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Abstract

Chain-of-thought (CoT) prompting demon-001
strates varying performance under different rea-002
soning tasks. Previous work attempts to eval-003
uate it but falls short in providing an in-depth004
analysis of patterns that influence the CoT. In005
this paper, we study the CoT performance from006
the perspective of effectiveness and faithfulness.007
For the former, we identify key factors that008
influence CoT effectiveness on performance009
improvement, including problem difficulty, in-010
formation gain, and information flow. For the011
latter, we interpret the unfaithful CoT issue by012
conducting a joint analysis of the information013
interaction among the question, CoT, and an-014
swer. The result demonstrates that, when the015
LLM predicts answers, it can recall correct in-016
formation missing in the CoT from the question,017
leading to the problem. Finally, we propose a018
novel algorithm to mitigate this issue, in which019
we recall extra information from the question to020
enhance the CoT generation and evaluate CoTs021
based on their information gain. Extensive ex-022
periments demonstrate that our approach en-023
hances both the faithfulness and effectiveness024
of CoT.025

1 Introduction026

Recently, with chain-of-thought (CoT) techniques027

(Wei et al., 2022), large language models (LLMs)028

are able to reason on complex tasks (Wang et al.,029

2023; OpenAI, 2023). By scaling the CoT process030

using reinforcement learning (RL), LLMs can even031

surpass human performance in competition-level032

mathematical problems (OpenAI, 2024; DeepSeek-033

AI et al., 2025). However, despite the significant034

success of the CoT, some studies find that it demon-035

strates poor performance on certain tasks (Sprague036

et al., 2024; Xu and Ma, 2024; Turpin et al., 2023;037

Lanham et al., 2023). In some cases, using CoT038

for the model’s reasoning is unnecessary or even039

harmful (Wang et al., 2024b; Li et al., 2024).040

These conflicting findings motivate the need for 041

a systematic analysis of the CoT. To this end, a 042

series of studies evaluating CoT’s performance has 043

commenced (Turpin et al., 2023; Bao et al., 2024; 044

Wang et al., 2024b; Lanham et al., 2023), which can 045

be mainly divided into two lines: On the one hand, 046

some works assess CoT based on its effectiveness. 047

They measure the accuracy improvements brought 048

by the CoT across different tasks and identify task 049

types where CoT is effective (Sprague et al., 2024; 050

Xu and Ma, 2024; Madaan et al., 2023a). On the 051

other hand, some works evaluate the CoT based 052

on its faithfulness (Jacovi and Goldberg, 2020; 053

Atanasova et al., 2023). They investigate the consis- 054

tency between CoTs and final answers by analyzing 055

the causal relevance linking them. (Lanham et al., 056

2023; Parcalabescu and Frank, 2023; Bao et al., 057

2024). Effectiveness is result-oriented, focusing on 058

whether CoT can enhance the quality of reasoning 059

outcomes; whereas faithfulness is process-oriented, 060

concerned with whether the reasoning process of 061

CoT genuinely influences the results. 062

Though these works have made great progress, 063

they lack an in-depth analysis of the patterns in- 064

fluencing CoT performance. For the effectiveness 065

evaluation works, they draw conclusions like CoT 066

performs well in tasks involving mathematical sym- 067

bols, but does not explore the underlying factors 068

influencing these conclusions (Sprague et al., 2024; 069

Xu and Ma, 2024). For the faithfulness evaluation 070

works, they primarily design various methods to 071

determine whether CoT is faithful, but lack an ex- 072

planation for the issue of CoT unfaithfulness. (Lyu 073

et al., 2023; Lanham et al., 2023; Bao et al., 2024). 074

In this paper, we focus on analyzing key pat- 075

terns that influence the CoT’s performance from 076

both effectiveness and faithfulness perspectives. 077

From the effectiveness perspective, we identify 078

three factors that contribute to CoT’s final improve- 079

ment, including problem difficulty, information 080

gain, and information flow. We start by splitting 081

1



questions into various difficulty levels and compar-082

ing the model’s accuracy on them, from which we083

find that CoT is more effective on harder problems.084

Then, we calculate the information gain brought085

by CoT for questions across different tasks and086

demonstrate CoT with more additional information087

tends to be more effective. Lastly, we consider088

the internal information flow during model reason-089

ing. Through the experiment, we conclude that090

the more information interaction increases with the091

CoT process, the more effective the CoT becomes.092

From the faithfulness perspective, we discover that093

there exist non-negligible unfaithful CoT issues in094

logical reasoning, where an incorrect CoT can still095

lead to the correct answer. We further interpret this096

issue by jointly analyzing the information interac-097

tion among question, CoT, and answer. Through098

it, we identify three patterns that lead to the CoT’s099

unfaithfulness: (1) CoT loses key information from100

the question; (2) CoT transfers less information to101

the answer; (3) The model recalls correct informa-102

tion from the question when answering.103

At last, we explore the relationship between the104

above two perspectives. A novel algorithm called105

QUestion Information Recall and Enhancement106

(QUIRE) is designed to mitigate the unfaithful CoT107

issue. In it, we first generate a raw answer to re-108

call correct information from the question, then use109

this extra information to prompt the generation of a110

new CoT generation. Finally, we employ the CoT111

information gain as the weight to vote for the final112

answer. Through extensive experiments, we not113

only demonstrate that our method can mitigate un-114

faithful issues, but also show that CoT faithfulness115

is a key factor in influencing CoT effectiveness.116

In summary, our key contributions are as follows:117

(1) We identify key factors that influence CoT’s ef-118

fectiveness on different reasoning tasks, including119

problem difficulty, information gain, and informa-120

tion flow. (2) We interpret the unfaithful CoT issue121

by jointly analyzing the information interaction122

among question, CoT, and answer. Based on exper-123

imental results, we demonstrate that the reason is124

that LLMs retrieve correct information (lost in the125

CoT) directly from the question when predicting126

answers. (3) As an application of our findings, we127

design a new method called QUIRE, which effec-128

tively improves the CoT’s performance from the129

effectiveness (up to 2.4% improvement) and faith-130

fulness (up to 5.6% improvement). This indicates131

that enhancing CoT faithfulness can lead to an im-132

provement in CoT effectiveness. We release the133

source code in the attached software package. 134

2 Related Works 135

2.1 Chain-of-Thought Effectiveness 136

Since the emergence of CoT, a series of CoT-like 137

approaches have further improved the model’s rea- 138

soning accuracy through various prompt designs 139

(Wang et al., 2023; Madaan et al., 2023b; Zhou 140

et al., 2023). Recently, the emergence of reason- 141

ing models such as DeepSeek-R1 (DeepSeek-AI 142

et al., 2025) and o1 (OpenAI, 2024) has once again 143

proven that CoT is highly effective in solving com- 144

plex reasoning tasks such as mathematics and cod- 145

ing (Qi et al., 2024; Snell et al., 2024; Zeng et al., 146

2024; Lightman et al., 2024). However, another 147

series of works shows that the effectiveness of CoT 148

has limitations (Wang et al., 2024b; Xu and Ma, 149

2024). They demonstrate that CoT brings only 150

limited improvements in knowledge and common- 151

sense reasoning tasks (Sprague et al., 2024), and 152

may even harm the model’s original performance 153

(Li et al., 2024). Building on these studies, our 154

work further investigates the key factors that con- 155

trol CoT’s effectiveness across different tasks. 156

2.2 Chain-of-Thought Faithfulness 157

In model interpretability, faithfulness, defined as 158

“accurately representing the reasoning process be- 159

hind the model’s decision”, is important for eval- 160

uating the performance of natural language expla- 161

nation (Ribeiro et al., 2016; Gilpin et al., 2018; 162

Jacovi and Goldberg, 2020). With the emergence 163

of CoT-like work, there has been increasing fo- 164

cus on measuring this characteristic within CoTs 165

(Turpin et al., 2023; Lanham et al., 2023; Lyu et al., 166

2023). Some studies introduce counterfactual per- 167

turbations to questions and measure the change 168

of answers (Atanasova et al., 2023; Turpin et al., 169

2023). Some other works use causal median analy- 170

sis on CoTs and answers, calculating the treatment 171

effect to represent the faithfulness (Bao et al., 2024; 172

Paul et al., 2024). However, these works lack a 173

comprehensive explanation and mitigation of un- 174

faithful CoT, and this paper addresses this gap. 175

3 What Makes CoT Effective 176

In this section, we investigate what factors make the 177

CoT effective in certain reasoning tasks. Specifi- 178

cally, we start with evaluating the final accuracy im- 179

provement of CoT on different tasks (§3.1). Then 180

we study the impact of three different factors on the 181
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Figure 1: CoT improvement across different models and
datasets, ‘score’ indicates the accuracy difference.

final performance of CoT, including problem diffi-182

culty (§3.2), CoT information gain (§3.3), and the183

information flow between CoT and answer (§3.4).184

3.1 Overall Performance185

Experimental Setup We choose 9 representative186

datasets from various reasoning types for evalu-187

ation. Specifically, for mathematical reasoning,188

we choose GSMIC (Shi et al., 2023), GSM8K189

(GSM) (Cobbe et al., 2021) and AQuA (Ling190

et al., 2017). For logical reasoning, we choose191

ProofWriter (PW) (Tafjord et al., 2021), FOLIO192

(Han et al., 2024) and ProntoQA (PQA) (Saparov193

and He, 2023). For commonsense reasoning, we194

choose WinoGrande (WINO) (Sakaguchi et al.,195

2020), SocialIQA (SIQA) (Sap et al., 2019) and196

ECQA (Aggarwal et al., 2021). For models, due197

to the difficulty of deeply analyzing the internals198

of black-box models, we focus on analyzing white-199

box models and select four advanced white-box200

LLMs for the experiment, including Mistral-7B201

(Jiang et al., 2023), Gemma2-9B (Rivière et al.,202

2024a), Llama3.1-8B (Rivière et al., 2024b), and203

Qwen2.5-14B (Yang et al., 2024). For metrics, we204

define the effectiveness of CoT as the difference205

in accuracy when answering questions with and206

without CoT.207

Main Results The main results of the evaluation208

experiment are illustrated in Figure 1, from which209

we can get that: Among different reasoning tasks,210

CoT is most effective in mathematical reasoning,211

while least effective in commonsense reasoning212

tasks. This conclusion forms the basis for the sub-213

sequent analysis in this section.214

3.2 Problem Difficulty215

Why is CoT more effective on certain task types?216

Reflecting on humans’ reasoning process, the more217
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Figure 2: Performance on different problem difficulty
levels with and without CoT prompting (Llama3.1-8B).
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Figure 3: Difficulty distribution in different datasets.

difficult the problem, the more thinking time is 218

required. Hence, we aim to explore whether this 219

pattern can also be observed in LLMs: Is CoT more 220

effective for harder problems? 221

Problem Difficulty Estimation Following for- 222

mer works, we classify the difficulty of questions 223

based on the model’s accuracy in answering them 224

(Lightman et al., 2024; Setlur et al., 2024). Specif- 225

ically, for each question, we sample 10 answers 226

without CoT prompting and bin the average pass@1 227

rate across all models into five quantiles, each corre- 228

sponding to increasing difficulty levels. For exam- 229

ple, if the pass@1 rate is less than 0.1, the question 230

is classified as the hardest level 5. Conversely, if 231

the pass@1 rate is more than 0.8, the question is 232

classified as the easiest level 1. 233

Performance across Difficulty Levels After 234

classifying the question, we compare the effective- 235

ness of CoT across different difficulty levels and 236

illustrate part of the results in Figure 2 (more re- 237

sults in Appendix A). We can conclude that: (Cl.1) 238

CoT is more effective on challenging questions 239

compared to simple ones. For questions at low 240

difficulty levels (e.g. level 1, level 2), CoT pro- 241

vides minimal accuracy improvement and even de- 242

grades performance. In contrast, CoT significantly 243

increases reasoning accuracy across different tasks 244

when the question is difficult (e.g. level 4, level 5). 245
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Difficulty Distribution on Different Tasks We246

further evaluate the difficulty distribution of differ-247

ent tasks to explain the varying effectiveness. Fig-248

ure 3 shows the results on Llama3.1-8B. In mathe-249

matical reasoning, most problems are of higher dif-250

ficulty, whereas in commonsense reasoning, most251

problems are of lower difficulty. Combining Cl.1,252

we can infer that the CoT is more effective in math-253

ematical reasoning since it has more difficult prob-254

lems compared to other tasks. This provides an ex-255

planation for the effectiveness distribution shown in256

Figure 1 from the perspective of problem difficulty.257

3.3 Information Gain258

When we define the problem difficulty, we only259

consider the final result of LLM’s reasoning. To260

conduct a more comprehensive analysis, we delve261

into the reasoning process and continue to identify262

key factors. In practice, a harder question tends to263

require more extra information to answer. Thus,264

here we focus on the information gain of CoT in265

the reasoning process.266

Information Gain Definition In information the-267

ory, Information Gain (IG) quantifies the reduction268

in uncertainty of the target variable Y after adding269

a certain feature X:270

IG(Y,X) = H(Y )−H(Y |X) (1)271

where H(Y ) represents the entropy of Y , and272

H(Y |X) represents the conditional entropy of Y273

given the feature X . Similarly, in the context of274

LLM reasoning, given a question Q and a CoT C,275

we define the IG as follows:276

IG(C,Q) = H(C)−H(C|Q)

= −
n∑

i=1

p(ci|Ci−1) log p(ci|Ci−1)

+

n∑
i=1

p(ci|Ci−1;Q) log p(ci|Ci−1;Q)

(2)277

Here, p(·) indicates the model’s output probability,278

Ci−1 is the first i− 1 tokens of CoT, and n is the279

length of CoT. IG represents the degree to which280

the uncertainty of CoT is reduced by the question.281

The larger the IG, the more information CoT ob-282

tains from the question, hence the less additional283

information is provided by CoT itself.284

Experiment and Analysis We conduct experi-285

ments across different datasets and demonstrate286

the results in Figure 4. Compared to Figure 1,287

this figure shows an opposite trend: mathematical288
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Figure 4: CoT information gain in different datasets.

reasoning has the lowest IG, while commonsense 289

tasks exhibit the highest IG. This indicates that: 290

(Cl.2) CoT is more effective when it provides ad- 291

ditional information not present in the problem 292

itself (e.g. gsmic, gsm8k, aqua). In contrast, when 293

CoT is ineffective for performance improvement, 294

it provides less extra information. 295

3.4 Information Flow 296

In § 3.3, we primarily demonstrate the importance 297

of additional information in CoT. However, does 298

the way in which models utilize this information 299

also affect the CoT effectiveness? To answer this 300

question, we study the information flow between 301

CoT and answers in this experiment. 302

Information Tracing Method Following previ- 303

ous works (Wu et al., 2023; Wang et al., 2024a; 304

Li et al., 2024), we employ integrated gradient at- 305

tribution (IGA) (Sundararajan et al., 2017) as our 306

measuring method to capture the information flow 307

between CoT and answer. Specifically, we first 308

compute importance In,m of input token xn to out- 309

put token ym as follows: 310

I(xn, ym) = E(xn)

∫ 1

α=0

∂f(αym)

∂E(xn)
dα

≈ E(xn)

m

m∑
k=1

∂f( k
m
ym)

∂E(xn)

(3) 311

where f(·) represents the model’s output proba- 312

bility, E(xn) is the input word embedding of the 313

token xn and m is the number of approximation 314

steps (we set it to 20). To reduce the interference 315

from noise, we rescale the importance and get the 316

attribution effect score between xn and ym: 317

AE(xn, ym) =

{
I(xn,ym)

maxN
n′=1

I(x′
n,ym)

I(xn, ym) > 0

0 otherwise
(4) 318

Here N is the last index of the input. Finally, we 319

can measure the information flow between each 320
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Figure 5: Information flow between the CoT and an-
swer. ‘Step’ indicates sequential positions within the
CoT, where 0 is the beginning and 100 is the end.
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Figure 6: MIF score in different datasets.

token c of CoT and the answer A using the average321

attribution effect (AAE):322

AAE(c, A) =
1

|A|
∑
a∈A

AE(c, a) (5)323

Since CoT is usually long, averaging over each324

token of CoT would result in a significant loss of325

information. Hence, we choose to average over326

A and analyze how the information flow changes327

throughout the CoT process using the AAE.328

Information Flow Comparison We collect 200329

CoT-answer pairs from three different datasets to330

calculate the AAE. Figure 5 shows the main re-331

sults, from which we can get that: (Cl.3) When332

information flow between CoT and the answer333

increases with the CoT process, the CoT tends334

to be effective. As we can see from Figure 5, the335

curve of GSM8k exhibits the most significant up-336

ward trend, while ECQA remains the most stable,337

with the AAE showing little variation as the steps338

change. For tasks where CoT is highly effective339

(e.g. GSM8k), the influence of the CoT on the an-340

swer increases as the reasoning progresses. In con-341

trast, for tasks that CoT is ineffective (e.g. ECQA),342

the influence of CoT on the answer does not signif-343

icantly change as the reasoning progresses.344

Monotonicity of Information Flow In the previ-345

ous experiment, we identify the influence of AAE’s346

C. → A. GSM AQuA PW PQA WINO SIQA

✓ → ✓ 41 25 14 27 34 40
✓ → ✗ 0 0 0 0 1 0
✗ → ✓ 1 1 7 17 1 0
✗ → ✗ 8 24 29 6 14 10

Table 1: Inconsistency statistics between the CoT (C.)
and the answer (A.) on Llama3.1-8B.

increase by observing different curves. To quanti- 347

tatively measure this increase, we define the mono- 348

tonicity of information flow (MIF) as the Spearman 349

correlation coefficient between the steps and the 350

corresponding AAE values: 351

MIF (C,A) = 1− 6
∑

d2i
n(n2 − 1)

= 1−
6
∑n

i=1[n+ 1− i−R(AAE(ci, A))]2

n(n2 − 1)
(6) 352

where n is the length of CoT and R(·) is the rank- 353

ing of the value. In the implementation, we merge 354

adjacent tokens and calculate their average AAE, 355

thereby reducing noise interference. The experi- 356

mental results on Gemma2-9B and Llama3.1-8B 357

are presented in Figure 6, from which we can get 358

that: The higher the monotonicity of the infor- 359

mation transfer between CoT and the answer, 360

the more effective the CoT becomes. This further 361

demonstrates the validity of Cl.3. 362

4 What Makes CoT Unfaithful 363

In this section, we aim to analyze the CoT from the 364

faithfulness perspective. Concretely, we first iden- 365

tify the unfaithfulness problem in different tasks 366

(§4.1). Next, we analyze the issue by examining 367

the information interaction among the three key 368

components of reasoning (as illustrated in Figure 369

7), including question and CoT (§4.2), CoT and 370

answer (§4.3), question and answer (§4.4). 371

4.1 CoT Faithfulness Evaluation 372

Following previous works (Bao et al., 2024; Lyu 373

et al., 2023), we evaluate the faithfulness of CoT 374

by measuring the consistency between the CoT and 375

the answer. If an incorrect CoT induces a correct 376

answer or a correct CoT induces a wrong answer, 377

it is seen as an unfaithful CoT (see Figure 7 for 378

example). We manually evaluate the correctness 379

of 50 CoT-answer pairs from six datasets and com- 380

pare inconsistency ratios in them. The main results 381

on Llama3.1-8B are illustrated in Table 1 (results 382

on other models are presented in Appendix B). We 383
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Q: True or False: Gary is not blue. 

Context: Anne is not nice. Anne is 
round. Gary is furry. Gary is round. 
Gary is nice. Gary is quiet. Gary is 
red. Harry is blue. Harry is quiet. 
All round, quiet things are not blue. 
If Gary is not nice then Gary is 
furry. 

Correct CoT: Gary is round. Gary is quiet. All 
round, quiet things are not blue.

Incorrect CoT: Gary is furry. Gary is nice. Gary 
is red. Gary is round.

Answer: True

Answer: True

Question Info. 
Miss (Sec. 4.2)

Question Info. Recall (Sec. 4.4)

CoT Info. Miss 
(Sec. 4.3)

Faithful CoT

UnFaithful CoT

Figure 7: An interpretation of unfaithful CoT issues, where statements in red are correct information for reasoning.
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Figure 8: Comparison of information transfer between
questions and CoTs under three settings.

can conclude that: The logical reasoning tasks384

have more unfaithful CoT issues. Compared to385

other datasets, the proportion of inconsistencies is386

higher in logical reasoning (7/50 in PW and 17/50387

in PQA) and mainly consists of wrong CoTs lead-388

ing to correct answers. Our research focuses on389

interpreting these unfaithful issues within logical390

reasoning datasets in the following sections.391

4.2 Question to CoT: Unfaithful CoT misses392

correct information from context393

We seek to explore why CoTs lack such correct394

information in unfaithful cases. Since CoTs are395

generated based on the question, we hypothesize396

that it is due to the lack of information from the con-397

text of the question. To demonstrate it, we use IG398

(see Eq.2) to compare the information interaction399

between questions and CoTs.400

Experimental Setup We experiment with three401

settings: ‘unfaithful’, ‘faithful’, and ‘average’. For402

‘unfaithful’, we select all of the unfaithful samples,403

calculating IG(Q,C). For ‘faithful’, we select404

samples where both CoT and the answer are cor-405

rect (see Figure 7 for examples). For ‘average’, we406

calculate IG on all questions. We collect 200 sam-407

ples from ProofWriter and ProntoQA, comparing408

the IG distribution under different settings.409

Experimental Results Figure 8 presents our re-410

sults (we present more experiments in Appendix411

0 20 40 60 80 100
step (%)

0.02

0.04

0.06

0.08

0.10

0.12

AA
E

unfaithful
faithful

(a) ProofWriter

0 20 40 60 80 100
step (%)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

AA
E

unfaithful
faithful

(b) ProntoQA

Figure 9: Comparison of information transfer between
CoTs and answers on Llama3.1-8B.

C). We can get that: (Cl.4) Unfaithful CoT misses 412

correct information from the context. In both fig- 413

ures, the IG under the ‘unfaithful’ setting is lower 414

than the other two settings. This indicates that CoT 415

gets less information from the context when an un- 416

faithful issue occurs. As an example, in unfaithful 417

CoT of Figure 7, the incorrect CoT does not con- 418

tain the statement “Gary is quiet” or “All round, 419

quiet things are not blue” in the question. 420

4.3 CoT to Answer: Unfaithful CoT has less 421

information transfer to answers 422

Since unfaithful CoT lacks the correct information 423

needed for reasoning, why can the final prediction 424

still be correct? To answer it, we investigate the 425

information transfer between CoT and the answer. 426

Experimental Setup We use the AAE from the 427

Eq.5 to measure the amount of information trans- 428

ferred between the two. Following the experi- 429

ment in §4.2, we experiment under “unfaithful” 430

and “faithful” settings, comparing AAE values on 431

Llama3.1-8B across different datasets. 432

Experimental Results The main results of the 433

experiments are demonstrated in Figure 9. In both 434

figures, the AAE for the ‘faithful’ setting (in red) 435

is higher than that for the ‘unfaithful’ setting (in 436

blue). Therefore, we have: (Cl. 5) Unfaithful CoT 437

has less information interaction with the answer 438

compared to the correct one. 439
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Figure 10: Comparison of correct recall counts.

4.4 Question to Answer: Answer can recall440

correct information from context441

While the answer misses key information from the442

CoT, how can the final prediction still be correct?443

We hypothesize that LLMs can recall the missing444

information when generating the answer and design445

experiments to demonstrate it.446

Experimental Setup We rank each statement447

in the context by its AAE score to the answer448

AAE(S,A) (S is a statement in the question) and449

observe whether the top-ranked statements include450

the correct statement missing in CoT (e.g. “Gary451

is quiet” in Figure 7). For comparison, we conduct452

experiments under three settings: unfaithful (un-453

faithful CoT with AAE recall), average (all CoT454

with AAE recall), and random (unfaithful CoT with455

random recall).456

Experimental Results Figure 10 demonstrates457

our results on Llama3.1-8B (results on more mod-458

els in Appendix D), from which we conclude that:459

(Cl. 6) When unfaithful CoT issues occur, LLMs460

can recall missing correct information from the461

context during the answer prediction. For all462

datasets and models, when the unfaithful CoT issue463

occurs, more missing statements get the top-k high-464

est AAE scores from the answer compared to other465

settings. These statements have a strong informa-466

tion interaction with the answer, compensating for467

the lack of relevant statements in the CoT, thereby468

contributing to the correct answer prediction.469

5 From Unfaithful CoT to Effective CoT470

Since we analyze the CoT from two different per-471

spectives in the former experiments, what is the472

relationship between them? In this section, we473

demonstrate that mitigating the unfaithful issue can474

lead to improvements in final performance. In other475

words, the faithfulness of CoT (§4) is a key factor476

in influencing the CoT effectiveness (§3).477

5.1 Our Method 478

Based on findings in §4, we propose a new 479

method called QUestion Information Recall and 480

Enhancement (QUIRE) to mitigate the unfaithful 481

CoT issue. The main framework of it is illustrated 482

in Figure 11, which includes two components: 483

AAE Recall As mentioned in Cl.6, when unfaith- 484

ful issues occur, LLMs maintain a strong causal 485

relevance with the correct statement in the context 486

during the answer prediction. Thus, here we first 487

generate a raw answer A with the SC method, then 488

recall extra information by selecting the top-k con- 489

text statements with the highest AAE(S,A) (as 490

marked with red in Figure 11). After recalling ex- 491

tra information, we incorporate these statements 492

as additional hints into the input prompt, enabling 493

the model to pay more attention to this information 494

during the CoT generation. 495

IG Vote Through the former step, we get multi- 496

ple information-enhanced CoTs (here we can also 497

integrate the SC technique to further improve the 498

performance). However, since our recall method 499

also introduces noisy hints, there may exist incor- 500

rect statements in some of these CoTs (e.g. Hint 1 501

in Figure 11). To reduce their interference, accord- 502

ing to Cl.4, we rate these CoTs based on IG(Q,C). 503

A higher IG indicates that more information in CoT 504

is derived from the question, which means the CoT 505

contains fewer hallucinated statements. After cal- 506

culation, we use these scores as the weight for SC 507

to vote and select the final answer. 508

5.2 Main Experimental Setup 509

Datasets Since all analyses in §4 are conducted 510

on ProofWriter (Tafjord et al., 2021) ProntoQA 511

(Saparov and He, 2023), we continue to evaluate 512

our method on them. For the test set, we sample 513

500 questions from the former and 400 questions 514

from the latter. 515

Metrics In form sections, we analyze the CoT 516

performance from two aspects. Therefore, our 517

evaluation cannot solely consider the result per- 518

formance but should also assess the quality of the 519

CoT to avoid unfaithful reasoning. Therefore, in 520

addition to accuracy (Acc), we use the following 521

two metrics: (1) BertScore (BS): Given a golden 522

rationale, the generated CoT should recall as much 523

information from it as possible, hence, we use the 524

BertScore (Zhang et al., 2020) as one of our met- 525

rics. (2) Faithful BertScore (FBS): From the per- 526
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CoT

Raw Answer

True or False: Gary is not blue. 

Question: Anne is not nice. Anne is 
round. Gary is furry. Gary is round. 
Gary is nice. Gary is quiet. Gary is 
red. Harry is blue. Harry is quiet. 
All round, quiet things are not blue. 
If Gary is not nice then Gary is 
furry. Hint2: Gary is furry.Question

Hint1: Anne is not nice.Question

Hint3: All … not blue.Question

Q
ue

st
io
n

Final AnswerWeighted
Vote

CoT CoT

Step 1. AAE Recall

CoT 1

CoT 2

CoT 3

Step 2. IG Vote

0.6

Major Vote

Figure 11: The main process of our QUIRE method, where the statement in red is the recalled information.

Method ProofWriter ProntoQA

Acc BS FBS Acc BS FBS

CoT 59.2 64.9 55.7 86.8 86.1 78.0
SC 60.6 65.0 57.8 93.2 87.5 83.6
LtM 54.0 60.4 56.4 90.0 77.3 72.6
SR 51.6 65.9 53.4 88.5 91.5 84.5

Ours 63.0 66.6 58.0 95.0 92.7 89.2
- AAE Recall 60.2 65.1 57.0 95.0 87.5 84.6
- IG Vote 62.8 64.1 56.6 94.3 87.0 83.4

Table 2: Results of our main experiment, the best results
are highlighted in bold.

spective of faithfulness, correct answers should be527

accompanied by high-quality CoTs, and incorrect528

results should correspond to CoTs of poorer quality.529

Thus, we define the FBS to measure faithfulness as530

below:531

FBS =
1

n

n∑
i=1

[η(ai)BS(ci, gi)

+ (1− η(ai))(1−BS(ci, gi))]

(7)532

where ci, ai, gi represent the generated CoTs, an-533

swers and golden rationales, n denotes the sample534

count. If ai is correct, η(ai) = 1, else η(ai) = 0.535

Baselines For baselines, we select representa-536

tive methods that enhance LLMs’ reasoning per-537

formances, including: Chain-of-Thought (CoT)538

(Wei et al., 2022), Self-Consistency (SC) (Wang539

et al., 2023), Least-to-Most (LtM) (Zhou et al.,540

2023), Self-Refine (SR) (Madaan et al., 2023b).541

Additionally, we also set up ablation experiments542

(-AAE Recall and -IG Vote) to verify the effective-543

ness of each component in our method. Implemen-544

tation details can be found in Appendix E.545

5.3 Main Experimental Results546

The results of our main experiment on Llama3.1-547

8B are demonstrated in Table 2 (additional results548

in Appendix F), which demonstrates that: (1) Our 549

method effectively mitigates the unfaithful CoT 550

issues. On both BS and FBS, our method achieves 551

the highest performance, improving up to 5.6% 552

faithfulness (i.e. FBS) on ProntoQA. Besides, from 553

the results of the ablation study, we can see both 554

modules make contributions to enhancing the CoT 555

faithfulness. Given that our method is an appli- 556

cation derived from the analytical conclusions, its 557

superior performance can also substantiate the cor- 558

rectness of our earlier findings. (2) Improvements 559

in faithfulness can also lead to enhancements 560

in CoT’s effectiveness. Although our method is 561

based on the conclusions from §4 to optimize the 562

unfaithful CoT issue, the CoT effectiveness (Acc) 563

also improved (up to 2.4% on ProofWriter), in- 564

dicating that the former is a significant factor in- 565

fluencing the latter. Through our method, we can 566

boost the CoT’s performance from both effective- 567

ness and faithfulness. 568

6 Conclusion 569

In this paper, we focus on analyzing the CoT perfor- 570

mance in reasoning tasks. Specifically, we identify 571

the factors influencing CoT effectiveness and in- 572

terpret the mechanism behind CoT unfaithfulness. 573

For the former, we conduct extensive experiments 574

to demonstrate that question difficulty, informa- 575

tion gain, and information flow all contribute to 576

CoT’s performance improvement. For the latter, 577

we capture the information transfer among ques- 578

tions, CoTs, and answers in the reasoning process. 579

The experimental results indicate that the informa- 580

tion recall mechanism during answer predictions 581

leads to unfaithful CoT issues. At last, we design 582

the QUIRE method as a preliminary application 583

of our findings, which significantly improves CoT 584

performances from both perspectives. 585
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Limitations586

Although our work conducts an in-depth analy-587

sis and proposes mitigation strategies for improv-588

ing CoT performance, it has several limitations.589

Firstly, due to the inability to access gradient infor-590

mation inside models like GPT-4, our analysis is591

limited to open-source LLMs. Secondly, although592

we have empirically demonstrated that improve-593

ments in faithfulness can lead to performance en-594

hancements, there is still a lack of corresponding595

theoretical proof to support this conclusion. We596

leave the CoT effectiveness analysis of black-box597

LLMs and further theoretical proof for our future598

work.599
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A Additional Experiments across1007

Different Difficulty Levels1008

In the main text, due to space constraints, we only1009

presented results on GSM8k and WinoGrande, here1010

we show more results on other datasets and models1011

in Figure 12, 13, 14, 15. Besides, we also show1012

the difficulty distribution on more models in Figure1013

16 and 17. These results are consistent with our1014

conclusions in Cl.1.1015

B Details and Additional Experiments on1016

Faithfulness Evaluation1017

To demonstrate the widespread existence of unfaith-1018

ful issues in logical tasks, we present the evaluation1019

results on Llama2-13B in Table 3.1020

C Additional Experiments on Question to1021

CoT Information Analysis1022

In addition to the main experiments in §4.2, here1023

we conduct another experiment to further demon-1024

strate our conclusion in Cl.4. Specifically, we1025

experiment with three settings: ‘miss’, ‘hit’, and1026

‘avg’. For ‘miss’, we select the context statements1027

that are present in the golden CoT (as provided in1028

the dataset) but not in the generated CoT, calcu-1029

lating their AAE(Q,C) scores to CoT. For ‘hit’,1030

we collect the statements present in the generated1031

CoT and compute the corresponding AAE(Q,C).1032

As for ‘avg’, we calculate the AAE(Q,C) be-1033

tween the whole context and CoT. We compare1034

the distribution of the above three AAE scores on1035

ProofWriter and ProntoQA (100 samples each) and1036

illustrate the results in Figure 18, 19. Across all1037

figures, the AAE for the ‘hit’ setting is higher than1038

that for the ‘miss’ setting. Thus, compared to the1039

question information present in the CoT, this miss-1040

ing information gets less attention from the model1041

during the CoT generation. Besides, the score dif-1042

ference between the ‘hit’ and the ‘avg’ is also large,1043

which means that the included context statements1044

have a stronger information interaction with the1045

CoT. The model tends to copy this attended in-1046

formation into the CoT. Therefore, the results are1047

consistent with our findings in §4.2.1048

D Additional Experiments on Question to1049

Answer Information Analysis1050

To demonstrate the generalizability of our conclu-1051

sions in §4.4, we repeat the experiments on two1052

more models and present the result in Figure 201053

and 21 (here we sample 100 questions from Pron- 1054

toQA and ProofWriter). The results are consistent 1055

with Cl.6. 1056

E Implementation Details of the Main 1057

Experiment 1058

Here we provide a detailed account of the imple- 1059

mentation specifics from the main experiments in 1060

§5. For SC, we generate 3 samples for each ques- 1061

tion since our method is also set to 3 paths. For our 1062

method, we recall top-3 statements in AAE recall 1063

and generate one CoT for each enhanced prompt. 1064

We release all the prompts we use in the attached 1065

software package. 1066

F Additional Experiments on the Main 1067

Experiment 1068

We also repeat the experiments on Gemma2-9B and 1069

report the results in Table 4, which demonstrates 1070

the effectiveness of our method. 1071
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C. → A. GSM AQuA PW PQA WINO SIQA

✓ → ✓ 11 3 13 22 16 31
✓ → ✗ 0 0 5 1 7 0
✗ → ✓ 0 7 23 19 6 0
✗ → ✗ 39 40 9 8 21 19

Table 3: Inconsistency statistics between CoTs and answers on Llama2-13B.

Method ProofWriter ProntoQA

Acc BS FBS Acc BS FBS

CoT 65.0 56.6 52.9 77.0 62.7 57.7
SC 31.0 54.0 50.3 81.0 64.5 60.5
LtM 55.0 55.4 51.8 90.0 71.0 67.6
SR 18.5 43.1 58.6 56.5 45.3 51.9

Ours 65.0 60.7 56.3 92.5 71.2 69.5
- AAE Recall 27.5 54.2 50.3 89.0 64.5 61.9
- IG Vote 58.5 57.8 52.8 74.5 65.9 60.6

Table 4: Results of our main experiment on Gemma2-9B, the best results are highlighted in bold.
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Figure 12: Performance on different problem difficulty levels with and without CoT prompting (Llama3.1-8B on
ProntoQA).
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Figure 13: Performance on different problem difficulty levels with and without CoT prompting (Gemma2-9B on
AQuA).
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Figure 14: Performance on different problem difficulty levels with and without CoT prompting (Gemma2-9B on
SIQA).
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Figure 15: Performance on different problem difficulty levels with and without CoT prompting (Gemma2-9B on
ProofWriter).
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Figure 16: Difficulty distribution in different datasets on Gemma2-9B.
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Figure 17: Difficulty distribution in different datasets on Mistral-7B.
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Figure 18: Comparison of information interaction between contexts and CoTs under three settings (Llama2-13B).
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Figure 19: Comparison of information interaction between contexts and CoTs under three settings (Mistral-7B).
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Figure 20: Comparison of correct statements recall counts (Llama2-13B).
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Figure 21: Comparison of correct statements recall counts (Mistral-7B).
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