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Abstract—Recently, there has been a large research effort in
building efficient large language model (LLM) inference serving
systems, including advancements in both hardware and software.
Nevertheless, there is a lack of simulation infrastructure capa-
ble of accurately modeling hardware-software system behaviors
without extensively extending simulation time. This paper aims
to solve the limitations of existing system simulators and develop
an effective simulation tool, called LLMServingSim, to support
future research in LLM inference serving systems. In designing
LLMServingSim, we focus on two algorithmic properties: (1) the
dynamic variation in workload characteristics of LLM inference
serving due to its autoregressive nature, and (2) the need for
detailed memory modeling due to the large key-value (KV) cache
generated during runtime inference serving. This paper describes
the key challenges contributing to bridge the “real2sim” gap and
presents our initial strategies to address them. It also discusses
the unresolved problems that persist.

I. INTRODUCTION

Currently, there is a significant surge in efforts to exploit
large language model (LLM) as a crucial component in real-
world applications [16], [39]. Given the prohibitively high
costs associated with building on-premise infrastructure for
LLM inference, the common practice is to offload LLM
inference to multi-tenant “inference serving” systems in the
cloud, exemplified by OpenAI’s ChatGPT service [19]. The
massive compute and memory requirements (both bandwidth
and capacity) are forcing these systems to be equipped with
many AI accelerators (or NPUs) that typically come with high-
bandwidth memory stacks (e.g., NVIDIA H100 [17]).

There has been a large body of research works that aim to
develop efficient hardware and software for LLM inference
serving systems. Some works target to develop customized
hardware techniques for accelerating LLM inference serv-
ing [9], [21], while others focus on developing optimized
system software on GPU-based scale-out systems [5], [12],
[13], [18], [23]. Recently, a few pioneering works propose to
take into consideration both hardware and software together
for designing holistic end-to-end accelerated systems [8], [20].
However, there is currently a lack of simulation infrastructure
that allows researchers to explore their hardware-software
proposals in a scale-out setting. This limitation not only makes
it difficult for computer architecture researchers to explore
scalable accelerator solutions, but also leads computer system
researchers to concentrate on GPU-based system software in
the era of specialized hardware.

This paper sets out to address this limitation and develop
a LLM inference serving system simulator, called LLM-
ServingSim, that jointly simulates the behaviors of LLM-

customized accelerators and LLM inference serving system
software. LLMServingSim is built on top of an existing AI
system simulator, ASTRA-sim [36], which jointly models both
hardware and software for AI workloads. However, there are
primarily two algorithmic differences, making the design prin-
ciples of LLMServingSim and ASTRA-sim largely different,
as described below.

• Autoregressive nature of LLM generation. ASTRA-sim
focuses on distributed training, which entails millions of
“identical” iterations of computing that simplify the simu-
lation. On the contrary, we target LLM inference serving
that involves autoregressive token generations, producing
dynamically changing behaviors across different iterations,
requiring independent simulation runs for them.

• Large KV cache generated at runtime. ASTRA-sim lacks
detailed memory modeling since the memory requirements
are statically determined at the compile time. However,
LLM inference serving produces large KV cache during
inference serving at runtime, necessitating the memory
modeling for accurate simulation.

To this end, we design LLMServingSim in such a way that
it prudently compromises simulation accuracy for achieving
the feasible simulation time, effectively bridging the so-called
“real2sim” gap, and in turn, facilitating the future research in
LLM inference serving systems. To accomplish these objec-
tives, we exploit the following three major techniques.

• Iteration-level hardware-system simulation. As each iter-
ation takes different input prompts, LLMServingSim simu-
lates the iterations one by one temporally and aggregates the
entirety of resulting statistics at the end. For each iteration,
LLMServingSim first performs prompt scheduling that de-
termines tasks for accelerators, then analyzes the accelerator
behaviors using hardware simulator, and finally sweeps
through the stages in the system pipeline to simulate over-
all system behaviors. For hardware simulator, we employ
GeneSys [7], an open-source end-to-end NPU simulator that
comes with a full software stack. The aforementioned three
steps are repeated over the iterations progressively.

• KV cache-aware detailed memory modeling. The nature
of LLM token generation and its reliance on KV cache
necessitate LLMServingSim to have a detailed memory
modeling. LLMServingSim employs a state-of-the-art mem-
ory management scheme for LLM inference serving system,
demand paging [12], and maintains the application states
and system-level statistics, such as generated tokens and
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Fig. 1. Architecture of large language model.

KV cache size.
• Compiler and simulator optimization through computa-

tion reuse. We notice that the hardware simulator, along
with the aforementioned two techniques, experiences a
substantial bottleneck at the compilation and hardware sim-
ulation phases. LLMServingSim addresses this bottleneck
by optimizing implementations exploiting the redundancy
of common LLM architecture and employing computation
reuse techniques.
Our experiments demonstrate that the simulation results

produced by LLMServingSim show a similar trend as in the
real LLM inference serving system, while offering a feasible
simulation time that scales up to a few hundreds of seconds.
These promising results suggest that LLMServingSim has a
significant potential to be an effective system simulation tool
for LLM serving system research, in hardware, software, or
both.

II. BACKGROUND

A. Characteristics of LLM Model Architecture

Most large language models (LLMs), whose architecture
is depicted in Figure 1, employ decoder-based transformer
structure [35]. This architecture is constructed with its fun-
damental building units: embedding layer, transformer blocks,
and language modelling (LM) head. Each transformer block
consists of three main components: Query, Key, Value (QKV)
generation, multi-head attention, and feed forward networks.

Decoder-based transformer model operates in two distinct
phases during their inference: the initiation phase and the
generation phase. The initiation phase begins with receiving
the prompt as input and generates QKV for all input tokens.
Generated QKV passes through subsequent multi-head atten-
tion layer and feed-forward networks. Once the initiation phase
is completed, the model outputs one token and transitions
to the generation phase with the generated token as new
input of the model. The generation phase has autoregressive
characteristic where each output token is passed to the next
iteration and the generation continues sequentially. In this
phase, QKV for newly generated tokens needs to be computed
while utilizing cached key-value of previous tokens, known as
KV cache.
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Fig. 2. Topology of LLMServingSim serving system architecture configured
with hybrid parallelism, consisting of 4 NPU groups and 16 NPU nodes.

B. Batching and Memory Management for LLM Serving

To minimize latency and maximize hardware utilization,
LLM inference serving system often employs the concept of
batching, which involves grouping multiple requests into a sin-
gle group. However, it presents a challenge, particularly with
the multi-head attention layer, which makes batching difficult.
Additionally, it faces the drawback of needing to complete all
requests before proceeding to the next batch, which can lead to
inefficiencies. Orca [37] tackles this challenge through selec-
tive batching and iteration-level scheduling. Selective batching
allows batching in specific layers, such as QKV generation and
feed-forward networks, while in multi-head attention layers, it
allow a batch to be divided and allocated to multiple workers
individually. Iteration-level scheduling involves rescheduling
the batch at each iteration, removing completed requests and
adding new ones. This technique enhances hardware utilization
and reduces latency by dynamically updating the batch to
include only active requests, thereby streamlining the process.

Another challenge in scale-out inference serving system is
to effectively handle KV cache. Conventional LLM inference
serving allocates KV cache based on the maximum possible
sequence length, and this results in underutilized memory
spaces and limited batch sizes. vLLM [12] introduces a paging
scheme for memory management that operates similarly to the
virtual memory of operating systems. Managing memory on a
page-by-page basis, vLLM effectively reduces memory frag-
mentation, enabling larger batch size and higher throughput.

III. LLMSERVINGSIM

A. Overview of LLMServingSim

LLMServingSim jointly simulates LLM inference serving
system software and hardware optimized to accelerate LLM
inference workload. In this paper, for simplicity of explana-
tion, we give an example where LLMServingSim simulates a
distributed system consisting of one host node and multiple
NPU nodes. We assume that the host node consisting of
CPU and DRAM runs the LLM inference serving system
software and orchestrates the NPU nodes, while the NPU
nodes have relatively small device memory and execute the
LLM inference operations. As in the widely adopted LLM
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serving system, LLMServingSim supports several parallelism
strategies. Figure 2 illustrates the LLMServingSim system
topology configured to utilize hybrid parallelism with 4 NPU
groups and 16 NPU nodes.

Figure 3 depicts the LLMServingSim workflow, which is
designed to perform iteration-level hardware-system simu-
lation. Furthermore, LLMServingSim employs the memory
management scheme introduced in the state-of-the-art LLM
serving system, vLLM. LLMServingSim consists of the fol-
lowing components: (1) Scheduler receives user requests and
organizes them into feasible batches based on the scheduling
and KV cache management strategy. It makes next scheduling
decision based on the results of ASTRA-sim. (2) PolyMath
compiler [11] compiles the models according to the batch
configuration created by Scheduler. (3) GeneSys simulator [7]
performs hardware simulation for a single NPU and produces
output trace files from the compiled models. (4) Chakra
graph converter uses the trace files to create execution graphs
for each NPU in the system according to the configured paral-
lelism strategy. (5) ASTRA-sim [36] takes Chakra graphs [33]
as inputs, performs system simulation, and returns results
back to the scheduler. The following sections introduce the
techniques one by one.

B. Iteration-level Scheduling for Hardware-System Simulation

LLM processes input prompts autoregressively by generat-
ing one token at a time during inference. To efficiently process
these iterations, Orca [37] proposes iteration-level scheduling.
Inspired by Orca, we employ this approach in LLMServingSim
by designing the simulation workflow as repeated alternations
of prompt batch scheduling, hardware simulation, and system
simulation at the iteration level.

LLMServingSim scheduler first receives requests and com-
pares their arrival times to the scheduler’s timer to select
batchable requests. In response to the dynamic changes in
requests, the scheduler leverages the Polymath compiler and
GeneSys to simulate the behavior of the hardware accelerators.
They compile the model and simulate the hardware with spec-
ified input configurations. After hardware simulation, Chakra
graph converter converts the simulation result to a graph that
maps the hardware to the system. This graph is then fed
into ASTRA-sim to simulate and analyze the system behavior
comprehensively. System simulation results are fed back to the
scheduler, and the scheduler’s timer, which is used to assemble

a new batch for the next iteration, is updated accordingly.
This cyclical interaction enables LLMServingSim to progress
through iterations efficiently and bridge the “real2sim” gap.

C. Supporting for LLM Parallelism Strategies

In the context of LLM inference, parallelism that distributes
the model weights and layers of substantial size is crucial
for enhancing the inference performance. There are three
major types of model parallelism: tensor parallelism, pipeline
parallelism, and hybrid parallelism [32].

LLMServingSim can be configured to utilize a specific
parallelism and the number of NPU groups to determine
the topology of the system. When Chakra graph converter
receives the output trace from GeneSys simulator, it identifies
configured parallelism strategy and constructs execution graph
accordingly for each NPU. In the case of tensor parallelism,
it distributes tensors across the entire NPU and inserts ALL-
REDUCE operators to the graph for intermediate synchroniza-
tion. In the case of pipeline parallelism, it allocates decoder
blocks to NPUs in sequence, allowing chained computation
across NPUs. For hybrid parallelism, it combines both par-
allelism strategies by distributing tensors and layers within
and across NPU groups, respectively. Consequently, generated
Chakra graph has both aspect of inter-group pipeline paral-
lelism and intra-group tensor parallelism.

To employ selective batching, where attention layers are
processed in parallel across different workers, GeneSys sim-
ulator and Chakra graph converter work in conjunction.
GeneSys simulator assigns unique identifiers to the attention
layers within each batch and records them in the output trace.
Chakra graph converter then assigns these attention layers to
different NPUs based on their identifiers. As illustrated in
Figure 2, within an NPU group, each NPU independently pro-
cesses distinct inputs with different sequence length, efficiently
parallelizing batch processing.

D. KV Cache-Aware Detailed Memory Modeling

While ASTRA-sim has a simple memory model in its
implementation, it lacks some memory constraints such as
capacity and memory fragmentation. However, LLM inference
is sensitive to memory capacity due to their significant memory
usage of model weights and KV cache. LLMServingSim uses
detailed memory modeling scheme with several memory con-
straints to reduce the gap with actual systems. Memory model
of LLMServingSim includes management of KV cache and
generated tokens by incorporating demand paging technique
from vLLM [12].

The management for KV cache and generated tokens in
LLMServingSim scheduler is intertwined with iteration-level
scheduling, which conducts batch reconstruction each itera-
tion, by checking generated tokens and KV cache size of
each batch. First, scheduler assesses the length of incoming
requests to determine the required number of KV cache pages
and allocates them to the device memory accordingly to form
a single batch. After an iteration completes, the scheduler
reassesses the requests. If increased sequence length due to
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Fig. 4. Comparison of throughput over time between GPU-based LLM serving system and LLMServingSim using request pattern following a Poisson
distribution.

generated tokens requires additional page or incoming requests
need be added to the batch, new page is allocated on demand.
If there is insufficient memory capacity for new pages, the
entire page for KV cache and the sequence of the lastly added
requests are evicted to host memory.

The graph converter inserts operators into the execution
graph for page eviction and reloading based on the decision
of the scheduler. Whenever page eviction or reloading occurs,
it inserts memory store or load operator nodes embedded
with the time taken to transfer the pages between device
memory and host memory into the graph. This interaction
between the scheduler and Chakra graph converter enables
LLMServingSim to effectively utilize page-based memory
modelling.

E. Simulation Time Optimization through Computation Reuse

Given the large size of LLM, which typically results in
lengthy compile and hardware simulation time, we introduce
optimization techniques with computation and redundancy
reuse. First, we achieve significant time savings by exploiting
the redundancy of common LLM architecture. As described
in Figure 1, decoder-based LLM architecture consists of an
embedding layer followed by repeated transformer blocks.
LLMServingSim compiles just one transformer block and
replicates it, significantly reducing the overall compile time
required.

Another optimization to reduce simulation time involves
separating attention layers from non-attention layers. The ini-
tiation phase and the generation phase differ only in attention
layers, depending on the presence or absence of KV cache.
Therefore, LLMServingSim compiles and simulates the time-
consuming non-attention layers just once, and subsequently,
it simply swaps out the less time-intensive attention layers,
thereby cutting down on the total processing time.

Given the dynamic nature of input and output lengths in
LLM inference, models typically need to be continuously
compiled and simulated. LLMServingSim adopts a strategy of
reusing previously simulated results, and for effective caching,

it manages the non-attention layer and attention layers differ-
ently. Non-attention layers take longer than other layers to
be processed but can be reused frequently. However, attention
layers require more frequent compilation and simulation but
take less time. We conduct an evaluation to evaluate the impact
of this caching strategy and demonstrate that our optimization
technique is effective in reducing the overall simulation time.

IV. EVALUATION

A. Methodology

Throughout our evaluation, we use a GPU system equipped
with 4 NVIDIA RTX 3090 GPUs with 24GB VRAM and Intel
Xeon Gold 6326 CPU as the actual inference serving system
baseline. We use vLLM [12] framework as LLM inference
serving system software. For running LLMServingSim, we use
a CPU system equipped with an Intel Xeon Gold 6226R CPU
with 96GB DRAM. We configure the hardware architecture
of the NPU in LLMServingSim as a 128x128 systolic array
with a clock speed of 1GHz. The device memory bandwidth is
set to match that of GPU at 936GB/s, and the NPU-NPU link
bandwidth is set to be equivalent to PCIe 4.0 ×16 bandwidth
at 64GB/s.

B. Simulator Validation

We evaluate how accurately LLMServingSim simulates the
actual LLM inference serving system. Figure 4 shows the
fluctuation in throughput of request serving over time in a dy-
namic request pattern for the GPT-3 [4] and OPT [38] models,
with sizes varying from 1.3B to 30B. For the workload, we
sample requests from ShareGPT [30] and synthesize request
arrival pattern using Poisson distribution. We set the tensor
parallelism degree from 1 to 4 depending on the model size
and set the memory capacity to 24GB to match that of GPU.

In the throughput trend of initiation phase, as shown in the
upper row of Figure 4, we observe a high degree of similarity
in the initiation throughput trends between LLMServingSim
and GPU-based system, resulting in a correlation coefficient
of 0.93, which indicates existence of high correlation between
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Fig. 5. Breakdown of LLMServingSim simulation time. (a) Comparison of
simulation running time with and without computation reuse using varying
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three parallelism strategies.

them. Specifically, throughput of initiation phase is influenced
not only by the scheduling decision to form a request batch
but also by the system’s ability to accommodate the incoming
requests’ KV cache in memory. Therefore, these trend results
demonstrate that the iteration level prompt scheduling, and
detailed memory modeling of LLMServingSim closely mirrors
the behavior observed in GPU-based system.

The lower row of Figure 4 depicts the throughput trend
in generation phase. We observe that LLMServingSim often
follows the generation throughput trend of the GPU baseline,
as indicated by high correlation coefficient of 0.79. However,
unlike the trend observed in the initiation phase, there are some
performance discrepancies, which can be attributed to several
factors. First, it is challenging to configure NPU architecture
to precisely match the performance of the GPU. Additionally,
the degree of kernel operation optimization varies between
GPU-based system and LLMServingSim. While GPU systems
employ kernel optimization techniques such as FlashAtten-
tion [5], the absence of such kernel optimization in LLM-
ServingSim leads to throughput differences, especially un-
der request-intensive conditions. Despite these deviations, the
overall throughput trend of LLMServingSim resembles that
of the GPU, confirming that LLMServingSim can effectively
reduce the “real2sim” gap.

C. Simulation Time Breakdown

Figure 5 shows the entire simulation time and its breakdown
to each component of LLMServingSim with various system
configurations. In this measurement, we use GPT-3 175B
model and input sequence length of 2048, and measure the
simulation time to complete one iteration. Given the large

size of the model, we configure the NPU memory capacity
to 40GB.

Figure 5(a) compares the simulator running times both with
and without the computation reuse optimization with the vary-
ing number of NPUs from 16 to 128. As the number of NPUs
increased, we observe a corresponding rise in the simulator’s
running time, increasing by 15.1%. The running time varies
significantly depending on whether reuse optimization was
utilized or not. Without reuse, running times range from 377.0
to 433.8 seconds, but with the optimization enabled, they range
from 8.9 to 69.8 seconds, demonstrating a substantial speedup
of 6.2× to 42.3×. Computation reuse eliminates the need to
rerun the Polymath compiler and GeneSys simulator for each
iteration. This highlights the significant performance benefits
of computation reuse optimization applied to LLMServingSim.

Figure 5(b) also compares the simulator running time of
each component using three parallelism strategies. We use 4
NPU groups for hybrid parallelism, regardless of the number
of NPUs. ASTRA-sim’s execution time is longest when using
pipeline parallelism, as it requires simulating more cycles than
other parallelisms due to the inherent long latency of pipeline
parallelism. The running time of LLMServingSim scheduler,
including vLLM and Orca, also increase with pipeline par-
allelism. Unlike the case of tensor and hybrid parallelism,
where the scheduler waits until entire batch is processed,
the scheduler makes a new decision at each pipeline stage,
which adds additional overhead. While there is a variance in
simulation time among LLMServingSim’s three parallelism
strategies, the difference is minimal. This allows for the
simulation of various system configurations within a feasible
time, facilitating hardware and software exploration for LLM
inference serving system.

V. DISCUSSION

A. Usability of LLMServingSim

Pluggability to 3rd-party accelerators. The LLMServ-
ingSim’s architecture allows for high configurability within
the GeneSys NPU framework, where elements of the NPU
can be customized or swapped with ease. Furthermore, LLM-
ServingSim supports the integration of various third-party ac-
celerators. If these accelerators can generate traces that match
the existing template, they can be added to the system. Beyond
computational units, it is possible to extend memory features,
for instance, by adding storage capabilities or incorporating
advanced technologies such as Processing In Memory (PIM) or
SmartSSDs. This flexibility makes LLMServingSim a highly
versatile tool for simulation and development.
Compatibility with existing machine learning frameworks.
LLMServingSim takes the ONNX [14] model format as an
input, enabling compatibility with various machine learning
frameworks. This compatibility allows users to seamlessly
integrate widely-used open-source ONNX models. Addition-
ally, models from frameworks such as PyTorch [22] and
TensorFlow [1] can be converted to ONNX format for use
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within LLMServingSim, facilitating a broad range of model
experimentation and deployment scenarios.

B. Limitations and Future Works

As the performance of LLM models improves, the size of
model parameters also increases. Further, memory capacity
requirements are rapidly increasing due to larger batches and
longer sequence lengths. Prior works have proposed techniques
to utilize not only device memory but also heterogeneous
memory or storage, such as NVMe and flash memory [2], [25].
However, LLMServingSim currently supports only device
memories and host memory in the memory hierarchy, and in
the future, we plan to enhance support for inference of very
large models by implementing various types of memory or
storage.

VI. RELATED WORKS

Hardware simulators. There are several well-known hard-
ware simulators that precisely model hardware behavior for
ML workloads. Several simulators aim to simulate ML opera-
tions cycle accurately by developing single-core systolic array-
based accelerator simulator [28], [29]. Additionally, other
studies endeavor to model interactions between cores in a
multi-core NPU architecture [6], [10], [24]. LLMServingSim
specifically targets the accurate modeling of LLM inference
workloads, which exhibit distinct algorithmic and memory pat-
terns compared to conventional ML workloads. Extending be-
yond existing studies that concentrate on simulating behavior
within a single NPU chip, LLMServingSim devises a mapping
scheme for LLM workloads in multi-NPU environment.
System simulators. In the realm of distributed system sim-
ulators, tools have been developed to cater to a range of
needs from general-purpose workload simulators [15], [27],
[34] to those specifically designed for neural networks [26],
[31], [36]. Recently, more specialized simulators tailored for
LLM training have emerged [3]. While existing solutions
struggle to overcome challenges in simulating LLM inference
serving systems, LLMServingSim successfully tackles them
by exploiting techniques including iteration-level scheduling,
KV cache paging, and the interaction between hardware and
system simulators.

VII. CONCLUSION

The absence of system simulator tailored for LLM in-
ference, which possesses unique algorithmic traits, presents
challenges for researchers in system or hardware architec-
ture exploration. In this paper, we address these challenges
by introducing LLMServingSim, a hardware-system simu-
lator targeting LLM inference serving systems. To reduce
“real2sim” gap, LLMServingSim incorporates a simulator
design that considers the characteristics of LLM inference and
the memory management scheme of the state-of-the-art LLM
inference systems, while applying optimization to achieve
feasible simulation times. In our evaluation using a real system
with dynamic request patterns, we observe that the throughput

trend of LLMServingSim closely corresponds to that observed
in the real system.
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