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Abstract

Causal discovery, i.e., inferring underlying causal
relationships from observational data, has been
shown to be highly challenging for AI systems.
In time-series modeling context, existing causal
discovery methods mainly consider constrained
scenarios with fully observed variables and/or
data from stationary time-series. We develop a
causal discovery approach to a wide class of non-
stationary time-series that are conditionally station-
ary, where the non-stationary behaviour is mod-
eled as stationarity conditioned on a set of (possi-
bly hidden) state variables whose dynamics may
be dependent on the observed sequence. Named
State-Dependent Causal Inference (SDCI), our ap-
proach is able to recover the underlying causal
dependencies, provably with fully-observed states
and empirically with hidden states. The latter is
confirmed by experiments on both synthetic linear
system and spring-connected particle interaction
data, where SDCI achieves superior performance
over baseline causal discovery methods.

1 INTRODUCTION

Deep learning has achieved profound success in vision and
language modelling tasks [Brown et al., 2020, Nichol et al.,
2021]. Still, it remains a grand challenge and a prominent re-
search direction to enable deep neural networks to perform
causal discovery and reasoning [Yi et al., 2020, Girdhar
and Ramanan, 2020, Sauer and Geiger, 2021], which is
an inherent mechanism in human cognition [Spelke and
Kinzler, 2007]. Specifically for analysing time series data,
causal discovery involves identifying the underlying tem-
poral causal structure of the observed sequences. Many
existing causal discovery approaches for time series assume
stationarity [Granger, 1969, Peters et al., 2017, Löwe et al.,

2020, Li et al., 2020, Tank et al., 2021], which is restrictive
as sequence data from real-world scenarios are often non-
stationary with potential hidden confounders. Recent works
introduce a number of different assumptions to tackle causal
discovery for non-stationary time series [Zhang et al., 2017,
Ghassami et al., 2018, Huang et al., 2019], but in general,
causal discovery on non-stationary time series under mild
and realistic assumptions is an open problem.

This work aims at addressing this open challenge by propos-
ing a causal discovery algorithm for condionally stationary
time series, for which the dynamics of the observed system
change depend on a set of “state” variables. This assumption
holds for many real-world scenarios, e.g., with people who
behave differently and take different decisions depending
on underlying factors such as mood, previous experience,
and the actions of other agents. The causal discovery task
for such conditionally stationary time series poses differ-
ent challenges depending on the observability of the states,
which is classified into 4 different scenarios:

1. Scenario class 1 concerns the simplest case, where the
states are observed and their dynamics are independent
on other observed time series data (Figure 1a).

2. In Scenario class 2, the states are unobserved and di-
rectly dependent on observed variables. One example
is to consider an agent moving in a room where differ-
ent behaviors are observed depending on their location.
Figure 1b illustrates a similar setting.

3. Scenario class 3 is more challenging: the state depends
on earlier events, and thus cannot be directly inferred
from observations. Figure 1c illustrates this regime
with particles that change state on wall collision. Also
in a football game the action of one player is triggered
by an earlier action by another player.

4. Finally, a large share of real-world scenarios (e.g., Fig-
ure 1d) are governed by underlying states that are not
fully identifiable from the observations over time. Here
the states can be unknown confounders to the observed
time series, thus the causal discovery task is ill-defined.
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Figure 1: Graphical representations of the data generation processes considered in this work. xt represents the observations
of a time series sequence, and st denotes the state variables. The state affects the future observations by changing the causal
structure (denoted as f t) for different state values. The representations are examples of (a) scenario class 1, (b) scenario
class 2, (c) scenario class 3, and (d) other scenarios (image adapted from Oh et al. [2011]).

Our approach, named State-Dependent Causal Inference
(SDCI), is based on discovering the summary graphs con-
ditioned on states given observed sequences. It fits a graph
neural network based variational auto-encoder [Löwe et al.,
2020] to the non-stationary time series data, which enables
efficient amortization for causal discovery across multiple
observation sequences. We prove identifiability results for
cases with fully-observed states; empirically SDCI also ap-
plies to cases with hidden states, which is confirmed by
experiments on both synthetic linear datasets and spring
data (See Figures 1b & 1c), covering scenario classes 1-3.
Compared to baselines, SDCI achieves better accuracy in
identifying the underlying causal graph structure as well as
forecasting future trajectories from historical observations.

2 RELATED WORK

Causal discovery aims to identify causal relationships from
observational data [Glymour et al., 2019]. Constraint-based
methods rely on conditional independence tests to recover
the underlying DAG structure of the data. Representative
approaches include the PC algorithm [Spirtes et al., 2000]
and Fast Causal Inference (FCI) [Spirtes, 2001], and their
extension to time series [Entner and Hoyer, 2010, Runge,
2018]. Score-based methods, such as Greedy Equivalence
Search (GES) [Chickering, 2002], define and optimize score
functions of causal graphs to identify the underlying causal
structure. Regarding time series, these methods are reformu-
lated as learning Dynamic Bayesian Networks (DBNs) from
data [Murphy et al., 2002]. A recent approach in this line
is DYNOTEARS [Pamfil et al., 2020]. Functional causal
model-based methods represent the effect as a function of
its direct causes and their independent immeasurable noise
[Shimizu et al., 2006, Zhang and Hyvärinen, 2009, Peters
et al., 2014, Glymour et al., 2019]. For time series, these
approaches fit a dynamic model, which is often constrained
in terms of its functional form and connection sparsity in
favor of identifiability guarantees [Peters et al., 2013].

Our work is concerned in modelling non-stationary time se-

ries using state variables as entities responsible for changing
the dynamics along the sequence. Saggioro et al. [2020] uses
similar ideas for reconstructing regime-dependent dynam-
ics. Most relevant to ours is Amortized Causal Discovery
(ACD) [Löwe et al., 2020], which assumes stationary time
series and amortizes summary graph extraction process from
samples with different graphs but shared dynamics. Sim-
ilar ideas are also proposed in Li et al. [2020] for video
applications. We extend ACD by allowing the underlying
causal structure to vary depending on some state variables.
For other related works, Huang et al. [2015] extended Gaus-
sian Process regression for the identification of time-varying
functional causal models, Zhang et al. [2017] used kernel
embeddings to detect distribution shifts in heterogeneous
data. Ghassami et al. [2018] and Huang et al. [2019] esti-
mated the time-varying causal effects. However, the latter
two methods are limited by their linear causal model as-
sumptions and fixed causal structures.

3 STATE-DEPENDENT CAUSAL
INFERENCE (SDCI)

We introduce SDCI to extract causal graphs from time series
data where their dynamics are altered by means of a set of
categorical variables, referred to as their states.

3.1 PROBLEM FORMULATION

We consider a dataset D, where each sample X ∼ D consists
of N non-stationary time series X = {x1, . . . , xN} of length
T . We denote element i at time-step t as xti ∈ Rd.

Stationary time series. We assume that the data genera-
tion process obeys a structural causal model (SCM) [Pearl,
2009], where all the observed variables xti ∈ V1:T are its
vertices, for each time series i at each time-step t, and
that there are no instantaneous effects and no hidden con-
founders. Moreover, same as the definitions of Granger
causality [Granger, 1969], we assume that edges of a causal
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Figure 2: (a) Full time graph G1:T of a sample considering our problem setting, (b) conditional summary graph G1:K , and
(c) summary graph G of the corresponding sample. Different colors (red and blue) denote effects caused by different states.

graph cannot go back in time. For the sake of clarity, the
underlying causal structure satisfies the first-order Markov
property in this work; however, one could directly extend
it to the higher order. When considering causality in time
series, the corresponding causal graph of a SCM is called
full time graph [Peters et al., 2017], G1:T . Note that our
treatment of stationarity refers to the structure of the causal
mechanisms; i.e. edges are invariant in time.

Assumptions similar to the previous ones have been intro-
duced in the past for the analysis of causality considering
stationary time series data [Löwe et al., 2020, Li et al., 2020],
where the task is to extract the summary graph, G = {V, E},
where V = {x1, . . . , xN} and an edge from xi to xj is in-
cluded in E if there exists 1 ≤ t < t′ ≤ T such that there is
an edge from xti to xt

′

j in the full time graph. Both full time
graph and summary graph are identifiable from observa-
tional data as shown by Peters et al. [2013] if the generative
process satisfies Time Series Models with Independent Noise
(TiMINo). We further assume first-order Markov property
and an additive noise model (ANM) without instantaneous
effects for the generative process:

xtj = fj
(
(PA1

j )
t−1

)
+ ϵtj (1)

where PA1
j ⊆ V denotes the parents of xj and ϵtj denotes

independent noise. The direct causes of xtj are PA(xtj) =

(PA1
j )
t−1 ⊂ V1:T . As here the time series is stationary, we

can regard this as first querying the summary graph G to
extract the parents, and then using the correct temporal index
(t− 1) as a superscript of each parent (PA1

j ).

Conditionally stationary time series. For non-stationary
time series considered in this work, we assume that at
each time-step t we have access to state variables st =
{st1, . . . , stN}, where sti ∈ {1, ...,K} controls the causal
effects of xti to future variables xt+1

1:N . In other words, when
the state sti changes, so do the causal effects for xti. We
further assume that the time series is stationary if the states
are held constant along the sequence, i.e., s1 = · · · = sT .
For the general case where st changes through time, even
though the time series is non-stationary, it is conditionally
stationary given the state variables S = {s1, . . . , sT }.

Figure 2a illustrates the full time graph of a conditionally
stationary time series example following our assumptions.
In this case a variable affects different sets of future variables
depending its state, and the time series is non-stationary as

s1 ̸= s2 ̸= s3. Note that the states are not included explicitly
in the SCM of the generative process (otherwise the SCM
requires additional variables with their own vertices for S).
This is a valid simplification since we assume access to the
states at all times. Our theoretical results presented below
do not apply when considering hidden states, since one must
then explicitly model its causal structure in the SCM.

Conditional summary graph. Our goal for causal dis-
covery is to recover the full time graph, where for stationary
time series this can be achieved by identifying the summary
graph under the first-order Markov assumption. However
for conditionally stationary time series, the summary graph
can be non-informative (probably close to a fully connected
graph), due to different causal effects induced by variables
in different states. As an example, Figure 2c shows the sum-
mary graph extracted from the full time graph of Figure 2a.
Being dense, the summary graph as defined for stationary
time series is less useful in non-stationary settings. To ad-
dress this issue, for conditionally stationary time series we
define the conditional summary graph.
Definition 1 (Conditional summary graph, first-order
Markov setting). Given a full time graph G1:T , its con-
ditional summary graph is a set of K summary graphs,
G1:K = {Gk : 1 ≤ k ≤ K}, where K is the number of
possible state values. Each summary graph Gk = {V, Ek}
has the same vertices V = {x1, . . . , xN}, and an edge from
xi to xj is added to Ek if there exists a time-step 1 ≤ t ≤ T
such that sti = k and in G1:T , xti is connected to xt+1

j .

Note that both summary and conditional summary graphs do
not include auto-regressive connections xti → xt+1

i . Figure
2b shows the conditional summary graph extracted from the
full time graph of Figure 2a. For k = 1 we have s13 = 1 and
there is a “red edge” connecting x1

3 and x2
2, therefore for G1

there is a “red edge” in the edge set E1. Similar reasoning
applies for G2. Compared to the summary graph 2c, the
conditional summary graph contains a compact, yet valid
representation of the causal structure, and thus being more
informative. Although the conditional summary graph can
present connections to some related work [Saggioro et al.,
2020], ours is more flexible. In other words, we do not
restrict the entire time series to be in one of the K states,
but allow each variable to be in one of the K different ones.

State-dependent TiMINo. We extend TiMINo to con-
ditionally stationary time series with observed states and



show the identifiability of both full time graph and condi-
tional summary graph. Consider the update on xtj as in Eq.
1. First for non-stationary time series the direct causes of xtj ,
PA(xtj), are no longer constant in time. However, for condi-
tionally stationary time series satisfying first-order Markov
property and our assumptions specified above, PA(xtj) is
determined by the states at the previous time-step t − 1.
Thus we can write PA(xtj) = (PA1

j |st−1)t−1 and the state-
dependent TiMINo as (with first-order Markov assumption,
an ANM model and no instantaneous effect):

xtj = f st−1

j

(
(PA1

j |st−1)t−1
)
+ ϵtj , (2)

PA1
j |st−1 = {xi : xj ∈ Ci(s

t−1
i ), 1 ≤ i ≤ N}, (3)

where st−1
i ∈ {1, . . . ,K} and Ci(k) ⊆ V denotes the chil-

dren of variable xi when its associated state equals to k. To
illustrate, in Figure 2a we have that PA(x22) = {x11, x1

2, x13}
because x2 ∈ C1(s

1
1) and x2 ∈ C3(s

1
3); however PA(x32) =

{x21, x22} because now x2 ∈ C1(s
2
1) but x2 /∈ C3(s

2
3).

Identifiability of state-dependent TiMINo. As we as-
sume access to the state variables at all times, the original
properties of Markov assumption and causal minimality are
maintained, which are satisfied by TiMINo. Consequently,
the conditional summary graph becomes identifiable by
extending the identifiability proof of Peters et al. [2013]
to our setting and further assuming that all the states are
visited at least once. Notice that failing to observe data cor-
responding to a particular state of one variable makes it
practically impossible to capture the underlying effect of
that variable conditioned on the unvisited state. More details
for the preservation of causal minimality and Markov con-
dition in the state-dependent TiMINo, the identifiability of
both the full time graph and conditional summary graph, and
extensions to incorporate other time-lagged or instantaneous
effects can be found in Appendix A and B.

State-dependent causal inference. We mainly focus on
non-stationary causal graphs which may have different edge-
types at different times. Based on our assumptions, the
interaction (i.e., edge-type) xi −→ xj can change accord-
ing to the state of the variable xi. Following Kipf et al.
[2018], Li et al. [2020], Löwe et al. [2020], we consider this
edge-type for xi −→ xj at time t as a categorical variable
ztij ∈ {0, . . . , nϵ − 1} which can represent nϵ interaction
types between pairs of variables. Specifically we use edge-
type 0 to denote “no causal effect” between two variables.
Notice that the edge-type differs from the state: the former
controls the functional form of the causal effect and the
latter allows the variables to affect others differently along
time. For example, one can have xi → xj whenever ztij ̸= 0,
but the functional form of the causal relationship can differ.

The main focus of our method consists on extracting a
conditional summary graph G1:K (assuming there exist K
states). Previous approaches aiming for this task assume
stationary time series data for which G1 = · · · = GK .
For conditionally stationary time series, we extract the k-

State 1
State 2

Figure 3: SDCI aims to extract a conditional summary graph
that describes the edge-type interaction W = {wijk} for
every pair of edges conditioned on the state of the source
variable with respect to the interaction.
th summary graph including edge-types, G̃k = {V, Ẽk},
where Ẽk and Ẽk′ can differ for k ̸= k′. We further de-
fine Ẽk = {wijk ∈ {0, . . . , nϵ − 1} : xi, xj ∈ V} as the
collection of edge types for variable pairs in V . Note here
that an edge is visualised in the conditional summary graph
visualisation only when wijk ̸= 0 (see Figure 2b). Then
the edge-type interaction xi → xj can be queried at each
time-step t as follows:

ztij =
(
Ẽsti

)
ij
,

(
Ẽsti

)
ij
= wijk if sti = k. (4)

Therefore, causal discovery for conditionally stationary time
series requires extracting the (unknown) conditional sum-
mary graph given observations of X (and perhaps also S). It
not only requires to design a parametrizable function to infer
the causal structure, but also to evaluate how this inference
fits to the input observations.

3.2 IMPLEMENTATION

We introduce a probabilistic approach which models the
distribution of the edge-types {ztij} given observed data.
Following our assumptions for conditionally stationary time
series, this task can be solved by learning the distribution
of W = {wijk : 1 ≤ i, j ≤ N, 1 ≤ k ≤ K} given data, as
after inferring W one can then query the edge-types ztij as
in Eq. 4. Inspired by previous approaches [Li et al., 2020,
Löwe et al., 2020, Kipf et al., 2018], our implementation
is based on a variational auto-encoder (VAE) [Kingma and
Welling, 2014] and graph neural networks. We first discuss
our approach for the case with fully observed states, then
extend the method to the hidden state regime. A diagram of
the proposed approach is visualised in Figure 3.

Encoder. Similar to Löwe et al. [2020], we use a factor-
ized q distribution qϕ(W|X,S) =

∏K
k=1

∏
ij qϕ(wijk|X,S).

The encoder receives both X and S as the input, and ex-
tracts an embedding that represents the causal interaction
conditioning on the state for every possible edge xi → xj :

ϕij = fϕ(X,S)ij ∈ RK×nϵ , (5)
where fϕ(X,S) is a neural network that returns outputs
{ϕij : 1 ≤ i, j ≤ N} given the input as X concatenated
with a one-hot representation of the state variable S. The
approximate posterior qϕ(wijk|X,S) is calculated as



qϕ(wijk|X,S) = Θ(ϕijk/τ) (6)

where Θ(·) denotes a softmax activation with temperature τ .
Note here the softmax activation is taken over the k-th row
vector ϕijk ∈ Rnϵ in ϕij , which is the edge embedding for
xi −→ xj at state k. As this returns a categorical distribu-
tion for qϕ(wijk|X,S), we apply the Gumble-softmax trick
[Maddison et al., 2017, Jang et al., 2016] to enable direct
differentiation for back-propagation during training.

The construction of fϕ(X,S) is based on graph neural net-
works, MLPs and/or CNNs. We experiment with different
architecture designs, and in the main text we focus on a
particular one named SDCI-Static which uses full-sequence
embedding in the message passing procedure. See Appendix
D.1 for more details and additional results.

Decoder for X. The decoder for the observations X given
edge-types W (e.g., sampled as wijk ∼ qϕ(wijk|X,S)) and
the states S are defined following the first-order Markov
assumption (with x0, s0 as dummy variables):

pψ(X|W,S) =
T−1∏
t=0

pψ(xt+1|xt, st,W), (7)

pψ(xt+1|xt, st,W) =

N∏
j=1

N (x̃t+1
j , σ2I). (8)

The mean x̃t+1
j is defined as follows. Given sampled edge-

types W = {wijk}, the decoder first queries the edge-type
for element j at time t + 1 as ztij = wijk′ for sti = k′

(also see Eq. 4). Then the information along the predicted
edge-type interactions is retrieved as follows 1

htij =
∑
e>0

1(ztij=e)
fe(xti, xtj) (9)

where {fe}nϵ−1
e=1 is a set of parametrizable functions, one

defined for each edge type excluding the no-edge interaction.
The interactions are finally integrated to model the dynamics
of each variable, where the mean for xt+1

j is defined as

x̃t+1
j = xtj + fp

(∑
i̸=j

htij , xtj
)
, (10)

where fp is a neural network that aggregates the information
from the previous time-step for prediction.

Training objective. The encoder qϕ(W|X,S) and decoder
pψ(X|W,S) are trained using a VAE objective:

L =

T−1∑
t=0

Eqϕ(W|X,S)
[
log pψ(xt+1|xt, st,W)

]
−KL

(
qϕ(W|X,S)||p(W)

)
. (11)

We used a factorised prior p(W) =
∏K
k=1

∏
ij pk(wijk)

which acts as a regularizer over the inferred edge-type dis-
tribution qϕ. In our experiments we set this prior to be
Uniform({0, . . . , nϵ − 1}), although in certain applications

1In training, 1(ztij=e) is replaced by the e-th dimension of
wijk′ which is sampled from qϕ with Gumbel-softmax relaxation.

it may be useful to use different pk to encourage different
sparsity levels for Gk.

Our method can also be extended to capture the state dynam-
ics and also consider hidden states, despite the latter losing
identifiability guarantees due to violations of our assump-
tion. We provide the corresponding details in Appendix C.

4 EXPERIMENTS

We evaluate SDCI on two non-stationary time series syn-
thetic datasets. Our results are compared to Amortized
Causal Discovery (ACD) [Löwe et al., 2020], TdCM Huang
et al. [2015], CD-NOD [Zhang et al., 2017], and SAEM
[Huang et al., 2019].

4.1 EXPERIMENTS ON LINEAR DATA

We start using linear message passing operations between a
number of different time series. Conditioned on the states,
the variables xti, xt+1

j ∈ R are connected by an edge of nϵ
different types. Each edge-type is captured by the linear
coefficients {βk ∈ R}nϵ−1

k=0 with the convention that β0 = 0
(as edge-type 0 represents no connection). Notice that the
effect of xti on xt+1

j changes during time according to the
state value sti and the underlying conditional summary graph
G1:K . Details of the data generation, training specifications,
and additional experiments can be found in Appendices F.1,
D.2, and G.1 respectively.

Scenario class 2. We consider simulations following sce-
nario class 2 (see Figure 1b), where the states are hidden
from the input data (only X is given). This enables com-
parisons with TdCM, CD-NOS and SAEM which perform
causal discovery based on X only. As these two baseline
methods consider constant causal connections (i.e., a single
summary graph) model the non-stationary behaviour differ-
ently, for a fair comparison we evaluate the identification
accuracy of the summary graph in a way such that it only
considers the existence of an edge rather than capturing the
edge type. We simulate N = 3 variables with 2 edge-types
(2-EDGE), 3 edge-types with constant summary graphs (3-
EDGE CONST) and 3 edge-types with no constraints on the
conditional summary graph (3-EDGE FREE).

We report the (conditional) summary graph identification
accuracies in Table 1. It is clear that SDCI performs the
best in extracting both the summary graph and conditional
summary graph of the underlying data distribution. Since
ACD relies on stationary time series, it achieves compara-
ble results when considering a constant causal graph. On
the other hand, TdCM, CD-NOD and SAEM perform sig-
nificantly worse, as they are designed for non-stationary
time series with distribution shifts and smooth time-varying
coefficients, which are not suited for time series data with
discrete changes in its dynamics. Furthermore, as compared
with TdCM, CD-NOD and SAEM which conduct causal



Table 1: Summary graph (SG) and conditional summary
graph (CSG) accuracy for linear data in scenario class 2.

SG ACCURACY
METHOD 2-EDGE 3-EDGE

CONST FREE

TDCM (T=100) 65.17± 2.65 63.67± 1.61 63.50± 1.62
CD-NOD (T=100) 39.33± 2.59 35.25± 2.51 28.58± 2.66
SAEM (T=100) 47.75± 3.67 39.04± 2.38 51.44± 3.81

TDCM (T=1000) 68.25± 2.29 61.17± 2.28 62.00± 2.14
CD-NOD (T=1000) 50.08± 2.59 42.08± 2.17 41.58± 2.02
SAEM (T=1000) 47.38± 4.10 25.93± 2.82 28.49± 3.28

ACD (T=50) 60.45± 1.60 87.00± 2.56 49.25± 3.05
SDCI-STATIC (T=50) 97.08± 1.05 90.17± 2.22 64.00± 2.93

CSG ACCURACY
2-EDGE 3-EDGE

CONST FREE

SDCI-STATIC (T=50) 98.08± 0.64 76.04± 2.05 65.45± 1.99

Figure 4: Time series forecasting of SDCI (solid line) and
ACD (dashed line) for 50 time-steps after causal inference
along with the ground-truth (GT, transparent line). The back-
ground represents the state value.

discovery on each multivariate time series separately, both
ACD and SDCI benefit from amortized causal graph in-
ference which utilises shared information across different
multivariate time series.

For the 2 edge-types setting, we visualise an example time
series forecasting result of SDCI and ACD given T = 50
observed time-steps in Figure 4, and the associated causal
graph identification results in Figure 5. In this particu-
lar case, SDCI correctly extracts the conditional summary
graph, agreeing with the high CSG accuracy reported in
Table 1. In contrast, ACD extracts a single causal graph
(which is incorrect), and the forecasts move to 0 rapidly.
Close inspection shows that ACD estimates α < 1, which in
this case without external effects or cycles in the summary
graph, it provokes all elements dropping to 0 eventually.

(a) Conditional summary graph (b) summary graph
Figure 5: (a) CSG and (b) SG extracted by SDCI (red) and
ACD (blue), along with the ground-truth (black).

Table 2: Test CSG accuracy (in %) and test MSE using
spring data with different states for SDCI-STATIC.

K CSG ACCURACY TEST MSE
1 99.67± 0.13 7.88 · 10−5 ± 4.64 · 10−4

2 97.11± 0.08 4.02 · 10−2 ± 1.96 · 10−4

3 95.79± 0.09 2.33 · 10−2 ± 1.64 · 10−4

5 80.34± 0.10 6.57 · 10−2 ± 3.23 · 10−4

8 74.87± 0.08 3.02 · 10−2 ± 1.63 · 10−4

4.2 EXPERIMENTS ON SPRING DATA

We evaluate our method on the synthetic spring data adapted
from Kipf et al. [2018], Löwe et al. [2020], which consists
of particles connected by springs with directed impact -
meaning that e.g. particle i could affect particle j with a
force through a connecting spring, but leaving particle i
unaffected by this spring force. We consider N = 5 parti-
cles, 2 edge-types (presence/absence of directed spring) and
scenario class 1 as presented in Section 1. Details of data
generation, model hyper-parameters, and results with other
scenario classes can be found in Appendices F.2, D.2 and
G.2 respectively.

Scenario class 1. In this experiment the states are known
and their dynamics are independent from the observations.
For the ground truth dynamics, the state transitions in-
crementally into the next one every 10 time-steps. Table
2 shows the corresponding results, where we experiment
with datasets generated with different number of states
K = 1, 2, 3, 5, 8. Note that when K = 1 the generated time
series is stationary, and SDCI’s performance matches the
results of ACD reported in Löwe et al. [2020]. Although per-
formance drops as K increases, SDCI-Static is able to main-
tain reasonable CSG accuracy , e.g., 74.87% for K = 8.

5 CONCLUSIONS

We have extended the causal discovery task to a class of
non-stationary time series named conditionally stationary
time series. Key to our development is the state-dependent
TiMINo as an extension of [Peters et al., 2013] to condi-
tionally stationary time series, and its identifiability under
observed states. We have developed SDCI for amortized
causal discovery utilizing the conditional summary graph,
and experiments on both synthetic linear and spring data
under different scenario classes show better performance in
extracting the underlying causal graph and forecasting.

A number of research directions are to be explored in the fu-
ture. For theoretical studies, identifiability for hidden states
can be derived with additional assumptions. For practical ap-
plications, SDCI can be applied to time series with states as
auxiliary variables for (possibly) indicating non-stationarity
regimes. It could also be extended to videos where e.g. the
interacting objects are partially and noisily observed as se-
mantically segmented regions. This would enable efficient
and effective use of neural networks for causal reasoning in
challenging real-world scenarios.
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A PROOFS

This section presents the detailed proofs for the theoretical
results of our paper. Again we note here that the results
only apply when the states S are fully observed. Our theory
extend on the theoretical results presented in Peters et al.
[2013] and Peters et al. [2017], which are presented first
before our proofs.

Proposition 1 (Prop. 6.36 in Peters et al. [2017]). Causal
minimality is satisfied if and only if ∀xj ,∀y ∈ PA(xj) we
have that xj ⊥̸⊥ y|PA(xj)\{y}

Proposition 2 (Prop. 7.4 in Peters et al. [2017]). Consider
a distribution given by the following additive noise model

xj = fj(PA(xj)) + ϵj , j = 1, . . . , N (12)

if the functions fj are not constant in any of their arguments,
then the joint distribution satisfies causal minimality with
respect to the corresponding graph.

Recall from the main text that state-dependent TiMINo is
defined as (with first-order Markov assumption, additive
noise model, and no instantaneous effect):

xtj = f st−1

j

(
(PA1

j |st−1)t−1
)
+ ϵtj , (13)

PA1
j |st−1 = {xi : xj ∈ Ci(s

t−1
i ), 1 ≤ i ≤ N}. (14)

Below we derive the identifiability results for state-
dependent TiMINo given fully observed states S.

A.1 STATE-DEPENDENT TIMINO PRESERVES
MARKOV CONDITION

We show that the state-dependent TiMINo is Markov.

Lemma 1. Given the states S, if X is generated by a state-
dependent TiMINo, then each variable is conditionally inde-
pendent of each non-descendants given its parents.

Proof. As the states S are given, we can retrieve the direct
causes of xtj :

P := PA(xtj) = {xt−1
i : xj ∈ Ci(s

t−1
i ), 1 ≤ i ≤ N},

and use state-dependent TiMINo to compute xtj given its
parents:

xtj |P=p = f st−1

j (p) + ϵtj .

Given its parents P, variable xtj is therefore independent of
its non-descendants.

A.2 STATE-DEPENDENT TIMINO PRESERVES
CAUSAL MINIMALITY

We show that the state-dependent TiMINo model satisfies
causal minimality given observed states.

Lemma 2. Assume all the functions fj in a state-dependent
TiMINo are not constant in any of their arguments. Then
causal minimality is preserved given observed states.

Proof. Again as the states S are observed, then for any xtj
the direct causes of it can be retrieved by:

P := PA(xtj) = {xt−1
i : xj ∈ Ci(s

t−1
i ), 1 ≤ i ≤ N}.

Assume causal minimality is not satisfied, then following
Proposition 1, there exists xtj and xt−1

i ∈ P such that

xtj ⊥⊥ xt−1
i |P\{xt−1

i }

Denote P\{xt−1
i } as PA. Then, if E[ϵtj ] = 0, there exists a

function c(·) such that

E
[
xtj
]
= f st−1

j

(
PA, xt−1

i

)
= c(PA), ∀xt−1

i .

This implies that f st−1

j is constant with respect to xt−1
i . It

contradicts with the assumption that f st−1

j is not constant in
any of its arguments. Therefore, causal minimality in state-
dependent TiMINo is preserved given observed states.

A.3 IDENTIFIABILITY IN STATE-DEPENDENT
TIMINO

Using the Markov and causal minimality results, we de-
rived the following identifiability result for state-dependent
TiMINo, and the proof is inspired by Peters et al. [2013].

Theorem 1. Consider the state-dependent TiMINo, where
only first-order Markov interactions are present, and there
is no instantaneous effects. Then the full time graph G1:T is
identifiable from the distribution of data given states.

Proof. Conditioned on S, assume that xt can be computed
from two state-dependent TiMINo with two different full
time graphs, G1:T

1 and G1:T
2 . Suppose there is an edge

xt−1
i −→ xtj which is in G1:T

1 , but not in G1:T
2 .

1. From G1:T
2 and the Markov condition (Lemma 1), we

have xtj ⊥⊥ xt−1
i |{xt−1

k , 1 ≤ k ≤ N, k ̸= i}.

2. From G1:T
1 and causal minimality (Lemma 2), we have

xtj ⊥̸⊥ xt−1
i |{xt−1

k , 1 ≤ k ≤ N, k ̸= i}.

Since we have a contradiction, the full time graphs G1:T
1

and G1:T
2 must be equal. Therefore, the full time graph is

identifiable from the distribution of data given states.



Given the identifiability results, in theory, we can estimate
the state-dependent TiMiNo in Eq. 2 with maximum likeli-
hood [Zhang et al., 2015]. In our implementation, we train
the model with the modified VAE objective 19. The empir-
ical results show that it infers causal structures correctly;
however, it is nontrivial to prove that the identifiability holds
with the modified VAE objective, which has been discussed
in [Geffner et al., 2022] as well and will be our future work.

A.4 IDENTIFIABILITY OF CONDITIONAL
SUMMARY GRAPH

Assuming the full time graph has been extracted success-
fully, one can deduce the structure of the conditional sum-
mary graph by observing the edges of pairs of variables
conditioned on the state variable which is the cause of the
interaction. In particular, the precise mathematical statement
for this identifiability result is as follows, assuming that all
the states of each element have been visited at least once in
order to condition on each possible state.

Corollary 1. Consider the state-dependent TiMINo, where
only first-order Markov interactions are present, and there
is no instantaneous effects. Then the conditional summary
graph G1:K is identifiable given the states S, if for any
1 ≤ i ≤ N and any 1 ≤ k ≤ K there exists 1 ≤ t ≤ T
such that sti = k.

Proof. Notice that Gk = {V, Ek} with V = {x1, . . . , xN},
therefore identifying Gk is equivalent to identifying the edge
set Ek. From the assumptions, the full time graph G1:T is
identifiable (Theorem 1). Then for each variable xt+1

j we
can retrieve from G1:T the parents PA(xt+1

j ). Then for each
xti ∈ PA(xt+1

j ), we can query its state sti and add an edge
xi → xj to the edge set Ek if sti = k. Now for any i, k
consider the i-th node in the k-th summary graph Gk, since
we assume that there exists 1 ≤ t ≤ T such that sti = k,
this makes sure that the edges coming out of node xi at
state k are added to Ek. Therefore this procedure captures
all possible edge interactions, and G1:K is identifiable given
identifiability of G1:T .

Notice that the assumption on each variable visiting all
possible states is required if one aims to obtain the full
structure of the conditional summary graph. Otherwise, if
the state k of a variable xi is not visited, this leaves the
outgoing edges of the i-th node in Gk undetermined, since
there is no information to extract from the full time graph.

B IDENTIFIABILITY EXTENSIONS FOR
STATE-DEPENDENT TIMINO

The first-order Markov assumption makes our definitions
and identifiability analysis simpler. However, we argue this

can still be very useful because (i) it usually suffices to
describe particle trajectories (position, velocity, acceleration,
etc), (ii) it allows us to present the conditional summary
graph as a compact representation of the causal structure,
and (iii) we present a method (SDCI) which leverages this
assumption for efficient causal discovery. One could easily
extend our identifiability results and definitions to higher
order time-lagged effects. Incorporating contemporaneous
effects is also possible, but requires further assumptions to
consider an identifiable functional model class (IFMOC)
[Peters et al., 2011] (e.g. linear f st−1

j with non-Gaussian
disturbances).

C EXTENSIONS OF SDCI

C.1 STATE DEPENDENT ON OBJECT DYNAMICS

Although we assume access to the states at all times and thus
we require no supervision upon S, we might find practical to
consider the setting where the state is in fact dependent on
X. Therefore, we extend our approach to model the temporal
dynamics of S by defining the joint distribution p(X,S|W)
as follows, again following the first-order Markov assump-
tion:

pψ(X,S|W) =

T−1∏
t=0

pψ(xt+1, st+1|xt, st,W) (15)

=

T−1∏
t=0

pψ(xt+1|xt, st,W)pψ(st+1|xt, st,W),

pψ(st+1|xt, st,W) =

N∏
j=1

pψ(s
t+1
j |xt, st,W). (16)

The distribution pψ(xt+1|xt, st,W) is defined as above. For
the variable st+1

j , we use a categorical distribution

pψ(s
t+1
j |xt, st,W) = Θ(s̃t+1

j ) (17)

where the logit s̃t+1
j ∈ Rnϵ is computed as

s̃t+1
j = fs

(∑
i̸=j

htij , xtj , s
t
j

)
(18)

with fs as a neural network that combines information from
previous observation, states and the predicted edge-type
interactions to predict the next state.

Objective (with S observed). The encoder qϕ(W|X,S)
and the decoder & state dynamic model pψ(X,S|W) are
trained using a modified VAE objective:

L =

T−1∑
t=0

{Eqϕ(W|X,S)
[
log pψ(xt+1|xt, st,W)

]
+ λEqϕ(W|X,S)

[
log pψ(st+1|xt, st,W)

]
}

−KL
(
qϕ(W|X,S)||p(W)

)
(19)
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Figure 6: Illustration of the implementation of the SDCI-Static encoder which is adapted from ACD [Löwe et al., 2020] and
allow for conditioning on states. In the example, we consider 2 states.

where we use λ to balance the accuracy in learning the
decoder for X and the state dynamics. Here we used a fac-
torised prior p(W) =

∏K
k=1

∏
ij pk(wijk) which acts as a

regularizer over the inferred edge-type distribution q. In our
experiments we set this prior to be Uniform({0, . . . , nϵ −
1}), although in certain applications it may be useful to use
different pk to encourage different sparsity levels for Gk.

C.2 HIDDEN STATE REGIME

Often in practice only observations of X are available, i.e.,
the states S are hidden variables. In this case we make a
factorised approximation qϕ(W,S|X) = qϕ(W|X)qϕ(S|X),
where qϕ(W|X) is defined in a similar way as the state fully-
observed case (see above) except for using network fϕ(X)
for the softmax logits. For the states, we consider qϕ(S|X) =∏T
t=1

∏N
i=1 qϕ(s

t
i|xti), with each qϕ(s

t
i|xti) defined as

qϕ(s
t
i|xti) = Θ(ŝti/γ), ŝti = f̂s(xti), (20)

with γ < 1 as a temperature factor and f̂s as a neural
network. For the decoding process given W ∼ qϕ(W|X),
we do not explicitly perform the edge query step for ztij
as it needs samples stij from qϕ(S|X). Instead we directly
compute the htij information for the predicted interaction
xi → xj at time t by marginalising out sti:

htij =
K∑
k=1

qϕ(s
t
i = k|xti)

∑
e>0

1(wijk=e)fe(x
t
i, xtj), (21)

and we apply similar Gumbel-softmax tricks as in the fully-
observed state case to replace 1(wijk=e) during training.
The VAE training objective in this case is similar to Eq. 19
except that the expectations of the log-likelihood terms are
taken under distribution qϕ(W,S|X), and the KL regulariser
is replaced by KL

(
qϕ(W|X)||p(W)

)
. We do not include

the entropy H[qϕ(S|X)] in the objective as one would have

done in sequential VAEs: as S are discrete, the entropy is
always non-negative, meaning that removing it still results
in a valid variational lower-bound.

Note that in this hidden state regime the previous theoretical
guarantees on identifiability no longer hold due to violations
of our assumptions. However, this setting can still be useful
as a showcase for analysis of non-stationary time series and
possible directions of future work.

D IMPLEMENTATION DETAILS

All the experiments are implemented in Pytorch [Paszke
et al., 2019] and carried out on NVIDIA RTX 2080Ti GPUs.

D.1 ENCODER ARCHITECTURE

Below we provide details of the encoder architectures.

SDCI-Static encoder The first design of the architecture
extends directly from ACD [Löwe et al., 2020] and we
refer to this model as SDCI-Static. We discuss the network
construction for hidden state case as an example, for which
the logits ϕij for the distribution qϕ(W|X) are obtained as
follows. First, the model computes a latent embedding for
each node i using the whole sequence:

h1
i = fϕ1

(x1:Ti ). (22)

Then each embedding is updated using a graph neural net-
work (GNN) that captures the correlations between nodes.
Specifically the message passing procedure follows the two
equations below:

h1
ij = fϕ2

(h1
i ,h1

j ), (23)

h2
i = fϕ3

(∑
i ̸=j

h1
ij

)
. (24)



t t+1

Pairwise
concatenation

Aggregate

MLP + AggrInput
Pairwise

Embedding

t t+1

t t+1
Embedding

Edge type
distribution

Aggregation

0 T-1

Consecutive frame grouping

Figure 7: Illustration of the implementation of the SDCI-Temporal encoder, which preserves the local temporal information
and aggregate it at last. In the example, we consider 2 states.

Finally, we obtain the softmax logit ϕij ∈ RK×nϵ for every
possible edge xi → xj and every possible state 1 ≤ k ≤ K:

ϕij = fϕ4
(h2
i ,h2

j ). (25)

The above network architecture design is visualised in Fig-
ure 6. according to equation 6. The details of the architecture
settings follows the design in Löwe et al. [2020]. Each em-
bedding step fϕi

uses two-layers of 256 dimensions and
ELU [Clevert et al., 2016] activations followed by a batch
normalization. fϕ4

uses skip connections and we modify its
output size to generate a pairwise embedding for each of the
K states. For fully-observed state case, the architecture for
qϕ(W|X,S) follows a similar structure, except that for the
first layer we use h1

i = fϕ1
(concat(x1:Ti , s1:Ti )), where s1:Ti

is a set of one-hot vectors representing the states {sti}Tt=1.

SDCI-Temporal encoder To preserve the temporal order-
ing information in the encoder, we propose another encoder
design, named SDCI-Temporal, which pays attention to cap-
turing the first-order dynamical structure in the data. Again
using the hidden state case as an example, the encoder trans-
formations are defined as:

h1,t
i = fϕ1

(xti, xt+1
i ), (26)

h1,t
ij = fϕ2

(h1,t
i ,h1,t

j ), (27)

h2,t
i = fϕ3

(∑
i ̸=j

h1,t
ij

)
, (28)

h2,t
ij = fϕ4

(h2,t
i ,h2,t

j ), (29)

ϕij = fϕaggr
({h2,t

ij }
T−1
t=1 ) (30)

Figure 7 shows the structure of the SDCI-Temporal en-
coder. We no longer use the whole sequence at first,

but concatenate consecutive frames and set it as the
input to fϕ1

, we perform this computation from 1 to
T − 1 time-steps. In the case of fully observed states,
xti and xt+1

i are replaced by concat(xti, one-hot(sti)) and
concat(xt+1

i , one-hot(st+1
i )) respectively as the inputs to

fϕ1
. All the subsequent steps, except for the aggregator

fϕaggr
have the same structure as the SDCI-Static encoder.

The design of the aggregator fϕaggr
, which aims to summa-

rize the temporal correlations captured throughout the whole
sequence, is crucial to the performance of SDCI-Temporal
encoder. Preliminary empirical results showed that with an
MLP fϕaggr , SDCI-Temporal performs poorly for inferring
causal structures from data. Instead we proposed a 1D CNN
for aggregation, which reported better results. In detail, for
the main text experiments, fϕaggr

consists of two-layer 1D
CNN of 256 filters of window size 5 plus a maxpool opera-
tion for the final aggregation. Future work towards designing
better aggregation schemes might consider attentive pooling
[Lin et al., 2017], or simply perform an average pool.

D.2 TRAINING SPECIFICATIONS

All the models participating in the experiments of this sec-
tion have been trained using the following training scheme,
including ACD [Löwe et al., 2020].

Customized decoder (linear data only) One of our ob-
jectives in the linear data experiments is to recover the un-
derlying world parameters {βk}nϵ−1

k=1 . Therefore the decoder
design imitates the message passing operation presented in
Eq. 31, which allows us to initialize the decoder using the
underlying world parameters and analyse the performance
of the encoder as a separate entity from the whole model.

Hyper-parameters Following Kipf et al. [2018], the mod-
els are trained using ADAM optimizer [Kingma and Ba,



2015]. The learning rate of the encoder is 5 ·10−4, the learn-
ing rate of the decoder is 1 · 10−3 for the synthetic linear
data experiments and 5 · 10−4 for spring data experiments.
Learning rate decay is in use with factor of 0.5 every 200
epochs. We train for 1000 epochs in the linear experiments
and 500 epochs in the springs experiments, using a batch
size of 128. The decoder is trained with teacher forcing ev-
ery 10 time-steps, i.e., it receives the ground-truth as input
every 10 time-steps. The temperature τ is set to 0.5 and
the variance of the Gaussian distribution of the decoder is
σ2 = 5·10−5. When considering the setting where we make
the state dependent on the dynamics of the objects (scenar-
ios 2 and 3), we set λ = 103. For inferring the hidden states,
we set the temperature γ = 0.1 in the linear experiments
and γ = 0.05 in the spring data experiments.

E EVALUATION

E.1 SUMMARY GRAPH IN TDCM

Huang et al. [2015] do not specify explicitly the computation
of the summary graph (or an equivalent object). To allow
a fair comparison, we take the same approach as in Huang
et al. [2019], where and edge from i to j is not incorporated
in the summary graph if the corresponding estimated time-
varying coefficient has mean and variance lower than a
theshold.

E.2 ACCURACY OF THE SUMMARY GRAPH

To clarify, the evaluation of the summary graph considers
correctly classifying the interaction between all pairs of
nodes in both directions. To exemplify, see Figure 5b. In
this case, we have N=3 variables, which means that our
method needs to produce 6 predictions (one for every pair
of edges in both directions). We then compute the accuracy
of these predictions and average across all the samples in
the test set.

E.3 COMPUTING THE SUMMARY GRAPH IN
SDCI

Notice that SDCI can extract the conditional summary graph
(CSG) whereas the baselines we compare with only consider
the summary graph (SG). Consequently, the only immediate
way to compare the performance in capturing the causal
structure among the methods we consider is to evaluate the
latter. From the definition of summary graph, we deduce
that one can estimate it by taking the union of the graphs in
the CSG. This is used to compute the summary graphs of
both SDCI and the ground truth structure of the generative
process.

F DATASETS

In this section we provide detailed information about the
datasets used in this work. We generate 50000 samples of
each setting for training the models. Regarding testing, we
compute all the metrics using 10000 samples, except when
comparing with CD-NOD, SAEM, and TdCM, where we
use 200 samples since they require retraining the whole
model for each sample. Moreover, notice that for these base-
lines we use sequences of much longer length (e.g., T = 100
or T = 1000) as these methods rely on longer sequences to
get accurate results.

F.1 LINEAR DATA

The ground-truth structural equation for the data generation
process at time t is

xt+1
j = αxtj +

N∑
i ̸=j

βkxti + ϵtj , k =
(
Esti

)
ij
, (31)

where α ∈ R controls the self-connection, and ϵti denotes
independent noise sampled at each time-step.

Below we provide details of the data generation process for
the linear data. First, we set the edge-type interactions. In our
experiments we set α = 0.9, β1 = 0.5, and β2 = −0.5 and
ϵti ∼ U(−0.2, 0.2). To generate each sample, we need to
sample the initial values of the continuous variable for each
element, x0i ∼ N (0, 2), and the underlying causal structure
dependent on the state, G1:K . At each time-step, it suffices
to query the edge-type k for each pair of variables and apply
the corresponding causal effect βk following Equation 31.
The edge-type is k =

(
Estj

)
ji

, where (Es)ji denotes the

causal effect from j to i at state s, which has been defined at
the beginning of the sequence. For all our experiments with
this dataset, we simulate N = 3 variables. When consider-
ing hidden states in scenario class 2, we set sti = 1(|xti|>2)

(2 states).

There are potential concerns that the generated samples
produced in the linear data may be unstable. Still we use this
data for one of the evaluations with the following reasons.
First, they define a simulated environment where one has the
ground truth and can debug and control simulation errors
with ease. Furthermore, for one-dimensional variables xi ∈
R (which is our case), this dataset reduces to a first order
Vector Autoregressive (VAR) model [Sims, 1980], which is
widely used in works related to causal discovery for time
series data [Gong et al., 2015]. The evolution of a sequence
in this case can be expressed as follows:

xt = Axt−1 + et (32)

where A is the causal transition matrix and et is an indepen-
dent noise process.



Regarding stability, the samples in this dataset are described
by a causal transition matrix A where the diagonal elements
are α and the off-diagonal elements are βk where k is the
edge-type interaction. For a first-order VAR to be stable, the
singular values of A need to be smaller than one. Taking
into the account that each sample can obey a different un-
derlying causal graph, one needs to check this condition for
all the possible arrangements of the off-diagonal elements
(since the diagonal elements are always α). The number of
matrices that one needs to check grows rapidly for increas-
ing number of variables, which makes the verification of
this condition computationally infeasible (recall that com-
puting the eigenvalues of a matrix has cubic cost O(N3)).
In practice, we generate random samples and keep them
if the magnitude of the last observation is comparable to
the initial one. We also require that the states are visited in
similar proportions to satisfy our assumptions on the data.

F.2 SPRING DATA

When considering springs with directed connections, we
follow the generation procedure described Kipf et al. [2018]
with a small modification where the spring interaction be-
tween a pair of particles can change over time (depending
on the state).

In this dataset, N particles are simulated inside a 2D box
where they can collide elastically with its walls. Each pair
of variables is connected by a spring with uniform prob-
ability. To allow for identification of causal connections
(directed edges), the connection is made unidirectional. The
springs interact via the Hooke’s law and this setting yield
the following equations:

fij = −δk(ri − rj), r̈i =
N∑
j=1

fij , xi = {ri, ṙi} (33)

where fij is the unidirectional interaction from particle j
to particle i, δk denotes the edge-type for each pair of vari-
ables, and ri and ṙi denote the 2D position and velocity of
each particle. The continuous variable xi is constructed by
concatenating the position and the velocity measurements.

Notice that the above equation defines the evolution of the
continuous variable for a single time-step. In our setting,
we have that k =

(
Estj

)
ji

. Thus, fij will change over time,

contrary to Kipf et al. [2018]. Since we consider two edge-
types, we define δ0 = 0 and δ1 = 0.1. To generate samples,
we first generate a random conditional summary graph G1:K

and the initial location and velocity. Then, trajectories are
simulated by solving the previous differential equations
using leapfrog integration. The step size used is 0.001 and
the trajectories are obtained by sub-sampling each 100 steps.
In our experiments, we set N = 5 and T = 80. When
considering hidden states in scenario class 2, we set sti =
1(xti>0) (2 states).

Table 3: Test edge-type accuracy (in %) and MSE for linear
data generated with scenario class 1 settings.

METHOD EDGE ACCURACY TEST MSE
ACD - FIXED DECODER 66.02± 0.29 0.49± 1.89 · 10−2

ACD 66.44± 0.29 0.47± 1.98 · 10−2

SDCI - STATIC - FIXED DEC. 90.43± 0.23 2.64 · 10−2 ± 4.55 · 10−3

SDCI - STATIC 93.84± 0.19 1.57 · 10−2 ± 4.03 · 10−3

G ADDITIONAL RESULTS

In this section we report additional experiments and qualita-
tive visualisations, which can be helpful to complement the
main results from Section 4 in the main text.

G.1 LINEAR DATA

Results for scenario class 1 We consider the case of sce-
nario class 1 (see Section 1) where the states S are observed
and their dynamics are independent from X. We compare
SCDI-Static with ACD, and evaluate the effect of explicitly
modeling the underlying state. We further consider the case
where the decoder is fixed and uses the ground-truth βk val-
ues, for which we denote as - FIXED DECODER or - FIXED
DEC. for short.

Table 3 shows the edge-type identification accuracy and
test data reconstruction mean-squared error (MSE) for a
simulation with N = 3 variables, K = 2 states, and nϵ =
2 edge-types (no-edge and β1). SDCI-Static successfully
performs the task of identifying the edges. In terms of the
ℓ1 error for estimating {βk}, ACD scores worse (∼ 10−3)
compared to SDCI (∼ 10−5).

We also evaluate SDCI-Temporal on the synthetic linear data
with 2 edge-types and 2 states. Table 4 extends the results
reported in Table 3 in the main text. We see that SDCI-
Temporal models generally return worse results than SDCI-
Static models. Specifically, SDCI-Temporal performs much
worse when using learned decoder, and it fails to identify the
underlying causal structure thus producing inaccruate fore-
casting results (see test MSE). Further inspection also shows
that its ℓ1 error for estimating {βk} is considerably higher
(∼ 10−2) than ACD and SDCI (∼ 10−3 and ∼ 10−5 respec-
tively). Given that SDCI-Static with learned decoder returns
accurate results, the failure of SDCI-Temporal is attributed
to the inaccurate posterior approximation in VAE learning,
which justifies improvement need for the aggregator fϕaggr

as already discussed in Appendix D.1.

We repeat the same experiments with 3 edge-types and 2
states, and report the results in Table 5. As before, SCDI-
Static shows superior performance in comparison to ACD
and SCDI-Temporal. Notice that the latter achieves simi-
lar accuracy scores in comparison to its FIXED DECODER
setting. In terms of the ℓ1 error for estimating {βk}, we
observe that both SDCI-Static and SDCI-Temporal provide
more accurate estimations (∼ 10−2 and ∼ 10−3 respec-



Table 4: Test edge-type accuracy (in %) and MSE for linear
data generated with scenario class 1 settings (fully-observed
states) for 2 states and 2 edge-types.

METHOD EDGE ACCURACY TEST MSE
ACD - FIXED DECODER 66.02± 0.29 0.49± 1.89 · 10−2

ACD 66.44± 0.29 0.47± 1.98 · 10−2

SDCI - STATIC - FIXED DEC. 90.43± 0.23 2.64 · 10−2 ± 4.55 · 10−3

SDCI - STATIC 93.84± 0.19 1.57 · 10−2 ± 4.03 · 10−3

SDCI - TEMPORAL - FIXED DEC. 82.79± 0.28 7.43 · 10−2 ± 4.79 · 10−3

SDCI - TEMPORAL 49.97± 0.28 0.84± 3.29 · 10−2

Table 5: Test edge-type accuracy (in %) and MSE for linear
data generated with scenario class 1 settings (fully-observed
states) for 2 states and 3 edge-types.

METHOD EDGE ACCURACY TEST MSE
ACD - FIXED DECODER 49.29± 0.31 0.50± 1.56 · 10−2

ACD 34.11± 0.28 0.66± 2.52 · 10−2

SDCI - STATIC - FIXED DEC. 92.75± 0.22 1.00 · 10−2 ± 1.57 · 10−3

SDCI - STATIC 84.36± 0.28 3.64 · 10−2 ± 2.19 · 10−3

SDCI - TEMPORAL - FIXED DEC. 70.99± 0.31 9.95 · 10−2 ± 4.45 · 10−3

SDCI - TEMPORAL 72.28± 0.31 9.64 · 10−2 ± 3.64 · 10−3

tively) compared to ACD (∼ 10−1). Compared to the fail-
ure of SDCI-Temporal (learned decoder) in the previous
experiment, one can deduce that accurate estimation of the
edge-type parameters plays a crucial role in learning to infer
the underlying causal structure. This is further illustrated
in Figure 8 which shows the evaluation metric curves of
SDCI-Temporal during training. Here the edge-type accu-
racy improves when the {βk} are estimated correctly, in
which the l1 estimation error tends towards zero.

Scenario class 2 The results considering linear data with
hidden states in scenario class 2 show that the CSG accu-
racy decreases when considering an additional edge-type
(see Table 1). However, when leaving the summary graph
constant (3-EDGE CONST) we obtain better CSG estima-
tions. Figure 9 shows the approximate posterior qϕ(sti|xti)
inferred by SDCI-Static in each of the 3 settings studied in
this experiment along with the true underlying state function,
sti = 1(|xti|>2). We notice that SDCI-Static achieves better
results when the quality of the estimated state function is
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Figure 8: Edge type accuracy and l1 error for estimating
{βk} for SDCI-Temporal as a function of training epoch for
3 edge-types in scenario class 1.
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Figure 9: Underlying state function for scenario class 2 in
the linear dataset, sti = 1.

Table 6: Test Edge-type accuracy (in %) and test MSE using
spring data with state transitions on wall collision.

METHOD EDGE ACCURACY TEST MSE STATE ACC

ACD 68.63± 0.14 1.46 · 10−3 ± 1.35 · 10−5 98.21± 0.02
SDCI-STATIC 79.19± 0.14 1.39 · 10−3 ± 1.33 · 10−5 98.53± 0.02

higher. This is expected, since querying the correct edge-
type from the conditional summary graph strongly relies
on accurate state estimations. Therefore, the model has to
learn the state distribution and only then will be able to infer
accurate causal structures. Although they can be challenging
in general, our results show that SDCI-Static is successful
in performing both learning steps in simple settings. This
offers a promising direction of work towards the conditional
stationary setting with hidden states.

Figure 10 shows samples for the linear data considering
hidden states and 2 edge-types along with the corresponding
causal summary graphs and summary graphs inferred by
both SDCI-Static and ACD. Since SDCI-Static achieves
high accuracy, the majority of the graph estimations match
the true causal summary graph, which results in good fore-
casts. We also show two cases (two last rows) where the
graph estimations do not match the ground-truth, and in
these cases the model does not predict the future trajectories
accurately. Similar to what we show in the main text, the
trajectories obtained with ACD drop rapidly to 0, and the
summary graph estimates are considerably worse.

G.2 SPRINGS DATA

Scenario class 3 We consider the case where the particles
are contained in a box, and the state of a particle transitions
when it collides with the wall of the box (see Figure 1c). For
simplicity, we only consider K = 2 states that transition al-
ternatively on wall collision. We report SDCI’s performance
along with ACD in Table 6. Regarding edge accuracy SDCI
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Figure 10: time series forecasting (left) of both SDCI (solid line) and ACD (dashed line) for 50 time-steps along with
the ground-truth (GT, transparent line). The first 50 time-steps are given to the models as input and the background color
represents the state value. We show the associated conditional summary graph (center) and summary graph (right) of SCDI
(red) and ACD (blue) along with the ground-truth (GT, black) for each sample. Each row represents a different sample.



Table 7: Summary graph (SG) and conditional summary
graph (CSG) accuracies of the different causal discovery
methods considering hidden states in the springs dataset.

METHOD SG ACCURACY CSG ACCURACY

CD-NOD (T=160) 30.05± 1.42 -
CD-NOD (T=1000) 35.53± 1.37 -
ACD (T=80) 67.19± 1.52 -
SDCI-STATIC (T=80) 77.95± 1.08 80.93± 1.33

performs significantly better, and ACD is limited by con-
sidering stationary dynamics only. However, both methods
achieve comparable test MSE metrics, indicating that that
ACD can still make decent predictions even when it fails in
identifying the edge-type interactions.

Scenario class 2 (hidden) We consider the hidden state
regime, where the underlying state of a particle changes
depending on its location in the box (K = 2, see Figure 1b).
Results in Table 7 shows a clear advantage of SDCI over
baselines in terms of summary graph identification accuracy,
and its accuracy levels are closer to the levels in scenario
class 3 with observed states (table 6). Again ACD is limited
by its stationary dynamics assumption, and CD-NOD fails
due to its inability in handling discrete changes in the causal
effects of the full time graph.

We visualize the time series forecasting results (for 50 time-
steps) with SDCI and ACD given an input sequence of
T = 80 time-steps, as well as the extracted & ground truth
(conditional) summary graphs in Figure 11. As in the linear
case, SDCI-Static produces accurate causal graph estimates.
Regarding time series forecasting, our method is able make
reasonable predictions. Notice that to train the models, we
use teacher forcing every 10 time-steps, which means that
the learned models are less suited for long-term dynamics
modelling. However, one can expect to obtain more accurate
predictions by progressively reducing the teacher forcing
frequency during training. Considering ACD, despite being
restricted by assuming stationary time series, it still infers
graph structures that allow the model to produce decent
forecasts.

Overall, our method successfully decomposes the non-
stationary dynamics into the conditional stationary ones
while capturing the state transition dynamics.
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Figure 11: time series forecasting (left, dotted lines) of SDCI and ACD for 50 time-steps along with the ground-truth. We
use solid lines to denote the input to the models and the background color represents the state value. We show the associated
conditional summary graph (center) and summary graph (right) of SCDI (red) and ACD (blue) respectively along with the
ground-truth (GT, black) for each sample. Each row represents a different sample.
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