Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations

Jakub Frąc Vrije Universiteit Amsterdam Qiang Li TReNDS Center **Guido Van Wingen** Amsterdam University Medical Center

Shujian Yu

Vrije Universiteit Amsterdam

Abstract

Functional magnetic resonance imaging (fMRI) analysis faces major challenges due to limited data and variability across studies. Existing self-supervised methods from computer vision often rely on positive—negative pairs, which are difficult to define for neuroimaging data. We adapt the Hierarchical Functional Maximal Correlation Algorithm (HFMCA) to graph-structured fMRI, providing a principled framework that measures statistical dependence and enables robust self-supervised pretraining. Across five neuroimaging datasets, our method yields competitive embeddings for multiple classification tasks and transfers effectively to unseen domains. Code and supplementary material: https://github.com/fr30/mri-eigenencoder

10 1 Introduction

- Functional magnetic resonance imaging (fMRI) reveals brain dynamics, with resting-state functional
- connectivity serving as a key biomarker for neurological and psychiatric disorders [15, 7, 13]. Deep learning, however, struggles with limited data, heterogeneous preprocessing, and domain shifts.
- rearring, nowever, struggles with mined data, neterogeneous preprocessing, and domain sinus.
- 14 Self-supervised learning (SSL) methods adapted from computer vision [17, 20, 3, 14] address these
- 15 issues. Graph-based approaches, modeling functional connectivity matrices, offer interpretable,
- low-dimensional representations and preserve network topology through augmentations.
- 17 The Hierarchical Functional Maximal Correlation Algorithm (HFMCA) [11] extends this by measur-
- ing statistical dependence across multiple feature hierarchies without contrastive pairs [4, 10, 21, 1].
- 19 Operating on graph-structured data, it captures richer dependencies and yields more generalizable
- 20 neuroimaging representations.
- 21 Contributions: (1) We adapt HFMCA to graph-structured fMRI data, representing the first appli-
- 22 cation and extension of this framework to brain connectivity networks. (2) We demonstrate that
- 23 HFMCA-pretrained encoders produce competitive embeddings for neuroimaging classification tasks
- ²⁴ across diverse datasets. (3) We show effective transfer learning capabilities, particularly in scenarios
- 25 where limited labelled data is available. 4) We evaluate neural scaling laws in the context of fMRI
- 26 graph encoders, showing that naive pretraining data scaling may induce negative transfer.

2 Background and Methods

2.1 Functional Maximal Correlation Algorithm

- 29 The Functional Maximal Correlation Algorithm (FMCA) [11] measures statistical dependence
- between two random variables X and Y by maximizing the correlation between their nonlinear

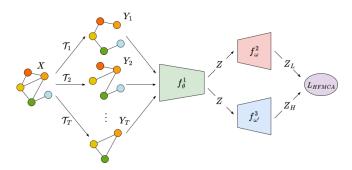


Figure 1: HFMCA learns graph representations by maximising dependence between low- and highlevel features from multiple augmentations.

Model	BSNIP	AOMIC (Sex)	HCP (Sex)
$VICReg_F$ BT_F	47.7 ± 0.9 46.4 ± 0.9 46.2 ± 1.2 47.9 ± 0.5	$\frac{60.0 \pm 1.5}{$ 60.9 \pm 0.8	$\frac{65.7 \pm 1.5}{66.0 \pm 1.5}$
$HFMCA_F$	48.7 ± 0.8	59.4 ± 1.1	66.0 ± 1.9

Model	BSNIP	AOMIC (Sex)	HCP (Sex)
	47.8 ± 0.8		
BT	47.1 ± 1.0 47.2 ± 1.2	60.3 ± 1.7 60.3 ± 1.4	
SimCLR	48.7 ± 0.6	63.7 ± 1.8	68.2 ± 3.1
HFMCA	$\underline{48.4\pm0.8}$	$\textbf{64.6} \pm \textbf{1.4}$	$\underline{70.2 \pm 0.6}$

Table 1: Frozen encoder accuracy (%) on unseen datasets.

Table 2: Unfrozen encoder accuracy (%) on unseen datasets.

- transformations. It decomposes their joint density $\rho(X,Y) = p(X,Y)/(p(X)p(Y))$ into orthogonal components, whose neural approximations $f_{\theta}(X)$ and $g_{\omega}(Y)$ learn maximally dependent features.
- The objective $\mathcal{L}_{FMCA} = \log \det R_{FG} \log \det R_F \log \det R_G$ encourages orthogonal features 33
- within each view (via R_F , R_G) while aligning them across views (via R_{FG}).

2.2 Problem Setup and Graph Construction 35

32

- Given a small labelled clinical dataset $D_c = \{(X_i, Y_i)\}$ and a large unlabelled population dataset
- $D_p = \{X_j\}$, each subject is represented by a functional connectivity matrix $X \in \mathbb{R}^{|V| \times |V|}$ encoding 37
- pairwise correlations between brain regions. To mitigate overfitting on D_c , we pretrain an encoder f_{θ}
- on D_p with a self-supervised FMCA objective and fine-tune it for diagnosis prediction.

2.3 Hierarchical FMCA on Graphs

- 41 We adapt FMCA to hierarchical graph representations by contrasting local and global feature depen-
- dencies. For a graph X and its augmentations $Y_i = \mathcal{T}_i(X)$, a shared encoder f_{θ}^1 produces embeddings 42
- Z_i . These are projected into low-level features $Z_L = [f_\omega^2(Z_1), ..., f_\omega^2(Z_T)]$ and a high-level aggregate $Z_H = \sum_i f_{\omega_i'}^3(Z_i)$. Low- and high-level features Z_L and Z_H are used to construct correlation 43
- matrices R_L , R_H and R_{LH} . The objective $\mathcal{L}_{HFMCA} = \log \det R_{LH} \log \det R_L \log \det R_H$ 45
- maximises statistical dependence between Z_L and Z_H , enforcing multi-view consistency across 46
- graph augmentations such as random walk sampling, node dropping, and edge perturbation. After 47
- pretraining, projection heads are removed, and only the encoder is used for downstream tasks. 48
- We employ a Graph Transformer based on the GPS architecture [16], combining local message 49
- passing with global attention. Random Walk Positional Encodings [8] preserve brain region topology,
- and graph-level embeddings are obtained via global mean pooling.

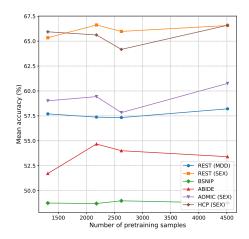


Figure 2: HFMCA pretrained with increasing data volumes. No monotonic scaling trend is observed, consistent with recent findings on negative transfer in graph models.

52 3 Experiments

3.1 Experimental Setup

- 54 We evaluate our approach on five fMRI datasets covering diverse diagnostic and demographic tasks:
- REST [5]: MDD and sex classification (1642 subjects; 51.6% MDD; 61.0% Male) ABIDE [6]:
- ASD classification (866 subjects; 53.6% ASD) **BSNIP** [19]: Schizophrenia/Bipolar (1464 subjects;
- 57 43.7/34.2/22.1% Healthy/SZ/BP) **AOMIC** [18]: Sex (881 subjects; 51.9% Male) **HCP** [9]: Sex (443
- subjects; 55.5% Male). Models are pretrained on REST and ABIDE (2000+ subjects) and evaluated
- on all datasets, including unseen ones (BSNIP, AOMIC, HCP).
- The encoder with two projection heads is trained for 200 epochs using Adam (10^{-3} lr, 10^{-6} weight
- 61 decay, batch size 256). After pretraining, projection heads are discarded and the backbone is fine-
- tuned. We compare HFMCA against SimCLR [4], Barlow Twins [21], VICReg [1], and a randomly
- 63 initialized baseline. Evaluation follows nested 5-fold cross-validation with 10 runs, using both frozen
- and unfrozen encoder variants.

65 3.2 Results

- 66 Linear classifiers trained on frozen and unfrozen encoders assess transferability. The results (Tables
- 67 1 and 2) show that HFMCA consistently outperforms random initialization (Baseline) and remains
- 68 competitive with other methods. Notably, it achieves more stable performance on average, exhibiting
- 69 lower variance across experimental runs.
- 70 To investigate scaling laws, we pretrained HFMCA on increasing dataset sizes: REST,
- 71 **REST+ABIDE, REST+ABIDE+HCP**, and **REST+ABIDE+HCP+BSNIP**. As shown in Figure 2,
- 72 performance peaks for REST+ABIDE and drops when adding more data, consistent with reports of
- 73 negative transfer in large graph models [12, 2].

74 4 Conclusion

- 75 We successfully extended HFMCA to graph-structured fMRI data, providing a theoretically principled
- 76 approach to self-supervised representation learning. Our method achieves competitive performance
- 77 across five neuroimaging datasets. The demonstrated transfer learning capabilities and stable training
- 78 make HFMCA particularly suitable for neuroimaging applications. Future work should explore larger-
- 79 scale datasets and investigate HFMCA as a component of foundational models for brain imaging.
- 80 Even though the initial scaling law analysis suggests greater complexity compared to text and vision
- 81 domains, the framework and transferability indicate important contributions toward generalizable
- computational models of brain function.

83 5 Potential Negative Societal Impact

- This work could enable unintended uses such as inferring cognitive or mental health traits without
- 85 consent, raising privacy and fairness concerns. Moreover, pretrained models may inherit demographic
- or dataset biases, leading to inequitable outcomes if applied clinically.

87 References

- 88 [1] Adrien Bardes, Jean Ponce, and Yann Lecun. Vicreg: Variance-invariance-covariance regular-89 ization for self-supervised learning. In *ICLR*, 2022.
- [2] Yuxuan Cao et al. When to pre-train graph neural networks? from data generation perspective!
 In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 142–153, 2023.
- 93 [3] J. O. Caro et al. BrainLM: A foundation model for brain activity recordings. In *ICLR*, 2024.
- 94 [4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *ICML*, pages 1597–1607, 2020.
- [5] X. Chen et al. The direct consortium and the rest-meta-mdd project: towards neuroimaging
 biomarkers of major depressive disorder. *Psychoradiology*, 2(1):32–42, 2022. doi: 10.1093/psyrad/kkac005.
- [6] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. Khundrakpam, J. D.
 Lewis, Q. Li, M. Milham, C. Yan, and P. Bellec. The neuro bureau preprocessing initiative:
 open sharing of preprocessed neuroimaging data and derivatives. *Neuroinformatics*, 2013.
- [7] B. de Kwaasteniet, E. Ruhe, M. Caan, M. Rive, S. Olabarriaga, M. Groefsema, L. Heesink,
 G. van Wingen, and D. Denys. Relation between structural and functional connectivity in
 major depressive disorder. *Biological Psychiatry*, 74(1):40–47, 2013. ISSN 0006-3223. doi:
 https://doi.org/10.1016/j.biopsych.2012.12.024. URL https://www.sciencedirect.com/
 science/article/pii/S0006322313000401.
- [8] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 Graph neural networks with learnable structural and positional representations. In *International Conference on Learning Representations*, 2022.
- 110 [9] D. C. Van Essen et al. The human connectome project: A data acquisition perspective.

 111 NeuroImage, 62(4):2222-2231, 2012. ISSN 1053-8119. doi: https://doi.org/10.1016/j.

 112 neuroimage.2012.02.018. URL https://www.sciencedirect.com/science/article/

 113 pii/S1053811912001954. Connectivity.
- 114 [10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *CVPR*, pages 9729–9738, 2020.
- [11] Bo Hu, Yuheng Bu, and José C Príncipe. Learning orthonormal features in self-supervised
 learning using functional maximal correlation. In 2024 IEEE International Conference on
 Image Processing (ICIP), pages 472–478, 2024.
- 119 [12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. In *ICLR*, 2020.
- 121 [13] M. Liang, Y. Zhou, T. Jiang, Z. Liu, L. Tian, H. Liu, and Y. Hao. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.

 Neuroreport, 17(2):209–213, February 2006. doi: 10.1097/01.wnr.0000198434.06518.b8.
- 124 [14] I. Malkiel, G. Rosenman, L. Wolf, and T. Hendler. Self-supervised transformers for fmri 125 representation. In *Proceedings of the 5th International Conference on Medical Imaging with* 126 *Deep Learning*, pages 895–913, 2022.

- 127 [15] C. S. Monk, S. J. Peltier, J. L. Wiggins, S.-J. Weng, M. Carrasco, S. Risi, and C. Lord.

 Abnormalities of intrinsic functional connectivity in autism spectrum disorders,. *NeuroImage*,

 47(2):764-772, 2009. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2009.04.069.

 URL https://www.sciencedirect.com/science/article/pii/S1053811909004327.
- [16] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In *NeurIPS*,
 volume 35, pages 14501–14515, 2022.
- 134 [17] C. Shi, Y. Wang, Y. Wu, S. Chen, R. Hu, M. Zhang, B. Qiu, and X. Wang. Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging. *Frontiers in Neuroscience*, 17:1199312, June 2023. doi: 10.3389/fnins.2023.1199312.
- 137 [18] L. Snoek, M. M. van der Miesen, T. Beemsterboer, A. Van Der Leij, A. Eigenhuis, and H. S. Scholte. The amsterdam open mri collection, a set of multimodal mri datasets for individual difference analyses. *Scientific Data*, 8(1):1–23, 2021. doi: 10.1038/s41597-021-00986-6.
- 140 [19] C. A. Tamminga, G. Pearlson, M. Keshavan, J. Sweeney, B. Clementz, and G. Thaker.

 Bipolar and schizophrenia network for intermediate phenotypes: Outcomes across the psychosis continuum. *Schizophrenia Bulletin*, 40:S131–S137, 02 2014. ISSN 0586-7614. doi: 10.1093/schbul/sbt179. URL https://doi.org/10.1093/schbul/sbt179.
- 144 [20] X. Wang, Y. Chu, Q. Wang, L. Cao, L. Qiao, L. Zhang, and M. Liu. Unsupervised contrastive graph learning for resting-state functional mri analysis and brain disorder detection. *Human Brain Mapping*, 44(17):5672–5692, Dec 2023. doi: 10.1002/hbm.26469. Epub 2023 Sep 5.
- [21] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy reduction. In *ICML*, pages 12310–12320, 2021.