

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHARLuMA: EFFICIENT MULTI-LANGUAGE CHART- TO-CODE GENERATION WITH LOW-RANK SUBSPACE ADAPTATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Chart-to-code generation involves translating a chart image into an executable
014 plotting script. However, prior work has largely focused on Python-only solutions,
015 limiting real-world applicability and leaving the learning signals inherent
016 in cross-language equivalences untapped. We argue that aligned multi-language
017 scripts serve as complementary “views” of the same chart, providing mutual guid-
018 ance to regularize the visual-to-code mapping. As an instantiation of this idea,
019 we introduce CharLuMA – a multimodal large language model (MLLM) that
020 integrates a language-guided mixture of low-rank subspaces into its multimodal
021 projector. This architecture enables parameter-efficient adaptation via dynamic
022 routing to language-specific subspaces, while preserving shared visual-semantic
023 representations of charts. To facilitate training and evaluation at scale, we present
024 Chart2NCode, a dataset of 176k Chart–Python–R–LaTeX quadruples that main-
025 tain consistent visual equivalence across languages. Experiments on multiple
026 benchmarks demonstrate that CharLuMA achieves state-of-the-art performance
027 among open-source MLLMs and even surpasses some proprietary systems. Crit-
028 ically, training with more diverse and balanced language sets yields consistent
029 and substantial improvements across all languages by leveraging the rich super-
030 visory signals embedded in cross-language equivalences. Subspace activation
031 analysis further reveals a hybrid allocation pattern, with compact shared cores
032 complemented by broader language-specific zones, while stronger models exhibit
033 smoother and more balanced allocations. Taken together, these results establish
034 multi-language alignment as an effective supervision paradigm for achieving uni-
035 versal chart-to-code generation¹.
036

037 1 INTRODUCTION

038 Chart-to-code generation is the task of translating charts into executable plotting scripts that ac-
039 curately reconstruct the underlying data and visual design, positioned at the intersection of visual
040 understanding, code generation, and cross-modal reasoning (Shi et al., 2025). The demand for au-
041 tomatic chart reproduction is increasing in various domains such as science, finance, and biology.
042 Recent advances in multimodal large language models (MLLMs) have demonstrated impressive per-
043 formance across a wide range of vision–language tasks, even approaching human-level capability
044 (Yue et al., 2024; Lu et al., 2023; Wang et al., 2025b; Zhang et al., 2025). Nevertheless, chart-to-
045 code generation remains a particularly demanding problem, requiring models to recover structured
046 data, interpret intricate visual encodings, and produce precise, executable code with strict fidelity.

047 Existing works focus on translating charts into single-language codes, predominantly using mat-
048 plotlib in Python (Shi et al., 2025; Zhao et al., 2025; Wu et al., 2025; Belouadi et al., 2024b;a).
049 For example, ChartMimic (Shi et al., 2025) introduced a benchmark with human-curated matplotlib
050 scripts for chart reconstruction, and ChartCoder (Zhao et al., 2025) trained a code-focused large lan-
051 guage model (LLM) on large-scale chart–Python pairs. While effective within the Python ecosys-
052 tem, this line of research overlooks the diversity of plotting libraries and languages used in prac-
053 tice—analysts in many fields rely on R (ggplot2) or LaTeX (TikZ), among others, to create charts.

¹Codes and data are available at <https://anonymous.4open.science/r/CharLuMA-226D>.

108

2 RELATED WORK

110 **Multimodal Large Language Models.** MLLMs employ multimodal projectors to bridge vision
 111 encoders with large language models, enabling reasoning across modalities. Models such as BLIP-2
 112 (Li et al., 2022), Flamingo (Alayrac et al., 2022), mPLUG-Owl (Ye et al., 2024), and Qwen-VL
 113 (Bai et al., 2023) adopt Q-Formers or resamplers to compress visual tokens for efficient alignment
 114 on large-scale image–text corpora. LLaVA (Liu et al., 2023; 2024) extends the instruction-tuning
 115 paradigm to the visual domain, demonstrating that a simple MLP projector with one-to-one map-
 116 ping can effectively align modalities without discarding visual information. Some works (Tong
 117 et al., 2024; Lin et al., 2023) explore the combination of various vision encoder to enhance visual
 118 representations. More recent work has scaled MLLMs by substituting dense MLP projectors with
 119 sparsely gated mixture-of-experts architectures (Xu et al., 2025; Li et al., 2025), which parallelize
 120 multiple MLP blocks but incur significant parameter overhead.

121 **Chart-to-code generation** task requires models to translate chart images into executable plotting
 122 scripts, challenging MLLMs with demands in visual understanding, code generation, and cross-
 123 modal reasoning. Prior efforts have primarily focused on chart-to-Python generation. Shi et al.
 124 (2025) introduced a benchmark of manually curated matplotlib scripts, while Zhao et al. (2025)
 125 released a large-scale training corpus. Yang et al. (2024) and Goswami et al. (2025) incorporate user
 126 instructions and agent-based methods to enhance the faithful code synthesis. Other studies utilize
 127 chart-to-Python generation for aligning multimodal projectors (Xu et al., 2025) or constructing chart
 128 question answering datasets (Zhang et al., 2024b; He et al., 2025). Beyond chart, Belouadi et al.
 129 (2024a) and Belouadi et al. (2024b) have developed datasets for image-to-LaTeX generation towards
 130 vector graphics. Nevertheless, these efforts remain restricted to single-language settings, which
 131 limits practical applicability and overlooks the learning signals in cross-language equivalences.

132

3 THE CHART2NCODE DATASET

133 We present Chart2NCode, the first large-scale dataset that aligns chart-code pairs across multiple
 134 programming languages. With 176k Chart-Python-R-LaTeX quadruples, Chart2NCode establishes
 135 a comprehensive resource for developing and evaluating multi-language chart-to-code models.

136

3.1 AUTOMATIC ANNOTATION

137 We construct multi-language plotting scripts through an automatic annotation pipeline consisting
 138 of metadata extraction, template instantiation, and post-debugging (Figure 2). We start by collect-
 139 ing single-language plotting scripts as the source data. ChartCoder (Zhao et al., 2025) provides
 140 large-scale Python plotting scripts, while DaTikZ (Belouadi et al., 2024a) contributes extensive
 141 TikZ-based codes of scientific vector graphics in LaTeX, from which we extract only the subset
 142 corresponding to charts. We further complement these resources by curating 40k R plotting scripts
 143 from online platforms and chart galleries (see Appendix B.1).

144 **Metadata Extraction.** We extract language-agnostic metadata from single-language plotting scripts
 145 at the figure, axis, and object levels. The figure level captures global attributes that determine the
 146 overall layout and presentation of the chart. The axis level records structural elements that define
 147 the coordinate system and its descriptive properties. The object level encodes graphical primitives
 148 together with their visual styles, ensuring precise representation of chart content. Metadata are ob-
 149 tained from plotting objects in each language (e.g., `matplotlib.axes` in Python), while LaTeX
 150 scripts are processed via regular-expression parsing. Collectively, these layers yield a comprehensive
 151 and lossless description of each chart, enabling faithful reconstruction across multiple languages.

152 **Template Instantiation.** We synthesize multi-language plotting scripts by identifying and filling
 153 language-specific templates based on object-level patterns in the metadata. For instance, a horizontal
 154 bar chart is characterized at the object level by rectangles of equal height and varying width, which
 155 are organized into a data table and matched to the corresponding templates in different languages.
 156 Our library comprises 202 human-curated templates spanning 33 chart subtypes in Python, R, and
 157 LaTeX, derived from systematic observations of the source data. Once the appropriate template is
 158 identified, it is instantiated with structured metadata such as titles, axis ticks, and data values. We

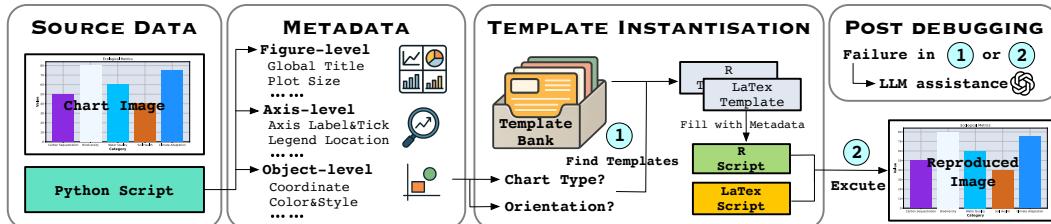


Figure 2: Overview of the automatic annotation pipeline of Chart2NCode.

also add an attribute-mapping process during instantiation to maintain cross-language consistency, such as mapping the `bold` font style in Python to the `bfseries` directive in LaTeX.

Post Debugging. In situations where template identifying is unsuccessful or script execution errors occur, we incorporate an LLM-assisted debugging module powered by GPT-4o (OpenAI, 2024b). If no suitable template exists, the module translates the available single-language script into the target languages; if an instantiated template fails, it applies error correction to restore executability. Scripts that remain invalid or produce deprecated figures are discarded to maintain dataset quality.

3.2 HUMAN QUALITY CHECKING

We conduct human evaluation to assess the cross-language fidelity of Chart2NCode. A random sample of 1,000 quadruples is independently evaluated by three annotators across four dimensions—structural fidelity, data integrity, semantic consistency, and stylistic coherence—with each dimension rated on a 1–5 scale. The proportion of examples with an average score of at least 4 reaches 97.6% for structural fidelity, 91.6% for data integrity, 95.7% for semantic consistency, and 95.6% for stylistic coherence (see Appendix B.3). These results highlight the robust cross-language consistency of Chart2NCode and its reliability for advancing chart-to-code generation research.

3.3 DATA STATISTICS

Chart2NCode encompasses a total of 176k Chart–Python–R–LaTeX quadruples through our automatic pipeline, with 14.7% are refined via LLM-assisted debugging. The dataset spans 15 standard chart types, including bar (18.8%), line (17.1%), scatter (13.2%), radar (5.73%), histogram (4.59%), and box (4.43%). We constructed a test set of 1,000 randomly sampled examples that achieved average scores of at least 4 across all quality aspects in Section 3.2. The average code lengths are 3,998.5 and 4,229.3 characters for the training and test sets, respectively. Comprehensive statistics and details regarding the annotation pipeline are provided in Appendix B.2 and Appendix B.4.

4 THE CHARTLUMA MODEL

We propose CharLuMA, a chart-to-code MLLM that extends a LLaVA-style architecture with a novel low-rank subspace adapter for efficient multi-language adaptation. The model is optimized through a progressive training strategy that combines alignment pretraining with instruction tuning.

4.1 ARCHITECTURE

CharLuMA is composed of a vision encoder and a LLM backbone, connected through a two-layer MLP projector augmented with a novel low-rank subspace adapter. The adapter is governed by a language-guided routing policy that dynamically selects subspace experts based on both the chart’s image features and the target language token, enabling language-specific specialization while maintaining shared visual understanding, as illustrated in Figure 3.

Vision Encoder. We adopt SigLIP (Zhai et al., 2023a) as the vision encoder, configured with an input resolution of 384×384 . Pretrained on millions of image–text pairs, it provides strong priors for extracting semantically meaningful visual features. Formally, given a chart input \mathbf{X}_v , the vision encoder $g^v(\cdot)$ generates its corresponding representation \mathbf{Z}_v , i.e. $\mathbf{Z}_v = g^v(\mathbf{X}_v)$.

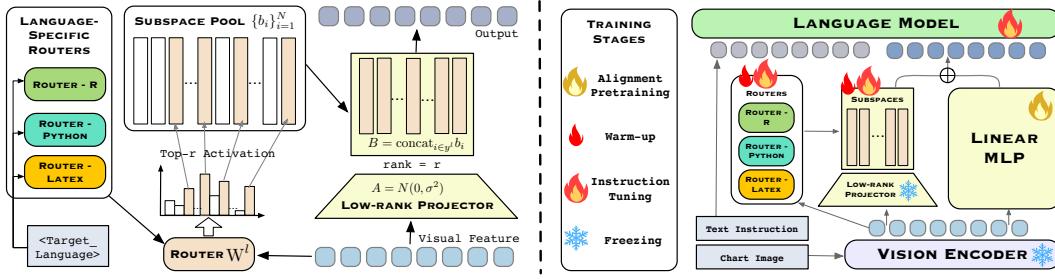


Figure 3: Overview of the CharLuMA architecture and training strategy. The adapter leverages a language-guided routing policy combined with a mixture of low-rank subspaces. The training proceeds through three stages: alignment pretraining, warm-up, and instruction tuning.

Multimodal Projector. The standard multimodal projector in LLaVA-style architectures (Liu et al., 2023) is a two-layer MLP block \mathbf{W} that performs a one-to-one transformation, mapping visual features \mathbf{Z}_v into the embedding space of the LLM backbone. The resulting output, $\mathbf{H}_{\text{base}} = \mathbf{W}\mathbf{Z}_v$, serves as a shared base representation across languages.

To enable efficient language adaptation while preserving visual understanding, we augment this linear MLP block with a low-rank subspace adapter (Ding et al., 2025; Wu et al., 2024; Chen et al., 2023). The adapter comprises three components: a low-rank projector \mathbf{A} , a language-specific router \mathbf{W}^l , and a subspace pool $\{b_i\}_{i=1}^N$. Given the visual features \mathbf{Z}_v , the projector \mathbf{A} maps them into a compact rank- r representation ($r < N$). The router then determines which subspaces to activate for the target language $l \in \{\text{Python, R, LaTeX}\}$, as specified in the text instruction. Concretely, the router \mathbf{W}^l applies a language-specific transformation to the mean-pooled visual feature $\bar{\mathbf{Z}}_v$, yielding a probability distribution over the subspace pool. The top- r subspaces are then selected, $y^l = \text{top}_r(\text{softmax}(\mathbf{W}^l \bar{\mathbf{Z}}_v))$ where y^l denotes their indices, and concatenated to form the matrix $\mathbf{B} = \text{concat}_{i \in y^l} b_i$. The reconstruction matrix \mathbf{B} is combined with the low-rank projector \mathbf{A} to map the visual features into the LLM embedding space, yielding an language-adaptable representation. The final visual tokens injected into the LLM consists of visual tokens that merge the base and language-adaptable representations:

$$\mathbf{H}_v = \mathbf{H}_{\text{base}} + \mathbf{H}_{\text{adapt}} = \mathbf{W}\mathbf{Z}_v + \mathbf{A}\mathbf{B}\mathbf{Z}_v.$$

Large Language Model. We use DeepSeek-Coder (Guo et al., 2024) as the LLM backbone, with 1.3B and 6.7B variants named CharLuMA-1.3B and CharLuMA-6.7B. The visual tokens \mathbf{H}_v produced by the multimodal projector are concatenated with the text tokens \mathbf{H}_t to construct the input sequence for the LLM $g^L(\cdot)$. The final output is then obtained as $g^L(\mathbf{H}_v; \mathbf{H}_t)$.

4.2 TRAINING STRATEGY

Alignment Pretraining. We initialize the multimodal projector by pretraining the linear MLP block \mathbf{W} on ChartMoE-Align (Xu et al., 2025), a dataset covering 900k Chart-JSON pairs that capture structural elements such as tables, annotations, and styles. The vision encoder and LLM backbone remain frozen during this stage, ensuring that \mathbf{W} learns to align visual features of charts with textual schema representations without altering pretrained components (Yan et al., 2024).

Instruction Tuning. We augment the multimodal projector with the proposed low-rank subspace adapter and fine-tune the model on Chart2NCode. We first warm up the language-specific routers \mathbf{W}^l ($l \in \{\text{Python, R, LaTeX}\}$) and the subspace pool $\{b_i\}_{i=1}^N$ over fixed steps, while keeping the MLP block, vision encoder, and LLM backbone frozen. The low-rank projector \mathbf{A} is randomly initialized and kept frozen throughout training, ensuring that adaptation capacity is directed toward language-specific diversities rather than redundantly modeling visual commonalities (Ding et al., 2025; Tian et al., 2025). We then unfreeze the LLM backbone and continue training jointly with the routers and subspace pool, while keeping the MLP block, vision encoder, and \mathbf{A} frozen. This progressive protocol stabilizes routing and subspace specialization in the early phase, and subsequently enables the LLM to effectively leverage language-adaptive visual tokens.

270

5 EXPERIMENT

271
272 We demonstrate the effectiveness of CharLuMA through comprehensive experiments, which achieve
273 consistent improvements in multi-language chart-to-code generation across diverse benchmarks and
274 surpass competitive baselines.
275276

5.1 IMPLEMENTATION DETAILS

277
278 During alignment pretraining, we train the MLP block for 1 epoch on 900k Chart–JSON pairs from
279 ChartMoE-Align (Xu et al., 2025), while keeping the vision encoder and LLM frozen, with a learn-
280 ing rate of 2e-4. During instruction tuning, we warm up the subspace pool and language-specific
281 routers for 274 steps, and then continue with full fine-tuning of the LLM backbone for 1 epoch on the
282 Chart2NCode training set, which contains 175k Chart–Python–R–LaTeX quadruples, while keeping
283 the MLP block and vision encoder frozen. The learning rates are set to 2e-4 for the warm-up phase
284 and 2e-5 for fine-tuning. We set the subspace size $N = 32$ and the rank $r = 16$, with detailed anal-
285 ysis provided in Section 6.1. All experiments are conducted with a global batch size of 128 on 8x
286 NVIDIA L40S GPUs. The total training cost is approximately 82 GPU hours for CharLuMA-1.3B
287 and 321 GPU hours for CharLuMA-6.7B. More details are provided in Appendix C.1.
288289

5.2 EVALUATION SETTINGS

290
291 **Datasets.** We evaluate CharLuMA and the baselines on three chart-to-code datasets. The
292 Chart2NCode test set provides 1,000 charts paired with plotting scripts in Python, R, and LaTeX, en-
293 abling multi-language evaluation. ChartMimic (Shi et al., 2025) includes 2,400 charts with human-
294 curated matplotlib scripts in Python, spanning 22 chart types. Plot2Code (Wu et al., 2025) contains
132 high-quality matplotlib plots across 6 plot types.295
296 **Evaluation Metrics.** We assess chart-to-code generation performance from three perspectives: ex-
297 ecutability, code similarity, and image fidelity. Execution Rate (ER) measures the proportion of
298 generated scripts that run successfully. CrystalBLEU (CB) (Eghbali & Pradel, 2022), a BLEU vari-
299 ant tailored for code, assesses code-level similarity. For image-level fidelity, we adopt DreamSim
300 (DS) (Fu et al., 2023), a fine-tuned metric for perceptual similarity. For Python scripts, we re-
301 port the averaged F1 score across text, layout, type, and color attributes (Shi et al., 2025), where
302 unexecutable scripts are assigned with zero values. **To avoid code similarity inflation for models**
303 **trained on in-distribution data, we employ image-side GPT-4o scoring (GS)** (Shi et al., 2025) on the
304 **Chart2NCode test set, where unexecutable scripts are assigned with zero values as well.**305

5.3 BASELINES

306
307 **General MLLMs.** We evaluate both closed-source and open-source MLLMs as general-purpose
308 baselines. The closed-source group includes GPT-4o (OpenAI, 2024b), GPT-4o-mini (OpenAI,
309 2024a), GPT-5-mini (OpenAI, 2025), Claude-3.5-Sonnet (Anthropic, 2024), and Claude-Sonnet-4
310 (Anthropic, 2025). The open-source group covers representative vision–language models includ-
311 ing [Qwen3-VL](#) (Team, 2025), [InternVL-3.5](#) (Wang et al., 2025a), [GLM-4.5v](#) (Team et al., 2025),
312 DeepSeek-VL (Lu et al., 2024), Phi-3.5-Vision (Abdin et al., 2024), and LLaVA-1.5 (Liu et al.,
313 2023).314 **Chart MLLMs.** We also compare against chart-specialized MLLMs tailored for chart reasoning
315 and chart-to-code generation. ChartLlama (Han et al., 2023) extends the LLaVA-v1.5 framework
316 with instruction tuning on multiple chart reasoning tasks. TinyChart (Zhang et al., 2024a) is built
317 on TinyLLaVA (Zhou et al., 2024) for efficient chart understanding. ChartMoE (Xu et al., 2025)
318 advances chart understanding through a mixture-of-experts multimodal projector, integrating chart-
319 to-code generation as a core modality alignment task. ChartCoder (Zhao et al., 2025) directly targets
320 chart-to-code generation by employing a code LLM as its language backbone.321

5.4 MAIN RESULTS

322
323 Existing MLLMs exhibit pronounced disparities in chart-to-code generation across different pro-
324 gramming languages, as shown in Table 1. ChartCoder, the state of the art among open-source

324
 325 Table 1: **Performance on ChartMimic, Plot2Code, and Chart2NCode test set.** ER \uparrow denotes exec-
 326 tion rate, CB \uparrow denotes the code-similarity score CrystalBLEU, DS \uparrow denotes the image-similarity
 327 score DreamSim, F1 \uparrow denotes the heuristic F1 score for Python scripts, and GS \uparrow denotes the
 328 image-similarity GPT-4o scoring. A “-” indicates that no executable script is generated.

329 330 331 Models	332 ChartMimic				333 Plot2Code				334 Chart2NCode						
	335 Chart2Python		336 Chart2Python		337 Chart2Python		338 Chart2Python		339 Chart2R			340 Chart2LaTeX			
	341 ER	342 CB	343 DS	344 F1	345 ER	346 CB	347 DS	348 F1	349 ER	350 GS	351 DS	352 F1	353 ER	354 GS	355 DS
<i>Proprietary Multimodal Large Language Models</i>															
GPT-5-mini	86.8	13.6	86.9	71.5	93.2	8.9	85.9	72.8	85.2	80.0	89.0	67.5	90.3	81.2	82.5
GPT4o-mini	89.0	9.0	77.5	70.2	90.2	20.7	77.8	67.0	94.8	79.8	81.2	74.5	89.5	70.3	75.4
GPT-4o	93.2	10.2	83.5	79.0	92.4	24.2	83.6	75.4	98.5	87.4	85.0	80.9	94.5	78.3	78.8
Claude-Haiku-3.5	88.0	7.5	76.2	65.7	87.1	16.2	72.8	56.8	91.3	76.7	81.6	68.8	93.0	73.9	76.2
Claude-Sonnet-4	96.2	13.7	83.3	79.5	95.5	12.9	81.2	76.8	98.3	88.0	86.8	81.4	93.9	83.1	82.0
<i>Open-source Multimodal Large Language Models</i>															
Qwen3-VL-2B	59.0	6.2	68.9	40.4	68.9	13.0	64.2	50.1	74.0	59.6	78.0	61.0	56.5	42.0	52.4
Qwen3-VL-4B	78.8	7.6	71.9	59.7	77.3	12.9	66.4	55.4	87.6	77.2	83.2	76.1	75.4	60.9	66.4
Qwen3-VL-8B	81.8	7.9	72.5	64.0	78.8	14.2	68.1	56.9	91.1	80.8	83.7	80.6	73.6	57.2	72.7
InternVL3.5-2B	51.2	4.4	67.0	32.3	61.4	12.2	55.7	44.2	69.8	53.2	76.1	53.1	61.8	44.9	53.4
InternVL3.5-4B	66.6	7.7	70.1	46.0	62.1	13.3	58.8	42.7	77.9	63.4	78.4	63.0	66.8	51.5	56.4
InternVL3.5-8B	74.0	8.1	70.9	51.7	74.2	13.9	61.0	49.1	82.5	67.5	79.6	67.0	67.0	48.2	67.6
DeepSeek-VL-7B	41.3	4.7	67.8	19.0	64.4	13.3	59.4	47.0	65.9	52.5	74.2	44.6	58.8	40.6	57.0
Phi-3.5-vision-4B	66.7	6.9	44.1	38.6	72.7	14.9	63.8	42.6	68.8	56.1	53.3	34.2	47.0	33.5	52.5
LLaVA-v1.5-7B	33.0	0.7	49.6	6.7	34.9	7.1	52.1	10.4	32.9	40.2	51.9	8.9	41.4	31.0	50.7
GLM-4.5v-108B	88.4	8.7	73.3	67.6	83.3	13.3	80.8	56.2	85.0	79.5	85.6	77.3	85.3	70.3	77.2
ChartLlama-13B	70.8	0.0	45.0	15.9	81.8	4.1	50.1	22.4	65.3	14.8	46.0	16.2	13.0	6.2	44.8
TinyChart-3B	84.1	8.1	60.8	53.9	81.1	12.1	64.0	54.0	92.1	86.3	46.5	55.2	-	-	-
ChartMoE-8B	55.0	1.3	56.9	25.7	70.5	6.7	58.9	26.9	69.5	40.2	64.2	35.4	39.3	25.5	52.9
ChartData-7B	88.9	8.8	61.3	59.3	87.9	13.9	65.7	56.6	96.2	86.4	48.1	56.1	-	-	17.9
CharLuMA-1.3B	84.8	7.3	75.1	57.5	83.3	14.5	64.3	47.2	94.4	78.4	86.5	76.9	94.5	73.3	78.9
CharLuMA-6.7B	91.8	8.6	79.2	70.3	96.2	15.8	68.3	60.5	98.0	88.1	88.7	83.5	96.5	80.9	81.8
													89.0	74.2	72.5

351
 352 systems for chart-to-Python generation, achieves 86.4 GS and 48.1 DS on the Python subset of
 353 Chart2NCode, while its performance deteriorates significantly on other languages, with the execu-
 354 tion rate dropping to 17.9 on the LaTeX subset and failing to generate valid R scripts. General-
 355 purpose open-source models such as DeepSeek-VL-7B and Phi-3.5-Vision show larger imbalances
 356 on Chart2NCode, achieving execution rates above 65 on Python but falling below 20 on LaTeX.
 357 DeepSeek-VL-7B further exhibits sharp degradation in chart quality, with DreamSim dropping from
 358 74.2 in Python to 57.0 in R and 54.2 in LaTeX. Proprietary models display the same tendency in
 359 a more moderate form, as GPT-5-mini and Claude-Haiku-3.5 achieve execution rates above 85 and
 360 heuristic F1 scores above 65 on Python, while their performance declines when extended to LaTeX.

361 CharLuMA effectively addresses the cross-language disparity and establishes itself as the most
 362 capable open-source MLLM for general chart-to-code generation. CharLuMA-6.7B delivers the
 363 strongest results on well-established chart-to-Python benchmarks among open-source models,
 364 achieving 79.2 DS and 70.3 F1 on ChartMimic, and 68.3 DS and 60.5 F1 on Plot2Code. The
 365 smaller CharLuMA-1.3B also performs competitively, with 75.1 DS and 57.5 F1 on ChartMimic,
 366 and 64.3 DS and 47.2 F1 on Plot2Code, indicating its parameter efficiency. On the multi-language
 367 Chart2NCode test set, both models sustain robust and balanced performance across Python, R, and
 368 LaTeX. CharLuMA-6.7B achieves 88.7 DS and 83.5 F1 on Python, 81.8 DS and 80.9 GS on R, and
 369 72.5 DS and 74.2 GS on LaTeX, demonstrating consistent generalization beyond Python. Notably,
 370 CharLuMA-6.7B outperforms Claude-Haiku-3.5 on most metrics across all benchmarks and delivers
 371 performance comparable to GPT-4o-mini on ChartMimic and Chart2NCode. These results under-
 372 score CharLuMA’s ability to advance open-source chart-to-code generation beyond single-language
 373 dominance, narrowing the gap with proprietary systems.

6 FURTHER STUDY

374
 375 We conduct ablation studies and in-depth analyses to disentangle the contributions of different com-
 376 ponents in CharLuMA, demonstrating its robustness and interpretability.

378
 379 Table 2: Performance of alternative multimodal
 380 projector architectures during the instruction
 381 tuning stage of CharLuMA-1.3B and -6.7B on
 382 the Chart2NCode test set. Results are averaged
 383 over all three languages.

Model Size	Projector Architecture	Chart2NCode		
		ER	CB	DS
1.3B	Linear MLP	88.1	14.8	76.9
	Mixture-of-MLP	87.9	13.8	75.1
	Subspace Adapter	91.1	23.2	78.9
	Linear MLP	91.0	20.3	78.2
	Mixture-of-MLP	91.9	19.3	77.4
	Subspace Adapter	94.5	24.5	81.0
6.7B	Linear MLP	91.0	20.3	78.2
	Mixture-of-MLP	91.9	19.3	77.4
	Subspace Adapter	94.5	24.5	81.0

Table 3: Ablation study of subspace settings, router configurations, and training choices in CharLuMA-1.3B on the Chart2NCode test set, with results averaged over all three languages.

Total Subspace	Activated Subspace	Total Router	Chart2NCode		
			ER	CB	DS
16	8	3	88.9	21.4	77.6
32	8	3	89.4	22.1	77.8
64	32	3	87.8	19.6	75.6
32	16	1	86.1	17.1	75.1
32	32	0	85.8	16.6	73.2
32	16	3	91.1	23.2	78.9
<i>w/o warming up before finetuning</i>			87.1	18.8	75.6
<i>w/o freezing A matrix of adapter</i>			90.2	21.9	78.0

393 6.1 MODEL ARCHITECTURE ABLATION

394
 395 We conduct ablation studies on CharLuMA-1.3B with the Chart2NCode test set to examine alterna-
 396 tive architectures, subspace–router configurations, and training choices.

397
 398 **Alternative Architecture.** We compare our low-rank *subspace adapter* with two alternative projec-
 399 tor designs in Table 2. The *linear MLP* block serves as a standard baseline (Belouadi et al., 2024b;a;
 400 Zhao et al., 2025) but yields modest improvements, with the 1.3B model staying 88.1 ER and 14.8
 401 CB. The *Mixture-of-MLP* design (Li et al., 2025; Xu et al., 2025) replaces the MLP block with a
 402 sparsely gated mixture-of-experts, each initialized from a pretrained MLP block, and we adapt it
 403 with a hard-routing policy that always activates the language-specific and shared experts (see Appen-
 404 dix C.2). This raises the execution rate to 91.9 but leads to reduced code and image similarity
 405 on the 6.7B model. In contrast, our low-rank *subspace adapter* achieves the strongest results across
 406 both model sizes, combining language-aware specialization with parameter efficiency.

407
 408 **Effect of Subspace Number.** We compare CharLuMA-1.3B under different total and activated
 409 subspaces settings. In Table 3, rows 1–3 demonstrate that moderate scaling from 16 to 32 subspaces
 410 improves diversity and performance, while further expansion to 64 leads to degradation in code
 411 accuracy and visual similarity. These results suggest that the 32–16 configuration provides the best
 412 balance between expressiveness and efficiency for subspace specialization.

413
 414 **Effect of Routing Policy.** We compare different routing strategies for activating subspaces in
 415 CharLuMA-1.3B. In Table 3, rows 4–5 show that replacing the three language-specific routers with
 416 a single shared router reduces CrystalBLEU from 23.2 to 17.1, while removing routers altogether
 417 lowers it further to 16.6. These results confirm the importance of language-guided routing policy for
 418 maintaining code fidelity and cross-language alignment.

419
 420 **Effect of Training Choices.** In Table 3, row 7 shows that removing the warming-up stage lowers
 421 CrystalBLEU from 23.2 to 18.8 and DreamSim from 78.9 to 75.6, underscoring its role in stabilizing
 422 subspace and router specialization. Row 8 shows that unfreezing the A matrix reduces CrystalBLEU
 423 to 21.9 and DreamSim to 78.0, indicating that freezing A helps maintain a compact low-rank
 424 representation while supporting effective language-specific specialization.

425
 426 **Effect of Backbone Choices.** We exam-
 427 ine the effect of backbone choices in Char-
 428 LuMA by modifying the language model
 429 and vision encoder separately. First,
 430 we replace DeepSeek-Coder-6.7B with
 431 the general-purpose DeepSeek-LLM-7B
 432 while keeping the vision encoder fixed.
 433 Second, we replace SigLIP with CLIP-
 434 Large with an input resolution of $336 \times$
 435 336 while retaining the original language
 436 model. As reported in Table 4, the default
 437 configuration with DeepSeek-Coder-6.7B

Table 4: **Ablation study of backbone choices in Char-
 438 LuMA on the Chart2NCode test set, with results aver-
 439 aged over all three languages.**

Language Model	Vision Encoder	Chart2NCode		
		ER	CB	DS
DeepSeek-LLM-7B	SigLIP	88.6	21.8	77.1
DeepSeek-Coder-6.7B	CLIP	88.8	22.0	79.2
DeepSeek-Coder-6.7B	SigLIP	94.5	24.5	81.0

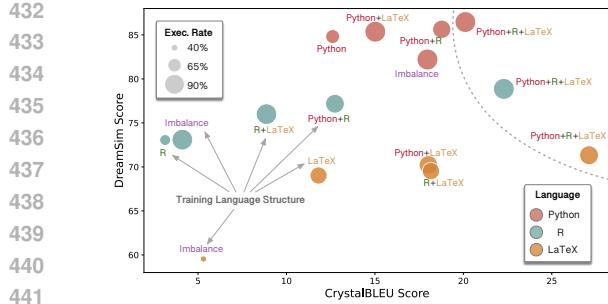


Figure 4: Ablation study of language structure using CharLuMA-1.3B on Chart2NCode.

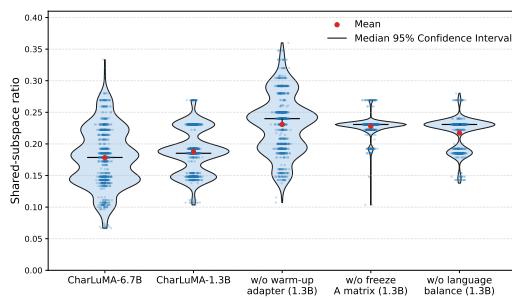


Figure 5: Distribution of shared-subspace ratios across CharLuMA and ablated models.

and SigLIP achieves the strongest execution rate, CrystalBLEU, and DreamSim scores, whereas each alternative substitution leads to a consistent drop in performance across all metrics.

6.2 LANGUAGE STRUCTURE ABLATION

We study the effect of language diversity and balance on the general chart-to-code generation capability of MLLMs by varying the number of programming languages during training, with the number of routers matched to the number of languages. All language configurations are trained with the same strategy and number of steps as CharLuMA-1.3B (see Section 5.1 and Appendix C.2) and evaluated on the Chart2NCode test set restricted to the languages included in training. As shown in Figure 4, greater language diversity leads to substantial improvements. Models trained on three languages achieve the highest execution rates and the strongest code- and image-level similarity scores across all target languages, whereas two-language and single-language settings fall behind by large margins. Moreover, training on the diverse but imbalanced source distribution (76.6% Python, 19.2% R and 4.2% LaTeX) further skews the model toward the dominant language and degrades its performance on the other languages. These results demonstrate that *language diversity enhances both cross-language generalization and in-language robustness by leveraging the learning signals inherent in cross-language equivalences*. At the same time, balanced supervision is critical, as imbalances in the training data introduce systematic biases that undermine universality. Together, these findings underscore the importance of Chart2NCode as the first balanced multi-language dataset for enabling robust and equitable chart-to-code generation.

6.3 SUBSPACE ACTIVATION ANALYSIS

We visualize the subspace activation patterns of language-specific routers in CharLuMA-1.3B and CharLuMA-6.7B in Figure 6. The heatmaps display the normalized activation frequency of 32 subspaces for each language and reveal a hybrid allocation of the subspace pool, with compact shared clusters alongside broader language-specific zones. In CharLuMA-1.3B, subspaces 21, 23, and 30 are frequently activated across all languages, while subspace 1 is used primarily for Python, 18 for R, and 17 for LaTeX. In contrast, CharLuMA-6.7B shows a more balanced distribution, with most subspaces—such as 8, 20, and 29—exhibiting intermediate activation frequencies across the three languages, indicating smoother cross-language integration.

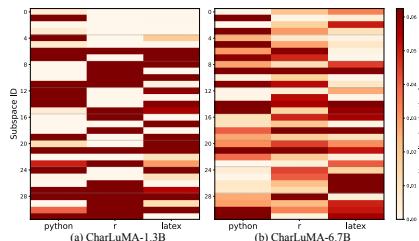


Figure 6: Heatmap of subspace activation frequency for CharLuMA.

We compute the *shared-subspace ratio* to quantify the cross-language allocation of experts. For each chart, it is defined as the proportion of experts simultaneously activated by all language-specific routers relative to the total set of experts activated (see Appendix C.2). Figure 5 reports the distribution of this ratio over a random 1k sample from Chart2NCode. CharLuMA-1.3B achieves a median ratio of 0.19, corresponding to roughly 5 experts shared within a total activation pool of about 27, indicating a compact shared core complemented by broad language-private allocation. CharLuMA-

486 6.7B shows a similar pattern with a median of 0.18, where about 4.9 experts are shared out of 27.5
 487 on average, suggesting that scaling preserves and slightly reinforces this balanced allocation. In
 488 contrast, the ablated 1.3B variants exhibit inflated ratios (0.23–0.24), where more experts are pulled
 489 into shared use while the overall activated pool shrinks, indicating weakened specialization.
 490

491 6.4 QUALITATIVE ANALYSIS 492

493 We conduct a qualitative analysis that combines error diagnosis of CharLuMA-6.7B and compari-
 494 sons with GPT-4o and ChartCoder across multiple benchmarks. For error analysis, we find that
 495 execution failures often stem from mismatched data dimensions or undefined variables in Python
 496 and R, and from syntax issues such as missing braces in LaTeX, while successful runs may still
 497 diverge due to missing annotations, misclassified chart subtypes, or stylistic inconsistencies. For
 498 model comparison, case studies from Chart2NCode and ChartMimic demonstrate that CharLuMA
 499 consistently produces faithful outputs across Python, R, and LaTeX, whereas GPT-4o shows re-
 500 duced reliability in R and LaTeX, and ChartCoder frequently fails to produce valid code in these
 501 two languages. More details are provided in Appendix C.4 and Appendix C.5.
 502

503 7 CONCLUSION 504

505 We introduced CharLuMA, a multimodal LLM for chart-to-code generation with a language-guided
 506 mixture of low-rank subspaces in its multimodal projector, and Chart2NCode, a dataset of 176k visu-
 507 ally aligned Chart–Python–R–LaTeX quadruples. CharLuMA achieves state-of-the-art performance
 508 among open-source MLLMs, with ablation studies showing that balanced multi-language training
 509 enhances cross-language generalization and mitigates bias toward dominant languages. Subspace
 510 analyses further reveal a hybrid allocation of shared and language-specific regions that supports
 511 both transfer and fidelity. By leveraging parallel code views of the same chart across languages, we
 512 show that cross-language alignment provides a powerful supervisory signal for robust and accurate
 513 code generation. These contributions pave the way toward universal, language-flexible chart-to-code
 514 systems that better reflect the diverse software ecosystems in practice.
 515

516 REFERENCES 517

518 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
 519 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
 520 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
 521 dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
 522 Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
 523 Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
 524 Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
 525 Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
 526 Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
 527 Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
 528 Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
 529 Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
 530 Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
 531 de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
 532 Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
 533 Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
 534 Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
 535 Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
 536 long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
 537 Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
 538 Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
 539 phone, 2024. URL <https://arxiv.org/abs/2404.14219>.
 540

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
 Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza

540 Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikołaj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 23716–23736. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

548 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>.

550 Anthropic. Introducing claude 4, 2025. URL <https://www.anthropic.com/news/claude-4>.

553 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *ArXiv*, abs/2308.12966, 2023. URL <https://api.semanticscholar.org/CorpusID:263875678>.

558 Jonas Belouadi, Anne Lauscher, and Steffen Eger. AutomaTikZ: Text-guided synthesis of scientific vector graphics with TikZ. In *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=v3K5TVP8kZ>.

561 Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. Detikzify: Synthesizing graphics programs for scientific figures and sketches with tikz. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=bcVLFQCOjc>.

565 Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 17300–17311, 2023. doi: 10.1109/ICCV51070.2023.01591.

570 Chenhao Ding, Jiangyang Li, SongLin Dong, Xinyuan Gao, Yuhang He, and Yihong Gong. Su-LoRA: Subspace low-rank adaptation for parameter-efficient fine-tuning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 5334–5349, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.278. URL <https://aclanthology.org/2025.findings-acl.278/>.

576 Aryaz Eghbali and Michael Pradel. Crystalbleu: precisely and efficiently measuring the similarity of code. In *Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings*, ICSE '22, pp. 341–342, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392235. doi: 10.1145/3510454.3528648. URL <https://doi.org/10.1145/3510454.3528648>.

581 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic data. In *Advances in Neural Information Processing Systems*, volume 36, pp. 50742–50768, 2023.

586 Kanika Goswami, Puneet Mathur, Ryan Rossi, and Franck Dernoncourt. Plotgen: Multi-agent llm-based scientific data visualization via multimodal retrieval feedback. In *Companion Proceedings of the ACM on Web Conference 2025*, WWW '25, pp. 1672–1676, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400713316. doi: 10.1145/3701716.3716888. URL <https://doi.org/10.1145/3701716.3716888>.

591 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model meets programming – the rise of code intelligence, 2024. URL <https://arxiv.org/abs/2401.14196>.

594 Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
 595 Zhang. Chartllama: A multimodal llm for chart understanding and generation, 2023.
 596

597 Wei He, Zhiheng Xi, Wanxu Zhao, Xiaoran Fan, Yiwen Ding, Zifei Shan, Tao Gui, Qi Zhang,
 598 and Xuanjing Huang. Distill visual chart reasoning ability from llms to mllms, 2025. URL
 599 <https://arxiv.org/abs/2410.18798>.

600 Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey
 601 Shi, and Longyin Wen. Cumo: scaling multimodal llm with co-upcycled mixture-of-experts.
 602 In *Proceedings of the 38th International Conference on Neural Information Processing Systems*,
 603 NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

604 Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-
 605 image pre-training for unified vision-language understanding and generation. In *International
 606 Conference on Machine Learning*, 2022. URL <https://api.semanticscholar.org/CorpusID:246411402>.

607

608 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
 609 Shao, Keqin Chen, Jiaming Han, Siyuan Huang, Yichi Zhang, Xuming He, Hongsheng Li, and
 610 Yu Qiao. Sphinx: The joint mixing of weights, tasks, and visual embeddings for multi-modal
 611 large language models, 2023. URL <https://arxiv.org/abs/2311.07575>.

612

613 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 614 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=w0H2xGH1kw>.

615

616 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 617 tuning. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 618 26286–26296, 2024. doi: 10.1109/CVPR52733.2024.02484.

619

620 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 621 Zhusuo Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-
 622 vl: Towards real-world vision-language understanding, 2024.

623

624 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun yue Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 625 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 626 foundation models in visual contexts. In *International Conference on Learning Representations*,
 627 2023. URL <https://api.semanticscholar.org/CorpusID:264491155>.

628

629 OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024a. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence>.

630

631 OpenAI. Hello gpt-4o, 2024b. URL <https://openai.com/index/hello-gpt-4o>.

632

633 OpenAI. Gpt-5 is here, 2025. URL <https://openai.com/gpt-5/>.

634

635 Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
 636 Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang. Chart-
 637 mimic: Evaluating LMM's cross-modal reasoning capability via chart-to-code generation. In
 638 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=sGpCzsfd1K>.

639

640 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

641

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 642 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 643 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 644 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 645 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
 646 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 647 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan

648 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 649 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 650 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 651 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 652 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

653 Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: an asymmetric
 654 lora architecture for efficient fine-tuning. In *Proceedings of the 38th International Conference on*
 655 *Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates
 656 Inc. ISBN 9798331314385.

657 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 658 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fer-
 659 gus, Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric ex-
 660 ploration of multimodal llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 661 U. Paquet, J. Tomeczak, and C. Zhang (eds.), *Advances in Neural Information Pro-
 662 cessing Systems*, volume 37, pp. 87310–87356. Curran Associates, Inc., 2024. URL
 663 https://proceedings.neurips.cc/paper_files/paper/2024/file/9ee3a664ccfeabc0da16ac6f1f1cfe59-Paper-Conference.pdf.

664 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xinguang Wei, Zhaoyang
 665 Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
 666 Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
 667 Changyao Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
 668 Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
 669 Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
 670 Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
 671 Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
 672 Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Haijun Lv, Wanli Ouyang, Limin Wang, Min
 673 Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
 674 Wenhui Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
 675 ity, reasoning, and efficiency, 2025a. URL <https://arxiv.org/abs/2508.18265>.

676 Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
 677 Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv:
 678 charting gaps in realistic chart understanding in multimodal llms. In *Proceedings of the 38th*
 679 *International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY,
 680 USA, 2025b. Curran Associates Inc. ISBN 9798331314385.

681 Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiu Shan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
 682 Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
 683 models in code generation from scientific plots. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 684 (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 3006–3028,
 685 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-
 686 89176-195-7. doi: 10.18653/v1/2025.findings-naacl.164. URL <https://aclanthology.org/2025.findings-naacl.164/>.

687 Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adap-
 688 tation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the*
 689 *2024 Conference on Empirical Methods in Natural Language Processing*, pp. 7880–7899, Mi-
 690 ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
 691 v1/2024.emnlp-main.450. URL <https://aclanthology.org/2024.emnlp-main.450/>.

692 Zhengzhuo Xu, Bowen Qu, Yiyan Qi, SiNan Du, Chengjin Xu, Chun Yuan, and Jian Guo. Chart-
 693 moe: Mixture of diversely aligned expert connector for chart understanding. In *The Thirteenth*
 694 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=o5TswTUSeF>.

695 Pengyu Yan, Mahesh Bhosale, Jay Lal, Bikhyat Adhikari, and David Doermann. Chartreformer:
 696 Natural language-driven chart image editing. In *Document Analysis and Recognition - IC-
 697 DAR 2024: 18th International Conference, Athens, Greece, August 30–September 4, 2024*,

702 *Proceedings, Part I*, pp. 453–469, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-
 703 031-70532-8. doi: 10.1007/978-3-031-70533-5_26. URL https://doi.org/10.1007/978-3-031-70533-5_26.

704

705 *Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing*
 706 *Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. MatPlotAgent:*
 707 *Method and evaluation for LLM-based agentic scientific data visualization. In Lun-Wei Ku, Andre*
 708 *Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 11789–11804, Bangkok, Thailand, August 2024. Association for Computational*
 709 *Linguistics. doi: 10.18653/v1/2024.findings-acl.701. URL <https://aclanthology.org/2024.findings-acl.701/>.*

710

711

712

713 *Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen*
 714 *Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qi Qian,*
 715 *Ji Zhang, Fei Huang, and Jingren Zhou. mplug-owl: Modularization empowers large language*
 716 *models with multimodality. 2024. URL <https://arxiv.org/abs/2304.14178>.*

717

718 *Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,*
 719 *Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,*
 720 *Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and*
 721 *Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning*
 722 *benchmark for expert agi. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9556–9567, 2024. doi: 10.1109/CVPR52733.2024.00913.*

723

724 *Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language*
 725 *image pre-training. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 11941–11952, 2023a. doi: 10.1109/ICCV51070.2023.01100.*

726

727 *Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language*
 728 *image pre-training, 2023b.*

729

730 *Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei*
 731 *Huang. TinyChart: Efficient chart understanding with program-of-thoughts learning and vi-*
 732 *visual token merging. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Pro-**

733 *ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.

734 *1882–1898, Miami, Florida, USA, November 2024a. Association for Computational Linguis-*
 735 *tics. doi: 10.18653/v1/2024.emnlp-main.112. URL <https://aclanthology.org/2024.emnlp-main.112/>.*

736

737 *Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna Wang, Yongliang Shen, Zeqi Tan, Guiyang*
 738 *Hou, Mingqian He, Yanna Ma, Weiming Lu, and Yueling Zhuang. Multimodal self-instruct: Syn-*
 739 *thetic abstract image and visual reasoning instruction using language model. In Yaser Al-Onaizan,*
 740 *Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical**

741 *Methods in Natural Language Processing*, pp. 19228–19252, Miami, Florida, USA, November

742 *2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1072.*
 743 *URL <https://aclanthology.org/2024.emnlp-main.1072/>.*

744

745 *Zhihan Zhang, Yixin Cao, and Lizi Liao. XFinBench: Benchmarking LLMs in complex finan-*
 746 *cial problem solving and reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,*
 747 *and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Lin-**

748 *guistics: ACL 2025*, pp. 8715–8758, Vienna, Austria, July 2025. Association for Compu-
 749 *tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.457. URL*
 750 *<https://aclanthology.org/2025.findings-acl.457/>.*

751

752 *Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun.*
 753 *ChartCoder: Advancing multimodal large language model for chart-to-code generation. In*
 754 *Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-**

755 *ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7333–7348, Vienna, Austria, July 2025. Association for Compu-

756 *tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.363. URL*
 757 *<https://aclanthology.org/2025.acl-long.363/>.*

756 Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
 757 A framework of small-scale large multimodal models, 2024. URL <https://arxiv.org/abs/2402.14289>.
 758
 759
 760

761 A LLM USAGE 762

763 Large Language Models (LLMs) were utilized in this work solely as auxiliary tools for linguistic
 764 refinement. Their function was restricted to enhancing grammar, clarity, and stylistic consistency of
 765 text that had been originally drafted by the authors. At no stage did LLMs contribute to research
 766 ideation, methodological design, data collection, analysis, or interpretation of results. All intellec-
 767 tual contributions, scientific content, and conclusions presented in this paper are entirely attributable
 768 to the authors. The authors accept full responsibility for the accuracy, originality, and integrity of
 769 the submission, including sections of text that may have been refined with the assistance of LLMs.
 770

771 B DATASET 772

773 B.1 DATA ACQUISITION 774

775 We collect single-language plotting scripts from established datasets and publicly available repos-
 776 itories as our source data. ChartCoder (Zhao et al., 2025) contributes approximately 160k chart-
 777 to-Python scripts, while DaTikZ (Belouadi et al., 2024a) provides 49k vector-graphics-to-Python
 778 scripts, of which 8.8k correspond to charts with explicit axis structures. In addition, we curated 40k
 779 R plotting scripts from widely used online resources including R gallery² and stack overflow³. To
 780 handle deprecated or non-executable scripts encountered during crawling, we employed GPT-4o as
 781 an automated debugging assistant, guided by the prompt instructions in Figure 8, with a total API
 782 cost of 132.2 USD.
 783

784 B.2 ANNOTATION PIPELINE

785 **Metadata Structure and Extraction.** We adopt a hierarchical metadata schema to capture chart
 786 information at three levels: figure, axis, and object. This structure provides a standardized repres-
 787 entation of chart elements across languages while preserving both global properties and fine-grained
 788 graphical details. At the figure level, metadata records global properties such as the overall title,
 789 background color and legend, plot size (width, height, and units), twin-axis relationships, and sub-
 790 plot layout. For each axis, metadata focuses on type-agnostic attributes including axis titles, x- and
 791 y-axis labels, tick values and labels, legends, grids, panel boxes, background color, and annota-
 792 tions. At the object level, metadata captures fine-grained properties of graphical elements grouped
 793 into patches, lines, collections, and images. For each object, visual properties such as color, trans-
 794 parency, line width, marker style, and hatch patterns are recorded, together with precise geometric
 795 information such as rectangle bounds, circle centers and radii, polygon vertices, line coordinates,
 796 scatter offsets, and heatmap arrays. Cleaned labels are associated with color or stylish values where
 797 available, ensuring consistency with legends and categorical encodings.
 798

798 Metadata is extracted by executing or parsing plotting scripts in their native environments. For
 799 Python plotting scripts, each script is executed in an isolated runtime, and the figure is in-
 800 spected using `fig.get_axes()`. Axis-level attributes are gathered through standard APIs
 801 such as `ax.get_title()`, `ax.get_xlabel()`, and `ax.get_yticks()`. Object-level el-
 802 ements are obtained by iterating over `ax.patches`, `ax.lines`, `ax.collections` and so
 803 on. For R scripts based on `ggplot`, code is evaluated to collect the plotting object `p` built via
 804 `ggplot_build()`. We extract axis-level metadata from structures such as `p$labels$title`,
 805 `p$mapping$y`, and `p$theme$panel.border`, while object-level metadata is obtained by it-
 806 erating over `p$layers`. For base R graphics, we wrap high-level functions like `barplot`, `hist`,
 807 and `boxplot`, as well as low-level commands such as `text`, `legend`, and `grid`, to capture
 808

²<https://r-graph-gallery.com/all-graphs.html>

³Retrieved using StackAPI with keywords representative of R plotting functions and libraries, including `ggplot`, `plotly`, `geom`, `plot()`, `hist`, `boxplot` and so on.

810

Instruction Prompt for Handling Missing Templates in Post-Debugging

811

812 You are provided with a `{original language}` plotting script as shown below. Your
 813 task is to transform it to `{target language}` language, starting with “`{target`
 814 `language symbol}`” and ending with “`.`
 815 `{original plotting script}`”

816

817

Figure 7: Instruction Prompt for Handling Missing Templates in Post-Debugging

818

819

820

821

822

823

824 metadata during execution. For LaTeX, we use the regular-expression parsing to detect `axis` en-
 825 vironments while drawing commands are parsed to recover object geometries such as rectangles,
 826 circles, and paths.

827

828 **Template Design.** The templates are parameterized chart skeletons that translate extracted metadata
 829 into executable plotting code. Each template specifies placeholders for chart elements such as titles,
 830 axis labels, ticks, grids, legends, annotations, and objects, which are directly filled from metadata.
 831 The overall structure is consistent across languages, but implementation details differ. Taking the
 832 `bar` type for example, Python uses functions like `ax.bar` or `ax.bars` in `matplotlib`, R employs
 833 `geom_bar` in `ggplot`, and LaTeX relies on declarative PGFPlots options such as `xbar`, `ybar` and
 834 `addplot` using TikZ.

835

836 To maintain cross-language consistency during template instantiation, we employ an attribute-
 837 mapping process that normalizes visual properties across Python, R, and LaTeX. Legend locations
 838 are aligned so that values such as “upper right” in Python correspond to “right” in R and “north east”
 839 in LaTeX. Font styles are unified by mapping bold and italic settings into Python’s weight and style
 840 fields, R’s fontface descriptors, or LaTeX commands like `bfseries` and `itshape`. Font sizes
 841 are standardized by converting numeric values in Python and R into LaTeX size categories such
 842 as `small` or `Large`. Annotation alignment is harmonized by translating Python’s `top`, `bottom`,
 843 and `center` into equivalent justification values in R and LaTeX. Marker and line styles are also con-
 844 solidated through shared dictionaries, ensuring that a logical style such as `circle`, `dashed`, or `cross` is
 845 rendered consistently across all languages. This mapping guarantees that semantic attributes are pre-
 846 served even when the syntax differs, allowing metadata extracted in one language to be instantiated
 847 in another without loss of fidelity.

848

849 **Metadata-Template Matching.** A critical step in our automatic pipeline is to identify the correct
 850 template once the metadata of a chart has been extracted. We address this by assigning each chart
 851 a type and subtype based on patterns in the object-level metadata. Taking bar charts for example,
 852 we examine the geometry of rectangular patches: overlapping intervals reveal stacked bars, repeated
 853 clusters of equal size indicate grouped bars, with other cases default to base bars. For pie charts,
 854 subtype inference is based on patch geometry and offsets: the presence of an inner radius or nonzero
 855 `x` position signals a donut chart, displaced segment centers indicate exploded pies, and their combi-
 856 nation yields donut-exploded pies. These inference rules allow the system to automatically select
 857 the most appropriate template across chart variants without manual intervention.

858

859 **LLM-assisted Debugging.** We incorporate an LLM-assisted debugging module based on GPT-4o
 860 to handle cases where no suitable template can be identified or when an instantiated template fails
 861 to execute. Instruction prompts for these two scenarios are provided in Figure 7 and Table 8. The
 862 total expenditure on the OpenAI API amounts to 316.6 USD.

863

864 Our automatic pipeline finally generates 176K Chart-Python-R-LaTeX quadruples, with 14.7% are
 865 refined via LLM-assisted debugging. A randomly sampled set of 1,000 examples is reserved as the
 866 test set. The average code lengths are 3998.5 and 4229.3 characters for the training and test sets,
 867 respectively. The dataset covers a broad range of chart types, including bar (18.8%), line (17.1%),
 868 scatter (13.2%), pie (7.3%), ring (5.1%), radar (5.73%), histogram (4.59%), box (4.43%), heatmap
 869 (3.56%), violin (3.13%), error point (2.94%), area (2.81%), density (2.79 %), error bar (2.68%),
 870 bubble (2.2%), and others (3.64 %).

864
865

Instruction Prompt for Failed Template Execution in Post-Debugging

866
867
868
869

You are provided with two code snippets. The first is the original code, a `{original language}` plotting script serving as the reference implementation. The second is the transformed code, a version of the original script translated into `{target language}`, which is currently unexecutable due to syntax or logic errors.

870
871

Original Code: `{original plotting script}`
Transformed Code: `{failed template}`

872
873
874
875
876
877
878

Your task is to identify and correct all errors in the transformed code that prevent it from executing. The corrected script must produce a chart that is semantically equivalent to the one generated by the original code. High-level chart semantics such as axis labels, tick values, bar orientation, or grouping should remain unchanged unless modification is required for successful execution. You may reorder code lines, fix syntax issues, and adjust function arguments as needed. Please output only the corrected code, starting with `“{target language symbol} and ending with ““.`

879

880
881

Figure 8: Instruction Prompt for Failed Template Execution in Post-Debugging

882
883
884

B.3 QUALITY ASSURANCE

885
886
887

We conduct a human evaluation to systematically assess the cross-language fidelity of Chart2NCode. We randomly sample 1,000 chart-Python-R-LaTeX quadruples from the Chart2Ncode dataset, which are independently annotated by three annotators. All annotators were recruited on campus, with eligibility requiring prior experience in data visualization and programming in Python, R, and LaTeX. They were compensated in accordance with the institution’s standard remuneration policies for academic work. We conduct pairwise evaluations for each quadruple, comparing the reproduced charts in Python, R, and LaTeX against the original image, and annotators assess their fidelity across four dimensions. *Structural fidelity* measures whether the geometric arrangement of the chart is preserved, including the number and configuration of subplots as well as axis orientation. *Data integrity* evaluates whether the underlying quantitative values are reproduced exactly, meaning that the reconstructed chart reflects the same data table as the original. *Semantic consistency* assesses whether textual and categorical information is maintained, ensuring that titles, axis labels, legends, and annotations convey the same meaning without omissions, substitutions, or hallucinations. *Stylistic coherence* concerns the visual presentation, requiring that non-semantic design elements—such as color palettes, font attributes, line styles, gridline visibility, and panel borders—remain consistent with the original chart. All dimensions are rated on a 1–5 scale, where 1 denotes severe mismatch and 5 denotes perfect alignment.

903

We compute the average per-dimension score across annotators for each example, and report the proportion of examples achieving an average score of at least 4. As shown in Table 5, the evaluation results confirm high fidelity across dimensions: 97.6% of examples exceed the threshold for structural fidelity, 91.6% for data integrity, 95.7% for semantic consistency, and 95.6% for stylistic coherence. To further assess reliability, we compute Fleiss’ κ on binarized labels (rating ≥ 4 vs. < 4). The resulting average Fleiss’ κ of 0.83 indicates substantial agreement beyond chance, representing a strong and practical level of consistency for human judgment in chart reproduction tasks.

Table 5: Proportion (%) of examples with average rating ≥ 4 on 1,000 sampled quadruples, reported per annotator and averaged across annotators. Overall row averages the four dimensions.

Dimension	Ann. 1	Ann. 2	Ann. 3	Avg.
Structural fidelity	98.3	97.1	97.5	97.6
Data integrity	90.5	91.5	92.8	91.6
Semantic consistency	94.9	96.6	95.7	95.7
Stylistic coherence	96.2	95.0	95.5	95.6
Overall	95.0	94.3	94.6	94.6

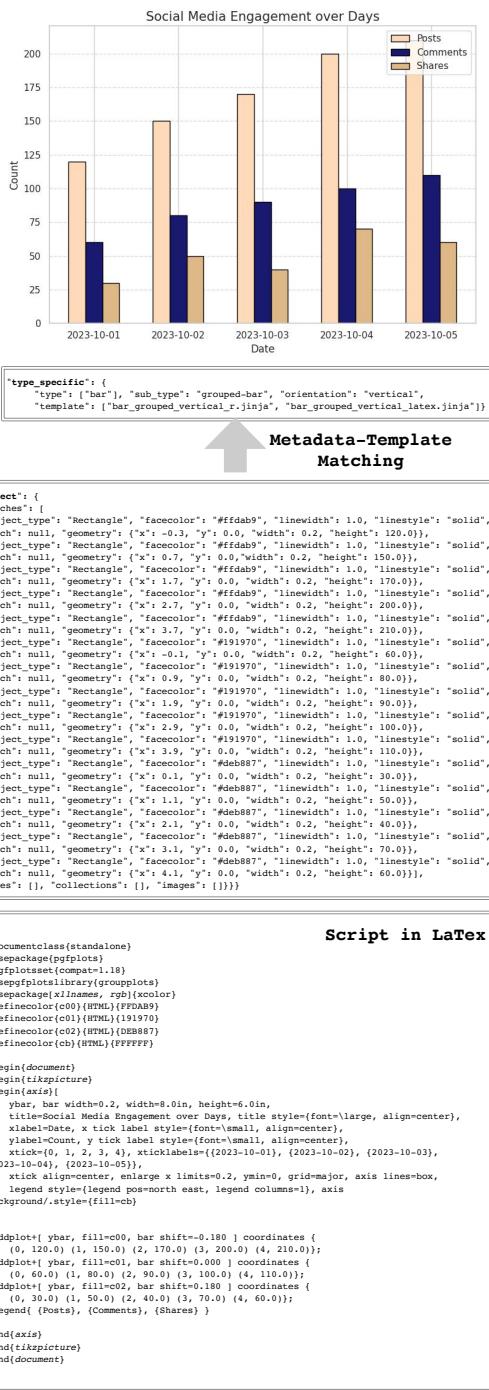


Figure 9: Case study of annotation pipeline in a vertical grouped bar chart.

B.4 CASE STUDY

We present two illustrative cases in Figure 9 and Figure 10 to demonstrate the functionality of our annotation pipeline.

1026 C EXPERIMENTAL SETTINGS AND RESULTS

1028 C.1 TRAINING AND EVALUATION SETTINGS

1030 We adopt SigLIP (Zhai et al., 2023b) as the vision encoder and DeepSeek-Coder (Guo et al., 2024)
 1031 as the LLM backbone, yielding two variants of our model: CharLuMA-1.3B and CharLuMA-6.7B.
 1032 The multimodal connector is implemented as a standard two-layer MLP block augmented with our
 1033 low-rank subspace adapter.

1034 For alignment pretraining, we train the MLP block for one epoch on 900k chart-JSON pairs from
 1035 ChartMoE-Align (Xu et al., 2025), while freezing both the vision encoder and LLM, with a learning
 1036 rate of 2e-4. During instruction tuning, we first warm up the subspace pool and language-specific
 1037 routers for 274 steps, and then perform full fine-tuning of the LLM backbone for one epoch on 175k
 1038 chart-Python-R-LaTeX quadruples from Chart2NCode. In this stage, the vision encoder and MLP
 1039 block remain frozen, the adapter is updated, and the learning rates are set to 2e-4 for warm-up and
 1040 2e-5 for fine-tuning. The low-rank projector within the adapter remains frozen throughout. Each
 1041 training batch is constructed to include all three languages.

1042 All training experiments are conducted with a global batch size of 128 on 8× NVIDIA L40S GPUs.
 1043 The total training cost for CharLuMA-1.3B is approximately 82 GPU hours, consisting of 35 GPU
 1044 hours for pretraining, 6 GPU hours for warm-up, and 41 GPU hours for fine-tuning. For CharLuMA-
 1045 6.7B, the total cost is about 321 GPU hours, including 109 GPU hours for pretraining, 18 GPU hours
 1046 for warm-up, and 193 GPU hours for fine-tuning. More training hyperparameters are in Table 6.

1047
 1048 **Table 6: Training hyperparameters for CharLuMA across stages in Section 5.1.**

1049 Hyperparameter	1050 Alignment Pretraining	1051 Warm-up	1052 Instruction Tuning
1053 Learning rate	1054 2e-4	1055 2e-4	1056 2e-5
1057 LR schedule	1058 Cosine decay	1059 Cosine decay	1060 Cosine decay
1061 Optimizer	1062 AdamW	1063 AdamW	1064 AdamW
1065 Max tokens	1066 2,048	1067 2,048	1068 2,048
1069 Vision encoder	1070 Frozen	1071 Frozen	1072 Frozen
1073 LLM	1074 Frozen	1075 Frozen	1076 Trainable
1077 MLP Block	1078 Trainable	1079 Frozen	1080 Frozen
1081 Adapter	1082 Frozen	1083 Trainable	1084 Trainable

1085 For evaluation, we follow a standardized setup across all baselines, fixing the maximum
 1086 token length to 2,048. The prompting format for the chart-to-code generation task is
 1087 shown in Figure 11, adapted from Shi et al. (2025). Proprietary MLLMs evaluated in-
 1088 clude gpt-4o-2024-08-06, gpt-4o-mini-2024-07-18, gpt-5-mini-2025-08-07,
 1089 claude-3-5-haiku-20241022, and claude-sonnet-4-20250514, all accessed
 1090 through their official APIs. For open-source MLLMs, we directly run released checkpoints on
 1091 NVIDIA L20 GPUs.

1092 C.2 DETAILED ANALYSIS SETTING

1093 **Alternative Architecture.** We compare our language-guided low-rank subspace adapter with two
 1094 alternative connector architectures: a linear MLP and a Mixture-of-MLP. In the linear MLP setting,
 1095 the pretrained MLP block, initialized on chart-JSON pairs, is directly fine-tuned on Chart2NCode.
 1096 In the Mixture-of-MLP setting, four experts are initialized from the pretrained MLP block, one of
 1097 which is frozen as a shared expert, while the remaining three serve as language-specific experts.
 1098 Hard routing is applied such that, in a Python generation task, the Python-specific expert is activated
 1099 jointly with the shared expert. This setup mirrors the configuration with four experts in total, of
 1100 which two are activated for each time, as reported in prior studies Li et al. (2025); Xu et al. (2025).
 1101 Warm-up training is also employed in this setting, followed by continued training with the LLM
 1102 backbone.

1103 **Language Structure Ablation.** We conduct a language structure ablation to examine the impact of
 1104 varying the number of plotting languages and corresponding routers during training, while strictly
 1105 controlling the total number of training steps. In the full three-language configuration, the model
 1106 is trained on 175k chart images paired with $175 \times 3 = 525$ k plotting scripts, evenly split across

1080 Python, R, and LaTeX. For the single-language setting, we keep the dataset size constant by training
 1081 on 175k chart–script pairs but increase the number of epochs to three. For the two-language setting,
 1082 we preserve the same number of training steps by randomly duplicating half of the available plot-
 1083 ting scripts to reach the equivalent scale. This ensures that all configurations—one, two, or three
 1084 languages—are trained under comparable conditions. For the imbalanced configuration, we train
 1085 on the source data described in Appendix B.1, and maintain the same number of training steps by
 1086 randomly duplicating samples, as in the two-language setting. The training strategy for all language
 1087 configurations are the same in Section 4.2.

1088 **Shared Subspace Ratio.** The shared-subspace ratio is a statistic we design to quantify how much
 1089 different language-specific routers rely on the same experts when processing the same chart. For-
 1090 mally, for each chart example c , let $S_{c,l} \subseteq \{0, \dots, N-1\}$ denote the set of activated experts chosen
 1091 by the router for language l , with $N = 32$ in our standard setting. Each router activates a fixed num-
 1092 ber of experts (top- k , with $k = 16$ in our experiments). Given the set of languages \mathcal{L}_c available for
 1093 chart c , we define $I_c = \bigcap_{l \in \mathcal{L}_c} S_{c,l}$ and $U_c = \bigcup_{l \in \mathcal{L}_c} S_{c,l}$, where I_c is the set of experts shared across
 1094 all languages and U_c is the total set of experts activated by any language. The *shared-subspace ratio*
 1095 for chart c is then $R_c = \frac{|I_c|}{|U_c|}$, which lies in $[0, 1]$. A high value indicates that most experts are shared
 1096 across languages, while a low value indicates that only a few experts are shared and the rest are
 1097 language-specific.

1098

1099 C.3 PROMPT SENSITIVITY STUDY

1100

1101 We adopt the prompt used in ChartMimic (Shi
 1102 et al., 2025) to maintain experimental consis-
 1103 tency, as illustrated in Figure 11. To ensure
 1104 that the inclusion of the phrase “a STEM paper”
 1105 does not introduce unintended bias, we conduct
 1106 a targeted prompt sensitivity analysis. Speci-
 1107 cally, we evaluate two variants: (i) removing
 1108 only the phrase “a STEM paper,” and (ii) re-
 1109 moving the entire sentence in which it appears.
 1110 Both ChartLuMA-1.3B and Phi-3.5-vision are
 1111 assessed on the Chart2NCode test set under
 1112 these modified prompts. The results in Table 7
 1113 indicate that these variations yield no substan-
 1114 tive differences in performance, confirming the
 1115 robustness of our evaluation prompt.

1116

1117 C.4 ERROR ANALYSIS

1118

1119 We conduct an error analysis to identify the common sources of execution failures and reproduction
 1120 limitations of CharLuMA-6.7B. In terms of execution failures, Python and R scripts most frequently
 1121 break due to mismatched data dimensions or the use of undefined variables, whereas LaTeX scripts
 1122 typically fail because of syntax omissions, such as missing braces. For example, the Python case
 1123 in Figure 13(a) produces incompatible x–y list lengths when calling the `ax.plot` function. The R
 1124 case in Figure 13(b) invokes an undefined variable `angle` in a `geom_polygon` call. The LaTeX
 1125 case in Figure 13(c) fails due to an omitted closing curly brace in the title and x-tick label definition.

1126

1127 For reproduction limitations, the generated code executes but yields charts that diverge from the ref-
 1128 erence in various ways. We observe three recurring patterns: (i) annotation errors, such as missing
 1129 legends or hallucinated axis labels; (ii) chart type errors, where the model misclassifies the intended
 1130 chart subtype; and (iii) stylistic errors, including incorrect color palettes, font settings, or line styles.
 1131 For instance, the reproduced chart in Figure 13(a) from ChartMimic mislabels a group name (“AI-
 1132 Dive” instead of “AIDeepDive”) and incorrectly overlays an additional filled area in the radar plot
 1133 that does not exist in the gold chart. Figure 13(b), also from ChartMimic, shows a subtype recog-
 1134 nition error, where stacked error bars are generated in place of grouped error bars. The case in
 1135 Figure 13(c) from Chart2NCode using R demonstrates malformed x-tick labels (a missing “=”)
 1136 and an ordering of bars inconsistent with the gold chart. Finally, the LaTeX example in Figure 13(d)

Table 7: Sensitivity study of evaluation prompt
 on Chart2NCode test set using Phi-3.5-vision and
 CharLuMA-1.3B.

Model	Prompt Version	Chart2NCode		
		ER	CB	DS
Phi-3.5-vision	Default	41.2	7.7	49.6
	Version 1	41.4	7.5	49.9
	Version 2	41.0	7.5	49.6
CharLuMA-1.3B	Default	91.1	23.2	78.9
	Version 1	91.0	23.1	79.1
	Version 2	91.2	22.9	79.0

1134
1135

Prompt Template of Chart-to-code Generation Task enhanced

1136

You are an expert `{target language}` developer who specializes in writing matplotlib code based on a given picture. I found a very nice picture in a STEM paper, but there is no corresponding source code available. I need your help to generate the `{target language}` code that can reproduce the picture based on the picture I provide.

1139

Now, please give me the matplotlib code that reproduces the picture below, starting with `"""{target language symbol}"""` and ending with `"""`.

1140

1141

1142

1143

1144

Figure 11: Prompt Template of Chart-to-code Generation Task

1145

1146

Prompt Template of GPT-4o Scoring enhanced

1147

You are an excellent judge at evaluating visualization chart plots. The first image (reference image) is created using ground truth matplotlib code, and the second image (AI-generated image) is created using matplotlib code generated by an AI assistant. Your task is to score how well the AI-generated plot matches the ground truth plot.

Scoring Methodology:

The AI-generated image's score is based on the following criteria, totaling a score out of 100 points: 1. Chart Types (20 points): Does the AI-generated image include all chart types present in the reference image (e.g., line charts, bar charts, etc.)? 2. Layout (10 points): Does the arrangement of subplots in the AI-generated image match the reference image (e.g., number of rows and columns)? 3. Text Content (20 points): Does the AI-generated image include all text from the reference image (e.g., titles, annotations, axis labels), excluding axis tick labels? 4. Data (20 points): How accurately do the data trends in the AI-generated image resemble those in the original image and is the number of data groups the same as in the reference image? 5. Style (20 points): Does the AI-generated image match the original in terms of colors (line colors, fill colors, etc.), marker types (point shapes, line styles, etc.), legends, grids, and other stylistic details? 6. Clarity (10 points): Is the AI-generated image clear and free of overlapping elements?

Evaluation:

Compare the two images head to head and provide a detailed assessment. Use the following format for your response: — Comments: - Chart Types: \${your comment and subscore} - Layout: \${your comment and subscore} - Text Content: \${your comment and subscore} - Data: \${your comment and subscore} - Style: \${your comment and subscore} - Clarity: \${your comment and subscore} Score: \${your final score out of 100} — Please use the above format to ensure the evaluation is clear and comprehensive.

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

Figure 12: Prompt Template of Chart-to-code Generation Task

1174

1175

1176

from Chart2NCode exhibits an incorrect color scheme and hallucinates additional text annotations within a pie chart.

1177

1178

C.5 EXAMPLES

1179

1180

1181

1182

1183

1184

1185

1186

1187

We qualitatively compare CharLuMA-6.7B with GPT-4o and ChartCoder on representative cases drawn from both the Chart2NCode test set and ChartMimic. In the Chart2NCode examples (Figure 15, Figure 16, and Figure 17), CharLuMA-6.7B consistently reproduces high-quality charts across Python, R, and LaTeX, whereas GPT-4o exhibits reduced reliability in R and LaTeX, and ChartCoder frequently fails to generate valid scripts in these languages. We also present four chart-to-Python examples from ChartMimic (Figure 18), which highlight CharLuMA-6.7B's strong chart reproduction ability in Python, performing on par with GPT-4o and ChartCoder, the current state-of-the-art among open-source MLLMs for chart-to-Python generation.

```

1188
1189 import matplotlib.pyplot as plt
1190 categories_1 = ['Cost Reduction', 'Eco Factor', 'User Options', 'Long-term', 'Short-term']
1191 values_1 = [
1192     [2000, 3000, 5000],
1193     [1000, 2000, 4000],
1194     [3000, 4200, 4600],
1195     [2000, 3500, 4400],
1196     [1000, 2000, 3600]
1197 ]
1198
1199 # response = ['Technology', 'Throughput', 'Latency', 'Speed', 'Scalability']
1200 values_2 = [
1201     [8000, 10000, 15000],
1202     [10000, 14000, 16000],
1203     [11000, 15000, 17000],
1204     [10000, 13000, 15000],
1205     [9000, 15000, 15500]
1206 ]
1207
1208 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
1209 bar_width = 0.35
1210
1211 ax1.set_title('Performance Metrics')
1212 bars1 = ax1.barh(categories_1, [v[0] for v in values_1], bar_width, label="Method '1'")
1213 bars2 = ax1.barh(categories_1, [v[1] for v in values_1], bar_width, label="Method '2'")
1214 ax1.set_xlabel('Categories', fontstyle='italic')
1215 ax1.set_ylabel('Performance Metrics', fontstyle='italic')
1216 ax1.set_title('Efficiency Analysis', fontstyle='italic')
1217 ax1.set_xticks([1, 2, 3, 4, 5], rotation=45)
1218 ax1.set_yticks(categories_1, rotation=45)
1219 ax1.legend(loc='upper right', bbox_to_anchor=(1, 1), loc2l=0.7)
1220 ax1.legend(loc='upper right', bbox_to_anchor=(1, 1), loc2l=0.7)
1221 for i, (v1, v2) in enumerate(zip(values_1, values_2), 1):
1222     ax2.plot(categories_1, v1, marker='o', linestyle='--', label="Method '1" if i == 1 else "Method '2' if i == 2")
1223     ax2.plot(categories_1, v2, marker='x', linestyle='-.', label="Method '2' if i == 1 else "Method '1' if i == 2")
1224
1225 ax2.set_xlabel('Value')
1226 ax2.set_ylabel('Value')
1227 ax2.set_title('x and y must have same first dimension, but have shapes (5,) and (3,)')
1228 ax2.set_xticks(categories_1, rotation=45)
1229 ax2.set_yticks(categories_1, rotation=45)
1230 ax2.legend(loc='upper right', bbox_to_anchor=(1, 1), loc2l=0.7)
1231 ax2.grid(True, which='major', axis='y', linestyle='-.', linewidth=0.7)
1232 plt.tight_layout()
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
323310
323311
323312
323313
323314
323315
323316
323317
323318
323319
323320
323321
323322
323323
323324
323325
323326
323327
323328
323329
323330
323331
323332
323333
323334
323335
323336
323337
323338
323339
3233310
3233311
3233312
3233313
3233314
3233315
3233316
3233317
3233318
3233319
3233320
3233321
3233322
3233323
3233324
3233325
3233326
3233327
3233328
3233329
3233330
3233331
3233332
3233333
3233334
3233335
3233336
3233337
3233338
3233339
32333310
32333311
32333312
32333313
32333314
32333315
32333316
32333317
32333318
32333319
32333320
32333321
32333322
32333323
32333324
32333325
32333326
32333327
32333328
32333329
32333330
32333331
32333332
32333333
32333334
32333335
32333336
32333337
32333338
32333339
323333310
323333311
323333312
323333313
323333314
323333315
323333316
323333317
323333318
323333319
323333320
323333321
323333322
323333323
323333324
323333325
323333326
323333327
323333328
323333329
323333330
323333331
323333332
323333333
323333334
323333335
323333336
323333337
323333338
323333339
3233333310
3233333311
3233333312
3233333313
3233333314
3233333315
3233333316
3233333317
3233333318
3233333319
3233333320
3233333321
3233333322
3233333323
3233333324
3233333325
3233333326
3233333327
32
```

Figure 13: Case study of execution errors in generated code for CharLuMA-6.7B.

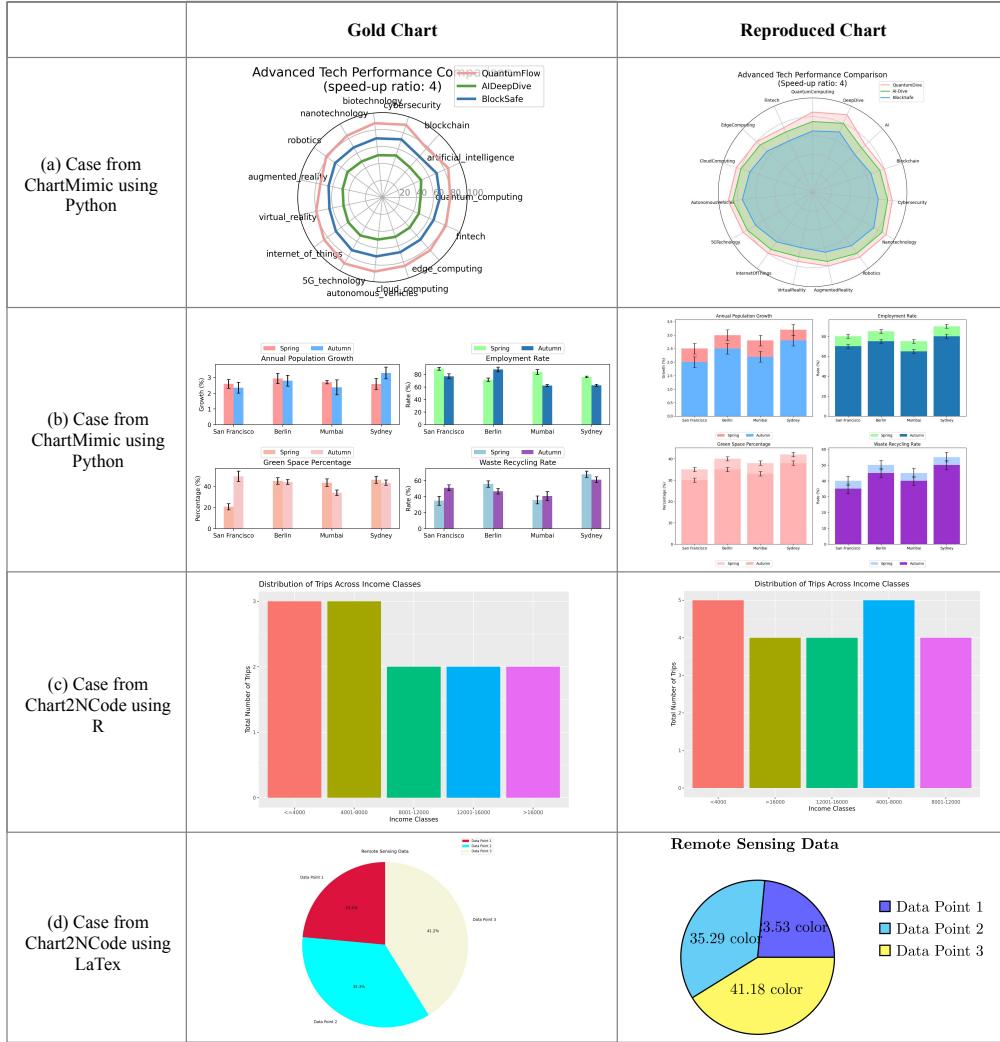


Figure 14: Case study of reproduction errors in generated charts for CharLuMA-6.7B.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

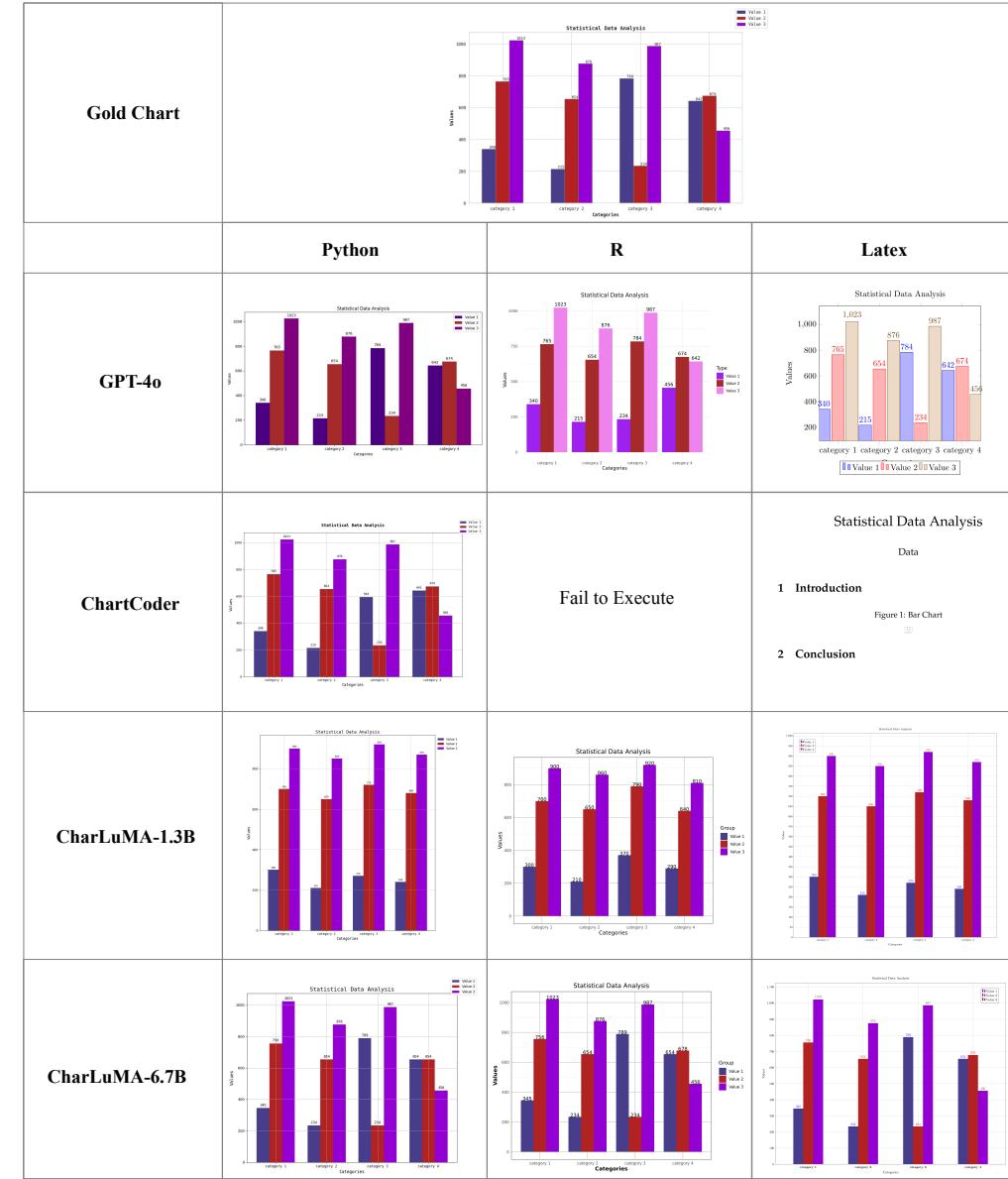


Figure 15: Case study of a grouped bar chart input and generated outputs from the Chart2NCode test set across three plotting languages.

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

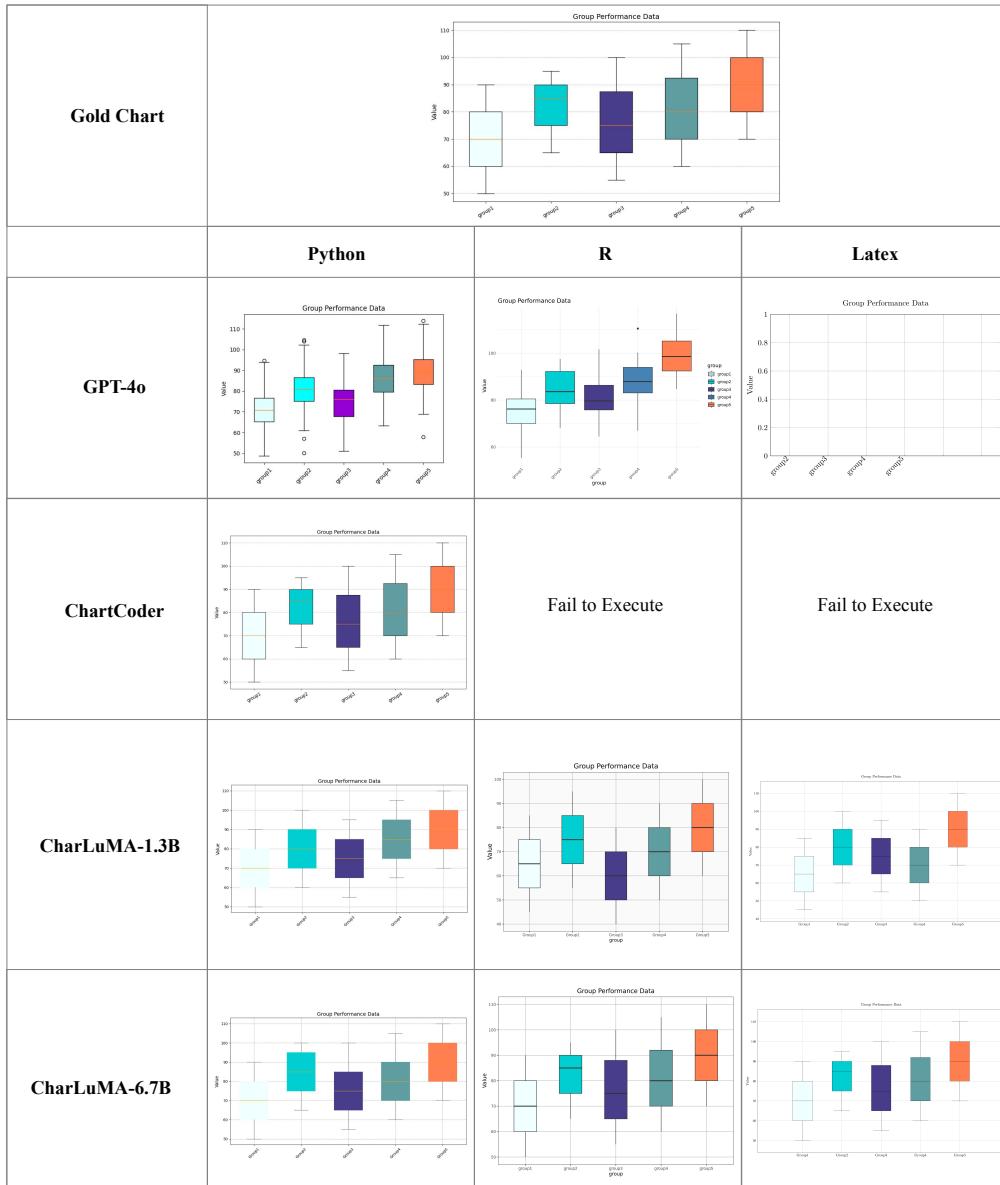


Figure 16: Case study of a box chart input and generated outputs from the Chart2NCode test set across three plotting languages.

1344

1345

1346

1347

1348

1349

1404

1405

1406

1407

1408

1409

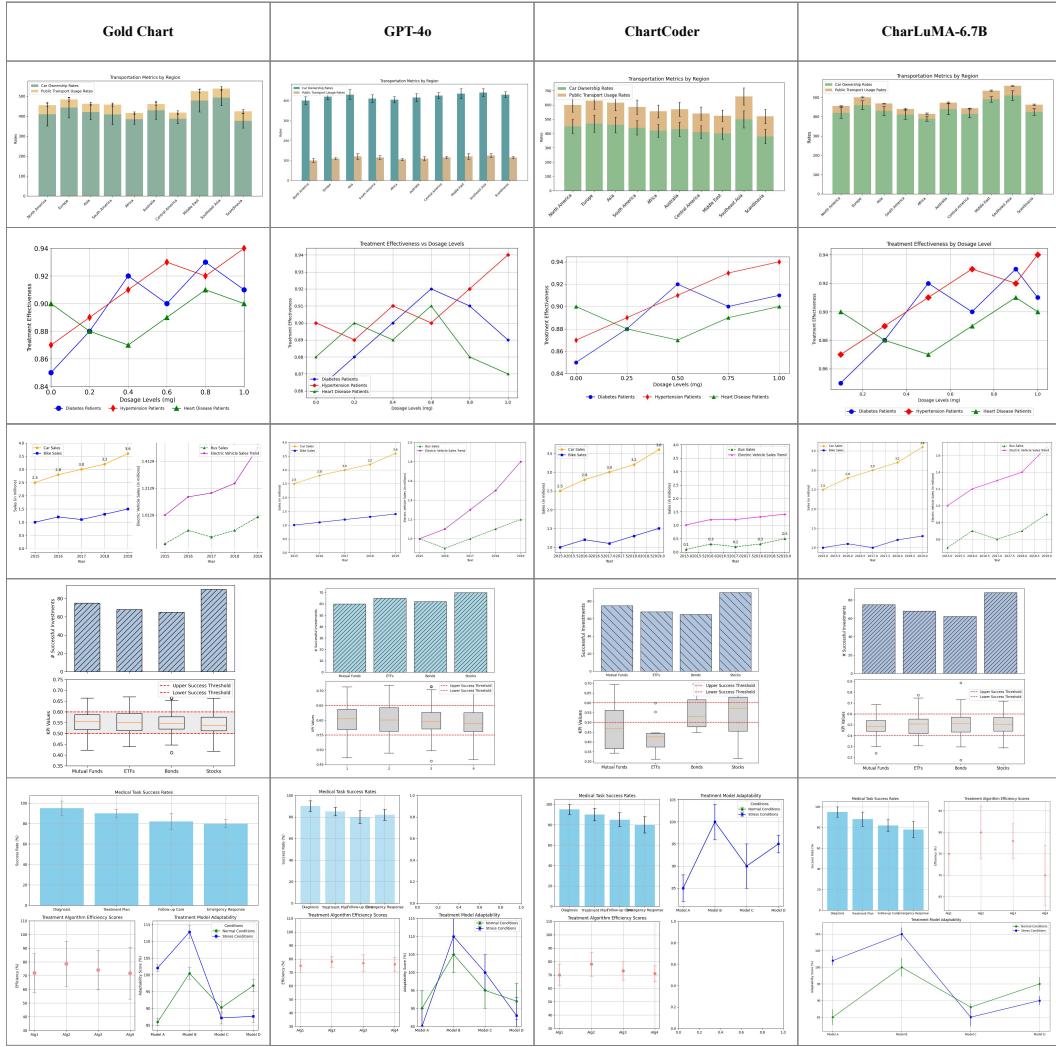
1410

1411

1412

1413

1414



1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure 18: Case study of model inputs and generated outputs from ChartMimic in Python.