
Achieving a Better Stability-Plasticity Trade-off via
Auxiliary Networks in Continual Learning

Sanghwan Kim
Dept of Computer Science

ETH Zürich
sanghwan.kim@inf.ethz.ch

Lorenzo Noci
Dept of Computer Science

ETH Zürich
lorenzo.noci@inf.ethz.ch

Antonio Orvieto
Dept of Computer Science

ETH Zürich
antonio.orvieto@inf.ethz.ch

Thomas Hofmann
Dept of Computer Science

ETH Zürich
thomas.hofmann@inf.ethz.ch

Abstract

In contrast to the natural capabilities of humans to learn new tasks in a sequential
fashion, neural networks are known to suffer from catastrophic forgetting, where
the model’s performances drop dramatically after being optimized for a new task.
Since then, the continual learning (CL) community has proposed several solutions
to equip the neural network with the ability to learn the current task (plasticity)
while still achieving high accuracy on the old tasks (stability). Despite remarkable
improvements, the plasticity-stability trade-off is still far from being solved and
its underlying mechanism is poorly understood. In this work, we propose Aux-
iliary Network Continual Learning (ANCL), a new method that regularizes the
continually learned model with an additional auxiliary network that is solely opti-
mized on the new task. More concretely, the proposed framework materializes in a
regularizer that naturally interpolates between plasticity and stability, surpassing
strong baselines on image classification datasets. By analyzing the solutions of
several CL methods, we further propose a new technique for hyperparamter search
technique which dynamically adjusts the regularization parameter to achieve better
stability-plasticity trade-off.

1 Introduction

The main objective of continual learning (CL) is to investigate how neural networks can learn
from a sequence of task without progressively forgetting what has already been learned, a problem
known in the connectionist approach to cognitive science as catastrophic forgetting [32, 11, 28].
To overcome the issue, various methods have been proposed which can be roughly categorized
into regularization-based approaches [18, 2, 6, 40], distillation-based approaches [23, 17, 41, 7],
structure-based approaches [1, 38, 25, 26], and replay-based approaches [33, 5, 4, 39]. Based on these
approaches, recent works utilize an auxiliary network or module in various ways [36, 41, 25, 24]
(Appendix A). Notably, Active Forgetting with synaptic Expansion-Convergence (AFEC) [36] adds
a regularization term calculated on the auxiliary network that allows the model to actively forget
conflicting knowledge and retain the information that can be re-used from previous tasks, aiming
at achieving a proper plasticity-stability trade-off. Despite the significant advances, the underlying
mechanism of this trade-off has received relatively less attention. Thus, in this work, we formally
define the adaptation of the auxiliary network and investigate how it affects the stability-plasticity
trade-off.

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

More concretely, our main contributions are as follows:

1. We generalize and formalize the framework of Auxiliary Network Continual Learning
(ANCL) that can apply the auxiliary network to a variety of continual learning (CL) ap-
proaches as a plug-in method (Section 3).

2. We empirically show that ANCL can achieve better stability-plasticity trade-off than the
existing CL baselines on CIFAR-100 [20] and Tiny ImageNet [22] (Section 4).

3. Based on ANCL, we suggest a new method called Adaptive ANCL (Adap-ANCL) that
estimates the regularization hyperparameter in a task-dependent fashion and show that it
further boosts the performance (Section 4 and Appendix G).

2 Related Work

We consider the standard problem of learning sequentially T tasks using a neural network fθ, where
θ ∈ RP denotes the learnable weights. In the standard continual learning (CL) framework, when
presented with task t the user has an access to the previous network weights θ∗1:t−1 ∈ RP , which
are the result of the continual learning from task 1 to t − 1. It is well known that simply starting
optimization from the weights θ∗1:t−1 to obtain the weights θ∗1:t using the new data from the task
t results in catastrophic forgetting [28] of the old tasks. A common way to mitigate catastrophic
forgetting is to include a regularization term, which binds the dynamics of each network parameter
θi (i ∈ 1, . . . , P) to the corresponding old network parameter θ1:t−1,i through a regularization term
Ω1:t−1,i > 0. The new optimization problem then returns:

θ∗1:t = argmin
θ=(θ1,...,θP)

[
Lreg(θ) = LCE(θ) +

λ

2

∑
i

Ω1:t−1,i(θi − θ∗1:t−1,i)
2

]
, (1)

where in classification problems LCE(θ) is cross-entropy loss on the data of the task t and λ is the
regularization strength and is usually selected via a grid search procedure. Various regularization-
based methods chose different ways to estimate the parameter Ωi. For example, Elastic Weight
Consolidation (EWC) [18] calculates Ωi through the approximation of Fisher Information Matrix
(FIM), and Memory Aware Synapses (MAS) [2] measures Ωi as a function of the magnitude of the
updates on parameter i. In Appendix B, we further detail these and other CL frameworks that we
build upon.
Our approach stems from Wang et al. [36], who uses a biologically inspired argument to propose
Active Forgetting with synaptic Expansion-Convergence (AFEC). AFEC adds an additional regular-
ization term to the EWC loss to promote active forgetting, derived from a Bayesian analysis:

LAFEC(θ) = LCE(θ) +
λ

2

∑
i

Ω1:t−1,i(θi − θ∗1:t−1,i)
2 +

λa

2

∑
i

Ft,i(θi − θ̂t,i)
2. (2)

The first two terms are the same as above, while the last term promotes active forgetting by regularizing
the weights θ ∈ RP towards the biologically inspired expanded weights θ̂t ∈ RP (see precise
definition in [36]) through the FIM Ft on the task t. The last term in Eqn. (2) can be applied to other
regularization-based methods as a plug-and-play method.

3 Method

Motivated by AFEC [36], we formally define Auxiliary Network Continual Learning (ANCL) which
applies the auxiliary network trained on the current task to the continually learned previous network in
order to resolve the stability-plasticity dilemma. Fig. 1 illustrates the conceptual difference between
CL and ANCL where CL can be any continual learning method that includes a regularizer via the old
network. Original CL approaches mainly focus on retaining the old knowledge obtained from the
previous tasks by preventing weight updates that take away from the previous weight θ∗1:t−1. However,
this might harmfully restrict the model’s ability to learn the new knowledge, which will ruin the right
balance between stability and plasticity. On the contrary, ANCL maintains the two types of network
to maintain this balance: (1) the auxiliary network θ∗t , which is optimized solely on the current task t
allowing for forgetting (plasticity) and (2) the old network θ∗1:t−1 that has been sequentially trained
until task t− 1 (stability). Then, both networks regularize together the optimization process of the
main network weight θANCL

t−1 where the stability-plasticity balance is adjusted through λ and λa.

2

Figure 1: Conceptual comparison of CL and ANCL (ours). 1) CL: the previous weight θCL
t−1 is freezed

in the old network as θ∗1:t−1 and the old network regularizes the main training via λ. 2) ANCL:
the auxiliary network initialized by θANCL

t−1 is trained on the dataset Dt and then freezed as θ∗t . It
regularizes the main training via λa in addition to the regularization of the old network.

For example, ANCL can be applied to EWC [18] and MAS [2] to build Auxiliary Network EWC
(A-EWC) and Auxiliary Network MAS (A-MAS) accordingly. Then, the new loss of A-EWC and
A-MAS can be written as follows:

LA-reg(θ) = LCE(θ) +
λ

2

∑
i

Ω1:t−1,i(θi − θ∗1:t−1,i)
2 +

λa

2

∑
i

Ωt,i(θi − θ∗t,i)
2, (3)

where the importance Ωt of the auxiliary parameter θ∗t,i is calculated following the original methods
(EWC or MAS). The first two terms are equal to Eqn. (1) and A-EWC is equivalent to AFEC1 except
that the importance Ωt of the auxiliary network in ANCL is calculated only once2 before the training
of the new task and then fixed afterward.

Similarly, ANCL can be extended to distillation-based methods such as Learning without Forgetting
(LwF) [23] or less-forgetting learning (LFL) [17]. Given the data xj , LwF regularizes the logit yj of
the current model to be similar to the logit yold,j of the old network, while LFL drifts the activation
f(xj) before the last layer of the main network towards the activation fold(xj) of the old network
(detailed in Appendix B). By applying ANCL to LwF and LFL, the new loss of Auxiliary Network
LwF (A-LwF) and Auxiliary Network LFL (A-LFL) is written as follows:

LA-LwF(θ) = LCE(θ) + λ
∑
j

C1:t∑
c=0

−ycold,j log y
c
j + λa

∑
j

C1:t∑
c=0

−ycaux,j log y
c
j , (4)

LA-LFL(θ) = LCE(θ) + λ
∑
j

||f(xj)− fold(xj)||22 + λa

∑
j

||f(xj)− faux(xj)||22. (5)

In Eqn. (4), yaux represents the temperature-scaled logit of the auxiliary network and C1:t denotes the
total number of classes until task t. The new regularizer is double summated over the class position
c and the data xj . In Eqn. (5), faux(x) is the normalized and centered activation of the auxiliary
network.

The auxiliary network θ∗t of ANCL works similarly to the expanded parameter θ̂t of AFEC with
respect to adding an extra loss term, but ANCL uses the method-dependent regularizer compared to
the fixed and independent regularizer of AFEC based on FIM. In other words, while AFEC plugs in
the same loss term of the expanded parameter to every method, ANCL generates the loss term of
the auxiliary network in the same way as the original CL where ANCL is applied. This is a more
natural way to implicitly embrace two networks because the stability-plasticity trade-off can be easily
controlled by the scaling hyperparameters (λ and λa in Eqn. (3)) of two regularizers in the same
type. This is mathematically shown in Appendix C, where we analyze the gradients of ANCL. If
the two regularizers are in different type, each regularizer will change in different magnitude and
consequently make it hard to arrive at the equilibrium.

3

Table 1: Averaged accuracy (%) on (1) CIFAR-100/10 (upper row) and (2) Tinyimagenet-200/10
(lower row), averaged by 3 different seeds with error bar (± standard error).

Methods Fine-tuning
(Lowerbound)

Joint
(Upperbound) EWC [18] MAS [2] LwF [23] LFL [17]

CL
(original) 38.90±1.59 89.64±0.37 58.13±0.87 60.56±0.82 78.87±0.69 74.50±0.57

ANCL
(ours) n/a n/a 60.86±1.46 64.43±1.17 79.42±0.57 75.23±0.67

Adap-ANCL
(ours) n/a n/a 61.53±1.16 64.87±1.32 80.16±0.91 76.60±0.57

CL
(original) 28.51±0.75 67.98±1.15 50.10±0.78 49.50±1.18 59.04±0.62 60.20±0.66

ANCL
(ours) n/a n/a 52.49±0.71 50.11±1.09 60.96±0.76 61.32±0.68

Adap-ANCL
(ours) n/a n/a 52.85±0.68 50.91±0.98 61.53±0.72 62.50±0.57

4 Experiment

CIFAR-100 [20] and Tiny ImageNet [22] are chosen to form two benchmarks after divided into 10
tasks each: (1) CIFAR-100/10 and (2) Tinyimagenet-200/10. Benchmark (1) and (2) contain 10
and 20 classes per task respectively. Resnet32 [14] with multi-head at the last layer is used for all
experiments. Our experiment is classified as task incremental learning [34], where the task identity is
given during both the training session and inference. In addition, every experiment is conducted 3
times, and we report the averaged metric.

We evaluate our ANCL approaches in Table 1: A-EWC, A-MAS, A-LwF, and A-LFL. Fine-tuning
is the naive approach that the model is fine-tuned on a sequence of task which is regarded as a
lowerbound. Joint uses the whole datasets to train the model, which then becomes an upperbound.
In all methods, applying ANCL gives an extra boost in accuracy compared to standard CL. This
coincides with the theoretical analysis of the ANCL loss in Appendix C, supporting that ANCL is
more capable of balancing stability and plasticity. The grid search is performed on both λ and λa

(detailed in Appendix E), and the accuracy of all tasks can be seen in Appendix D.

Moreover, we observed that the model favors more stability over plasticity during the training of
later tasks through extensive analyses of the stability-plasticity trade-off (Appendix F). One possible
reason is that the model should remember more previous knowledge as the training progresses. Based
on this finding, we propose to employ the task-dependent hyperparameter λa,t instead of λa called
Adaptive ANCL (Adap-ANCL) which is defined as follows:

λa,t =
Ct

C1:t
λa,init (6)

Ct denotes the number of classes at task t and C1:t represents all classes accumulated until task t.
λa,init is an initial value determined by grid search. Thus, the adaptive parameter λa,t decreases
as the model learns more task. In such manner, ANCL is dynamically optimized toward the better
balance between stability and plasticity in every task. Adap-ANCL further improves the accuracy of
ANCL, which can be seen in Table 1.

5 Conclusion

In this paper, we propose a novel CL scheme called ANCL which effectively employ the auxiliary
network to reach better stability-plasticity trade-off as a plug-in method. It is shown theoretically
and empirically that ANCL has a high potential and is actually able to effectively merge the old and
auxiliary networks. Based on ANCL, we finally propose Adap-ANCL which actively modifies a key
hyperparameter depending on task.

1However, A-MAS is not equal to AFEC as the new regularizer of ANCL is based on MAS importance.
2The code implementation of AFEC newly calculates Ft every epoch.

4

References
[1] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and B. E. Bejnordi. Con-

ditional channel gated networks for task-aware continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3931–3940, 2020.

[2] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. Memory aware synapses:
Learning what (not) to forget. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 139–154, 2018.

[3] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
535–541, 2006.

[4] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark experience for general
continual learning: a strong, simple baseline. Advances in neural information processing
systems, 33:15920–15930, 2020.

[5] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari. End-to-end incremental
learning. In Proceedings of the European conference on computer vision (ECCV), pages
233–248, 2018.

[6] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental learn-
ing: Understanding forgetting and intransigence. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 532–547, 2018.

[7] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa. Learning without memorizing. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
5138–5146, 2019.

[8] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle. Podnet: Pooled outputs distillation for
small-tasks incremental learning. In European Conference on Computer Vision, pages 86–102.
Springer, 2020.

[9] F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural
network energy landscape. In International conference on machine learning, pages 1309–1318.
PMLR, 2018.

[10] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269. PMLR,
2020.

[11] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

[12] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in neural information processing systems,
31, 2018.

[13] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with
hilbert-schmidt norms. In International conference on algorithmic learning theory, pages 63–77.
Springer, 2005.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[15] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[16] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a unified classifier incrementally
via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 831–839, 2019.

5

[17] H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning in deep neural networks. arXiv
preprint arXiv:1607.00122, 2016.

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[19] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In International Conference on Machine Learning, pages 3519–3529. PMLR, 2019.

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[21] R. Kuditipudi, X. Wang, H. Lee, Y. Zhang, Z. Li, W. Hu, R. Ge, and S. Arora. Explaining
landscape connectivity of low-cost solutions for multilayer nets. Advances in neural information
processing systems, 32, 2019.

[22] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[23] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

[24] G. Lin, H. Chu, and H. Lai. Towards better plasticity-stability trade-off in incremental learning:
A simple linear connector. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 89–98, 2022.

[25] Y. Liu, B. Schiele, and Q. Sun. Adaptive aggregation networks for class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2544–2553, 2021.

[26] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 7765–7773, 2018.

[27] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer. Class-
incremental learning: survey and performance evaluation on image classification. arXiv preprint
arXiv:2010.15277, 2020.

[28] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[29] S. I. Mirzadeh, M. Farajtabar, D. Gorur, R. Pascanu, and H. Ghasemzadeh. Linear mode
connectivity in multitask and continual learning. arXiv preprint arXiv:2010.04495, 2020.

[30] S. I. Mirzadeh, M. Farajtabar, R. Pascanu, and H. Ghasemzadeh. Understanding the role of
training regimes in continual learning. Advances in Neural Information Processing Systems, 33:
7308–7320, 2020.

[31] V. V. Ramasesh, E. Dyer, and M. Raghu. Anatomy of catastrophic forgetting: Hidden represen-
tations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

[32] R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

[33] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 2001–2010, 2017.

[34] G. M. Van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[35] L. Venturi, A. S. Bandeira, and J. Bruna. Spurious valleys in one-hidden-layer neural network
optimization landscapes. Journal of Machine Learning Research, 20:133, 2019.

6

[36] L. Wang, M. Zhang, Z. Jia, Q. Li, C. Bao, K. Ma, J. Zhu, and Y. Zhong. Afec: Active forgetting
of negative transfer in continual learning. Advances in Neural Information Processing Systems,
34:22379–22391, 2021.

[37] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
374–382, 2019.

[38] S. Yan, J. Xie, and X. He. Der: Dynamically expandable representation for class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3014–3023, 2021.

[39] J. Yoon, D. Madaan, E. Yang, and S. J. Hwang. Online coreset selection for rehearsal-based
continual learning. arXiv preprint arXiv:2106.01085, 2021.

[40] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In
International Conference on Machine Learning, pages 3987–3995. PMLR, 2017.

[41] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-C. J. Kuo. Class-
incremental learning via deep model consolidation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1131–1140, 2020.

[42] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia. Maintaining discrimination and fairness in
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13208–13217, 2020.

7

A Continual Learning Methods using Auxiliary Network
In the last few years, several papers have proposed to use an auxiliary network or an extra module
which is trained on a new task. They tried to combine it with a previous network or module which
has been trained on old tasks using existing continual learning techniques.

Elastic Weight Consolidation (EWC) [18] is one of the initial works among weight regularization
methods that regularize weights related to the previous tasks. After training each task, EWC copies
and freezes the current network as an old network. Then, it estimates the importance of each parameter
in the old network so that the weights with the high importance remain unchanged when the model
is optimized on future task. Based on the EWC, Wang et al. [36] proposes Active Forgetting with
synaptic Expansion-Convergence (AFEC) which further regularizes the weights relevant to the current
task through expanded parameters. The expanded parameters are solely trained on the dataset of
the new task initialized by the old network and are allowed to forget the previous tasks. As a result,
AFEC can reduce potential negative transfer in continual learning by selectively merging the old
parameters with the expanded parameter. The stability-plasticity balance in AFEC is adjusted via
hyperparameters which scale the regularization terms for remembering the old tasks and learning the
new tasks, respectively.

Learning without Forgetting (LwF) [23] prevents forgetting using knowledge distillation [3, 15]. They
apply a distillation loss so that the model can learn soft targets generated by the old model instead of
typical one-hot targets. The old model is copied and freezed before the training of the current task
like EWC. Deep Model Consolidation (DMC) [41] is another distillation method built upon LwF.
DMC proposes double distillation loss where the soft targets are generated using both the old model
and a new model. The new model in DMC is basically the same concept as the expanded parameter
in AFEC which is optimized on the current task. Then, the logits of new classes from the new model
and the logits of old classes from the old model are concatenated to build the final soft targets. Then,
the stability-plasticity balance is achieved by penalizing the model to generate the same output as the
old model for old classes and the same output as the new model for new classes.

Adaptive Aggregation Networks (AANet) [25] explicitly expands ResNet [14] to have the two types
of residual blocks at each residual level: the one for retaining old knowledge and the other for learning
new knowledge. The outputs from the two residual blocks are linearly combined by aggregation
weights and then proceeded to the next-level layer. They train AANets through bilevel optimization.
In the first level, the parameters of the two residual blocks are trained. In the second level, the
aggregation weights are adapted which decide the balance between stability and plasticity within the
ResNet.

Recent work by Mirzadeh et al. [29] observes that multitask and continual solutions are connected by
very simple curves with a low error in weight space, which is called Linear Mode Connectivity. They
empirically prove that this connectivity is a linear path if the multitask learning and the continual
learning share same initialization weight. Based on this observation, Lin et al. [24] proposes a simple
linear connector that linearly add the weights of two networks following this linear path to emulate
the multitask solution: the one model remembering the old tasks and the other model learning the
new tasks. The stability-plasticity balance is preserved by combining the two networks.

The above methods [36, 41, 25, 24] all share the property that the auxiliary model or module is
used to solve the stability-plasticity dilemma in continual learning. Consequently, these methods
are able to learn the current task better than the original method while still retaining the knowledge
of the previous tasks. However, the underlying mechanism of the interaction between the previous
model and the auxiliary model is not widely studied. Therefore, in this paper, we first formalize the
framework of continual learning that adopts the auxiliary network called Auxiliary Network Continual
Learning (ANCL). Given this environment, we investigate the stability-plasticity trade-off from both
a theoretical and empirical point of view and perform various analyses to better understand it.

B Detail Explanation of Existing Continual Learning approaches

B.1 Weight Regularization Methods

Regularization-based methods in continual learning regularize the weight of the main network toward
the old network so that the current weight does not deviate a lot from the previous optimal weight.
Various approaches choose different ways to calculate the regularizing parameter Ωi in Eqn. (1).

8

For example, Elastic Weight Consolidation (EWC) [18] calculates Ωi through the approximation of
Fisher Information Matrix (FIM). The diagonal elements of FIM quantifies how curved the likelihood
of each parameter is and can be approximated by a Hessian matrix near the optimum. In other words,
the larger the change in the gradient, the more relevant the corresponding parameter is to the previous
tasks. FIM is calculated after training each task, which means that Ri of EWC cannot fully reflect the
learning trajectory of each network weight.

Compared to EWC, Memory Aware Synapses (MAS) [2] proposes accumulating the changes of each
parameter throughout the update history. Ri is measured through the magnitude of the updates on
each parameter according to the change in output. In other words, if the small change of specific
parameter in a network causes the huge change of an output, that parameter should be memorized
first.

Based on the above regularization-based methods, Wang et al. [36] suggests a biologically inspired
argument to propose Active Forgetting with synaptic Expansion-Convergence (AFEC) where an
additional regularization term is added on EWC loss. They argue that this term stimulates the active
forgetting of previous knowledge that interferes with the new knowledge, whereas the existing
regularization-based approaches highly concentrate on retaining the old weight. The new loss of
AFEC can be seen in Eqn. (2). The last term in Eqn. (2) promotes active forgetting by regularizing
the parameters θ ∈ RP towards the biologically inspired expanded parameters θ̂t ∈ RP (see precise
definition in [36]) through FIM Ft on task t. The expanded parameter is solely trained on the current
dataset allowing the forgetting of the old datasets and λa is a hyperparameter determined by grid
search. As a result, the main network parameter θ efficiently learns from both the old parameters
θ∗1:t−1 and the expanded parameters θ̂t. Moreover, the last term of Eqn. (2) can be applied to other
regularization-based methods as a plug-and-play method.

The expanded parameters θ̂t in AFEC are computed as follows: at the beginning of each task,
the expanded parameter is initialized by the old parameters, Then, at each epoch, it is trained on
task t without regularization, returning the network parameters θ̂t. For the current epoch of the
original network, these weights are then taken into account to modify the regularized dynamics. This
procedure is repeated every epoch, and hence for each epoch the dynamics of SGD is augmented
with a freshly computed regularizer.

B.2 Knowledge Distillation Methods

Distillation-based approaches prevent forgetting through knowledge distillation [3, 15] which was
originally devised to train a smaller student network from a larger teacher network. In this way, the
main network can emulate the activation or logit of the previous network while learning the current
task.

Learning without Forgetting (LwF) [23] propose following loss to make current network to distill the
knowledge of the old network via imitating the logit:

LLwF(θ) = LCE(θ) + λ
∑
j

C1:t−1∑
c=0

−ycold,j log y
c
j . (7)

Similar to Eqn. (1), θ is the weight of the main network that is trained on a sequence of tasks so far
and LCE(θ) is cross-entropy loss on current task t. yold and y are temperature-scaled logits of the
old network and the current network, respectively. The main network that continuously learns data
from task 1 to task t− 1 is freezed and save as the old network. C1:t−1 denotes the total number of
classes until task t− 1. Thus, ycj refers to the cth output of the logit of input xj . The logit scaled by
temperature τ on the cth class position is calculated as follows:

ycj =
(o(xj)

c)1/τ∑
k(o(xj)k)1/τ

, ycold,j =
(o(xj)

c
old)

1/τ∑
k(o(xj)kold)

1/τ
(8)

where o(xj) and oold(xj) are the output of the current network and the old network before softmax
is applied.

9

Another distillation method, less-forgetting learning (LFL) [17], penalizes the differences of activa-
tions before last layer instead of logits:

LLFL(θ) = LCE(θ) + λ
∑
j

||f(xj)− fold(xj)||22 (9)

f(xj) and fold(xj) are centered and normalized activation from the main and old network each.
The knowledge of the old network is transfered via the difference of two activations which lead the
activation of the current model to the counterpart of the previous model.

C The Role of Auxiliary Network

In this section, we look into our CL and ANCL loss closely by analyzing its gradient. According to
each gradient, we compare how CL and ANCL methods converge to optimal weight in the point of
stability-plasticity balance.

First, we start with EWC loss [18]:

LEWC(θ) = LCE(θ) +
λ

2

∑
i

F1:t−1,i(θi − θ∗1:t−1,i)
2 (10)

where F1:t−1,i represents the accumulated fisher information matrix of parameter θ∗1:t−1,i until task
t− 1. For simplicity, let’s assume importance F is fixed among all parameters of network. Then, we
can simplify the EWC loss as follows:

LEWC(θ) = LCE(θ) +
λ

2
F1:t−1||θ − θ∗1:t−1||22 (11)

where we take the derivative with respect to the weight of the model θ. Then, we have

∇θLEWC(θ) = ∇θLCE(θ) + λF1:t−1(θ − θ∗1:t−1). (12)

The gradient consists of two terms: the first term that updates θ towards the minima of the current
task through cross-entropy loss and the second term which regularizes θ to be as close as possible
to θ∗1:t−1. If λ is gradually increased, the second term becomes more and more dominant in the
gradient so that θ converges near θ∗1:t−1 at the end of the training. In this case, stability is achieved
but plasticity is neglected.

Next, we analyze with A-EWC loss in the same way. We also assume here that importance F is fixed
among all parameters of network. Then, Eqn. (3) can be rewritten as

LA-EWC(θ) = LCE(θ) +
λ

2
F1:t−1||θ − θ∗1:t−1||22 +

λa

2
Ft||θ − θ∗t ||22. (13)

Take the derivative with respect to θ:

∇θLA-EWC(θ) = ∇θLCE(θ) + λF1:t−1(θ − θ∗1:t−1) + λaFt(θ − θ∗t) (14)

= ∇θLCE(θ) + (α+ β)(θ −
αθ∗1:t−1 + βθ∗t

α+ β
). (15)

In the last equality, α = λF1:t−1 and β = λaFt are used. The gradient of A-EWC also consists of
two parts. The first term is the same as before and the second term penalizes θ to move toward the
interpolation of θ∗1:t−1 and θ∗t . This linear interpolation fully depends on the hyperparameter λ and
λa as we fixed the importance. Therefore, θ will converge to the weight between θ∗1:t−1 and θ∗t at the
end, which turns out to be the region with high accuracy by mode connectivity figures in Appendix
F.4. In Eqn. (13), the balance between stability and plasticity can be adjusted more easily through the
ratio between λ and λa while it is solely dependent on λ in Eqn. (11).

For MAS [2] and A-MAS, similar analaysis can be applied as above if we simply replace the
importance of EWC F with the importance of MAS Ω.

Among distillation losses, we first looked into LFL [17] loss:

LLFL(θ) = LCE(θ) + λ
∑
j

||f(xj)− fold(xj)||22. (16)

10

Again, take the derivative with respect to θ:

∇θLLFL(θ) = ∇θLCE(θ) + 2λ
∑
j

(f(xj)− fold(xj))∇θf(xj). (17)

The gradient of LFL loss can be divided into two parts: the first part that drives θ toward the minima
of the current task and the second part that regularizes the difference of activations between the
current model and the old model. Compared to Eqn. (12), LFL has more flexibility to memorize
previous knowledge as it does not directly regularize its weight but only its activations. The model
trained with too high λ will mainly focus on generating exactly same activations as old model while
neglecting learning current task.

Next, we investigate A-LFL loss in Eqn. (5):

LA-LFL(θ) = LCE(θ) + λ
∑
j

||f(xj)− fold(xj)||22 + λa

∑
j

||f(xj)− faux(xj)||22 (18)

Same derivative is applied as follows:

∇θLA-LFL(θ) = ∇θLCE(θ) + 2λ
∑
j

(f(xj)− fold(xj))∇θf(xj)

+ 2λa

∑
j

(f(xj)− faux(xj))∇θf(xj) (19)

Which can be organized as

∇θLA-LFL(θ) = ∇θLCE(θ) + 2(λ+ λa)
∑
j

(f(xj)−
λfold(xj) + λafaux(xj)

λ+ λa
)∇θf(xj) (20)

The second term of the gradient of A-LFL derives the activation of the main network to be equal
to the interpolated activation of the auxiliary and old network. The interpolation is decided by the
ratio of λ and λa. It is shown in Fig. 11 that this leads the weight to achieve the better trade-off in
accuracy landscape overcoming simple linear interpolation between the old and auxiliary weight
Moreover, it is worth noting that Eqn. (20) become quite similar form as Eqn. (15) if we assume a
one-layer network where fold(xj) = Woldxj , faux(xj) = Wauxxj , and f(xj) = Wxj hold such
that Wold,Waux,W ∈ Rp×d and xj ∈ Rd:

∇θLA-LFL(θ) = ∇θLCE(θ) + 2(λ+ λa)
∑
j

(W − λWold + λaWaux

λ+ λa
)xjx

T
j . (21)

Now, the second term drift model weight W (except the last layer) toward the interpolation of the old
weight and the auxiliary weight like that of the A-EWC gradient. Again, we strike a balance between
stability and plasticity balance through λ and λa.

Next distillation loss is LwF [23] as follows:

LLwF(θ) = LCE(θ) + λ
∑
j

C1:t∑
c=0

−ycold,j log y
c
j (22)

For simplicity, we assume that yold and y are softmax logits scaled by temperature τ such as

ycj =
eo(xj)

c/τ∑
k e

o(xj)k/τ
, ycold,j =

eo(xj)
c
old/τ∑

k e
o(xj)kold/τ

. (23)

Then, referring to Hinton et al. [15], the gradient of LwF with respect to logits θ can be calculated as
follows:

∇θLLwF(θ) = ∇θLCE(θ) +
λ

τ

∑
j

(yj − yold,j)∇θo(xj). (24)

11

When τ is sufficiently large, then softmax can be approximated using exp(o(xj)/τ) ≈ 1 + o(xj)/τ :

∇θLLwF(θ) ≈ ∇θLCE(θ)+

λ

τ

∑
j

(
1 + o(xj)/τ

C1:t−1 +
∑

k o(xj)k/τ
− 1 + o(xj)old/τ

C1:t−1 +
∑

k o(xj)kold/τ
)∇θo(xj) (25)

We further assume that logits of main network and old network are zero mean, i.e.,
∑

k o(xj)
k = 0

and
∑

k o(xj)
k
old = 0. Finally, we get the following approximation:

∇θLLwF(θ) ≈ ∇θLCE(θ) +
λ

C1:t−1τ2

∑
j

(o(xj)− o(xj)old)∇θo(xj) (26)

This demonstrates that the gradient of LwF is in equivalent form as the gradient of LFL under
sufficiently large temperature and zero-mean logits from both main and old network. One should also
note that o(xj) in LwF is logit and f(xj) in LFL is activation before last layer.

Similarly, we can approximate the gradient of A-LwF:

∇θLA-LwF(θ) ≈ ∇θLCE(θ) +
λ

C1:t−1τ2

∑
j

(o(xj)− o(xj)old)∇θo(xj)

+
λa

C1:t−1τ2

∑
j

(o(xj)− o(xj)aux)∇θo(xj) (27)

Then, we get the final form as follows:

∇θLA-LwF(θ) ≈ ∇θLCE(θ) +
λ+ λa

C1:t−1τ2

∑
j

(o(xj)−
λo(xj)old + λao(xj)aux

λ+ λa
)∇θo(xj) (28)

Similar to A-LFL, the second part of gradient shift the logit from main network toward the inter-
polation of the logits from old and auxiliary network. The stability-plasticity dilemma is solved by
directly controlling λ and λa.

D Detailed Results on Experiments

Figure 2: The final accuracy on all tasks of (1) CIFAR-100/10 with its standard error as an error band.
The orange line visualizes ANCL methods ((a) A-EWC, (b) A-MAS, (c) A-LwF, and (d) A-LFL) and
the blue line represents CL methods ((a) EWC, (b) MAS, (c) LwF, and (d) LFL).

In this section, we plot the final accuracy of the sequential 10 task of CIFAR-100 in Figure 2. In
Figure 2, the accuracy for most tasks of ANCL approaches is higher than that of CL approaches. In
particular, ANCL achieves better performance in the later task compared to CL at the cost of losing
some of the earlier task accuracy, which is well shown in Figure 2 (b) and (c). This is because ANCL
methods are able to learn new tasks better than CL through the extra regularization term as explained
in Section C. However, ANCL loses a bit of ability to remember initial knowledge as a trade-off, but
ANCL is still comparable to CL in earlier tasks.

12

E Training details

Benchmark: CIFAR-100 [20] and Tiny ImageNet [22] are used to evalulate our ANCL methods.
CIFAR-100 contains 60,000 colored images from 100 classes with the size of 32× 32 and is divided
into 50,000 and 10,000 images to form a train set and a test set. Then, the 10% of the train set is
randomly sampled to build a validation set. CIFAR-100 is divided into 10 tasks of 10 classes each to
construct a benchmark (1) CIFAR-100/10.

Tiny ImageNet consists of 100,000 train images and 10,000 test images and the 10% of the train
set is again used as a validation set. It includes 200 classes and all data are 64× 64 colored images
which are resized as 32× 32 for both training and inference. We equally divide Tiny ImageNet into
10 to build a benchmark (2) TinyImagenet-200/10.

Architecture: Resnet32 [14] are selected to conduct all experiments which are commonly used
by serveral works in the literature of continual learning [33], [37], [16], [42], [8]. Multi-head layer
is deployed at the last layer of Resnet32 to generate output with task identity. Thus, total number
of head is equal to the number of tasks. Note that the heads of previous tasks are freezed while the
model learns the current task, which helps to prevent forgetting compared to baselines updating every
parameter [27].

Implementation: We build our ANCL methods based on code implementation of Framework for
Analysis of Class-Incremental Learning (FACIL) [27] which supports several baselines and existing
CL methods. SGD Optimizer with 0.9 momentum and the mini-batch size of 128 is applied to all
experiments. The initial learning rate of each task is determined by grid search and the learning rate
of the first task is slightly larger than that of the following task as our model is trained from scratch.
Then, the learning rate is decreased by factor 3 whenever there is no improvement in validation loss
for 5 epochs. If the learning rate reaches minimum threshold, the model stops training. The model
can be trained for maximum 200 epochs per task.

Baseline: First, we do not apply any memory buffer that has an access to the previous datasets.
Task identity is given during both training and inference, which is regarded as a task incremental
learning scenario. In addition, every experiment train the model from scratch and conducted 3 times
to generate averaged accuracy.

Finetuning is the naive approach that model is finetuned on each task, which is regarded as a
lowerbound. Joint use the whole dataset to train model, which becomes an upperbound. For weight
regularization methods, we evaluate EWC [18] and MAS [2]. For distillation methods, we implement
LwF [23], and LFL [17]. Based on these CL methods, we also compare our ANCL approaches:
A-EWC, A-MAS, A-LwF, and A-LFL.

Evaluation Metric: In our paper, averaged accuracy (AAC) for T task is reported after the training
of all tasks:

AAC =
1

T

T∑
i=1

AT,i (29)

where Aj,k is the test accuracy of task k after the continual learning of task j.

Resources: We conduct all our experiments using gpu "NVIDIA GeForce GTX 1080 Ti".

Algorithm: Detailed pseudocode in Algorithm 1 explains how we implement ANCL approaches.
This is valid for all ANCL methods (A-EWC, A-MAS, A-LwF, and A-LFL) if appropriate ANCL
loss is applied. If lines 9-12 are skipped and "ANCL loss" in line 14 is replaced with "CL loss",
Algorithm 1 becomes the original CL algorithm.

F Trade-off Analysis

In this section, three analyses were performed to deeply understand how stability-plasticity dilemma
is solved through ANCL. It is worth to note that the specific learning regime described in Appendix

13

Algorithm 1: ANCL Algorithm
Input: Main network weight θ, Auxiliary network weight θt, Old network weight θ1:t−1,

Hyperparameters λ, λa

Output: Optimal weight θ∗
1 for task t = 1, 2, .., N do
2 if t = 1 then

// Train main network on first task
3 for epoch e = 1, 2, .., E do
4 Train θ with LCE(θ) to obtain θ∗ on task 1
5 Set θ∗1:1 = θ∗

6 (Calculate the importance of θ∗1:1 if needed)
// Save old network weight

7 Freeze and save θ∗1:1
8 else

// Train auxiliary network
9 θt = copy(θ∗1:t−1)

10 Train θt with LCE(θt) to obtain θ∗t
11 (Calculate the importance of θ∗t if needed)

// Save auxiliary network weight
12 Freeze and save θ∗t

// Train main network
13 for epoch e = 1, 2, .., E do
14 Train θ with ANCL loss Eqn. (3, 4, 5) to obtain θ∗ on task t

15 Set θ∗1:t−1 = θ∗

16 (Calculate the importance of θ∗1:t−1 if needed)
// Save main network weight as old network weight

17 Freeze and save θ∗1:t−1

F.1 Fig. 3 was adopted in all following analyses which is built upon the setting in Mirzadeh et al.
[29].

F.1 Training Regime for Trade-off Analysis

Figure 3: Training regime for analysis. Dt stands for the dataset of task t and D1:t−1 means combined
dataset from task 1 to task t− 1.

All analyses in this paper are based on the specific learning scheme described in Fig. 3. On task t,
every model starts training from multitask weight θmulti

t−1 which is trained on combined dataset D1:t−1

before (i.e., train on D1∪D2∪· · ·∪Dt−1). If we fine-tune the model on data Dt, it becomes auxiliary
network θ∗t which regularizes ANCL later. ANCL and CL approach is applied to get corresponding
weitht θANCL

t and θCL
t each. Here, the weight of multiple tasks θmulti

t−1 on task t− 1 works as the old

14

network weight θ∗1:t−1 to regularize ANCL and CL. Finally, the initial weight is trained on the data
D1:t to train the next multitask model θmulti

t and it becomes the next initialization(or old network)
for the task t+ 1. We used a fixed multitask weight as an initialization at the start of each task for a
fair comparison among all methods. Otherwise, every method will have different old and auxiliary
network which end up confusing following precise analyses. Especially, this training scheme is
essential to visualize mode connectivity figure as Mirzadeh et al. [29] empirically shows that linear
mode connectivity is valid when models share same initialization.

F.2 Weight Distance

Figure 4: Weight distance for four ANCL methods on CIFAR-100 when t = 2 in Eqn. (32). We plot
the weight distance on y-axis according to six different λa on x-axis while λ is fixed. The set of
λa for each ANCL approach is as follows: (a) A-EWC: [10, 100, 1000, 10000, 20000, 40000], (b)
A-MAS: [1, 5, 10, 50, 100, 200], (c) A-LwF: [0.05, 0.1, 0.5, 1, 5, 10], and (d) A-LFL: [10, 50, 100,
200, 400, 800]

In this section, we measure Euclidean Distance from the weight of ANCL models to the weight of the
previous model and the auxiliary model respectively. If the parameter changes less, it is reasonable to
expect that less forgetting will happen. According to Mirzadeh et al. [30], forgetting F1 on task 1 is
bounded using Taylor expansion of the loss as follow:

F1 = L1(θ̂2)− L1(θ̂1) ≈
1

2
(θ̂2 − θ̂1)

T∇2L1(θ̂1)(θ̂2 − θ̂1) (30)

≤ 1

2
λmax
1 ||θ̂2 − θ̂1||22 (31)

where L1 is the empirical loss on task 1 and ∇2L1(θ̂1) is the Hessian for L1 at θ̂1. λmax
1 is the

maximum eigenvalue of ∇2L1(θ̂1). Above inequality implies that the forgetting F1 is bounded by
the norm of the difference between two weights near the minima of task 1.

Provided that our model learns task t now, the previous model refers to freezed and saved optimal
network that has been trained until task t− 1 and the auxiliary model is the network that is initialized
by the weight of the previous model and trained on task t. Then, we can measure two types of weight
distance (WD):

WDold = ||θANCL
t − θ∗1:t−1||2, WDaux = ||θANCL

t − θ∗t ||2. (32)

WDold and WDaux calculate the distance from the parameter of ANCL network θANCL
t to the

parameter of old network θ∗1:t−1 and the parameter of auxiliary network θ∗t respectively in the same
setting as Fig. 3.

The weight distance of ANCL approaches is shown in Fig. 4. We calculate the weight distance with
different λa in Eqn. (3, 4, 5) which directly adjusting the trade-off between memorizing old tasks and
learning new tasks. The model weight remains close to the old weight when λa is small, which can
be seen in the left side of all figures. In (a) A-EWC and (b) A-MAS, WDaux decreases and WDold

increases as λa grows larger. This agrees with the analysis of ANCL gradient in Appendix C that the
model will converge to the auxiliary network if last term in Eqn. (3) becomes dominant within the
loss. In (c) A-LwF and (d) A-LFL, WDaux becomes relatively lower than WDold with increasing
λa but overall distance become larger for both WDold and WDaux. It is reasonable to think that this
is due to the difference between regularization-based methods and distillation-based methods. Unlike

15

EWC and MAS which directly regularize weight itself, LwF, and LFL choose rather indirect measure,
applying loss term based on activation or logit. Thus, in the distillation approaches, the model weight
tends to move closer to the auxiliary weight with increasing λa but not directly toward it like EWC
and MAS.

F.3 Centered Kernel Alignment

Centered Kernel Alignment (CKA) [19] measures the similarity of two representation on the same
set of data. Given N data and p neurons, the layer activation matrices R1 ∈ RN×p and R2 ∈ RN×p

are generated by two layers from two different networks. Then, CKA is defined as:

CKA(R1, R2) =
HSIC(R1, R2)√

HSIC(R1, R1)
√

HSIC(R2, R2)
(33)

HSIC stands for Hilbert-Schmidt Independence Criterion [13].We use linear HSIC to implement
CKA. Ramasesh et al. [31] measured the layer-wise CKA similarity scores to study catastrophic
forgetting on CIFAR datasets. They argue that forgetting happens at deeper layers close to output, as
there is a severe drop in CKA score in deeper layers compared to initial layers.

In this analysis, we measure three CKA similarity following training regime in Fig. 3:

CKAold =
1

L

L∑
l=0

CKA(RANCL
t,l , R∗

1:t−1,l), (34)

CKAaux =
1

L

L∑
l=0

CKA(RANCL
t,l , R∗

t,l), (35)

CKAmulti =
1

L

L∑
l=0

CKA(RANCL
t,l , Rmulti

t,l). (36)

where CKA is calculated over all layers l in resnet32 and averaged. RANCL
t , R∗

1:t−1 and R∗
t are the

activation matrices of the ANCL, old, and auxiliary networks, respectively. Rmulti
t is the activation

output from multitask model trained on whole data D1:t until task t. Thus, if CKAmulti is high, the
model is likely to perform well on all task like multitask model.

Figure 5: CKA similarity for four ANCL methods on CIFAR-100 (when t = 2 in Eqn. (34, 35, 36)).
CKA similarity is measured along six different λa. The set of λa used for each approach is the same
as Fig. 4 and λ is fixed during the experiment.

In Fig. 5, three types of CKA (CKAold, CKAaux, and CKAmulti) are calculated with different λa

that adjusts the stability-plasticity balance. CKAold, CKAaux, and CKAmulti measures the CKA
similarity from ANCL model to old, auxiliary, and multitask model respectively. In all methods,
increasing λa results in higher CKAaux and lower CKAold, which means that the representation of
the ANCL network becomes more similar to that of the auxiliary network and less similar to that
of the old network. We can clearly see stability-plasticity trade-off is made by simply controlling
λa. On the other hand, if CKAmulti is high, it can be interpreted that the model tends to generate
representation similar to the multitask model, which is the goal of continual learning. Thus, the model
is highly likely to be at the best trade-off where λa achieve the highest CKAmulti. For example, (b)
A-MAS and (d) A-LFL reach the best trade-off at λa = 50 and λa = 100 respectively.

16

Figure 6: Change in the CKA similarity of A-MAS on task 2, 3, and 4 (when t=2, 3, and 4 in Eqn. (34,
35, 36)). λ∗

a denotes λa with the highest CKAmulti and is shifted to the left as training progresses.

Figure 7: Change in the CKA similarity of A-LFL in tasks 2, 3 and 4 (when t = 2, 3 and 4 in Eqn. (34,
35, 36)). λ∗

a denotes λa with the highest CKAmulti and is shifted to the left as training progresses.

In addition, one might ask how the best trade-off changes in a sequence of tasks. To answer this
question, we also plot CKA figures on different tasks in Fig. 6 and 7. Here, we focus on the optimal
λa with the highest CKAmulti which is denoted as λ∗

a inside the figure. In Fig. 6, λ∗
a changes as

50, 10 and 5 on the task 2-4 and in Fig. 7, λ∗
a changes as 100, 50 and 10. One promising reason

for this shrinking λ∗
a is that there are more things to remember as we increase the number of task.

In other words, optimal model favors more stability over plasticity in later tasks with respect to the
trade-off. This phenomenon is again seen by the analysis of mode connectivity in Fig. 10 and 11,
which motivates our new approach of Adap-ANCL afterward in Appendix G.

F.4 Mode Connectivity

Recent works [9], [12] find a simple curves between two local optima of deep neural networks (DNN)
such that train loss and test error remain low along these curve. This simple linear path with low error
can be visualized in the loss surface of DNN using gradient-based optimization methods. This path
called Mode Connectivity has been studied empirically and theoretically with some assumptions in
different papers.

Venturi et al. [35] theoretically studied mode connectivity when the number of neurons is greater than
the number of training data points in one-hidden-layer neural networks. Then, Kuditipudi et al. [21]
investigated whether mode connectivity still holds in more realistic setting such as overparameterized
networks and noise stable networks. Frankle et al. [10] analyze the effect of SGD noise on gradeint-
based neural networks and linearly connected minimum was used to determine the outcome of
optimization.

Mode connectivity in continual learning is first studied by Mirzadeh et al. [29]. They empirically
showed that the multitask solution and the continual solutions are linear connected in loss landscape
assuming that both start from same initialization. We also follow Mirzadeh et al. to visualize the
mode connectivity in a two-dimensional plot.

In Fig. 8, we can actually check that continual learning solutions (θmulti
1 and θ∗2) are linearly

connected to multitask solution (θmulti
2) in both loss and accuracy landscape. In the left and center

columns, multitask weight achieves higher accuracy and low loss compared to continual learning

17

Figure 8: Cross-entropy test loss surface (upper row) and test accuracy surface (lower row) on
task 1&2 of CIFAR-100. θmulti

1 , θ∗2 , and θmulti
2 are used to plot the two-dimensional subspace as

Mirzadeh et al. [29].

solutions. This is because every weight is fine-tuned on the dataset and the multitask model has higher
discriminating ability due to its full access to previous datasets. In the right column, we visualize the
mean loss and mean accuracy of task 1 and 2. Then, it is clear that higher accuracy and lower loss is
achieved somewhere in the middle of θmulti

1 and θ∗2 . We follow the training scheme in Fig. 3 and
θmulti
1 is equivalent to the model trained on D1 only.

Figure 9: Mean accuracy surface for four ANCL methods on task 1&2 of CIFAR-100. CL and ANCL
weights are visualized after projection in the two-dimensional subspace created as Figure 8. As we
gradually increase λa, the ANCL weight becomes closer to the auxiliary weight θ∗2 . The set of λa

used in each method is same as the one in Fig. 4.

Next, we project CL (EWC, MAS, LwF and LFL) and ANCL (A-EWC, A-MAS, A-LwF and A-LFL)
solutions on the previous graph and picture it as Fig. 9. We change λa to see how the ANCL weight
changes in the weight space. In (a) A-EWC and (b) A-MAS, it is clearly seen in the figure that
λa adjusts the interpolation between θCL and θ∗2 . Large λa drift the ANCL weight θANCL directly
toward the auxiliary weight θ∗2 and the ANCL achieves the highest accuracy on the interpolation as it
is in the higher contour. Similarly in (c) A-LwF and (d) A-LFL, the ANCL weight θANCL starts near
the CL weight θCL and tends to move toward auxiliary weight θ∗2 . As distillation methods have more
flexibility in balancing stability and plasticity, its optimum is able to climb up to the higher contour of
mean accuracy than the ANCL applied to regularization-based methods. As a result, the best trade-off
is made at somewhere between the old weight and the auxiliary weight. Again we want to emphasize
that this is the projection of weight in the two-dimensional space built by three weights (θmulti

1 , θ∗2 ,
and θmulti

2). In other words, it approximates the relative position of CL and ANCL weight but does
not show exact position of them in weight space.

Similar to Fig. 6 and 7, we demonstrate how optimal λa changes in weight space as training is
proceeded. In Fig. 10 and 11, the mean accuracy plot on different tasks is drawn with projected CL

18

Figure 10: Mean accuracy surface for A-MAS on task 2, task 3, and task 4 on CIFAR-100. Mean
accuracy is calculated over all tasks that have been seen so far (i.e., task 1-2 for left column, task 1-3
for center column, and task 1-4 for left column). As training progresses, the contour of high mean
accuracy is shifted toward old weight. Thus, the lower value of λa is favored in the later task.

Figure 11: Mean accuracy surface for A-LFL on task 2, task 3, and task 4 on CIFAR-100. Mean
accuracy is calculated over all tasks that have been seen so far (i.e., task 1-2 for the left column, task
1-3 for the center column, and task 1-4 for the left column). As training progresses, the contour of
high mean accuracy is shifted toward old weight. Thus, the lower value of λa is favored in the later
task.

and ANCL weight. As we train our model on task 2, 3, and 4, the contour of mean accuracy becomes
biased toward the old weight θmulti

t . Thus, λ∗
a with the highest mean accuracy is becoming smaller

as the optimal weight prefers the interpolation close to the old weight. This coincides with the results
observed in Fig. 6 and 7 that λa shrinks as the model learns more tasks. In conclusion, smaller λa

achieves better trade-off in later tasks. Motivated by these observations, we propose a new technique
called Adaptive ANCL (Adap-ANCL). Instead of using a fixed independent parameter, Adap-ANCL
measures λa in a task-dependent manner.

G Adaptive ANCL

ANCL methods solve the stability-plasticity dilemma by adjusting the ratio between λ and λa, which
is chosen by grid search. However, fixed λa can results in worse balance between retaining old
knowledge and learning new knowledge because previous knowledge is accumulated as training is
proceeded. Thus, it is reasonable to diminish λa to put more weight on remembering previous tasks
compared to learning a new tasks. We defined our new λa,t on task t as follows:

λa,t =
Ct

C1:t
λa,init (37)

Ct denotes the number of classes at task t and C1:t means all classes until task t. λa,init is initial λa

determined by grid search. Thus, our adaptive parameter λa,t reduces according to the ratio between
the number of current classes and the total classes that have been trained so far. In this way, ANCL is
able to find a better balance between stability and plasticity in every task.

In Table 1, ANCL with adaptive λa gives extra boost accuracy in all methods. This means that
adap-ANCL can dynamically find optimal weight by applying flexible hyperparameter.

19

	Introduction
	Related Work
	Method
	Experiment
	Conclusion
	Continual Learning Methods using Auxiliary Network
	Detail Explanation of Existing Continual Learning approaches
	Weight Regularization Methods
	Knowledge Distillation Methods

	The Role of Auxiliary Network
	Detailed Results on Experiments
	Training details
	Trade-off Analysis
	Training Regime for Trade-off Analysis
	Weight Distance
	Centered Kernel Alignment
	Mode Connectivity

	Adaptive ANCL

