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Abstract

Functional magnetic resonance imaging (fMRI) analysis faces major challenges due1

to limited data and variability across studies. Existing self-supervised methods from2

computer vision often rely on positive–negative pairs, which are difficult to define3

for neuroimaging data. We adapt the Hierarchical Functional Maximal Correlation4

Algorithm (HFMCA) to graph-structured fMRI, providing a principled framework5

that measures statistical dependence and enables robust self-supervised pretraining.6

Across five neuroimaging datasets, our method yields competitive embeddings for7

multiple classification tasks and transfers effectively to unseen domains. Code and8

supplementary material: https://github.com/fr30/mri-eigenencoder9

1 Introduction10

Functional magnetic resonance imaging (fMRI) reveals brain dynamics, with resting-state functional11

connectivity serving as a key biomarker for neurological and psychiatric disorders [15, 7, 13]. Deep12

learning, however, struggles with limited data, heterogeneous preprocessing, and domain shifts.13

Self-supervised learning (SSL) methods adapted from computer vision [17, 20, 3, 14] address these14

issues. Graph-based approaches, modeling functional connectivity matrices, offer interpretable,15

low-dimensional representations and preserve network topology through augmentations.16

The Hierarchical Functional Maximal Correlation Algorithm (HFMCA) [11] extends this by measur-17

ing statistical dependence across multiple feature hierarchies without contrastive pairs [4, 10, 21, 1].18

Operating on graph-structured data, it captures richer dependencies and yields more generalizable19

neuroimaging representations.20

Contributions: (1) We adapt HFMCA to graph-structured fMRI data, representing the first appli-21

cation and extension of this framework to brain connectivity networks. (2) We demonstrate that22

HFMCA-pretrained encoders produce competitive embeddings for neuroimaging classification tasks23

across diverse datasets. (3) We show effective transfer learning capabilities, particularly in scenarios24

where limited labelled data is available. 4) We evaluate neural scaling laws in the context of fMRI25

graph encoders, showing that naive pretraining data scaling may induce negative transfer.26

2 Background and Methods27

2.1 Functional Maximal Correlation Algorithm28

The Functional Maximal Correlation Algorithm (FMCA) [11] measures statistical dependence29

between two random variables X and Y by maximizing the correlation between their nonlinear30
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Figure 1: HFMCA learns graph representations by maximising dependence between low- and high-
level features from multiple augmentations.

Model BSNIP AOMIC
(Sex)

HCP
(Sex)

BaselineF 47.7 ± 0.9 56.9 ± 1.3 63.0 ± 2.4
VICRegF 46.4 ± 0.9 60.0 ± 1.5 65.7 ± 1.5
BTF 46.2 ± 1.2 60.9 ± 0.8 66.0 ± 1.5
SimCLRF 47.9 ± 0.5 59.2 ± 1.5 66.6 ± 1.5

HFMCAF 48.7 ± 0.8 59.4 ± 1.1 66.0 ± 1.9

Table 1: Frozen encoder accuracy (%) on unseen
datasets.

Model BSNIP AOMIC
(Sex)

HCP
(Sex)

Baseline 47.8 ± 0.8 62.5 ± 1.8 71.1 ± 2.2
VICReg 47.1 ± 1.0 60.5 ± 1.7 66.0 ± 3.2
BT 47.2 ± 1.2 60.3 ± 1.4 66.1 ± 1.1
SimCLR 48.7 ± 0.6 63.7 ± 1.8 68.2 ± 3.1

HFMCA 48.4 ± 0.8 64.6 ± 1.4 70.2 ± 0.6

Table 2: Unfrozen encoder accuracy (%) on un-
seen datasets.

transformations. It decomposes their joint density ρ(X,Y ) = p(X,Y )/(p(X)p(Y )) into orthogonal31

components, whose neural approximations fθ(X) and gω(Y ) learn maximally dependent features.32

The objective LFMCA = log detRFG − log detRF − log detRG encourages orthogonal features33

within each view (via RF , RG) while aligning them across views (via RFG).34

2.2 Problem Setup and Graph Construction35

Given a small labelled clinical dataset Dc = {(Xi, Yi)} and a large unlabelled population dataset36

Dp = {Xj}, each subject is represented by a functional connectivity matrix X ∈ R|V |×|V | encoding37

pairwise correlations between brain regions. To mitigate overfitting on Dc, we pretrain an encoder fθ38

on Dp with a self-supervised FMCA objective and fine-tune it for diagnosis prediction.39

2.3 Hierarchical FMCA on Graphs40

We adapt FMCA to hierarchical graph representations by contrasting local and global feature depen-41

dencies. For a graph X and its augmentations Yi = Ti(X), a shared encoder f1
θ produces embeddings42

Zi. These are projected into low-level features ZL = [f2
ω(Z1), ..., f

2
ω(ZT )] and a high-level aggre-43

gate ZH =
∑

i f
3
ω′

i
(Zi). Low- and high-level features ZL and ZH are used to construct correlation44

matrices RL, RH and RLH . The objective LHFMCA = log detRLH − log detRL − log detRH45

maximises statistical dependence between ZL and ZH , enforcing multi-view consistency across46

graph augmentations such as random walk sampling, node dropping, and edge perturbation. After47

pretraining, projection heads are removed, and only the encoder is used for downstream tasks.48

We employ a Graph Transformer based on the GPS architecture [16], combining local message49

passing with global attention. Random Walk Positional Encodings [8] preserve brain region topology,50

and graph-level embeddings are obtained via global mean pooling.51
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Figure 2: HFMCA pretrained with increasing data volumes. No monotonic scaling trend is observed,
consistent with recent findings on negative transfer in graph models.

3 Experiments52

3.1 Experimental Setup53

We evaluate our approach on five fMRI datasets covering diverse diagnostic and demographic tasks:54

REST [5]: MDD and sex classification (1642 subjects; 51.6% MDD; 61.0% Male) ABIDE [6]:55

ASD classification (866 subjects; 53.6% ASD) BSNIP [19]: Schizophrenia/Bipolar (1464 subjects;56

43.7/34.2/22.1% Healthy/SZ/BP) AOMIC [18]: Sex (881 subjects; 51.9% Male) HCP [9]: Sex (44357

subjects; 55.5% Male). Models are pretrained on REST and ABIDE (2000+ subjects) and evaluated58

on all datasets, including unseen ones (BSNIP, AOMIC, HCP).59

The encoder with two projection heads is trained for 200 epochs using Adam (10−3 lr, 10−6 weight60

decay, batch size 256). After pretraining, projection heads are discarded and the backbone is fine-61

tuned. We compare HFMCA against SimCLR [4], Barlow Twins [21], VICReg [1], and a randomly62

initialized baseline. Evaluation follows nested 5-fold cross-validation with 10 runs, using both frozen63

and unfrozen encoder variants.64

3.2 Results65

Linear classifiers trained on frozen and unfrozen encoders assess transferability. The results (Tables66

1 and 2) show that HFMCA consistently outperforms random initialization (Baseline) and remains67

competitive with other methods. Notably, it achieves more stable performance on average, exhibiting68

lower variance across experimental runs.69

To investigate scaling laws, we pretrained HFMCA on increasing dataset sizes: REST,70

REST+ABIDE, REST+ABIDE+HCP, and REST+ABIDE+HCP+BSNIP. As shown in Figure 2,71

performance peaks for REST+ABIDE and drops when adding more data, consistent with reports of72

negative transfer in large graph models [12, 2].73

4 Conclusion74

We successfully extended HFMCA to graph-structured fMRI data, providing a theoretically principled75

approach to self-supervised representation learning. Our method achieves competitive performance76

across five neuroimaging datasets. The demonstrated transfer learning capabilities and stable training77

make HFMCA particularly suitable for neuroimaging applications. Future work should explore larger-78

scale datasets and investigate HFMCA as a component of foundational models for brain imaging.79

Even though the initial scaling law analysis suggests greater complexity compared to text and vision80

domains, the framework and transferability indicate important contributions toward generalizable81

computational models of brain function.82
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5 Potential Negative Societal Impact83

This work could enable unintended uses such as inferring cognitive or mental health traits without84

consent, raising privacy and fairness concerns. Moreover, pretrained models may inherit demographic85

or dataset biases, leading to inequitable outcomes if applied clinically.86
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