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Abstract

Recent developments have shown that modeling
in the spectral domain improves the accuracy in
time series forecasting. However, state-of-the-art
neural spectral forecasters do not generally yield
trustworthy predictions. In particular, they lack the
means to gauge predictive likelihoods and provide
uncertainty estimates. We propose predictive Whit-
tle networks to bridge this gap, which exploit both
the advances of neural forecasting in the spectral
domain and leverage tractable likelihoods of prob-
abilistic circuits. For this purpose, we propose a
novel Whittle forecasting loss that makes use of
these predictive likelihoods to guide the training
of the neural forecasting component. We demon-
strate how predictive Whittle networks improve
real-world forecasting accuracy, while also allow-
ing a transformation back into the time domain, in
order to provide the necessary feedback of when
the model’s prediction may become erratic.

1 INTRODUCTION

Time series modeling and forecasting have been a crucial
area of research in machine learning, forming a prominent
role in its application to several high-impact real-world prob-
lems, such as ecological modeling [Recknagel, 2001], fi-
nance [Dingli and Fournier, 2017] and healthcare [Alaa and
van der Schaar, 2019]. Recent extensions of recurrent neural
networks (RNN) [Rumelhart et al., 1985] can achieve im-
pressive performance on complex multivariate time series.
However, in many real-world applications, time series are
highly subject to several influence factors, which are often
hard to capture [Stankevičiūtė et al., 2021]. For example,
influence factors could be, or strongly depend on, complex
phenomena such as weather conditions or extreme events
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like natural calamities or a pandemic. In these cases, the
model’s forecasts will likely be less accurate. To properly
detect such scenarios, a confidence score of the prediction is
valuable [Guo et al., 2017] which can make the predictions
trustworthy and better support the users in decision-making
processes. Whereas several approaches exist, mostly based
on Gaussian processes that can also quantify the predic-
tive uncertainty [Seeger, 2004, Rasmussen and Williams,
2006], they are computationally expensive [Bruinsma et al.,
2020]. Although one can use hybrid models to scale [Trapp
et al., 2020] or add stricter constraints [Corani et al., 2021],
these solutions are usually less accurate than current neural
counterparts [Alpay et al., 2016]. Recent neural models that
operate in the time domain have tackled time series fore-
casting from a probabilistic perspective, e.g. by making use
of neural density estimators [Rasul et al., 2021a] or by em-
ploying auto-regressive denoising diffusion models [Rasul
et al., 2021b]. These models can be either slow in sample
generation or in likelihood computation due to their mostly
auto-regressive nature. Moreover, they do not provide a con-
fidence score or a likelihood for a sequence composed of
a prediction and its context. Such a measure would enable
users to quickly detect potentially problematic forecasts.

Recently, it has been shown that modeling time series in the
spectral domain is beneficial in both forecasting accuracy
and efficiency since the spectral representation of a time se-
ries is generally more compact [Wolter et al., 2020]. Despite
being accurate and efficient, current neural spectral time
series forecasters do not provide any likelihood score or
uncertainty estimate of their predictions in the time domain,
nor for an entire sequence like a context with a prediction.
On the other hand, although previous probabilistic spectral
methods like Tank et al. [2015] and Yu et al. [2021a] have
shown improved performance in capturing the distribution
of a multivariate time series, they do not tackle forecasting
and their predictive power does not outperform established
neural architectures. In general, the missing ability to gauge
predictive likelihoods is important since they can be ex-
ploited during training to learn more accurate forecasters.
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Motivated by these prior works, we introduce predictive
Whittle networks, which integrate a neural spectral fore-
caster, such as Spectral RNN [Wolter et al., 2020] or a
spectral Transformer variant, with Whittle probabilistic cir-
cuits (Whittle PCs) [Yu et al., 2021a], i.e. tractable proba-
bilistic models which make use of the Whittle approxima-
tion [Whittle, 1953] to facilitate the modeling of the Fourier
coefficients of a time series. The aim of predictive Whittle
network is to integrate the powerful predictive accuracy of
neural spectral forecasters with the useful feedback from
tractable and flexible density estimators, in our case, Whittle
PCs. We make the following key contributions:

• We propose predictive Whittle networks and the Whit-
tle forecasting loss to exploit the predictive power of
spectral neural forecasters and gauge tractable likeli-
hoods from a probabilistic circuit to improve forecast-
ing accuracy.

• We introduce a novel log-likelihood ratio score to pro-
vide predictive uncertainty estimates in the time do-
main based on likelihoods from the spectral domain.

Moreover, to better suit in predictive Whittle networks, we
devise improved variants for the neural and probabilistic
components.

2 RELATED WORK

In a simplified picture, approaches that predict the future
course of a time series can be categorized as relying on
black-box neural network models, or constructing an elabo-
rate probabilistic model to capture the statistical dependen-
cies among the series’ random variables. Intuitively, these
perspectives seem to trade-off prediction performance with
the ability to accurately gauge data likelihood. We aim to
leverage the benefits of both of these views in our work.

Probabilistic Modeling of Time Series: A well-known ap-
proach to forecasting is to leverage a probabilistic machine
learning perspective. For instance, the popular Gaussian pro-
cesses (GPs) compute probabilistic non-linear regression,
allowing exact posterior inference and a natural computa-
tion of predictive uncertainty. GPs have been intensively ex-
plored for time series regression, classification [Rasmussen
and Williams, 2006, Nickisch and Rasmussen, 2008], and
have recently been revisited for time series forecasting [Sun
et al., 2014, Corani et al., 2021]. Given that GPs do not scale
easily, it has been proposed to scale them by employing prob-
abilistic hierarchical mixtures, both for uni-variate [Trapp
et al., 2020] and multi-output regression [Yu et al., 2021b].

Alternative generative models which use well-defined like-
lihood loss functions have thus been proposed. On the
one hand, Rangapuram et al. [2018] combined state space
models with deep neural networks, while it only centered
on forecasting, without modeling the joint distribution of

the entire time series. On the other hand, sum-product
networks (SPNs) [Poon and Domingos, 2011], a member
of the probabilistic circuit (PC) family, have previously
been investigated for time series modeling, e.g. dynamics
SPNs [Melibari et al., 2016] and the later extension recur-
rent SPNs [Kalra et al., 2018]. Whereas these approaches
now provide tractable and exact probabilistic inference, they
have limited representational power because of their strict
structural constraints. Thus, they are not as accurate fore-
casters as deep neural models.

Neural Spectral Forecasting: Recurrent neural architec-
tures, such as long short-term memory [Hochreiter and
Schmidhuber, 1997] and gated recurrent unit (GRU) [Cho
et al., 2014] networks, have paved the way for more ac-
curate neural forecasting. In several scenarios, these ap-
proaches have been shown to outperform traditional non-
neural models [Siami-Namini et al., 2018]. For instance,
N-BEATS [Oreshkin et al., 2019] has achieved great per-
formance on various challenging data sets. Transform-
ers [Vaswani et al., 2017] have been investigated to fur-
ther improve this forecasting ability in the time domain [Li
et al., 2019], with Informer [Zhou et al., 2021] setting the
new state-of-the-art at the price of an enormous increase
of model size. In a similar spirit, neural auto-regressive
models and normalizing flows have been shown to improve
predictions [Rasul et al., 2021a, Salinas et al., 2020, Rasul
et al., 2021b], but could be difficult to train or slow due to
their auto-regressive nature. Recently, spectral RNN [Wolter
et al., 2020] has demonstrated that it is beneficial to trans-
form the time series into the spectral domain, in order to ob-
tain a compact and efficient representation that fosters mod-
eling capabilities and yields further performance enhance-
ments. Such spectral modeling has also been pursued in neu-
ral sequence prediction with the complex Transformer [Yang
et al., 2020]. However, these neural spectral methods do not
provide the likelihood of the data, nor of their predictions.

Probabilistic Spectral Forecasting: Tank et al. [2015] have
introduced a probabilistic approach that works on a spec-
tral representation of stationary time series. They make use
of the Whittle approximation to estimate the structure of a
graphical model, which encodes the dependencies between
the time series components. The Whittle approximation
has further been employed in Whittle networks [Yu et al.,
2021a], which aim to model the joint distribution of more
general non-stationary time series. Whittle networks pose
Whittle PCs on top of neural models to inspect their behav-
ior and to capture complex dependencies among the time
series components in the spectral domain. They provide the
likelihood of an entire time series in the spectral domain but
it can not be transformed directly to point-wise likelihoods
in the time domain.

In our work, we build on top of the recent advances in all
three above lines of research. We propose a hybrid approach
that leverages recent insights from modeling in the spectral



domain and combines the benefits of neural forecasters with
those of PCs. In this way, we are able to obtain tractable like-
lihoods and gauge them to further guide training to improve
the predictive accuracy.

3 PREDICTIVE WHITTLE NETWORKS

In this section, we introduce the predictive Whittle network
(PWN). It takes advantage of two distinct elements, namely,
a neural spectral forecaster and a Whittle PC, to improve
forecasting accuracy and provide useful uncertainty esti-
mates for its predictions. PWN leverages the predictive
power of the neural element and gauges the likelihoods from
the probabilistic element to weigh its predictions. This is
achieved with the Whittle forecasting loss, described in Sec-
tion 3.1. Then, for each element, we introduce two variants
better suited for spectral modeling. Thanks to the flexibility
of PWN, they can be used interchangeably. The variants
for the neural element are discussed in Section 3.2, while
the ones for the probabilistic element are discussed in Sec-
tion 3.3. A graphical representation of the architecture is
shown in Fig. 1. Moreover, in Section 3.4, we present a novel
score to provide predictive uncertainties in the time domain.
Having such estimates in the time domain is essential to
provide intelligible feedback on the predictions.

3.1 WHITTLE FORECASTING LOSS & TRAINING

We introduce the Whittle forecasting loss (WFLoss) to
gauge likelihood estimates to guide the training of the neural
component to superior predictive performance. As repre-
sented in Fig. 1, the loss is the connecting element between
the neural and the probabilistic components of PWN.

Thanks to its inference capabilities, the Whittle PC can com-
pute the conditional Whittle likelihood ℓ(y | x) where y
is a prediction and x its context. Please refer to Appendix
A for further details of Whittle likelihood and Whittle net-
works. Therefore, to gauge the likelihoods provided for the
predictions of the neural forecaster, we propose the WFLoss

WFLoss(x,yPred,yGT ) =

1

M

M∑
i=0

(yi
GT − yi

Pred)
2 · (ℓmax

norm − ℓnorm(yi
Pred | xi)),

(1)
where

ℓnorm(yi
Pred | xi) =

ℓ(yi
Pred | xi)− ℓmax

1
M

∑M
j=1(ℓ(y

j
Pred | xj)− ℓmax)

,

(2)
ℓmax = maxk ℓ(y

k
Pred | xk), yPred denotes the model’s

prediction while yGT denotes the ground truth, ℓmax
norm =

maxi ℓnorm(yi
Pred | xi) is the maximum value of the
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Figure 1: Overview of the predictive Whittle network ar-
chitecture. The context x is transformed by STFT with a
window w, a) flowing as context to the Whittle PC, b) serv-
ing as input to the neural spectral forecaster, resulting in the
prediction of the Fourier coefficients X̃τ . These are then pro-
vided to the Whittle PC, which uses them with the context
to compute the Whittle likelihood. Gauging these likelihood
values during training improves forecasting accuracy.

ℓnorm in the batch, and

MSE(yGT ,yPred) =
1

M

M∑
i=0

(yi
GT − yi

Pred)
2 (3)

is the mean squared error (MSE). Following Eq. (1), the
mean of ℓnorm(yi

Pred | xi) in a mini-batch equals to 1,
hence, the magnitude of the MSE-loss will not be influ-
enced. WFLoss weighs the MSE based on the likelihood
computed by the Whittle PC, so that samples with a low
likelihood, that are rather in the tails of the distribution, are
weighted less than those with a high likelihood. Therefore,
our loss formulation prevents the neural spectral forecaster
to fit outliers in the data and shifts the focus to data samples
that follow the general distribution. However, the likelihood
obtained from the Whittle PC is not bounded. Thus, the
transformations performed in Eq. (1) and Eq. (2) are nec-
essary to bound it in [0,M ] since it is desirable to weigh
the forecasting loss term with bounded weights to avoid
numerical issues and improve training stability.

The predictive Whittle network is then trained end-to-end in
a coordinate descent fashion. In each optimization step, the
weights of the Whittle PC are updated first by maximizing
the likelihood of the context and its ground truth prediction,
while the neural spectral forecaster’s weights remain fixed.
Afterwards, the Whittle PC weights are fixed and the neural
spectral forecaster is optimized by minimizing the WFLoss.
Details and a graphical representation of this alternating
procedure can be found in Appendix B.

While training, the Whittle PC may require some epochs un-
til its feedback is valuable for the neural spectral forecaster.



Therefore, we employ a warm-up phase for it, by increasing
β ∈ [0, 1] linearly from 0 in the combined loss

Loss(β,x,yPred,yGT ) = (1− β)MSE(yGT ,yPred)

+ βWFLoss(x,yPred,yGT ).
(4)

3.2 THE NEURAL ELEMENT: SPECTRAL
FORECASTER

Here, we present two variants of the neural element which
we tailor for spectral forecasting. In Fig. 1, this element is
represented as “Neural Spectral Forecaster”.

Spectral RNN (SRNN) performs recurrent steps over
windows retrieved from the short time Fourier transform
(STFT) [Wolter et al., 2020]. Details of STFT (FS) and its
inverse iSTFT (FS

−1) can be found in Appendix C. There-
fore, for a window xw with width Tw and a step size S, it
only has to perform ns = (T − Tw)/S + 3 instead of the
typical T time steps for a time series x = [x1, x2, · · ·xT ]
of length T . The SRNN is defined as follows:

Xτ = FS(x
w
τ )

zτ = Wchτ−1 +VcXτ + bc

hτ = fa (zτ )

yτ = FS
−1(Wpch0, . . . ,Wpchτ ),

(5)

with τ = [0, ns] enumerating the total number of windows
ns. Wc, Vc, bc and Wpc are weight matrices and hτ is the
hidden state. Denote nf the number of frequencies passing
the low-pass filter in STFT. Xτ ∈ Cnf×1 is complex-valued,
therefore, the RNN cell either needs to operate in the com-
plex space or needs to provide projections I : Cnf 7→ Rni ,
O : Rno 7→ Cnf for ni-dimensional in- and no-dimensional
outputs respectively.

According to our preliminary experiments (illustrated in
Appendix D) and to what has been analyzed in Wolter et al.
[2020], operating in the complex space is not substantially
beneficial in terms of accuracy for the SRNN. Thus, we
employ standard GRU [Chung et al., 2014] with projections.
For projections, we use concatenation and splitting respec-
tively, i.e. I(Xτ ) = (Re(Xτ ), Im(Xτ )) and O(hτ ) =

h
1,...,nf
τ + h

nf+1,...,2×nf
τ · i, where ni = no = 2 × nf .

Thus, hτ ∈ Rnh×1,Wc ∈ Rnh×nh ,Vc ∈ Rnh×2nf ,bc ∈
Rnh×1 and Wpc ∈ R2nf×nh , where nh is the size of the
hidden state. During our preliminary experiments, we have
further discovered architectural improvements, i.e. we add
residual links [He et al., 2016] to make the network deeper
with 2 layers and apply dropout with p = 0.1. Details can
be found in Appendix D.

Spectral Transformer (STransformer) is an architecture
tailored for predicting time series in the spectral domain. It
is based on the complex Transformer [Yang et al., 2020]

which is designed for modeling complex-valued sequences
(e.g. Fourier coefficients). However, some of the operations
between complex values are only “emulated”, e.g. the multi-
head attention is emulated with 8 different real-valued atten-
tions between real and imaginary parts.

We propose STransformer as an approach that works na-
tively and holistically on complex numbers. Inputs of the
model are the Fourier coefficients given by STFT. We ap-
ply positional encoding (PE) per window to preserve the
correlation of adjacent frequencies:

Xτ = FS(x
τ
w) + PEτ , (6)

where PE is defined as in [Vaswani et al., 2017]:

PEτ
j =

{
sin(τ/10002j/dmodel), if j mod 2 = 0

cos(τ/10002j/dmodel), else,
(7)

where dmodel denotes the embedding dimension of
the Transformer, and j is the dimension of the po-
sitional encoding. To compute Attention(Q,K, V ) =

softmaxc
(

QKT

√
dk

)
V , we shift all computations to the com-

plex space, while employing an alternative softmax in a
split-complex fashion [Wolter and Yao, 2018]:

softmaxc(X) = softmax(Re(X)) + softmax(Im(X))i,
(8)

which allows the attention to be distributed over the real
and imaginary parts separately. Analogously, we employ
complex ReLU [Trabelsi et al., 2018]:

cReLU = max(0,Re(X)) + max(0, Im(X))i. (9)

For the output yτ , we alter the decoding process to allow
proper forecasting:

hτ = dec((Xτ ,h0, ...,hτ−1)
T , enc(X0:τ−1)), (10)

yτ = FS
−1(Wdh0, ...,Wdhτ ). (11)

The output yτ is computed based on all present and past
decoding outputs hτ , while enc and dec denote the encoding
and decoding stacks respectively. Thus, now all operations
are performed in the complex space. More details on our
STransformer and respective preliminary experiments are
provided in Appendix E.

3.3 THE PROBABILISTIC ELEMENT: WHITTLE
PROBABILISTIC CIRCUIT

The Whittle approximation [Whittle, 1953] indicates that
the Fourier coefficients of each frequency from a stationary
time series are independently complex normal distributed.
Recently, Yu et al. [2021a] extended the Whittle approx-
imation to non-stationary time series by introducing the



tractable density estimator called Whittle PCs. We use Whit-
tle PCs as the probabilistic element of the PWN, as depicted
in Fig. 1. Here, we consider two variants.

Conditional Whittle SPN (CWSPN) has been proposed
in Yu et al. [2021a]. To provide a measure of how good a
prediction (y) is with respect to a context (x), we aim to
model the conditional Whittle likelihood ℓ(y | x). Instead
of the box window for discrete Fourier transform, in this
work, we employ STFT for CWSPNs. Then, the input for the
leaves of the CWSPN are the Fourier coefficients of y in the
τ th window at frequency k, i.e., Yk

τ = FS(y)
k
τ . To account

for the correlations between the real and imaginary parts,
they are jointly modeled with a single pairwise Gaussian leaf
node, parameterized by a vector of means µYk

τ
∈ R2 and

a covariance matrix ΣYk
τ
∈ R2×2. Thus, CWSPN encodes

the conditional

p(d11, . . . , d
nf

1 , . . . , d1ns
, . . . , d

nf
ns | FS(x)), (12)

where dkτ = [Re(Yk
τ ), Im(Yk

τ )]. Then, based on Eq. (12),
we define the conditional Whittle log-likelihood (CWLL) as

ℓ(y | x)
= ℓ(d11, . . . , d

nf

1 , . . . , d1ns
, . . . , d

nf
ns | FS(x))

= log(p(d11, . . . , d
nf

1 , . . . , d1ns
, . . . , d

nf
ns | FS(x))),

(13)
which models the likelihood of the predicted STFT windows
given the STFT windows of the context. The structural con-
straints of completeness and decomposability of the circuits
still hold [Yu et al., 2021a].

Whittle Einsum Network (WEin) is our adaptation of
Einsum networks [Peharz et al., 2020] for modeling complex
values, which is better suited for the spectral domain. We
explore Einsum networks since they are a recent efficient
implementation of probabilistic circuits. For time series x,
WEin models the Fourier coefficients dkτ at frequency k of
the τ th window. Thus, WEin models the joint distribution

p(d11, . . . , d
nf

1 , . . . , d1ns
, . . . , d

nf
ns ). (14)

Therefore, the Whittle log-likelihood (WLL) is defined as:

ℓ(x) = ℓ(FS(x))

= log(p(d11, . . . , d
nf

1 , . . . , d1ns
, . . . , d

nf
ns )),

(15)

which models the joint of all STFT windows of a
given time series. Given a joint, it is also natural to
access the conditional via marginalization: PY |X(Y |
X) = PY,X(X,Y )/PX(X), where PX(X) computes the
marginal. Thus, although WEin models the joint, given its
inference capabilities, it can compute also such conditionals
in a tractable way. Therefore, we can employ it in our archi-
tecture as Whittle PC in place of the CWSPN (that is learned
in a discriminative fashion). In this case, we employ EM for
its weight update, since EM is generally more efficient than
SGD for such a circuit. More details on our contributions for
WEin e.g. multivariate Gaussian leaves are in Appendix F.

3.4 PREDICTIVE UNCERTAINTY SCORE

Deep neural models do not naturally provide an uncertainty
quantification for their predictions. This is fundamental e.g.
for anomaly detection or to identify when the model’s pre-
dictions might be wrong and, thus, make the predictions
more trustworthy. Bayesian methods for neural forecasting,
e.g. Liang [2005], have usually focused on model uncer-
tainty and, considering their computational cost, for deeper
architectures simpler approximations are necessary [Gal
and Ghahramani, 2016]. There are alternative non-Bayesian
methods that provide confidence intervals [Stankeviciute
et al., 2021] or scores [Brando et al., 2018].

Another way is to take into account the extreme values seen
at training time. Here we follow this path and use the no-
tion of likelihood ratios to provide a quantification of the
predictive uncertainty. We take advantage of the tractable in-
ference of the Whittle PCs to provide a score that expresses
the uncertainty of a prediction by relating its likelihood
with the highest training sample likelihood that is used as a
reference. Thus, the predictive uncertainty is proportional
to the distance between the likelihood of a prediction and
the observed maximum likelihood, scaled by the difference
between the extreme observed likelihoods.

Crucially, the CWLL already allows estimating the likeli-
hood for a predicted window in the spectral domain. This
enables e.g. to take insights into how predictive likelihood
changes in the time domain. Thus, we can leverage the win-
dow function w, to project the likelihood to the time domain
at time step n:

λLR(n) = max
k

ℓ(yk | xk)− w(n)ℓ(ypred(n) | x), (16)

where ℓ(ypred(n) | x) denotes the CWLL of a predicted
window at time step n given the context, while every other
window of the prediction is marginalized, and {xk,yk} is
a pair of context and prediction from the training set. To
correctly quantify this projection, it is scaled by the distance
between the observed maximum and minimum likelihood,
defined as

λmax
LR = max

k
ℓ(yk | xk)−min

k
ℓ(yk | xk). (17)

Thus, by using λmax
LR as a normalization factor for λLR, we

can estimate the predictive uncertainty with the following
log-likelihood ratio score (LLRS):

LLRS(n) =
√

|λLR(n)| /λmax
LR . (18)

In this manner, a likelihood value that is equally low as
the worst training sample likelihood (i.e., ℓ(ypred | x) =
mink ℓ(y

k | xk)) results in LLRS = 1. On training data,
larger likelihoods (i.e., ℓ(ypred | x) > mink ℓ(y

k | xk))
result in scores LLRS < 1. These transformations allow to
bound the LLRS of training set samples in [0, 1], and the



LLRS of the test set samples in [0,+∞) since the worst
likelihood could be lower than the worst one observed dur-
ing training. In practice, given that the conditional Whittle
log-likelihood values are unbounded, these transformations
make the interpretation and the visualization of LLRS in
the time domain easier and more clear. Thanks to the flexi-
ble inference of Whittle PCs, we have derived a point-wise
uncertainty estimation of the predictions, back in the time
domain.

4 EXPERIMENTAL EVALUATION

To show the benefits of predictive Whittle networks, we
investigate the following research questions.

(Q1) Can the uncertainty estimates derived by LLRS be
used to distinguish between “good” and “bad” predic-
tions, making the forecasting more trustworthy?

(Q2) By gauging predictive likelihood, can predictive Whit-
tle networks improve the forecasting accuracy, outper-
forming state-of-the-art forecasters?

The experiments have been run on a GPU NVIDIA GeForce
GTX 1070 Ti (8GB VRAM) in a system with CPU Intel i7
4x4,0GHz and 32GB RAM. Our code is publicly available.1

4.1 DATA SETS

We evaluate the model performance on three different real-
world data sets and apply z-score normalization to normalize
the data for all experiments. The first data set is the Power
consumption from the European Network of Transmission
System Operators for Electricity, with a 15-minute sampling
rate, available from Wolter et al. [2020]. The task is to pre-
dict 1.5 days of power consumption given 14 days of context.
Secondly, we investigate the task of predicting the Retail
demand, using data from a retail location of a big (national)
retailer,2 spanning over 2 years and including roughly 4000
different products with a daily sampling rate. The task is to
predict 6 weeks of products demand given a year of context.
Furthermore, the well-known M4 competition data set is
employed [Makridakis et al., 2020]. We use window sizes
of 96 on Power and 24 on Retail. Diverse window sizes are
applied on M4 subsets, which are much smaller, making it
more challenging for spectral modeling. The step size of
STFT is set to half of the window size for each data set.
A more detailed description of the data sets, as well as the
window sizes on M4, are in Appendix G.

4.2 (Q1) USEFUL UNCERTAINTY ESTIMATES

Providing predictive uncertainty in time series forecasting
is central. For instance, when performing forecasting in the
long run, the prediction error will likely accumulate, leading
the model to produce less accurate forecasts.

The CWLL provided by Whittle PCs can already be used
to distinguish between “bad” and “good” predictions. In
particular, a lower CWLL indicates a larger MSE (“bad”
prediction), since CWLL negatively correlates with MSE, as
visualized in Fig. 2. More specifically, to have a quantitative
perspective, by selecting the top 5% sequences with the
lowest CWLL from the Whittle PC on Power, we find that
the 75% of all sequences in the top 5% of highest (i.e. worst)
MSEs are included. When looking at the top 10% sequences
with the lowest CWLL, 98.5% of all sequences that are
in the top 5% of highest (i.e. worst) MSEs are included.
Therefore, the likelihood by CWLL can inform the user to
distinguish between “good” and “bad” predictions.

Considering that CWLL reflects the prediction quality in
the spectral domain, we go one step further, by employing
LLRS, which can provide predictive uncertainty estimates
back in the time domain, and in turn, indicate when the
predictions might be erratic or exceptional. To qualitatively
evaluate this ability of predictive Whittle networks with
LLRS, we run both standard and long-range prediction on
both Power and Retail data sets. For the Retail data set, we
predict 8 weeks as standard and 32 weeks as long-range
prediction, while the model is trained only for 8 weeks
prediction. Similarly, for Power, we predict 5 days as stan-
dard and 40 days as long-range prediction, with the model
trained only for 5 days prediction. Fig. 3 depicts the standard
prediction together with the predictive uncertainty score
estimated with LLRS. For example, on Retail, predictive
Whittle networks are able to accurately predict the irregular
spike around time step 40, providing low uncertainty scores,
while it provides higher uncertainty scores from time step
50 on where the prediction slightly differs from the ground
truth. Moreover, as shown in Fig. 4 (Left), the LLRS gives
relatively lower scores for predictions from time 2000 to
2700 as the prediction matches the ground truth well, and
increases considerably after time 3400, as the predictions
diverge from the ground truth. On Retail, as shown in Fig. 4
(Right), the more the prediction diverges from the ground
truth over longer prediction time, the higher LLRS value
we obtain, which indicates the increase of predictive uncer-
tainty. Note that the LLRS should not be interpreted as a
confidence interval or variance, its magnitude reflects the
predictive uncertainty measure provided by the PWN. To
make this more clear, we provide an alternative visualization
of the LLRS in Appendix H. Therefore, the LLRS success-
fully indicates when the prediction is less trustworthy.

1https://anonymous.4open.science/r/PWN-B7EC/
2The name of the company cannot be unveiled due to NDA.



Power Retail

Figure 2: Predictive Whittle networks can correctly separate between “bad” and “good” predictions. This is captured by the
correlation of CWLL and MSE on Power (Left) and Retail (Right). On the x-axis is denoted the enumeration of all test
sequences (composed by both context and prediction) in ascending order by MSE. We observe a clear (negative) correlation
between a decreasing CWLL and an increasing MSE. The CWLL is smoothed by a moving average of 12 for clarity.
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Figure 3: Predictive Whittle networks perform accurate predictions on Power (Left) and on a challenging sequence of Retail
(Right), providing useful predictive uncertainty scores, indicated with LLRS. The context has been cut for clarity.
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Figure 4: The LLRS from predictive Whittle networks can inform users when the prediction should not be trusted. It
increases greatly in the long-range prediction, when prediction is far from the ground truth. The LLRS values at each time
step are visualized as bars centered at the corresponding predictions.

Both CWLL and LLRS can be computed also on an en-
tire sequence, similar analyses can be done in real-world
cases, e.g. to detect if a sequence is likely irregular or to
sort sequences w.r.t. their CWLL as a surrogate of their ex-
pected error when the ground truth is unavailable. With the
feedback for the predictions in the time domain, users can
have extra knowledge to support decision-making and it is
possible to distinguish between potentially “good” and “bad”
predictions. We also show additional quantitative analysis
by means of a “correlation error” in Appendix I. Therefore,
(Q1) can be answered affirmatively.

4.3 (Q2) ACCURATE FORECASTING

Setting. We start by comparing predictive Whittle network
to its neural spectral forecasters (SRNN and STransformer).
In the same spirit, we compare it also against its Whittle
PCs (CWSPN and WEin). For the Whittle PCs, preliminary

experiments suggested to project the variance to a fixed
interval, i.e. (10−4, 4), which corresponds to a standard
deviation interval of (10−2, 2). Note that, for a fair com-
parison, the neural spectral forecasters have similar model
capacity to predictive Whittle networks, and in turn, have
larger model capacity than PWN’s neural components. Be-
sides the real-world data sets Power and Retail used to show
the ability of predictive Whittle networks to provide useful
predictive uncertainty estimates, we test its predictive power
also on the challenging M4 where we use sMAPE as loss
term in the WFLoss for training and as common evaluation
metric [Flores, 1986, Makridakis, 1993].

Furthermore, we compare predictive Whittle networks
to several neural forecasters. We start with a simple
GRU [Chung et al., 2014], operating in the time domain.
Then, we compare with DeepAR [Salinas et al., 2020], as
a neural probabilistic competitor which also makes use of
additional temporal features. Moreover, we compare to N-



Table 1: Accuracy in MSE for Retail, Power, and in sMAPE for M4, the lower the better. By both operating in the spectral
domain and gauging the likelihoods, predictive Whittle networks outperform strong neural forecasters that operate in the time
domain, as visible by the bold-face best values. Results include standard deviation across five random-seeded experimental
repetitions and runner-up performances are also highlighted in bold if they fall within the best value’s range.

MSE sMAPE on M4
Power Retail Yearly Quarterly Monthly Others Average

kWh ·105 Items ·101 (23k) (24k) (48k) (5k) (100k)
GRU (Time) 23.15 ±1.87 3.02 ±0.13 15.54 ±0.15 11.46 ±0.05 13.11 ±0.34 4.97 ±0.23 12.86 ±0.22

N-Beats (Time) 4.41 ±0.12 2.77 ±0.07 14.17 ±0.10 10.98 ±0.16 12.82 ±0.21 4.42 ±0.13 12.27 ±0.17

DeepAR (Time) 16.83 ±0.60 2.74 ±0.02 16.88 ±0.33 13.26 ±0.51 14.83 ±0.32 4.85 ±0.10 14.43 ±0.36

Informer (Time) 3.77 ±0.09 3.03 ±0.04 14.49 ±0.18 11.96 ±0.43 12.97 ±0.22 6.33 ±0.97 12.75 ±0.30

CWSPN 8.91 ±1.03 3.57 ±0.03 23.25 ±1.95 12.29 ±0.10 13.82 ±0.45 9.23 ±0.13 15.39 ±0.69

WEin 19.28 ±0.61 3.72 ±0.05 39.34 ±2.28 25.91 ±1.30 27.07 ±0.48 12.20 ±0.48 28.87 ±1.09

SRNN 4.16 ±0.06 2.43 ±0.06 14.25 ±0.06 11.23 ±0.06 12.59 ±0.04 4.77 ±0.06 12.26 ±0.05

STransformer 4.14 ±0.08 2.70 ±0.04 15.22 ±0.51 11.24 ±0.22 12.56 ±0.14 4.67 ±0.02 12.46 ±0.24

PWN (SRNN & CWSPN) 4.08 ±0.08 2.34 ±0.03 14.11 ±0.09 10.94 ±0.04 12.51 ±0.10 4.58 ±0.06 12.11 ±0.08

PWN (SRNN & WEin) 3.92 ±0.09 2.30 ±0.04 14.03 ±0.07 11.28 ±0.09 12.54 ±0.08 4.60 ±0.03 12.18 ±0.08

PWN (STran. & CWSPN) 4.01 ±0.08 2.66 ±0.05 15.19 ±0.27 10.92 ±0.16 12.56 ±0.09 4.49 ±0.06 12.37 ±0.15

PWN (STran. & WEin) 3.94 ±0.07 2.68 ±0.07 15.27 ±0.28 11.11 ±0.19 12.51 ±0.08 4.47 ±0.05 12.41 ±0.15

Beats, another prominent deep neural architecture. It is com-
posed of different blocks specifically designed for time se-
ries forecasting [Oreshkin et al., 2019]. Since predictive
Whittle networks do not perform model ensembling, for the
comparison, we employ the N-Beats singleton model and
use a model configuration similar to the default settings.
To have a fair comparison, we provide all models with a
capacity similar to the one of the biggest predictive Whittle
network variant. See Appendix J for further details. Finally,
we also compare with Informer [Zhou et al., 2021], a state-
of-the-art attention-based neural forecaster, with its default
settings that result in a model with 11.3M parameters, i.e.
with a capacity at least 11 times larger than predictive Whit-
tle networks. Given its performance, architecture, and model
capacity, we use Informer as a gold standard forecaster. We
train each model on Retail, Power, and M4 for 9k, 5k, 15k
iterations respectively with a batch size of 256, averaging
over 5 random seeds.

There exist widely used metrics for probabilistic forecast-
ing, e.g. CRPS [Matheson and Winkler, 1976, Grimit et al.,
2006], MSIS [Gneiting and Raftery, 2007] and quantile
loss [Koenker and Bassett Jr, 1978]. These are not applica-
ble in our case as they require the probabilities at each time
step of the predictions in the time domain that are not obvi-
ous to obtain from the spectral domain. Thus, we evaluate
on other two common metrics i.e. MSE and sMAPE.

Results. Our results are shown in Table 1. Best results of
each data set are marked in bold. We can observe that pre-
dictive Whittle networks outperform state-of-the-art mod-
els in time series forecasting on all data sets except for
Power where Informer performs best but employing a 11-
times larger model capacity, and predictive Whittle networks
achieve competitive performance and outperforms all the
other baselines that operate in the time domain. Note that
STransformer and SRNN do not use any time series-specific

component to account for seasonal changes or similar ad-
ditional temporal features as e.g., N-Beats or DeepAR, but
compared to the baselines they still achieve better or compet-
itive accuracy on almost all the cases. Moreover, predictive
Whittle networks can take advantage of its two components
and exploits the feedback obtained from the predictive like-
lihoods. In this way, it further improves the results of both
its Whittle PC and its neural spectral forecaster.

In general, the variants with WEin as Whittle PC form the
best setting for predictive Whittle networks that is also the
most parameter-efficient one, having remarkably fewer pa-
rameters (≈ 0.6M ) than competitors (ranging from 0.9M
to 11M ), details are in Appendix J. Regarding WEin, com-
pared to CWSPN, it has additional advantages since it can
answer to a broader set of inference tasks and has a faster
convergence [Peharz et al., 2020]. Arguably, the predictions
computed by employing only a Whittle PC, obtained via
MPE inference (CWSPN and WEin in Table 1), are gen-
erally not as competitive as the ones obtained with neural
forecasters. And given its discriminative nature, in this spe-
cific task, CWSPN results more accurate than WEin. For a
graphical representation of results from Whittle PCs, refer
to Appendix K.

In summary, our experimental evidence shows that involving
a Whittle PC that provides valuable feedback in form of
predictive likelihood to predictive Whittle networks can
have a significant impact on time series forecasting. We
have shown that, in this way, predictive Whittle networks
trained with WFLoss improve accuracy over its individual
components and also w.r.t. state-of-the-art neural forecasters,
thus, answering (Q2) affirmatively.



5 CONCLUSION

We presented predictive Whittle networks with the Whittle
forecasting loss as a method to exploit likelihoods to guide
the training process towards more accurate spectral forecast-
ing. They outperform state-of-the-art time series forecasters
on challenging data sets. Furthermore, thanks to the novel
log-likelihood ratio score we introduced, they also provide
predictive uncertainty estimates in the time domain based
on likelihoods from the spectral domain. This is crucial
feedback that can signal users and other systems when a
prediction is erratic, making the forecasting more trustwor-
thy. Thus, it can foster users in confident decision-making
processes in real-world scenarios. This, in turn, can have
several implications on multiple scientific fields where time-
series forecasting is of paramount importance. For future
work, we envision increased involvement of PCs in hybrid
deep neural models to push state-of-the-art on challenging
tasks. Moreover, since the Fourier transform can be penal-
ized for short window sizes, improving spectral models on
such time series is an interesting future direction.
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APPENDIX

We present supporting material and empirical evidence for
our main paper’s findings in this appendix. Specifically, the
appendix consists of the following sections. We summarize
here their content:

• Appendix A: Whittle likelihood and Whittle net-
works. In this section we describe in more detail the
Whittle likelihood and the Whittle networks.

• Appendix B: Training Procedure. In this section we
provide a graphical representation of the predictive
Whittle networks training procedure which allows to
gauge predictive likelihoods to learn more accurate
forecasters in the spectral domain.

• Appendix C: Short Time Fourier Transform. In this
section we describe the details of the short time Fourier
transform and its inverse operation.

• Appendix D: Improving Spectral RNN. In this section
we describe the details of our SRNN implementation
and the preliminary experiments we have conducted
to select the best SRNN architecture for predictive
Whittle networks.

• Appendix E: Conceiving the Spectral Transformer
(STransformer). In this section we provide additional
details on how we conceived the Spectral Transformer
that operates in the complex space and the related ex-
periments.

• Appendix F: Whittle Einsum Networks (WEin) Im-
plementation. In this section we describe the imple-
mentation of WEin, i.e. our adaptation of Einsum Net-
works to complex values, better suited to model Fourier
transform coefficients.

• Appendix G: Data Sets. In this section we describe the
data sets we used in our experiments.

*Equal Contribution

• Appendix H: Alternative visualization of LLRS. In
this section we provide an alternative visualization of
the LLRS.

• Appendix I: Correlation Error. In this section we in-
troduce our method to quantitatively evaluate the qual-
ity of the predictive uncertainty estimated by predictive
Whittle networks.

• Appendix J: Experimental Setting and Model Ca-
pacity. Here we provide additional details on the ex-
perimental setting and on the capacity of the models
employed in the evaluation described in the main paper.

• Appendix K: Whittle PC Predictions via MPE. Al-
though not as accurate as neural spectral forecasters,
in this section we show that Whittle PCs are able to
perform tractable forecasting via MPE inference.

A WHITTLE LIKELIHOOD AND
WHITTLE NETWORKS

The Whittle likelihood models Gaussian stationary multi-
variate time series in the spectral domain. Following part of
the notations in Yu et al. [2021], let x1:N = {x1, . . . ,xN}
be N independent realizations of the p dimensional multi-
variate time series with length T , and dn,k ∈ Cp the dis-
crete Fourier coefficient of the nth sequence at frequency
λk = 2πk/T, k = 0, . . . , T − 1:

dn,k = T−1
∑T−1

t=0
xn(t)e

−iλkt. (1)

Based on the Whittle approximation assumption [Whittle,
1953], the Fourier coefficients are independent complex
normal random variables with mean zero:

dn,k ∼ N (0, Sk), k = 0, . . . , T − 1, (2)

where Sk ∈ Cp×p is the spectral density matrix. For a
stationary time series, its spectral density matrix is defined
as:

Sk =
∑∞

h=−∞
Γ(h)e−iλkh, (3)
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where Γ(h) = Cov(xt, xt+h) ∀t, h ∈ Z. The Whittle
likelihood of the N realizations is defined as:

p(X1:N | S0:T−1) ≈∏N

n=1

∏T−1

k=0

1

πp |Sk|
e−d∗

n,kS
−1
k dn,k .

(4)

While the Whittle approximation holds asymptotically with
large T , the Whittle networks relax this approximation by
modeling all the Fourier coefficients jointly. With the above
relaxation, the Whittle networks are assumed to be able to
model both stationary and non-stationary time series.

B TRAINING PROCEDURE

As discussed in the main paper, predictive Whittle networks
are trained end-to-end in a co-ordinate descent fashion, en-
abling the Whittle PC to provide feedback to the neural
spectral forecaster (denoted as “NSF”). First, Whittle PC
weights are optimized by maximizing the likelihood of the
context with its ground truth prediction (Left), then, NSF
weights are optimized by employing the Whittle forecast-
ing loss. The Whittle forecasting loss is based on the NSF
predictions as well as the normalized Whittle likelihood
ℓnorm obtained from the Whittle PC (Right). These steps
are iterated until convergence. A graphical representation
of the training procedure is shown in Fig. 1. Note that it
is also possible to train the Whittle PC with predictions in-
stead of using the ground truth. In this way, one can trade
model accuracy with the quality of the predictive uncertainty
quantification.

C SHORT TIME FOURIER TRANSFORM

In the main document, we discuss the benefits of spectral
modeling of time series. To obtain a spectral representa-
tion of time series, in our work, we employ the short time
Fourier transform described in the following, together with
its inverse operation.

Given a time series x = [x1, x2, · · ·xT ], denote xw
τ the τ th

window of x with width Tw, and Xτ the STFT with all
frequencies from xw

τ . The kth frequency of Xτ is denoted
as Xk

τ , and is define as

Xk
τ = FS(x)

k
τ = FS(x

w
τ )k =

Tw∑
t=1

w(Sτ − t)xte
−iλkt,

(5)
where xt is the tth step in x, λk = 2πk

Tw
. w(Sτ − t) is the

truncated Gaussian window function defined as

w(n) = exp(−1

2
(
n− Tw/2

σTw/2
)2), (6)

where n denotes the location of the window and σ is a
learnable standard deviation.

Denote x̂w
τ the corresponding inverse short time Fourier

transform (iSTFT) of Xτ , and the tth step of x̂w
τ is defined

as

x̂t = FS
−1(Xτ )t =

∑∞
τ=−∞ w(Sτ − t)F−1

t (Xτ )∑∞
τ=−∞ w2(Sτ − t)

, (7)

where F−1
t is the tth step from the inverse discrete Fourier

transform

F−1
t (Xτ ) =

1

Tw

Tw−1∑
k=0

Xk
τe

iλkt. (8)

D IMPROVING SPECTRAL RNN

With the aim of improving the SRNN presented in Wolter
et al. [2020], we run preliminary experiments where we
compare four different architectures on the Power data set
and we examine the impact of our proposals. We test the
SRNN as introduced by Wolter et al. [2020], then we add
residual connections to it and test performance. Furthermore,
we make the model deeper, keep residual connections, add
dropout with p = 0.1, and test SRNN with two and three
layers. To have a fair comparison, we choose the hidden
layer sizes for the four aforementioned configurations to
be 192, 192, 128, 96 respectively. In this way, each model
has approximately the same amount of parameters i.e. 600k
trainable parameters. Then, we train each model for 4k
iterations with batch size 256 (80 epochs) with five different
seeds and average the results. The results in Table 1 show
that residual connections have a remarkably positive impact
on the SRNN accuracy (in MSE) making the training also
slightly faster. Moreover, the addition of a second layer
with dropout results in a further improvement in forecasting
(best results in bold). However, a third layer in this setting
does not seem to be beneficial empirically. Therefore, for
predictive Whittle networks we employ the third architecture
i.e. the SRNN with residuals, dropout with p = 0.1, and 2
layers.

As a following step, we run additional experiments to test
whether operating with SRNN in the complex space could
be beneficial. Thus, we compare our SRNN on Power and
Retail (both data sets are described in the main manuscript)
by operating in the real and in the complex space. Table 2
shows that operating in the complex space increases the
training times (in seconds) while providing only a marginal
improvement in terms of accuracy (in MSE). Therefore,
for predictive Whittle networks, we employ the SRNN that
operates in the real domain.

E CONCEIVING THE SPECTRAL
TRANSFORMER (STRANSFORMER)

In a spectral transformer architecture [Vaswani et al., 2017],
analogously to SRNNs, the time steps are considered over



Figure 1: Predictive Whittle networks training procedure together with the Whittle forecasting loss (here denoted as “WFL”)
allows to gauge the predictive likelihoods provided by the Whittle PC to guide the training towards more accurate neural
spectral forecasting.

Table 1: Forecasting accuracy (in MSE) of four different SRNN architecture proposals on the Power data set. Results are
averaged over five runs with different seeds (best results in bold). Adding residual connections, dropout with p = 0.1, and a
second layer is beneficial, thus, we will use this architecture for predictive Whittle networks.

Test MSE [kWh] ·105 Training time (sec.)
SRNN 4.76± 0.076 309± 11.0

SRNN + Residuals 4.32± 0.063 299± 10.8

2 Layers SRNN + Residuals 4.20± 0.068 357± 13.0

3 Layers SRNN + Residuals 4.22± 0.059 415± 12.5

ns windows instead of over the whole sequence. Therefore,
it is possible to process long sequences without having to
limit the attention size as done e.g. in Yang et al. [2020].
As an example, we consider the Power data set (described
in the main manuscript). With an input length of 1440, full
attention matrices over the input sequences would have a
size of 14402. In comparison, with our STransformer oper-
ating in the spectral domain, the attention matrices would
have only size n2

s = 312, which is a drastic reduction in the
number of trainable parameters.

We compare the performance on the Power data set for
three different implementations of STransformer: 1) a (non-
complex) STransformer operating in the real space, 2) one
that “emulates” the complex space similarly to Yang et al.
[2020] 3) our complex STransformer as proposed in the
main document. In this way, we can investigate whether
complex modeling is beneficial, and we can also examine
whether our proposed “native” modeling in the complex
space outperforms the “emulated” one. For the non-complex
STransformer, we applied the same transformations to the
input and the output as described for the SRNN in the main
document. All models are equipped with 8 attention heads,
a hidden dimension of 64, and a dropout with p = 0.5 and
have roughly 600k parameters. Compared to SRNNs, de-
spite their higher complexity, they need comparable training
times thanks to their parallelizability. In these experiments,
we train the models for 4k iterations with batch size 256
with five different seeds and we average the results. Table 3

indicates that complex modeling is advantageous for trans-
formers (best results in bold). Remarkably, the complex
STransformer achieves higher accuracy than the alternatives
providing faster training compared to the “emulated” one.
While the complex STransformer requires approximately
50% more of the time necessary for the non-complex one,
the “emulated” complex STransformer requires about 275%
more than the non-complex one. This is due to the increased
amount of computations required by the “emulated” com-
plex multi-head attention implementation, which includes
eight computations of scaled dot-product attention. There-
fore, for predictive Whittle networks, we decide to employ
our complex STransformer, since it provides more accurate
forecasting with a relatively moderate increase in training
time compared to the non-complex STransformer, being
also faster and more accurate than the “emulated” one.

F WHITTLE EINSUM NETWORKS
(WEIN) IMPLEMENTATION

We have introduced WEin in the main body, and here we
present the details regarding the extension of the leaf layer
with the multivariate Gaussian distribution and its optimiza-
tion.



Table 2: A comparison of the SRNN operating in the real and in the complex space on Power and Retail data sets.
When operating in the complex space, SRNN requires longer training times (in seconds) while providing only a marginal
improvement in terms of accuracy in MSE (best results in bold).

Power Retail
Test MSE [kWh] ·105 Training time (sec.) Test MSE [Sold Units] ·101 Training time (sec.)

SRNN 4.20± 0.068 357± 13.0 2.45± 0.053 394± 12.2

Complex SRNN 4.24± 0.116 543± 24.5 2.41± 0.097 593± 23.9

Table 3: Preliminary experiments on the Power data set show that complex modeling is advantageous for transformer
architectures (best results in bold). Compared to non-complex modeling, our complex STransformer improves forecasting
accuracy while requiring a moderate amount of additional time for training. The “emulated” complex STransformer is less
accurate than the complex STransformer and requires considerable additional time for training.

Test MSE [kWh] ·105 Training time (sec.)
STransformer 4.30± 0.074 407± 15.3

Emulated Complex STransformer 4.25± 0.100 1481± 41.1

Complex STransformer 4.16± 0.069 617± 20.5

F.1 LEAF DISTRIBUTIONS

In EiNets, leaf distributions are represented in the form of
exponential families (EFs), for which the log-density of x is
given by:

ℓ(x) = log h(x) + T(x)TΘ−A(Θ), (9)

where Θ are the natural parameters, T the sufficient statis-
tics, A the log-normalizer and h the base measure. By means
of this representation, one can model several common dis-
tributions e.g. Gaussian, Binomial, and Categorial [Peharz
et al., 2020]. Furthermore, the representation in expecta-
tion form ϕ [Sato, 1999] enables the optimization of the
leaf parameters using EM on an abstract level, thus, being
independent of the actual employed leaf distribution.

In order to model the covariance matrix ΣXk
τ
∈ R2×2 as

described in Yu et al. [2021], we employ a multivariate
Gaussian whose EF-form parameters are given by Nielsen
and Garcia [2009]:

Θ =

(
Θ1

Θ2

)
=

(
Σ−1µ
− 1

2Σ
−1

)
, (10)

T(x) =
(

x
xx⊤

)
, (11)

A(Θ) =
1

4
tr(Θ−1

2 Θ1Θ
T
1 )−

1

2
log |Θ2|+

D
2
log π, (12)

h(x) = (2π)−D/2, (13)

with tr(·) denoting the trace of a matrix and D the number
of dimensions, in our case D = 2.

F.2 LEAF LAYER OPTIMIZATION

For an EiNet modeling logP (x) the optimization of the leaf
layer parameters ϕL with respect to update ϕL is given
by Peharz et al. [2016]:

ϕL =

∑
x pL(x)T(x)∑

x pL(x)
, (14)

while pL(x) is retrieved via auto-differentiation:

pL =
∂ logP

∂ logL
=

1

P

∂P

∂ logL
=

1

P

∂P

∂L
L. (15)

As mentioned above, we need to modify Eq. (14) in order
to employ a multivariate Gaussian at the leaves. Model-
ing the covariance Σdm

k
imposes the constraint of positive-

definiteness (PD) to Σdm
k

[De Iaco et al., 2011]:

zTΣdm
k
z > 0, ∀z ∈ RD, z ̸= 0, (16)

which also enforces Σdm
k

to be symmetric. To ensure, that
this constraint holds during optimization, we do not learn
Σdm

k
directly, but rather its Cholesky decomposition via a

lower-triangular matrix G. This approach has been used
regularly in various applications [Pourahmadi et al., 2007,
Li and Au, 2019]. With Σdm

k
= GGT and diag(G) > 0,

Σdm
k

is guaranteed to be PD [Higham, 1990]. Furthermore,
only nG = D+D(D−1)/2 parameters need to be modeled
(instead of D2). To update G, i.e. ϕ

′D+1:D+nG

L in the expec-
tation parameters ϕL = (ϕ1

L, ..., ϕ
D+nG

L ), we calculate the
Cholesky Decomposition CD(.) of the update ϕD+1:D+D2

L :

ϕ′
L ←

(
ϕ1:D
L

CD(ϕD+1:D+D2

L + λI)

)
. (17)



In order to apply CD to matrix A, A must be PD. As
ϕD+1:D+D2

L is only guaranteed to be positive-semi-definite
(PSD), as we will show below, we add αI with some small
α > 0, ensuring ϕD+1:D+nG

L + αI to be PD, as the Identity
I is PD:

zT (ϕD+1:D+nG

L + αI)z =

zTϕD+1:D+nG

L z + αzT Iz > 0, ∀z ∈ RD, z ̸= 0.
(18)

Now we can prove that ϕD+1:D+D2

L is guaranteed to be
PSD:

zTϕD+1:D+nG

L z ≥ 0, ∀z ∈ RD. (19)

Proof. For simplicity, we omit the index D+1:D+D2

:

1. Since zTT(x)z = zTxxT z = (zTx)(zTx)T =
∥zTx∥22 ≥ 0 ∀z ∈ RD, T(x) is PSD.

2. As L > 0, P > 0 and ∂log(x) > 0, ∀x > 0 by defini-
tion, we know ∂logP > 0 and ∂logL > 0, therefore,
pL(x) > 0.

3. As multiplication with the scalar pL(x) does not in-
fluence symmetry, we only need to prove Eq. (19) to
show that pL(x)T(x) is PSD.

4. Since zT pL(x)T(x)z = pL(x)z
TT(x)z and

zTT(x)z > 0 as well as pL(x) > 0, we have
zT pL(x)T(x)z > 0 and, thus, pL(x)T(x) is PSD.

5. Given PSD matrices A,B, it can be shown that A+B
is always PSD: zTAz = zTAz+zTBz ≥ 0 ∀z ∈ RD.
Therefore, also

∑
x pL(x)T(x) PSD.

6. Since 1∑
x pL(x) is a scalar, we can proceed as in step 4,

thus, ϕL =
∑

x pL(x)T(x)∑
x pL(x))−1 is PSD.

Finally, as mentioned previously, one can employ a stochas-
tic online version of EM [Sato, 1999]. This requires the full
EM update to be replaced by gliding averages:

ϕL ← (1− λ)ϕL + λϕ′
L, (20)

with λ ∈ [0, 1] as step-size parameter. While it does not lead
to a guaranteed increase of the training likelihood in each
iteration, as full-batch EM, it typically leads to faster learn-
ing [Peharz et al., 2020]. As a last step, similarly to what
done in Peharz et al. [2020], we project the variance, i.e., the
diagonal of Σdm

k
, to a fixed variance interval [σmin, σmax].

G DATA SETS

The first data set is the Power consumption from the Euro-
pean Network of Transmission System Operators for Elec-
tricity, with a 15-minute sampling rate. We use the crawled
version made available by Wolter et al. [2020]. Given 14
days of context, the network has to predict the power load
from noon to midnight of the following day (i.e., 1.5 days).

We choose a window size of 96, which corresponds to a full
day given the 15-minute sampling rate.

Secondly, we investigate the task of forecasting the Retail
demand, using data from a retail location of a big (national)
retailer, spanning over 2 years and including roughly 4000
different products with a daily sampling rate. Here, the task
is to predict six weeks of products demand given a year of
context. Since there is no sales data available for Sundays,
we filter them out, making a window size of 24 a reasonable
choice, i.e., spanning 4 weeks of data. Compared to the
Power, we deliberately use a smaller window size to verify
that our approach performs well with different window sizes.
Regarding the low-pass filter of STFT, we apply it with a
factor of 4 to the Power and with a factor of 2 to the Retail
data.

Third, we test the predictive power of our model on the well-
known challenging M4 data set. It consists of 100, 000 time
series of yearly, quarterly, monthly and other (weekly, daily
and hourly) data, which are divided into training and test
sets. We refer to Makridakis et al. [2020] for more details of
the M4 data set and the M4 competition. Note that compared
with Power and Retail data sets, the M4 data set contains
time series with a much smaller length of context (x) and
future (y). The window sizes for each subset are 6 for yearly,
8 for quarterly, 18 for monthly, 14 for weekly, 14 for daily,
and 24 for hourly. Therefore, the window sizes in M4 be-
come much smaller, which contain fewer frequencies than
Power and Retail, thus, are less advantageous for spectral
modeling.

The step size of STFT is set to half of the window size for
both data sets.

H ALTERNATIVE VISUALIZATION OF
LLRS

To provide an alternative visualization of the LLRS in Fig.
4 of the main manuscript, we separate the predictions and
LLRS values into two subplots, and stack them vertically
for each data set. This is depicted in Fig. 2. In the top plots,
we present the predictions together with the ground truth. In
the bottom ones, we plot the LLRS scores as curves instead
of using bars.

I CORRELATION ERROR

To support the answer of (Q1) in the main body, that pre-
dictive Whittle networks can provide useful predictive un-
certainty estimates for time series forecasting, we further
introduce the correlation error (CE) as a method to obtain
a quantitative evaluation of the quality of the predictive
uncertainty estimated by predictive Whittle networks. To
provide a correlation error for the nth test sequence, we first
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Figure 2: An alternative visualization of the LLRS for long-range predictions on Power and Retail data sets.

calculate a relative prediction error

Sn
Pred =√

SE(yn
Pred,y

n
GT )−minm SE(ym

Pred,y
m
GT )

maxm SE(ym
Pred,y

m
GT )−minm SE(ym

Pred,y
m
GT )

,

(21)
where SE denotes the squared error between the predicted
future yPred and the ground truth yGT . Then, given a con-
text x we calculate a likelihood score:

Sn
ℓ =

√
ℓ(yn

Pred|xn)−maxm ℓ(ym
Pred|xm)

minm ℓ(ym
Pred|xm)

. (22)

The square root is employed to take into account the ex-
ponential shape of the conditional Whittle log-likelihood
(CWLL), see Fig. 2 in the main paper. Given that the MSE
reflects the “ground truth” on where a sequence should be
placed in the spectrum from “bad” to “good” predictions, we
define the correlation error for the CWLL as the quadratic
distance of the scores

CEn = (Sn
Pred − Sn

ℓ )
2, (23)

where Sn
Pred, S

n
ℓ ∈ [0, 1] by definition and, therefore,

CEn ∈ [0, 1]. In order to better assess this novel score,
we provide a random baseline, which draws likelihood
scores randomly from a uniform distribution, i.e. Sn

ℓrandom
∼

U(0, 1).

To evaluate the correlation error, we compare predictive
Whittle networks (SRNN) equipped with a CWSPN or, as an
alternative, with a Masked Autoregressive Flow (MAF) [Pa-
pamakarios et al., 2017], a state-of-the-art neural density
estimator. MAF is integrated into the predictive Whittle
networks architecture like CWSPN, therefore, it follows
the same training objective. We refer to this architecture
as SRNN-MAF. For each model, we train and report scores
by modeling in the spectral domain as well as in the time
domain. For CWSPN, modeling the time series in the time
domain degenerates to a CSPN [Shao et al., 2020]. Fur-
thermore, we evaluate three different model sizes, Small,

Medium, and Large. The results and the number of trainable
parameters are given in Table 4.

In general, modeling in the spectral domain is more bene-
ficial than operating in the time domain, while improving
also parameter efficiency. This is more prominent for MAF.
Furthermore, SRNN-MAF achieves the best scores on larger
model sizes. In comparison, predictive Whittle networks are
particularly good with reduced model capacity. It is also im-
portant to remark that Whittle PCs, like CWSPNs, can natu-
rally answer to a wider range of probabilistic queries than
MAF. Additionally, during our experiments, we observed
that PWN equipped with CWSPN is also less sensitive to hy-
perparameter tuning. Overall, the correlation error obtained
with the different architectures is relatively low (i.e. good),
also on Retail which is a more difficult data set. Moreover,
all results are much better than the random baseline.

J EXPERIMENTAL SETTING AND
MODEL CAPACITY

In this section, we provide further details on the experimen-
tal setting of our evaluation described in Section 4.3 of the
main document.

We design the simple GRU [Chung et al., 2014], which op-
erates in the time domain, with 2 recurrent layers, an output
projection layer as well as 128 hidden units. For it, we pro-
vide the similar model capacity of the neural spectral fore-
casters used in the comparison (SRNN and STransformer)
i.e. roughly 900k parameters that is also similar to the model
size of the biggest predictive Whittle network variant (see
text below and Table 5). Similarly, all DeepAR [Salinas
et al., 2020] models have around 1M parameters.

Regarding N-Beats, it is composed of different blocks specif-
ically designed for time series forecasting [Oreshkin et al.,
2019]. Since our architecture does not perform model ensem-
bling, for the comparison, we employ the N-Beats singleton
model and use a model configuration similar to its default
settings, with one generic, one seasonality, and one trend



Table 4: Test correlation error (lower is better) for different architectures modeling the time series in the time domain
(denoted with “Time”) or in the spectral domain. A lower score indicates a stronger correlation between CWLL and MSE.
The results indicate that predictive Whittle networks can distinguish between “good” and “bad” predictions. Besides,
modeling in the spectral domain generally outperforms modeling in the time domain w.r.t. the correlation error, in particular
for MAF, where it considerably improves parameter efficiency. Furthermore, for smaller model sizes, predictive Whittle
networks achieve the best scores, while MAF is better for models with larger capacity.

Test Correlation Error
Power Retail

Small Medium Large Small Medium Large
PWN-CWSPN 0.019 0.016 0.011 0.036 0.035 0.027
PWN-CSPN (Time) 0.023 0.019 0.017 0.042 0.031 0.030
SRNN-MAF 0.045 0.026 0.011 0.044 0.033 0.023
SRNN-MAF (Time) 0.093 0.058 0.051 0.047 0.045 0.029
Random 0.400 0.455
#Parameters 300k 900k 3M 30K 70K 200K

Table 5: Model capacity in thousands of trainable parameters for each model for N-Beats and predictive Whittle networks.

M4 M4 “Others”
Power Retail Yearly Quarterly Monthly Weekly Daily Hourly

PWN (SRNN & CWSPN) 959 991 777 781 939 780 783 768
PWN (SRNN & WEin) 635 650 620 620 624 620 620 629
PWN (STran. & CWSPN) 921 953 739 743 901 742 745 731
PWN (STran. & WEin) 597 612 582 583 587 582 582 591
N-Beats 1,133 1,093 929 943 988 997 927 1,030
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Figure 3: Whittle PCs can also be employed for forecasting via MPE queries. Predictions with the LLRS from CWSPN and
WEin on Power are on the left and for Retail on the right. The context has been cut for clarity. The predictions computed
with CWSPN are more accurate given its more discriminative nature.

block and T-degree of 4, 4, and 2 respectively. With three
blocks per stack, N-Beats results in approximately 1.1M
parameters on Power and Retail. On M4 the number of pa-
rameters ranges from 927k to 1M , since it depends on the
time series (e.g. yearly or monthly). While for predictive
Whittle networks, it ranges from 582k to 939k according
to the variants employed, where often the best performing
variant has remarkably fewer parameters than N-Beats and
the other competitors, like Informer with 11M parameters,
being more accurate (see Table 1 of the main paper). This
further demonstrates that our spectral hybrid architecture is
also more parameter efficient than models that operate in
the time domain.

Since the model capacity of predictive Whittle networks
and N-Beats might vary according to the specific set of time

series or to the variants employed, we report the model sizes
(in thousands of trainable parameters) in Table 5.

K WHITTLE PC PREDICTIONS VIA MPE

In Table 1 of the main paper, we have also compared the
predictive power of the single components of our architec-
ture i.e. the neural spectral forecasters and the Whittle PCs.
The latter perform density estimation by learning the joint
distribution (pure generative setting as performed by WEin)
or the conditional distribution (more discriminative setting
as performed by CWSPN). This is a more general task than
forecasting. Nevertheless, although not as accurate as neural
forecasters, Whittle PCs can provide valuable predictions by
means of the most probable explanation query (MPE), given



the context x as partial observation. For this particular use
case, CWSPNs are more accurate than WEins. This is mo-
tivated by the more discriminative nature of its design and
objective i.e. to model the conditional distribution of the tar-
get (the future) y given the context x. As depicted in Fig. 3,
Whittle PCs provide good predictions for Power while they
are less accurate on predicting an irregular pattern such as
a spike on Retail (around time step 40). Moreover, when
employing MPE for predictions, the predictive uncertainty
estimated by the log-likelihood ratio score (LLRS) is rela-
tively low since the MPEs achieve a higher likelihood by
definition. Thus, this further motivates the need for a hybrid
architecture where the two components work in synergy to
provide accurate forecasts and useful predictive uncertainty
estimates.
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