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Abstract

Functional magnetic resonance imaging (fMRI) analysis faces major challenges due
to limited data and variability across studies. Existing self-supervised methods from
computer vision often rely on positive—negative pairs, which are difficult to define
for neuroimaging data. We adapt the Hierarchical Functional Maximal Correlation
Algorithm (HFMCA) to graph-structured fMRI, providing a principled framework
that measures statistical dependence and enables robust self-supervised pretraining.
Across five neuroimaging datasets, our method yields competitive embeddings for
multiple classification tasks and transfers effectively to unseen domains. Code and
supplementary material: https://github.com/fr30/mri-eigenencoder

1 Introduction

Functional magnetic resonance imaging (fMRI) reveals brain dynamics, with resting-state functional
connectivity serving as a key biomarker for neurological and psychiatric disorders [15} 7, [13]]. Deep
learning, however, struggles with limited data, heterogeneous preprocessing, and domain shifts.

Self-supervised learning (SSL) methods adapted from computer vision [17, 20, 3} [14] address these
issues. Graph-based approaches, modeling functional connectivity matrices, offer interpretable,
low-dimensional representations and preserve network topology through augmentations.

The Hierarchical Functional Maximal Correlation Algorithm (HFMCA) [11]] extends this by measur-
ing statistical dependence across multiple feature hierarchies without contrastive pairs [4, 10, 21} [1].
Operating on graph-structured data, it captures richer dependencies and yields more generalizable
neuroimaging representations.

Contributions: (1) We adapt HFMCA to graph-structured fMRI data, representing the first appli-
cation and extension of this framework to brain connectivity networks. (2) We demonstrate that
HFMCA -pretrained encoders produce competitive embeddings for neuroimaging classification tasks
across diverse datasets. (3) We show effective transfer learning capabilities, particularly in scenarios
where limited labelled data is available. 4) We evaluate neural scaling laws in the context of fMRI
graph encoders, showing that naive pretraining data scaling may induce negative transfer.

2 Background and Methods

2.1 Functional Maximal Correlation Algorithm

The Functional Maximal Correlation Algorithm (FMCA) [L1] measures statistical dependence
between two random variables X and Y by maximizing the correlation between their nonlinear
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Figure 1: HFMCA learns graph representations by maximising dependence between low- and high-
level features from multiple augmentations.

AOMIC HCP Model BSNIP AOMIC HCP

Model BSNIP (Sex) (Sex) (Sex) (Sex)

Baseliner 47.7£0.9 569+ 13 63.0+24 Baseline 47.8 £0.8 62.5+ 1.8 71.1 £2.2
VICRegr 46.4+£0.9 60.0+1.5 65.7+1.5 VICReg 47.1 £1.0 60.5+1.7 66.0£3.2
BTr 462 +1.2 60.9 +0.8 66.0+ 1.5 BT 472+12 603+14 66.1 1.1
SimCLRp 479 £0.5 592+ 1.5 66.6 1.5 SimCLR 48.7 + 0.6 63.7 +1.8 68.2 £3.1

HFMCAr 48.7+0.8 594+ 1.1 66.0+£1.9  HFMCA 484+ 0.8 64.6 =14 70.2 + 0.6

Table 2: Unfrozen encoder accuracy (%) on un-

Table 1: Frozen encoder accuracy (%) on unseen
seen datasets.

datasets.

transformations. It decomposes their joint density p(X,Y) = p(X,Y)/(p(X)p(Y)) into orthogonal
components, whose neural approximations fy(X) and g,,(Y") learn maximally dependent features.
The objective Lppca = logdet Rpg — logdet Rp — log det R encourages orthogonal features
within each view (via Rr, Rg) while aligning them across views (via Rrq).

2.2 Problem Setup and Graph Construction

Given a small labelled clinical dataset D. = {(X;,Y;)} and a large unlabelled population dataset
D, = {Xj}, each subject is represented by a functional connectivity matrix X € RIVI*IVI encoding
pairwise correlations between brain regions. To mitigate overfitting on D, we pretrain an encoder fy
on D, with a self-supervised FMCA objective and fine-tune it for diagnosis prediction.

2.3 Hierarchical FMCA on Graphs

We adapt FMCA to hierarchical graph representations by contrasting local and global feature depen-
dencies. For a graph X and its augmentations Y; = 7;(X), a shared encoder f; produces embeddings
Z;. These are projected into low-level features Z1, = [f2(Z1), ..., f2(Zr)] and a high-level aggre-
gate Zyg = Zi ffj,_ (Z;). Low- and high-level features Z;, and Zp are used to construct correlation

matrices Ry, Ry and Ry . The objective Lypyrca = logdet Rpg — logdet Ry, — logdet Ry
maximises statistical dependence between Z;, and Zpy, enforcing multi-view consistency across
graph augmentations such as random walk sampling, node dropping, and edge perturbation. After
pretraining, projection heads are removed, and only the encoder is used for downstream tasks.

We employ a Graph Transformer based on the GPS architecture [[16], combining local message
passing with global attention. Random Walk Positional Encodings [8]] preserve brain region topology,
and graph-level embeddings are obtained via global mean pooling.
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Figure 2: HFMCA pretrained with increasing data volumes. No monotonic scaling trend is observed,
consistent with recent findings on negative transfer in graph models.

3 Experiments

3.1 Experimental Setup

We evaluate our approach on five fMRI datasets covering diverse diagnostic and demographic tasks:
REST [5]]: MDD and sex classification (1642 subjects; 51.6% MDD; 61.0% Male) ABIDE [6]:
ASD classification (866 subjects; 53.6% ASD) BSNIP [19]: Schizophrenia/Bipolar (1464 subjects;
43.7/34.2/22.1% Healthy/SZ/BP) AOMIC [18]: Sex (881 subjects; 51.9% Male) HCP [9]]: Sex (443
subjects; 55.5% Male). Models are pretrained on REST and ABIDE (2000+ subjects) and evaluated
on all datasets, including unseen ones (BSNIP, AOMIC, HCP).

The encoder with two projection heads is trained for 200 epochs using Adam (1073 Ir, 10~¢ weight
decay, batch size 256). After pretraining, projection heads are discarded and the backbone is fine-
tuned. We compare HFMCA against SimCLR [4]], Barlow Twins [21], VICReg [[1], and a randomly
initialized baseline. Evaluation follows nested 5-fold cross-validation with 10 runs, using both frozen
and unfrozen encoder variants.

3.2 Results

Linear classifiers trained on frozen and unfrozen encoders assess transferability. The results (Tables
and [2)) show that HFMCA consistently outperforms random initialization (Baseline) and remains
competitive with other methods. Notably, it achieves more stable performance on average, exhibiting
lower variance across experimental runs.

To investigate scaling laws, we pretrained HFMCA on increasing dataset sizes: REST,
REST+ABIDE, REST+ABIDE+HCP, and REST+ABIDE+HCP+BSNIP. As shown in Figure 2]
performance peaks for REST+ABIDE and drops when adding more data, consistent with reports of
negative transfer in large graph models [[12} 2].

4 Conclusion

We successfully extended HFMCA to graph-structured fMRI data, providing a theoretically principled
approach to self-supervised representation learning. Our method achieves competitive performance
across five neuroimaging datasets. The demonstrated transfer learning capabilities and stable training
make HFMCA particularly suitable for neuroimaging applications. Future work should explore larger-
scale datasets and investigate HFMCA as a component of foundational models for brain imaging.
Even though the initial scaling law analysis suggests greater complexity compared to text and vision
domains, the framework and transferability indicate important contributions toward generalizable
computational models of brain function.
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S Potential Negative Societal Impact

This work could enable unintended uses such as inferring cognitive or mental health traits without
consent, raising privacy and fairness concerns. Moreover, pretrained models may inherit demographic
or dataset biases, leading to inequitable outcomes if applied clinically.
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