-language plotting scripts from established datasets and publicly available repos-
itories as our source data. ChartCoder (Zhao et al., 2025) contributes approximately 160k chart-
to-Python scripts, while DaTikZ (Belouadi et al., 2024a) provides 49k vector-graphics-to-Python
scripts, of which 8.8k correspond to charts with explicit axis structures. In addition, we curated 40k
R plotting scripts from widely used online resources including R gallery 2 and stack overflow 3. To
handle deprecated or non-executable scripts encountered during crawling, we employed GPT-4o as
an automated debugging assistant, guided by the prompt instructions in Figure 8, with a total API
cost of 132.2 USD.

B.2 ANNOTATION PIPELINE

Metadata Structure and Extraction. We adopt a hierarchical metadata schema to capture chart
information at three levels: figure, axis, and object. This structure provides a standardized represen-
tation of chart elements across languages while preserving both global properties and fine-grained
graphical details. At the figure level, metadata records global properties such as the overall title,
background color and legend, plot size (width, height, and units), twin-axis relationships, and sub-
plot layout. For each axis, metadata focuses on type-agnostic attributes including axis titles, x- and
y-axis labels, tick values and labels, legends, grids, panel boxes, background color, and annota-
tions. At the object level, metadata captures fine-grained properties of graphical elements grouped
into patches, lines, collections, and images. For each object, visual properties such as color, trans-
parency, line width, marker style, and hatch patterns are recorded, together with precise geometric
information such as rectangle bounds, circle centers and radii, polygon vertices, line coordinates,
scatter offsets, and heatmap arrays. Cleaned labels are associated with color or stylish values where
available, ensuring consistency with legends and categorical encodings.

Metadata is extracted by executing or parsing plotting scripts in their native environments. For
Python plotting scripts, each script is executed in an isolated runtime, and the figure is in-
spected using fig.get axes(). Axis-level attributes are gathered through standard APIs
such as ax.get title(), ax.get xlabel(), and ax.get yticks(). Object-level el-
ements are obtained by iterating over ax.patches, ax.lines, ax.collections and so
on. For R scripts based on ggplot, code is evaluated to collect the plotting object p built via
ggplot build(). We extract axis-level metadata from structures such as p$labels$title,
p$mapping$y, and p$theme$panel.border, while object-level metadata is obtained by it-
erating over p$layers. For base R graphics, we wrap high-level functions like barplot, hist,
and boxplot, as well as low-level commands such as text, legend, and grid, to capture

2https://r-graph-gallery.com/all-graphs.html
3Retrieved using StackAPI with keywords representative of R plotting functions and libraries, including

ggplot, plot ly, geom, plot(, hist, boxplot and so on.
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Instruction Prompt for Handling Missing Templates in Post-Debugging

You are provided with a {original language} plotting script as shown below. Your
task is to transform it to {target language} language, starting with “‘{target
language symbol} and ending with “‘.
{original plotting script}

Figure 7: Instruction Prompt for Handling Missing Templates in Post-Debugging

metadata during execution. For LaTeX, we use the regular-expression parsing to detect axis en-
vironments while drawing commands are parsed to recover object geometries such as rectangles,
circles, and paths.

Template Design. The templates are parameterized chart skeletons that translate extracted metadata
into executable plotting code. Each template specifies placeholders for chart elements such as titles,
axis labels, ticks, grids, legends, annotations, and objects, which are directly filled from metadata.
The overall structure is consistent across languages, but implementation details differ. Taking the
bar type for example, Python uses functions like ax.bar or ax.barh in matplotlib, R employs
geom bar in ggplot, and LaTeX relies on declarative PGFPlots options such as xbar, ybar and
addplot using TikZ.

To maintain cross-language consistency during template instantiation, we employ an attribute-
mapping process that normalizes visual properties across Python, R, and LaTeX. Legend locations
are aligned so that values such as “upper right” in Python correspond to “right” in R and “north east”
in LaTeX. Font styles are unified by mapping bold and italic settings into Python’s weight and style
fields, R’s fontface descriptors, or LaTeX commands like bfseries and itshape. Font sizes
are standardized by converting numeric values in Python and R into LaTeX size categories such
as small or Large. Annotation alignment is harmonized by translating Python’s top, bottom,
and center into equivalent justification values in R and LaTeX. Marker and line styles are also con-
solidated through shared dictionaries, ensuring that a logical style such as circle, dashed, or cross is
rendered consistently across all languages. This mapping guarantees that semantic attributes are pre-
served even when the syntax differs, allowing metadata extracted in one language to be instantiated
in another without loss of fidelity.

Metadata-Template Matching. A critical step in our automatic pipeline is to identify the correct
template once the metadata of a chart has been extracted. We address this by assigning each chart
a type and subtype based on patterns in the object-level metadata. Taking bar charts for example,
we examine the geometry of rectangular patches: overlapping intervals reveal stacked bars, repeated
clusters of equal size indicate grouped bars, with other cases default to base bars. For pie charts,
subtype inference is based on patch geometry and offsets: the presence of an inner radius or nonzero
x position signals a donut chart, displaced segment centers indicate exploded pies, and their combi-
nation yields donut–exploded pies. These inference rules allow the system to automatically select
the most appropriate template across chart variants without manual intervention.

LLM-assisted Debugging. We incorporate an LLM-assisted debugging module based on GPT-4o
to handle cases where no suitable template can be identified or when an instantiated template fails
to execute. Instruction prompts for these two scenarios are provided in Figure 7 and Table 8. The
total expenditure on the OpenAI API amounts to 316.6 USD.

Our automatic pipeline finally generates 176K Chart-Python-R-LaTex quadruples, with 14.7% are
refined via LLM-assisted debugging. A randomly sampled set of 1,000 examples is reserved as the
test set. The average code lengths are 3998.5 and 4229.3 characters for the training and test sets,
respectively. The dataset covers a broad range of chart types, including bar (18.8%), line (17.1%),
scatter (13.2%), pie (7.3%), ring (5.1%), radar (5.73%), histogram (4.59%), box (4.43%), heatmap
(3.56%), violin (3.13%), error point (2.94%), area (2.81%), density (2.79 %), error bar (2.68%),
bubble (2.2%), and others (3.64 %).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Instruction Prompt for Failed Template Execution in Post-Debugging

You are provided with two code snippets. The first is the original code, a {original
language} plotting script serving as the reference implementation. The second is the
transformed code, a version of the original script translated into {target language},
which is currently unexecutable due to syntax or logic errors.
Original Code: {original plotting script}
Transformed Code: {failed template}
Your task is to identify and correct all errors in the transformed code that prevent it from
executing. The corrected script must produce a chart that is semantically equivalent to the
one generated by the original code. High-level chart semantics such as axis labels, tick
values, bar orientation, or grouping should remain unchanged unless modification is
required for successful execution. You may reorder code lines, fix syntax issues, and adjust
function arguments as needed. Please output only the corrected code, starting with
“‘{target language symbol} and ending with “‘.

Figure 8: Instruction Prompt for Failed Template Execution in Post-Debugging

B.3 QUALITY ASSURANCE

We conduct a human evaluation to systematically assess the cross-language fidelity of Chart2NCode.
We randomly sample 1,000 chart–Python–R–LaTeX quadruples from the Chart2Ncode dataset,
which are independently annotated by three annotators. All annotators were recruited on campus,
with eligibility requiring prior experience in data visualization and programming in Python, R, and
LaTeX. They were compensated in accordance with the institution’s standard remuneration policies
for academic work. We conduct pairwise evaluations for each quadruple, comparing the repro-
duced charts in Python, R, and LaTeX against the original image, and annotators assess their fidelity
across four dimensions. Structural fidelity measures whether the geometric arrangement of the chart
is preserved, including the number and configuration of subplots as well as axis orientation. Data
integrity evaluates whether the underlying quantitative values are reproduced exactly, meaning that
the reconstructed chart reflects the same data table as the original. Semantic consistency assesses
whether textual and categorical information is maintained, ensuring that titles, axis labels, legends,
and annotations convey the same meaning without omissions, substitutions, or hallucinations. Stylis-
tic coherence concerns the visual presentation, requiring that non-semantic design elements—such
as color palettes, font attributes, line styles, gridline visibility, and panel borders—remain consistent
with the original chart. All dimensions are rated on a 1–5 scale, where 1 denotes severe mismatch
and 5 denotes perfect alignment.

Table 5: Proportion (%) of examples with average rat-
ing ≥ 4 on 1,000 sampled quadruples, reported per an-
notator and averaged across annotators. Overall row
averages the four dimensions.

Dimension Ann. 1 Ann. 2 Ann. 3 Avg.

Structural fidelity 98.3 97.1 97.5 97.6
Data integrity 90.5 91.5 92.8 91.6
Semantic consistency 94.9 96.6 95.7 95.7
Stylistic coherence 96.2 95.0 95.5 95.6

Overall 95.0 94.3 94.6 94.6

We compute the average per-dimension
score across annotators for each exam-
ple, and report the proportion of exam-
ples achieving an average score of at least
4. As shown in Table 5, the evalua-
tion results confirm high fidelity across di-
mensions: 97.6% of examples exceed the
threshold for structural fidelity, 91.6% for
data integrity, 95.7% for semantic consis-
tency, and 95.6% for stylistic coherence.
To further assess reliability, we compute
Fleiss’ κ on binarized labels (rating ≥ 4
vs. < 4). The resulting average Fleiss’ κ
of 0.83 indicates substantial agreement be-
yond chance, representing a strong and practical level of consistency for human judgment in chart
reproduction tasks.
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"object": {
"patches": [
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": -0.3, "y": 0.0, "width": 0.2, "height": 120.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 0.7, "y": 0.0,"width": 0.2, "height": 150.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 1.7, "y": 0.0, "width": 0.2, "height": 170.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 2.7, "y": 0.0, "width": 0.2, "height": 200.0}},
{"object_type": "Rectangle", "facecolor": "#ffdab9", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 3.7, "y": 0.0, "width": 0.2, "height": 210.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": -0.1, "y": 0.0, "width": 0.2, "height": 60.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 0.9, "y": 0.0, "width": 0.2, "height": 80.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 1.9, "y": 0.0, "width": 0.2, "height": 90.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 2.9, "y": 0.0, "width": 0.2, "height": 100.0}},
{"object_type": "Rectangle", "facecolor": "#191970", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 3.9, "y": 0.0, "width": 0.2, "height": 110.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 0.1, "y": 0.0, "width": 0.2, "height": 30.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 1.1, "y": 0.0, "width": 0.2, "height": 50.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 2.1, "y": 0.0, "width": 0.2, "height": 40.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 3.1, "y": 0.0, "width": 0.2, "height": 70.0}},
{"object_type": "Rectangle", "facecolor": "#deb887", "linewidth": 1.0, "linestyle": "solid", 
"hatch": null, "geometry": {"x": 4.1, "y": 0.0, "width": 0.2, "height": 60.0}}],
"lines": [], "collections": [], "images": []}}}

import matplotlib.pyplot as plt
import numpy as np

dates = ['2023-10-01', '2023-10-02', '2023-10-03', '2023-10-04', '2023-10-05']
posts = [120, 150, 170, 200, 210]
comments = [60, 80, 90, 100, 110]
shares = [30, 50, 40, 70, 60]

fig, ax = plt.subplots(figsize=(8, 6))

bar_width = 0.2
x = np.arange(len(dates)) 
palette = ['#FFDAB9', '#191970', '#DEB887'] 
edge_color = 'black' 
bars1 = ax.bar(x - bar_width, posts, width=bar_width, color=palette[0], 
edgecolor=edge_color, label='Posts')
bars2 = ax.bar(x, comments, width=bar_width, color=palette[1], edgecolor=edge_color, 
label='Comments')
bars3 = ax.bar(x + bar_width, shares, width=bar_width, color=palette[2], 
edgecolor=edge_color, label='Shares')

ax.set_title('Social Media Engagement over Days', fontsize=15)
ax.set_xticks(x)
ax.set_xticklabels(dates)
ax.set_ylabel('Count', fontsize=12)
ax.set_xlabel('Date', fontsize=12)
ax.grid(True, which='both', axis='y', linestyle='--', alpha=0.7)
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels, loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
plt.tight_layout()
plt.show()

library(ggplot2)

tick_labels  <- c('2023-10-01','2023-10-02','2023-10-03','2023-10-04','2023-10-05')
group_labels <- c('Posts','Comments','Shares')
values <- list(c(120,150,170,200,210), c( 60, 80, 90,100,110), c( 30, 50, 40, 70, 
60))
colors <- c('#ffdab9','#191970','#deb887')
df <- data.frame(
  Category = factor(rep(tick_labels, times = length(group_labels)), levels = 
tick_labels),
  Group    = factor(rep(group_labels, each  = length(tick_labels)), levels = 
group_labels),
  Value    = unlist(values)
)

p <- ggplot(df, aes(x = Category, y = Value, fill = Group)) +
  geom_bar(stat = "identity", position = position_dodge(width = 0.8), width = 0.8, 
show.legend = TRUE) +
  scale_fill_manual(values = colors, breaks = group_labels, labels = group_labels) +
  labs(title = "Social Media Engagement over Days", x = "Date", y = "Count", fill = 
"Group") +
  theme(
    plot.title   = element_text(size = 15, hjust = 0.5, face = "plain"),
    axis.title.x = element_text(size = 12, face = "plain"),
    axis.title.y = element_text(size = 12, face = "plain"),
    panel.background = element_rect(fill = "#ffffff"),
    panel.grid.major = element_line(color = "grey"),
    panel.border     = element_rect(colour = "black", fill = NA, size = 0.5),
    legend.position  = "right"
  )
p <- p + scale_y_continuous(breaks = c(0.0, 25.0, 50.0, 75.0, 100.0, 125.0, 150.0, 
175.0, 200.0, 225.0), labels = c('0', '25', '50', '75', '100', '125', '150', '175', 
'200', '225'))
p <- p + guides(fill = guide_legend(ncol = 1))
print(p)

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepgfplotslibrary{groupplots}
\usepackage[x11names, rgb]{xcolor}
\definecolor{c00}{HTML}{FFDAB9}
\definecolor{c01}{HTML}{191970}
\definecolor{c02}{HTML}{DEB887}
\definecolor{cb}{HTML}{FFFFFF}

\begin{document}
\begin{tikzpicture}
\begin{axis}[
    ybar, bar width=0.2, width=8.0in, height=6.0in,
    title=Social Media Engagement over Days, title style={font=\large, align=center},
    xlabel=Date, x tick label style={font=\small, align=center},
    ylabel=Count, y tick label style={font=\small, align=center},
    xtick={0, 1, 2, 3, 4}, xticklabels={{2023-10-01}, {2023-10-02}, {2023-10-03}, 
{2023-10-04}, {2023-10-05}},
    xtick align=center, enlarge x limits=0.2, ymin=0, grid=major, axis lines=box, 
    legend style={legend pos=north east, legend columns=1}, axis 
background/.style={fill=cb}
]

\addplot+[ ybar, fill=c00, bar shift=-0.180 ] coordinates {
    (0, 120.0) (1, 150.0) (2, 170.0) (3, 200.0) (4, 210.0)};
\addplot+[ ybar, fill=c01, bar shift=0.000 ] coordinates {
    (0, 60.0) (1, 80.0) (2, 90.0) (3, 100.0) (4, 110.0)};
\addplot+[ ybar, fill=c02, bar shift=0.180 ] coordinates {
    (0, 30.0) (1, 50.0) (2, 40.0) (3, 70.0) (4, 60.0)};
\legend{ {Posts}, {Comments}, {Shares} }

\end{axis}
\end{tikzpicture}
\end{document}

{   "plot_size": {"width": 8.0, "height": 6.0, "unit": "inch"},
    "twin_axes": {},
    "axes_layout": { "n_row": 1, "n_col": 1},
    "facecolor": "#ffffff",
    "ax_0": {
        "type_agnostic": {
            "axis": {"type": "rectilinear", "aspect": "auto"},
            "title": {"content": "Social Media Engagement over Days",
                "size": 15.0, "style": "normal,normal"},
            "x_label": {"content": "Date", "size": 12.0,
                "style": "normal,normal"},
            "y_label": {"content": "Count", "size": 12.0,
                "style": "normal,normal"
            },
            "x_ticks": [{"text": "2023-10-01", "position": ["0",0]},
                {"text": "2023-10-02", "position": ["1",0]},
                {"text": "2023-10-03", "position": ["2",0]},
                {"text": "2023-10-04", "position": ["3",0]},
                {"text": "2023-10-05", "position": ["4",0]}],
            "y_ticks": [{"text": "0", "position": [0,0.0]},

         {"text": “25”, "position": [0,25.0]},
         {"text": “50”, "position": [0,50.0]},
         {"text": “75”, "position": [0,75.0]},
         {"text": “100”, "position": [0,100.0]},
         {"text": “125”, "position": [0,125.0]},
         {"text": “150”, "position": [0,150.0]},
         {"text": “175”, "position": [0,175.0]},
         {"text": “200”, "position": [0,200.0]},
         {"text": “225”, "position": [0,225.0]},],

            "legend": {"exist": true, "loc": 1,"ncol": 1},
            "grid": {"x": true, "y": true},
            "panel_box": true,
            "background_color": "#ffffff",
            "annotation": [],
            "label_to_color": {"Posts": "#ffdab9",
                "Comments": "#191970","Shares": "#deb887"},
            "container_type": [
                "BarContainer","BarContainer","BarContainer"]
        },

"type_specific": {
     "type": ["bar"], "sub_type": "grouped-bar", "orientation": "vertical",
     "template": ["bar_grouped_vertical_r.jinja", "bar_grouped_vertical_latex.jinja"]}

Source Script in Python

Metadata
Metadata-Template

Matching

Script in R Script in LaTex

Figure 9: Case study of annotation pipeline in a vertical grouped bar chart.

B.4 CASE STUDY

We present two illustrative cases in Figure 9 and Figure 10 to demonstrate the functionality of our
annotation pipeline.
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{
  "object": {
    "patches": [],
    "lines": [
      {"object_type": "GeomLine", "color": "#6FB585", "linewidth": 0.5, "linestyle": 1,
       "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y": [2.1,2.3,2.8,3.2,3.7,4.1,4.6,4.9,5.4,5.9]}},
      {"object_type": "GeomLine", "color": "#E8BF80", "linewidth": 0.5, "linestyle": 1,
       "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y": 
[2.25,2.3,2.4,2.5,2.6,2.675,2.8,2.9,2.975,3.075]}},
      {"object_type": "GeomLine", "color": "#A8BF85", "linewidth": 0.5, "linestyle": 1,
       "geometry": {"x": [1,2,3,4,5,6,7,8,9,10], "y": 
[1.875,1.95,2.05,2.125,2.25,2.325,2.4,2.475,2.575,2.625]}}
    ],
    "collections": [
      {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#6FB585"]*10,
       "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
       "geometry": [[1,2.1],[2,2.3],[3,2.8],[4,3.2],[5,3.7],[6,4.1],[7,4.6],[8,4.9],[9,5.4],
[10,5.9]]},
      {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#E8BF80"]*10,
       "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
       "geometry": [[1,2.25],[2,2.3],[3,2.4],[4,2.5],[5,2.6],[6,2.675],[7,2.8],[8,2.9],[9,2.975],
[10,3.075]]},
      {"object_type": "GeomPoint", "facecolors": [None]*10, "edgecolors": ["#A8BF85"]*10,
       "linewidths": [0.5]*10, "sizes": [3]*10, "shape": [19]*10,
       "geometry": [[1,1.875],[2,1.95],[3,2.05],[4,2.125],[5,2.25],[6,2.325],[7,2.4],[8,2.475],
[9,2.575],[10,2.625]]}
    ],
    "images": []
  }
}

library(ggplot2)

data <- data.frame(
  D = 1:10,
  R = c(2.1, 2.3, 2.8, 3.2, 3.7, 4.1, 4.6, 4.9, 5.4, 5.9),
  M = c(5.5, 5.7, 6.1, 6.5, 6.9, 7.2, 7.7, 8.1, 8.4, 8.8),
  A = c(4.0, 4.3, 4.7, 5.0, 5.5, 5.8, 6.1, 6.4, 6.8, 7.0)
)

ggplot(data, aes(x = D)) +
  geom_line(aes(y = R), color = "#6FB585") +
  geom_point(aes(y = R), size = 3, color = "#6FB585") +
  geom_line(aes(y = M * 0.25 + 0.875), color = "#E8BF80") +
  geom_point(aes(y = M * 0.25 + 0.875), size = 3, color = "#E8BF80") +
  geom_line(aes(y = A * 0.25 + 0.875), color = "#A8BF85") +
  geom_point(aes(y = A * 0.25 + 0.875), size = 3, color = "#A8BF85") +
  scale_y_continuous(name = 'R', sec.axis = sec_axis(~(.-0.875)/0.25, name = 'M and 
A')) +
  labs(
    title = "Relationship between D and R, M, A",
    x = "D",
    y = "R"
  ) +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"))
dev.off()

import matplotlib.pyplot as plt

num_group = 3
x_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y_values = [[2.1, 2.3, 2.8, 3.2, 3.7, 4.1, 4.6, 4.9, 5.4, 5.9], [2.25, 2.3, 2.4, 
2.5, 2.6, 2.675, 2.8, 2.9, 2.975, 3.075], [1.875, 1.95, 2.05, 2.125, 2.25, 2.325, 
2.4, 2.475, 2.575, 2.625]]
line_color = ['#6fb585', '#e8bf80', '#a8bf85']
line_style = ['-', '-', '-']
line_width = [1.0, 1.0, 1.0]
marker_color = ['#6fb585', '#e8bf80', '#a8bf85']
marker_style = ['o', 'o', 'o']
marker_size = [8, 8, 8]

fig, ax = plt.subplots(figsize=(7, 7))

for i in range(num_group):
    ax.plot(
        x_values,
        y_values[i],
        color=line_color[i],
        linestyle=line_style[i],
        linewidth=line_width[i],
        marker=marker_style[i],
        markersize=marker_size[i],
        markerfacecolor=marker_color[i]
    )

ax.set_xlabel("D", fontsize=12, fontweight="normal", fontstyle="normal")
ax.set_ylabel("R", fontsize=12, fontweight="normal", fontstyle="normal")
ax.set_title("Relationship between D and R, M, A", fontsize=14, fontweight="bold", 
fontstyle="normal")
ax.set_yticks([2.0, 3.0, 4.0, 5.0, 6.0])
ax.set_yticklabels(['2', '3', '4', '5', '6'])
ax.grid(True)
for spine in ax.spines.values():
    spine.set_visible(False)
ax.set_facecolor("#ffffff")

plt.tight_layout()
plt.show()

\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
\usepgfplotslibrary{fillbetween}
\usepackage[x11names, rgb]{xcolor}
\definecolor{c00}{HTML}{6FB585}
\definecolor{c01}{HTML}{E8BF80}
\definecolor{c02}{HTML}{A8BF85}
\definecolor{cb}{HTML}{FFFFFF}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
    width=7in, height=7in,
    title=Relationship between D and R, M, A, title style={font=\normalsize\bfseries},
    xlabel=D, x tick label style={font=\normalsize, align=center},
    ylabel=R, y tick label style={font=\normalsize, align=center},
    ytick={2.0, 3.0, 4.0, 5.0, 6.0}, yticklabels={{2},{3},{4},{5},{6},},
    enlarge x limits=0.05, enlarge y limits=0.05,
    grid=major, axis lines=none, axis background/.style={fill=cb}
]
\addplot+[
    color=c00, mark=o, mark options={fill=c00, scale=3pt}, 
    line width=0.2pt, style=solid
] coordinates {
    (1, 2.1) (2, 2.3) (3, 2.8) (4, 3.2) (5, 3.7) (6, 4.1) (7, 4.6) (8, 4.9) (9, 5.4) (10, 
5.9)};
\addplot+[
    color=c01, mark=o, mark options={fill=c01, scale=3pt},
    line width=0.2pt, style=solid
] coordinates {
    (1, 2.25) (2, 2.3) (3, 2.4) (4, 2.5) (5, 2.6) (6, 2.675) (7, 2.8) (8, 2.9) (9, 2.975) 
(10, 3.075)};
\addplot+[
    color=c02, mark=o, mark options={fill=c02, scale=3pt}, 
    line width=0.2pt, style=solid
] coordinates {
    (1, 1.875) (2, 1.95) (3, 2.05) (4, 2.125) (5, 2.25) (6, 2.325) (7, 2.4) (8, 2.475) (9, 
2.575) (10, 2.625)};
\end{axis}
\end{tikzpicture}
\end{document}

{ "plot_size": {"width": 7, "height": 7, "unit": "inch"}, 
"twin_axes": [], 
"axes_layout": { "n_row": 1, "n_col": 1}, 
"facecolor": "#ffffff", 
"ax_0": { 

"type_agnostic": { 
"axis": {"position": null, "type": "cartesian", "aspect": null}, 
"title": {"content": "Relationship between D and R, M, A", 

"size": 14, "style": "bold"}, 
"x_label": {"content": "D", "size": "NA", "style": null}, 
"y_label": {"content": "R", "size": "NA", "style": null}, 
"x_ticks": [{"text": "2.5", "position": [2, 0]}, 

{"text": "5", "position": [3, 0]}, 
{"text": "7.5", "position": [4, 0]}, 
{"text": "10", "position": [5, 0]}], "

y_ticks": [ {"text": "2", "position": [0, 1]}, 
{"text": "3", "position": [0, 2]}, 
{"text": "4", "position": [0, 3]}, 
{"text": "5", "position": [0, 4]}, 
{"text": "6", "position": [0, 5]}], 

"legend": {"exist": false, "loc": null, "ncol": null}, 
"grid": {"x": true, "y": true}, 
"panel_box": false, 
"background_color": "#ffffff", 
"annotation": [], 
"label_to_color": [] 

},

"type_specific": {
     "type": ["line"], "sub_type": "dotted-line", "orientation": "vertical",,
     "template": ["line_multi_marker_python.jinja", "line_multi_marker_latex.jinja"]}

Source Script in R

Metadata Metadata-Template Matching

Script in Python Script in LaTex

Figure 10: Case study of annotation pipeline in a dotted line chart.
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C EXPERIMENTAL SETTINGS AND RESULTS

C.1 TRAINING AND EVALUATION SETTINGS

We adopt SigLIP (Zhai et al., 2023b) as the vision encoder and DeepSeek-Coder (Guo et al., 2024)
as the LLM backbone, yielding two variants of our model: CharLuMA-1.3B and CharLuMA-6.7B.
The multimodal connector is implemented as a standard two-layer MLP block augmented with our
low-rank subspace adapter.

For alignment pretraining, we train the MLP block for one epoch on 900k chart–JSON pairs from
ChartMoE-Align (Xu et al., 2025), while freezing both the vision encoder and LLM, with a learning
rate of 2e-4. During instruction tuning, we first warm up the subspace pool and language-specific
routers for 274 steps, and then perform full fine-tuning of the LLM backbone for one epoch on 175k
chart–Python–R–LaTeX quadruples from Chart2NCode. In this stage, the vision encoder and MLP
block remain frozen, the adapter is updated, and the learning rates are set to 2e-4 for warm-up and
2e-5 for fine-tuning. The low-rank projector within the adapter remains frozen throughout. Each
training batch is constructed to include all three languages.

All training experiments are conducted with a global batch size of 128 on 8× NVIDIA L40S GPUs.
The total training cost for CharLuMA-1.3B is approximately 82 GPU hours, consisting of 35 GPU
hours for pretraining, 6 GPU hours for warm-up, and 41 GPU hours for fine-tuning. For CharLuMA-
6.7B, the total cost is about 321 GPU hours, including 109 GPU hours for pretraining, 18 GPU hours
for warm-up, and 193 GPU hours for fine-tuning. More training hyperparameters are in Table 6.

Table 6: Training hyperparameters for CharLuMA across stages in Section 5.1.
Hyperparameter Alignment Pretraining Warm-up Instruction Tuning

Learning rate 2e-4 2e-4 2e-5
LR schedule Cosine decay Cosine decay Cosine decay
Optimizer AdamW AdamW AdamW
Max tokens 2,048 2,048 2,048
Vision encoder Frozen Frozen Frozen
LLM Frozen Frozen Trainable
MLP Block Trainable Frozen Frozen
Adapter Frozen Trainable Trainable

For evaluation, we follow a standardized setup across all baselines, fixing the maximum
token length to 2,048. The prompting format for the chart-to-code generation task is
shown in Figure 11, adapted from Shi et al. (2025). Proprietary MLLMs evaluated in-
clude gpt-4o-2024-08-06, gpt-4o-mini-2024-07-18, gpt-5-mini-2025-08-07,
claude-3-5-haiku-20241022, and claude-sonnet-4-20250514, all accessed
through their official APIs. For open-source MLLMs, we directly run released checkpoints on
NVIDIA L20 GPUs.

C.2 DETAILED ANALYSIS SETTING

Alternative Architecture. We compare our language-guided low-rank subspace adapter with two
alternative connector architectures: a linear MLP and a Mixture-of-MLP. In the linear MLP setting,
the pretrained MLP block, initialized on chart–JSON pairs, is directly fine-tuned on Chart2NCode.
In the Mixture-of-MLP setting, four experts are initialized from the pretrained MLP block, one of
which is frozen as a shared expert, while the remaining three serve as language-specific experts.
Hard routing is applied such that, in a Python generation task, the Python-specific expert is activated
jointly with the shared expert. This setup mirrors the configuration with four experts in total, of
which two are activated for each time, as reported in prior studies Li et al. (2025); Xu et al. (2025).
Warm-up training is also employed in this setting, followed by continued training with the LLM
backbone.

Language Structure Ablation. We conduct a language structure ablation to examine the impact of
varying the number of plotting languages and corresponding routers during training, while strictly
controlling the total number of training steps. In the full three-language configuration, the model
is trained on 175k chart images paired with 175 × 3 = 525k plotting scripts, evenly split across
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Python, R, and LaTeX. For the single-language setting, we keep the dataset size constant by training
on 175k chart–script pairs but increase the number of epochs to three. For the two-language setting,
we preserve the same number of training steps by randomly duplicating half of the available plot-
ting scripts to reach the equivalent scale. This ensures that all configurations—one, two, or three
languages—are trained under comparable conditions. For the imbalanced configuration, we train
on the source data described in Appendix B.1, and maintain the same number of training steps by
randomly duplicating samples, as in the two-language setting. The training strategy for all language
configurations are the same in Section 4.2.

Shared Subspace Ratio. The shared-subspace ratio is a statistic we design to quantify how much
different language-specific routers rely on the same experts when processing the same chart. For-
mally, for each chart example c, let Sc,l ⊆ {0, . . . , N −1} denote the set of activated experts chosen
by the router for language l, with N = 32 in our standard setting. Each router activates a fixed num-
ber of experts (top–k, with k = 16 in our experiments). Given the set of languages Lc available for
chart c, we define Ic =

⋂
l∈Lc

Sc,l and Uc =
⋃

l∈Lc
Sc,l, where Ic is the set of experts shared across

all languages and Uc is the total set of experts activated by any language. The shared-subspace ratio
for chart c is then Rc =

|Ic|
|Uc| , which lies in [0, 1]. A high value indicates that most experts are shared

across languages, while a low value indicates that only a few experts are shared and the rest are
language-specific.

C.3 PROMPT SENSITIVITY STUDY

Table 7: Sensitivity study of evaluation prompt
on Chart2NCode test set using Phi-3.5-vision and
CharLuMA-1.3B.

Model Prompt
Version

Chart2NCode
ER CB DS

Phi-3.5-vision
Default 41.2 7.7 49.6

Version 1 41.4 7.5 49.9
Version 2 41.0 7.5 49.6

CharLuMA-1.3B
Default 91.1 23.2 78.9

Version 1 91.0 23.1 79.1
Version 2 91.2 22.9 79.0

We adopt the prompt used in ChartMimic (Shi
et al., 2025) to maintain experimental consis-
tency, as illustrated in Figure 11. To ensure
that the inclusion of the phrase “a STEM paper”
does not introduce unintended bias, we conduct
a targeted prompt sensitivity analysis. Specif-
ically, we evaluate two variants: (i) removing
only the phrase “a STEM paper,” and (ii) re-
moving the entire sentence in which it appears.
Both ChartLuMA-1.3B and Phi-3.5-vision are
assessed on the Chart2NCode test set under
these modified prompts. The results in Table 7
indicate that these variations yield no substan-
tive differences in performance, confirming the
robustness of our evaluation prompt.

C.4 ERROR ANALYSIS

We conduct an error analysis to identify the common sources of execution failures and reproduction
limitations of CharLuMA-6.7B. In terms of execution failures, Python and R scripts most frequently
break due to mismatched data dimensions or the use of undefined variables, whereas LaTeX scripts
typically fail because of syntax omissions, such as missing braces. For example, the Python case
in Figure 13(a) produces incompatible x–y list lengths when calling the ax.plot function. The R
case in Figure 13(b) invokes an undefined variable angle in a geom polygon call. The LaTeX
case in Figure 13(c) fails due to an omitted closing curly brace in the title and x-tick label definition.

For reproduction limitations, the generated code executes but yields charts that diverge from the ref-
erence in various ways. We observe three recurring patterns: (i) annotation errors, such as missing
legends or hallucinated axis labels; (ii) chart type errors, where the model misclassifies the intended
chart subtype; and (iii) stylistic errors, including incorrect color palettes, font settings, or line styles.
For instance, the reproduced chart in Figure 13(a) from ChartMimic mislabels a group name (“AI-
Dive” instead of “AIDeepDive”) and incorrectly overlays an additional filled area in the radar plot
that does not exist in the gold chart. Figure 13(b), also from ChartMimic, shows a subtype recog-
nition error, where stacked error bars are generated in place of grouped error bars. The case in
Figure 13(c) from Chart2NCode using R demonstrates malformed x-tick labels (a missing “=”) and
an ordering of bars inconsistent with the gold chart. Finally, the LaTeX example in Figure 13(d)
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Prompt Template of Chart-to-code Generation Task enhanced

You are an expert {target language} developer who specializes in writing matplotlib
code based on a given picture. I found a very nice picture in a STEM paper, but there is no
corresponding source code available. I need your help to generate the {target
language} code that can reproduce the picture based on the picture I provide.
Now, please give me the matplotlib code that reproduces the picture below, starting with
”“‘{target language symbol}” and ending with ”“‘”.

Figure 11: Prompt Template of Chart-to-code Generation Task

Prompt Template of GPT-4o Scoring enhanced

You are an excellent judge at evaluating visualization chart plots. The first image (reference
image) is created using ground truth matplotlib code, and the second image (AI-generated
image) is created using matplotlib code generated by an AI assistant. Your task is to score
how well the AI-generated plot matches the ground truth plot.
### Scoring Methodology:
The AI-generated image’s score is based on the following criteria, totaling a score out of
100 points: 1. Chart Types (20 points): Does the AI-generated image include all chart types
present in the reference image (e.g., line charts, bar charts, etc.)? 2. Layout (10 points):
Does the arrangement of subplots in the AI-generated image match the reference image
(e.g., number of rows and columns)? 3. Text Content (20 points): Does the AI-generated
image include all text from the reference image (e.g., titles, annotations, axis labels),
excluding axis tick labels? 4. Data (20 points): How accurately do the data trends in the
AI-generated image resemble those in the original image and is the number of data groups
the same as in the reference image? 5. Style (20 points): Does the AI-generated image
match the original in terms of colors (line colors, fill colors, etc.), marker types (point
shapes, line styles, etc.), legends, grids, and other stylistic details? 6. Clarity (10 points): Is
the AI-generated image clear and free of overlapping elements?
### Evaluation:
Compare the two images head to head and provide a detailed assessment. Use the following
format for your response: — Comments: - Chart Types: ${your comment and subscore} -
Layout: ${your comment and subscore} - Text Content: $your comment and subscore -
Data: ${your comment and subscore} - Style: ${your comment and subscore} - Clarity:
${your comment and subscore} Score: ${your final score out of 100} — Please use the
above format to ensure the evaluation is clear and comprehensive.

Figure 12: Prompt Template of Chart-to-code Generation Task

from Chart2NCode exhibits an incorrect color scheme and hallucinates additional text annotations
within a pie chart.

C.5 EXAMPLES

We qualitatively compare CharLuMA-6.7B with GPT-4o and ChartCoder on representative cases
drawn from both the Chart2NCode test set and ChartMimic. In the Chart2NCode examples (Fig-
ure 15, Figure 16, and Figure 17), CharLuMA-6.7B consistently reproduces high-quality charts
across Python, R, and LaTeX, whereas GPT-4o exhibits reduced reliability in R and LaTeX, and
ChartCoder frequently fails to generate valid scripts in these languages. We also present four chart-
to-Python examples from ChartMimic (Figure 18), which highlight CharLuMA-6.7B’s strong chart
reproduction ability in Python, performing on par with GPT-4o and ChartCoder, the current state-
of-the-art among open-source MLLMs for chart-to-Python generation.
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import matplotlib.pyplot as plt
import numpy as np
categories_1 = ['Cost Reduction', 'Eco Factor', 'User Options', 'Long-term', 'Short-
term']
values_1 = [
    [2500, 3000, 3500],
    [3200, 3600, 4000],
    [3800, 4200, 4600],
    [2800, 3100, 3400],
    [3000, 3300, 3600]
]
categories_2 = ['Technology', 'Throughput', 'Latency', 'Speed', 'Scalability']
values_2 = [
    [8000, 12000, 15000],
    [10000, 14000, 16000],
    [11000, 15000, 17000],
    [9000, 13000, 14000],
    [9500, 13500, 15500]
]
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
bar_width = 0.35
index = np.arange(len(categories_1))
bars1 = ax1.bar(index, [v[0] for v in values_1], bar_width, label='Method 1')
bars2 = ax1.bar(index + bar_width, [v[1] for v in values_1], bar_width, 
label='Method 2')
ax1.set_xlabel('Categories', fontsize=10)
ax1.set_ylabel('Values', fontsize=10)
ax1.set_title('Efficiency Analysis', fontsize=14)
ax1.set_xticks(index + bar_width / 2)
ax1.set_xticklabels(categories_1, fontsize=8, rotation=45)
ax1.legend(loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
ax1.grid(True, which='major', axis='y', linestyle='--', linewidth=0.7)
for i, (v1, v2) in enumerate(zip(values_2, values_2)):
    ax2.plot(categories_2, v1, marker='o', linestyle='-', label='Method 1' if i == 0 
else "")
    ax2.plot(categories_2, v2, marker='s', linestyle='--', label='Method 2' if i == 
0 else "")
ax2.set_xlabel('Measures', fontsize=10)
ax2.set_ylabel('Performance Metrics', fontsize=10)
ax2.set_title('Performance Evaluation', fontsize=14)
ax2.legend(loc='upper right', bbox_to_anchor=(1, 1), ncol=1)
ax2.grid(True, which='major', axis='y', linestyle='-.', linewidth=0.7)
plt.tight_layout()

(a) Error Case for Python

library(ggplot2)
library(dplyr)
data_labels <- c('3500', '4200', '5100')
data <- data.frame(
  resource = c(3500, 4200, 5100),
  resource = c(3700, 4300, 5200),
  resource = c(3900, 4400, 5300)
)
data <- data %>%
  mutate(angle = seq(0, 2 * pi, length.out = ncol(data) + 1)[-1])
data_long <- data %>%
  tidyr::pivot_longer(cols = everything(), names_to = "variable", values_to = 
"value")
ggplot(data_long, aes(x = angle, y = value, group = variable, color = variable)) +
  geom_polygon(fill = "green", alpha = 0.25) +
  geom_line(size = 1) +
  scale_x_continuous(breaks = data$angle, labels = data_labels) +
  coord_polar() +
  theme_minimal() +
  theme(
    axis.text.x = element_text(size = 12, family = "sans"),
    axis.title = element_blank(),
    legend.position = "right",
    legend.title = element_blank()
  ) +
  labs(title = "Supply Chain Resources")
dev.off()

(b) Error Case for R (c) Error Case for LaTex

\documentclass{standalone}
\usepackage{pgfplots}
\usepgfplotslibrary{groupplots}
\usepgfplotslibrary{colorbrewer}
\usepackage{xcolor}
\usepgfplotslibrary{colormaps}
\definecolor{cb}{HTML}{FFFFFF}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
    axis equal image,
    width=10.0in,
    height=8.0in,
    title=Economic Indicators,
    title style={font=\large},
    xtick=data,
    ytick=data,
    xticklabels={
    {GDP Growth Rate (\
    {Unemployment Rate (\
    {Inflation Rate (\
},
    yticklabels={{2018}, {2019}, {2020}, {2021}, {2022}},
    enlarge x limits=0.05,
    enlarge y limits=0.05,
    grid=major,
    nodes near coords,
    axis lines=box,
    colormap/Blues,
    point meta=explicit,
    colorbar,
    axis background/.style={fill=cb}
]
\addplot[
    matrix plot*,
    shader=flat corner,
    draw=none,
    mesh/cols=3,
    point meta=explicit
  ] table[row sep=\\, meta=value] {

  
  x y value \\
  1 1 3.5 \\
  2 1 5.2 \\
  3 1 2.1 \\
  1 2 3.0 \\
  2 2 4.8 \\
  3 2 1.8 \\
  1 3 -1.9 \\
  2 3 2.4 \\
  3 3 1.2 \\
  1 4 2.3 \\
  2 4 6.0 \\
  3 4 2.5 \\
  1 5 3.7 \\
  2 5 5.1 \\
  3 5 3.0 \\
};
\end{axis}
\end{tikzpicture}
\end{document}

ValueError: x and y must have same first 
dimension, but have shapes (5,) and (3,)

Error in `geom_polygon()`:
! Problem while computing aesthetics.
ℹ Error occurred in the 1st layer.
Caused by error:
! object 'angle' not found

(Continue)

(Continue)

Runaway argument?
 axis equal image, width=10.0in, height=8.0in, 
title=Economic Indicat\ETC.

Figure 13: Case study of execution errors in generated code for CharLuMA-6.7B.

(a) Case from 
ChartMimic using 

Python

Gold Chart Reproduced Chart

(b) Case from 
ChartMimic using 

Python

(c) Case from 
Chart2NCode using 

R

(d) Case from 
Chart2NCode using 

LaTex

Figure 14: Case study of reproduction errors in generated charts for CharLuMA-6.7B.
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Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute

Figure 15: Case study of a grouped bar chart input and generated outputs from the Chart2NCode
test set across three plotting languages.
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Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute Fail to Execute

Figure 16: Case study of a box chart input and generated outputs from the Chart2NCode test set
across three plotting languages.
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Gold Chart

CharLuMA-6.7B

Python R Latex

GPT-4o

ChartCoder

CharLuMA-1.3B

Fail to Execute Fail to Execute

Figure 17: Case study of a two-subplot chart input and generated outputs from the Chart2NCode
test set across three plotting languages.
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Gold Chart CharLuMA-6.7BGPT-4o ChartCoder

Figure 18: Case study of model inputs and generated outputs from ChartMimic in Python.
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