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Abstract— Recently, hyperspectral image (HSI) classification
by deep learning is flourishing. However, only a few labeled
samples are available in practice since it is time-and-labor-
consuming to label pixels in HSI (called target domain). This
letter proposes a domain-adaptive few-shot learning (DAFSL)
method to tackle this problem. Specifically, some other HSIs
(called source domain) with large labeled samples are fully used
as complementary information and a generative architecture is
employed to adapt embedded features in the source domain to
that of the target domain. We first perform domain adaptation
with unsupervised learning. In detail, the embedded features are
generated by the encoder of an autoencoder, where both source
and target samples could be well recovered and the reconstruction
loss is used to measure the gap between the source domain and
the target domain. At the same time, the embedded features are
put into a metric space for classification in the source domain and
the encoder parameter is fine-tuned together with the classifier
in the target domain with few labels so that both general and
discriminative features are well captured. The experiment results
show that DAFSL outperforms the other mainstream methods
with limited labeled samples.

Index Terms— Domain-adaptive (DA), few-shot learning (FSL),
hyperspectral image (HSI) classification.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) performs important
research value in view of its high-dimensional spectral

and spatial properties. By exploring the abundant information
in HSI, researchers could apply it to many fields [1], such as
medical diagnosis and the aerospace field. Consequently, more
attention has been paid to HSI analysis, such as classification.

In the early stage, most researchers take manually extracted
features or traditional classifier for HSI classification, such as

Manuscript received 27 August 2022; revised 16 October 2022; accepted
24 October 2022. Date of publication 26 October 2022; date of current
version 22 November 2022. This work was supported in part by the National
Natural Science Foundation of China under Grant 61802190, Grant 61906093,
Grant 62171332, Grant 61871226, Grant 62071233, and Grant 62001226; in
part by the Open Research Fund in 2021 of the Jiangsu Key Laboratory
of Spectral Imaging and Intelligent Sense under Grant JSGP202101 and
Grant JSGP202204; and in part by the Natural Science Foundation of
Jiangsu Province, China, under Grant BK20190451. (Corresponding author:
Fang Liu.)

Andi Zhang, Fang Liu, Jia Liu, Wenfei Gao, Donghui Li, and Liang Xiao
are with the Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense,
School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China (e-mail: liufang_cs@njust.edu.cn).

Xu Tang is with the Key Laboratory of Intelligent Perception and Image
Understanding of Ministry of Education, International Research Center for
Intelligent Perception and Computation, Xidian University, Xi’an 710071,
China.

Digital Object Identifier 10.1109/LGRS.2022.3217502

support vector machine (SVM) [2], which could achieve good
performance to some extent but ignore the feature learning
and representation.

Recently, deep learning methods exhibit superiority in
image feature extraction [3]. Chen et al. [4] introduce stack
autoencoder (SAE) to HSI classification, which performs train-
ing with unsupervised representation learning and supervised
fine-tuning. However, the huge amount of parameters makes
it difficult to train the network composed of a full connection
(FC) layer.

In contrast, Mei et al. [5] propose 3-D autoencoder net-
work for HSI classification. Different from the autoencoder
structure above, the 3-D convolution kernel could establish
the relation of the HSI cube with spectral-spatial informa-
tion and decrease the training parameters to a great extent.
Zhong et al. [6] replace the encoder part with a residual block
and designs spectral–spatial residual network (SSRN), which
further improves the HSI classification accuracy.

However, these methods often require adequate labeled
HSI data, which is fairly limited because it is a time-and-
labor-consuming matter. Consequently, researchers turn to
the few-shot learning (FSL) [7] field to address the poor
performance problem under insufficient labeled samples and
many FSL methods [8], [9], [10] are widely applied to HSI
classification. Liu et al. [11] propose the deep FSL (DFSL),
which conducts the FSL in the metric space and achieves
good performance with small labels. However, the DFSL
could not solve the domain shift problem. Later, influenced
by the work of DFSL, Li et al. [12] propose deep cross-
domain FSL (DCFSL), and alleviates the domain shift problem
between the source and target domain by conducting meta-
learning alternately, which trains the conditional generative
adversarial network to decrease the distribution difference.
Although DCFSL tries to solve the domain shift by transfer
learning to some extent, the knowledge from the source
domain is not fully exploited. In this article, we carefully
consider how to make full use of the source domain and
propose DAFSL to achieve domain adaption by designing an
autoencoder structure, where the source and target HSIs are
put into the same network. By minimizing the reconstruction
loss through alternate training, the gap between both source
and target domains is diminishing, which could realize the
knowledge transfer.

The major innovations of this letter are described in the
following.
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1) To tackle the domain shift among source and target
HSIs, we design the autoencoder structure. Both source
and target HSIs share the same parameters, which help
retain the common knowledge in the feature space to
perform domain alignment.

2) In view of the unsupervised learning during the domain
adaption by data reconstruction, the discriminative fea-
tures could be neglected. Consequently, we adopt the
fine-tuning strategy in the method. Supervised learning
further improves the model the ability to discover the
unique features of both domains, which helps to obtain
better performance.

II. PROPOSED APPROACH

A. Framework of DAFSL
In the proposed DAFSL for HSI classification, the whole

data set DALL = DS
⋃

DT consists of two parts. DS rep-
resents the source HSIs consisting of multiple HSIs with
abundant labeled samples while target HSI DT is to be
classified with the help of source HSIs.

As a preparation, to keep consistent with the classes of
both domains, we randomly select classes equal to the class
number in the target domain for training. And only a few
target domain labels are used while source domain labels are
sufficient. Then, both source and target HSIs are cut into
image patches with the same size of width and height. Each
patch stands for a training sample where the label is set to
the same as the central pixel. The pretreated HSI patches
of source and target domain are denoted as Ps ∈ RH×W×Cs

and Pt ∈ RH×W×Ct respectively, where H and W are the
height and width of image patches, while Cs and Ct represent
the different channel numbers of source and target domain
respectively. The process of the framework of DAFSL is
shown in Fig. 1. Image patches are firstly modeled by the
domain-adaptive (DA) module, which consists of a domain
fusion part and a domain alignment part. The former part
aims to obtain the latent features while the latter part is used
to recover knowledge from the sharing of embedded features.
With the optimization of reconstruction loss, the embedded
features will capture the adaptive knowledge for the target HSI
eventually. What is more, the embedded features conduct FSL
through a classifier and the encoder parameters are fine-tuned
together with the classifier. As a result, the embedded features
not only obtain abundant knowledge from source domain data
but also distinguish unseen target data.

B. DA Learning
Multiple source domains have been introduced to help

classify the land covers in the target domain. In fact, the fit
degree between the source and target domain is vague and
leads to domain shift. To address the above existing problems,
we propose DAFSL shown in Fig. 1 for domain adaption.

1) Domain Fusion: The domain fusion module (the struc-
ture included in the green box in Fig. 1) aims to map different
domains to the same feature space.

In view of the inconsistent channels between the source
and target domains, a spectral mapping function is used to
keep data of the same size to ensure that they could be fed

Fig. 1. Framework of DAFSL.

into the same network for training. The process of spectral
dimensionality reduction can be formulated as

p̂s
H×W×C = hBN

(
conv1×1

((
p̂s

H×W×Cs
)))

(1)

p̂t
H×W×C = hBN

(
conv1×1

((
p̂t

H×W×Ct
)))

(2)

where hBN and conv1×1 represent the batch normalization layer
and 2-D convolution layer. p̂s and p̂t represent the image
patches after dimensionality reduction in the source domain
and target domain, respectively.

So far, the source and target domains could be integrated
into the same network for feature learning. Considering the
rich spatial-spectral features of HSI, a 3-D residual network is
adopted as the encoder to map the source and target domains
to the same metric space, and the knowledge of the different
domains will be migrated to the parameters of the encoder.
The process of domain fusion can be described as

fs = Eϕ( p̂s) (3)

ft = Eϕ( p̂s) (4)

where fs and ft are the corresponding embedding features, E
is the encoder part, and ϕ is the learnable parameter of E .

2) Domain Alignment: After obtaining the representation
of different domains in the feature space, we perform domain
alignment in the form of unsupervised learning. Specifically,
the fs and ft will recover the HSI patches in a domain
alignment module (the structure included in the orange box in
Fig. 1) with multiple transposed convolution and up-sampling
layers. The process can be formulated as

p̃s = Dθ ( fs) (5)

p̃t = Dθ ( ft) (6)

where p̃s and p̃t are the reconstructed images of source HSI
and target HSI patches respectively, D is the decoder network,
and θ is the learnable parameter of D.

In the training phase, we feed the patches into the encoder
alternatively in the form of source-target-source and apply
reconstruction loss to force the domains to recover as well
as possible. When the source HSI finishes one round of
training, the target HSI will be fine-tuned based on the network
parameters of the previous round. That is to say, the network
will adjust the knowledge of the source domain for the target
domain according to the reconstruction loss. With constant
learning, the gap between the source and target domain is
decreasing. Thus, the common knowledge of different domains
is mixed into the ϕ and θ , which realize the knowledge trans-
ferred toward the target domain. Consequently, the process of
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image recovery is also the process of domain alignment. The
domain alignment is given by

L recon = � p̃− p̂�2
2 (7)

where L recon represents the reconstruction loss to measure the
quality of reconstructed images.

C. DAFSL for HSI Classification
To further represent the whole knowledge from different

domains. We conduct FSL to make the encoder learn the
discriminative features at the same time.

After the division of support sets and query sets, samples
are projected to a metric space via the encoder. It is noticed
that the shot number per class in support set is configured to
5 in the experiment. As a result, we take the mean vector in
the feature space to represent the prototype of each class. The
prototype can be calculated by

ck = 1

|Sk|
∑

(s, y)∈Sk

Eϕ(s) (8)

where ck is the prototype of class k and s denotes the
samples from support set S. Then the latent features of the
samples from support sets are presented by a prototype.
Furthermore, the distance between the query sets and support
sets are calculated and could be converted to class probability
distribution through the SoftMax function. The process can
be formulated as

Pθ (y = k | q ∈ Q) = exp
(− dist

(
Eϕ(q), ck

)
∑C

k=1 exp
(− dist

(
Eϕ(q), ck

) (9)

where ck is the prototype of class k, dist(∗) denotes the
Euclidean distance function to measure the distance between
the q and ck, and y is the label of q.

With the information of labels, the latent features could
establish the relation of specific categories from different
domains. The class probability distribution is then changed
to FSL loss through cross entropy function as follows:

L fsl = −
∑

x, y∈Q.

bk log pθ (y = k | x) (10)

where bk is the corresponding one hot label of x and the
parameters of the encoder are further fine-tuned by L fsl to
learn the special domain information. The whole loss of the
network is the linear combination of reconstruction loss and
FSL loss. The formulation can be described as

Lwhole = λL recon + (1− λ)L fsl (11)

where λ denotes the hyper balance parameter.

By updating the Lwhole, the learned architecture is able to
capture both the general and the discriminative features of
different domains. Algorithm 1 could describe the whole
process of DAFSL.

III. EXPERIMENTS

The experiments are conducted on the Salinas Valley (SV)
dataset with the source data of the Chikusei and HoustonU
datasets. Chikusei dataset consists of 2517 × 2335 pixels with
128 bands and contains 19 classes. HoustonU dataset consists
of 2384 × 601 pixels with 50 bands and contains 20 classes.
SV consists of 512 × 217 pixels with 220 bands and contains

Algorithm 1 Process of DAFSL
Require: Distribution of tasks: P(Dk), k ∈ [1, n]
Require: learning rate α, β
1: Initialize the parameters ϕ and θ in the network
2: while epoch i < I do
3: for all Dk do
4: Samples from Dk to constitute episode task Tj

5: for all task Tj do
6: Calculate ∇ϕ LTj (Eϕ) with L f sl and update parame-

ters in layers with gradient:
ϕ �j = ϕ − αϕ LTj (Eϕ)

7: Calculate ∇(ϕ,θ)LTj (Eϕ, Dθ ) with Lrecon and update
parameters in layers with gradient:
θ �j = θ −∇(ϕ,θ)LTj (Eϕ, Dθ )
ϕ ��j = ϕ −∇(ϕ,θ)LTj (Eϕ, Dθ )

8: end for
9: θ ← θ − β∇θ

∑
T j∼P(Dk )

LT j (Eθ �j )

10: ϕ ← ϕ − β∇ϕ

∑
T j∼P(Dk )

LT j (Eϕ ��j )−β∇(ϕ,θ)

∑
T j∼P(Dk )

LT j (Eϕ ��j , Dθ �j )
11: end for
12: end while

Fig. 2. HoustonU dataset. (a) Red green blue (RGB) image. (b) Ground-truth
map.

Fig. 3. Chikusei dataset. (a) RGB image. (b) Ground-truth map.

16 classes. Chikusei and HoustonU datasets are set as source
data while the SV dataset is the target data. The corresponding
datasets are shown in Figs. 2–4.

A. Parameter Setting
In the training phase, we randomly select 16 classes from

each source domain to keep consistent with the SV dataset,
five labeled samples per class of target HSI and 200 labeled
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TABLE I

CLASSIFICATION RESULTS ON SV DATASET

Fig. 4. SV dataset. (a) RGB image. (b) Ground-truth map.

samples per class of each source domain are picked to con-
stitute the training set while the rest of target samples are
used for the test. The original HSIs are divided into image
patches of size 9 × 9 and the parameter settings of the encoder
are the same as [11] to ensure fairness. The decoder network
takes the symmetrical network as the encoder. The parameter
λ is set to 0.7. And the same adam optimizer is selected
as [11] where learning rate α is set to 0.001 and the decay
rate of β is set to the default value of (0.9, 0.999). Each
comparing experiment is trained by 20 000 epochs. All the
experiments are performed on the GPU of NVIDIA GeForce
RTX 3070 with 8G memory. The code is implemented on the
open-source software framework Pytorch with python 3.6.

B. Comparison Experiments and Result Exhibition
In order to validate the effectiveness of the DAFSL method.

We compare DAFSL with traditional method SVM [2], deep

Fig. 5. Results on SV dataset. (a) Ground-truth. (b) SVM [2]. (c) 3D-CNN
[5]. (d) SSRN [6]. (e) DFSL [11]. (f) DCFSL [12]. (g) RN-FSC [13].
(h) DAFSL.

learning method 3D-CNN [5], SSRN [6]. And FSL methods
including DFSL [11], DCFSL [12], and relation network for
HSI few-shot classification (RN-FSC) [13]. As for DFSL,
DCFSL, and RN-FSC, the same training set of 200 labeled
samples for each source HSI and five labeled samples are
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TABLE II

TRAINING TIME (S), INFERENCE TIME, FLOPS, AND PARAMETERS ON DIFFERENT METHODS

chosen as the training set in the target domain to ensure
fairness. While In SVM, 3D-CNN and SSRN, the source
domain cannot be available. Consequently, the training set only
contains five labeled samples of the target domain. All the
results are shown in Fig. 5 and Table I. As for the methods
without cross domain, due to the inability to utilize the source
domain data, almost all the indicators are worse than these
FSL methods. And for FSL methods, although the accuracy
of proposed DAFSL in some classes is not as high as other
FSL methods, the classification accuracy of each class is very
balanced, which is attributable to the domain adaption and
fine-tuning strategy. The DA learning could greatly improve
the accuracy of the algorithm because it introduces multiple
source HSIs and tries to make full use of the knowledge to
help classify the target land covers. At the same time, the
fine-tuning strategy by training the source and target HSIs
according to respective labels makes the general knowledge
retained in the latent features, which obtains a more balanced
performance than other methods. And the accuracy is relatively
higher.

C. Computation Complexity
To exhibit the efficiency of all the methods, we further

compare the training times, inference times, floating-point
operations (FLOPS), and parameters in Table II.

It is shown that 3D-CNN takes less time to train and test
than SVM because the network requires many training epochs
to get converged. The long-time iteration could also obtain the
inner feature of HSIs. The SSRN introduces a deep residual
block to get better performance. Consequently, the time and
parameters of the network are larger than 3D-CNN. As for
DFSL, DCFSL, RN-FSC, and DAFSL, time is expensively
spent on transfer learning with source domain data. It can be
observed that although our DAFSL takes the longest time and
largest parameters than other methods, the most effort has been
done to acquire the best performance.

IV. CONCLUSION

This letter puts forward a new method to handle hyperspec-
tral classification with few labels. The DAFSL consists of two
important modules. The DA module fuses different domains
in the latent space by an encoder, and the recovery of HSIs
with decoder by reconstruction loss makes the general domain
retained in the parameters of networks. There is a significant
improvement in classification accuracy for each category over

other algorithms according to Table I and Fig. 5, which shows
the effectiveness of domain adaptation of the DA module.
Then the fine-tuning module puts the embedding features
in a metric space to conduct the supervised classification
with few labels according to the distance. Consequently, the
parameters of the encoder are further fine-tuned to learn
the discriminative features of both the source domain and
target domain. Experiments on HSIs indicate that the proposed
method outperforms the mainstream algorithms.
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