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Abstract

Attention has become a central inductive bias for deep learning models irrespective of do-
main. However, increasing theoretical and empirical evidence suggests that Graph Atten-
tion Networks (GATs) suffer from the same pathological issues affecting many other Graph
Neural Networks (GNNs). First, GAT’s features tend to become progressively smoother
as more layers are stacked, and second, the model performs poorly in heterophilic graphs.
Sheaf Neural Networks (SNNs), a new class of models inspired by algebraic topology and
geometry, have shown much promise in tackling these two issues. Building upon the recent
success of SNNs and the wide adoption of attention-based architectures, we propose Sheaf
Attention Networks (SheafANs). By making use of a novel and more expressive attention
mechanism equipped with geometric inductive biases, we show that this type of construction
generalizes popular attention-based GNN models to cellular sheaves. We demonstrate that
these models help tackle the oversmoothing and heterophily problems and show that, in
practice, SheafANs consistently outperform GAT on synthetic and real-world benchmarks.
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1. Introduction

Graph Neural Networks (GNNs) are Neural Networks which operate over graphs. Their
main competitive advantage being that they are able to exploit the graph’s local neigh-
bourhood structure in the computations of the latent feature vectors. Two problematic
phenomena are associated to many GNN architectures: oversmoothing and the heterophily
problem. The former refers to the fact that building very deep neural networks often leads
to poor performance. The latter instead is related to the fact that GNNs are commonly
built with the inductive bias that neighbouring nodes are likely to be similar. One affected
and popular GNN model is the Graph Attention Network (GAT).

It has been shown that the heterophily and oversmoothing problems are, from a topo-
logical perspective, intimately connected (Bodnar et al., 2022). GNNs which operate over
cellular sheaves, Sheaf Neural Networks (SNNs) (Hansen and Gebhart, 2020; Bodnar et al.,
2022), offer a principled way of mitigating the aformentioned issues. In this work, moti-
vated by the great success of attention mechanisms, we propose the Sheaf Attention Network
(SheafAN), a generalization of the popular Graph Attention Network to cellular sheaves.
We find that SheafAN is able mitigate the issues of oversmoothing and heterophily in GAT
by leveraging the more complex geometry present in the sheaf.
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Figure 1: Left: Besides the usual attention coefficient αij , the sheaf-based attention mecha-

nism in SheafAN also learns a d×d “transport matrix” Pij (typically orthogonal)
describing how the vectors in the stalk of node j should be moved to the stalk of
node i. Right: A SheafAN layer updates the features at node i by transporting
all the vectors from the neighbouring stalks and aggregating them proportionally
to the attention coefficients.

2. Background

Definition 1 A cellular sheaf (G,F) on an undirected graph G = (V,E) consists of: (1) a
vector space F(v) for each v ∈ V , (2) a vector space F(e) for each e ∈ E and, (3) a linear
map Fv⊴e : F(v) → F(e) for each incident node-edge pair v ⊴ e.

The vector spaces of the node and edges are called stalks, while the linear maps are called
restriction maps. The sheaf F “bundles” the stalks and restriction maps together. The
underlying graph specifies the nodes and edges, while the sheaf specifies a network of linear
transformations over the nodes and edges. We define the space of 0-cochains C0(G,F) as the
direct sum over the node stalks C0(G,F) :=

⊕
v∈V F(v). Similarly, the space of 1-cochains

C1(G,F) as the direct sum over the edge stalks C1(G,F) :=
⊕

e∈E F(e). It is then natural
to construct a co-boundary operator δ : C0(G,F) → C1(G,F) as δ(x)e = Fv⊴exv−Fu⊴exu.
Through the co-boundary operator, we can construct a sheaf Laplacian. The sheaf Laplacian
of a sheaf is a map LF : C0(G,F) → C0(G,F) defined as LF = δ⊤δ. The normalized

sheaf Laplacian ∆F is defined as ∆F = D− 1
2LFD

− 1
2 where D is the block-diagonal of

LF . The sheaf Laplacian is a symmetric positive semi-definite (by construction) block
matrix. The diagonal blocks are LFv,v =

∑
v⊴eF⊤

v⊴eFv⊴e, while the off-diagonal blocks are

LFv,u = −F⊤
v⊴eFu⊴e.

With this machinery, one is able to build a Sheaf Neural Network layer (Hansen and
Gebhart, 2020; Bodnar et al., 2022), a GNN layer which operates over cellular sheaves. This
arises from the Euler discretization of a sheaf heat diffusion PDE (Hansen and Ghrist, 2021).
Consider a graph G with n nodes and d-dimensional node feature vectors xv ∈ F(v). Their
concatenation x is a 0-cochain such that x ∈ C0(G,F). Allowing for f feature channels,
we can construct a (nd) × f feature matrix X. The Neural Sheaf Diffusion (Bodnar et al.,
2022) model takes the form:

Xt+1 = Xt − σ
(
∆F(t)

(
In ⊗Wt

1

)
XtW

t
2

)
, (1)
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where σ is a non-linearity, In is a n×n identity matrix, and Wt
1 and Wt

2 are learnable weight
matrices. The sheaf Laplacian at time t, ∆F(t), is typically learnt through gradient-based
approaches by learning the individual restriction maps with a MLP Φ, i.e. Fv⊴e:=(v,u) =
Φ(xv,xu). More recently, Barbero et al. (2022) have shown that the sheaf can also be learnt
using tools inspired by Riemannian geometry.

3. Sheaf Attention Networks

The sheaf-attention mechanism we employ relies on an attention matrix Λ, which is a n×n
row-stochastic matrix. Each entry Λij is computed with an attention function a(xi,xj):

Λij = a(xi,xj) =
exp (LeakyRelu (a[Wxi||Wxj ]))∑

k∈Ni
exp (LeakyRelu (a[Wxi||Wxk]))

, (2)

where a and W are learnable weights of appropriate dimension, and || denotes vector
concatenation. We employ multi-head attention which empirically tends to outperform
single-head mechanisms (Velickovic et al., 2017; Vaswani et al., 2017). Note that this is the
same attention mechanism utilised in GAT. To generalise Λ to d-dimensional sheaves, we
construct the sheaf-attention matrix Λ̂ such that Λ̂ = Λ⊗1d where 1d is a d×d-dimensional
matrix with every element 1 and ⊗ is the Kronecker product. We then consider the following
attentive sheaf diffusion PDE, which evolves the node features X over time:

X(0) = X,
∂

∂t
X(t) =

(
Λ̂ (X) ⊙ ÂF − I

)
X(t). (3)

Here ⊙ indicates element-wise multiplication, and ÂF is the sheaf adjacency matrix with
added self-loops. That is ÂF (i, j) = F⊤

i⊴eFj⊴e =: Pij . The Euler discretisation with unit
time-step (τ = 1) of Equation 3 has the form:

X(t + 1) =
(

Λ̂ (X) ⊙ ÂF

)
X(t). (4)

We can equip Equation 4 with weight matrices W1
t ∈ Rd×d and W2

t ∈ Rft×ft+1 and a
non-linearity σ to derive our new Sheaf Attention Network (SheafAN) layer (see Figure 1):

Xt+1 = σ
((

Λ̂ (Xt) ⊙AF

) (
In ⊗W1

t

)
XtW

2
t

)
, (5)

where ft and ft+1 are the input and output channels sizes respectively, and Λ̂ (Xt) is the
attention matrix for layer t. It is natural to call this a Sheaf Attention Network, since the
original GAT model is a particular instantiation of the aforementioned model for which
restriction maps are 1-dimensional (d = 1) and equal to 1. We also consider a different
parametrization of Equation 4:

Xt+1 = Xt + σ
((

Λ̂ (Xt) ⊙AF − I
) (

In ⊗W1
t

)
XtW

2
t

)
, (6)

which we call Res-SheafAN. The Res-SheafAN model is different to the SheafAN model
as it uses a type of residual parametrization, where the feature updates are of the form
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ht+1 = ht + f(ht, θt). This is motivated from the spectral perspective of being able to act
as both a high-pass and low-pass filter (Di Giovanni et al., 2022). In particular, without
a residual connection the model may be dominated by the low frequency signals over the
graph as more layers are added, contributing to oversmoothing.

For our purposes, we use orthogonal restriction maps, i.e. Fv⊴e ∈ O(d), effectively
learning an O(d)-vector bundle. Since orthogonal transformations are norm-preserving, the
attention coefficients play the complementary role of adjusting the strength or magnitude
of the incoming messages. Besides, O(d) restriction maps are advantageous because they
have d(d− 1)/2 free parameters compared to the d2 free parameters in general linear maps,
which can be understood as a form of regularization. On top of this, they have also been
shown to be theoretically advantageous as they are able to more efficiently separate nodes
using the same stalk width d when compared to, for instance, diagonal linear maps (Bodnar
et al., 2022).

Encoding signed messages (using rotation angles of orthogonal maps for example) is
crucial in settings of low homophily (Yan et al., 2021). From an opinion dynamics per-
spective (Hansen and Ghrist, 2021), a negatively signed message may be thought of as
modelling a node’s opinion which contradicts another node’s opinion. As one can imagine,
this behaviour is related to low homophily, where two nodes are more likely nodes to “dis-
agree” on their class. We therefore expect this higher-dimensional disagreement in the form
of higher-dimensional orthogonal restriction maps to be very advantageous in heterophilic
settings.

Table 1: Accuracy ± stdev for various node classification datasets. “OOM” stands for out
of memory, whilst “INS” stands for numerical instability. The top three models
for each dataset and layer count are coloured by First, Second and Third.

Layers 2 4 8 16 32 64 Best 2 4 8 16 32 64 Best

Cora (h=0.81) Citeseer (h=0.74)
SheafAN (ours) 86.90±1.31 86.84±0.97 86.68±1.13 86.54±0.89 86.62±1.39 86.26±1.09 2 76.27±1.76 76.30±1.80 76.62±1.70 76.18±1.47 76.07±2.18 75.99±1.84 8
Res-SheafAN (ours) 86.98±1.07 87.08±1.26 86.80±1.15 86.84±1.24 86.56±0.75 86.76±1.49 4 76.99±1.74 76.86±1.71 76.61±1.51 76.69±1.56 76.22±1.47 76.44±1.30 2
GGCN 87.00±1.15 87.48±1.32 87.63±1.33 87.51±1.19 87.95±1.05 87.28±1.41 32 76.83±1.82 76.77±1.48 76.91±1.56 76.88±1.56 76.97±1.52 76.65±1.38 10
GPRGNN 87.93±1.11 87.95±1.18 87.87±1.41 87.26±1.51 87.18±1.29 87.32±1.21 4 77.13±1.67 77.05±1.43 77.09±1.62 76.00±1.64 74.97±1.47 74.41±1.65 2
H2GCN 87.87±1.20 86.10±1.51 86.18±2.10 OOM OOM OOM 2 76.90±1.80 76.09±1.54 74.10±1.83 OOM OOM OOM 1
GCNII 85.35±1.56 85.35±1.48 86.38±0.98 87.12±1.11 87.95±1.23 88.37±1.25 64 75.42±1.78 75.29±1.90 76.00±1.66 76.96±1.38 77.33±1.48 77.18±1.47 32
PairNorm 85.79±1.01 85.07±0.91 84.65±1.09 82.21±2.84 60.32±8.28 44.39±5.60 2 73.59±1.47 72.62±1.97 72.32±1.58 59.71±15.97 27.21±10.95 23.82±6.64 2
Geom-GCN 85.35±1.57 21.01±2.61 13.98±1.48 13.98±1.48 13.98±1.48 13.98±1.48 2 78.02±1.15 23.01±1.95 7.23±0.87 7.23±0.87 7.23±0.87 7.23±0.87 2
GCN 86.98±1.27 83.24±1.56 31.03±3.08 31.05±2.36 30.76±3.43 31.89±2.08 2 76.50±1.36 64.33±8.27 24.18±1.71 23.07±2.95 25.3±1.77 24.73±1.66 2
GAT 87.30±1.10 86.50±1.20 84.97±1.24 INS INS INS 2 76.55±1.23 75.33±1.39 66.57±5.08 INS INS INS 2

Cornell (h=0.3) Chameleon (h=0.23)
SheafAN (ours) 82.70±6.64 84.59±4.69 85.68±4.53 84.32±6.82 83.51±7.20 78.65±10.29 8 65.88±2.10 65.99±1.28 68.16±2.18 68.62±2.81 67.61±2.80 OOM 16
Res-SheafAN (ours) 84.86±6.07 84.32±5.10 84.86±5.95 84.59±6.51 83.24±3.97 82.43±8.90 8 65.35±1.26 67.11±1.88 66.69±2.30 67.39±1.84 66.91±1.61 OOM 16
GGCN 83.78±6.73 83.78±6.16 84.86±5.69 83.78±6.73 83.78±6.51 84.32±5.90 6 70.77±1.42 69.58±2.68 70.33±1.70 70.44±1.82 70.29±1.62 70.20±1.95 5
GPRGNN 76.76±8.22 77.57±7.46 80.27±8.11 78.38±6.04 74.59±7.66 70.00±5.73 8 46.58±1.771 45.72±3.45 41.16±5.79 39.58±7.85 35.42±8.52 36.38±2.40 2
H2GCN 81.89±5.98 82.70±6.27 80.27±6.63 OOM OOM OOM 1 59.06±1.85 60.11±2.15 OOM OOM OOM OOM 4
GCNII* 67.57±11.34 64.59±9.63 73.24±5.91 77.84±3.97 75.41±5.47 73.78±4.37 16 61.07±4.10 63.86±3.04 62.89±1.18 60.20±2.10 56.97±1.81 55.99±2.27 4
PairNorm 50.27±7.17 53.51±8.00 58.38±5.01 58.38±3.01 58.92±3.15 58.92±3.15 32 62.74±2.82 59.01±2.80 54.12±2.24 46.38±2.23 46.78±2.26 46.27±3.24 2
Geom-GCN* 60.54±3.67 23.78±11.64 12.97±2.91 12.97±2.91 12.97±2.91 12.97±2.91 2 60.00±2.81 19.17±1.66 19.58±1.73 19.58±1.73 19.58±1.73 19.58±1.73 2
GCN 60.54±5.30 59.19±3.30 58.92±3.15 58.92±3.15 58.92±3.15 58.92±3.15 2 64.82±2.24 53.11±4.44 35.15±3.14 35.39±3.23 35.20±3.25 35.50±3.08 2
GAT 61.89±5.05 58.38±4.05 58.38±3.86 INS INS INS 2 60.26±2.50 48.71±2.96 35.09±3.55 INS INS INS 2

Evaluation We evaluate the performance of SheafAN and Res-SheafAN in different set-
tings of heterophily and with varying number of layers. We follow the analysis structure
proposed by Yan et al. (2021) by evaluating our sheaf attention models on Cora, Citeseer,
Cornell and Chameleon with layers increasing in powers of 2 from 2 to 64. The accuracy
and standard deviation is computed with respect to 10 fixed splits provided by (Pei et al.,
2020), with each split containing 48%/32%/20% of nodes for training/calibration/testing
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respectively. We run our experiments on a machine equipped with an NVIDIA TITAN X
GPU (12 GB) and an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GhZ.

We consider models of different classes. 1) Classical GNN models: GCN (Kipf and
Welling, 2016), and GAT (Velickovic et al., 2017). 2) Models designed to address over-
smoothing: GCNII (Chen et al., 2020), and PairNorm (Zhao and Akoglu, 2019). 3) Models
designed for heterophilic settings: GGCN (Yan et al., 2021), Geom-GCN (Pei et al., 2020),
H2GCN (Zhu et al., 2020), and GPRGNN (Chien et al., 2020). Table 1 shows the over-
smoothing results. We see how models which are not designed for oversmoothing exhibit
various issues, ranging from accuracy dropping rapidly (GCN and Geom-GCN), to memory
issues (H2GCN), to numerical instability (GAT).

We find that our sheaf attention mechanism models perform very competitively when
compared to state of the art techniques such as GCNII. Furthermore, SheafAN consistenly
outperforms GAT. We attribute this to the more complex geometry of the underlying sheaf.
The model is able to leverage the additional stalk width to tamper the effect of oversmooth-
ing, in accordance with the analysis of Bodnar et al. (2022). SheafAN performs particularly
well on the Cornell and Chameleon datasets, when compared to the other models, which
are particularly heterophilic datasets. While other models are generally designed to combat
either oversmoothing or heterophily, SheafAN seems to be particularly well-equipped for
both at once.

Conclusion We proposed SheafAN, a generalization of GAT, which makes use of an ad-
ditional cellular sheaf structure on top of the graph. The resulting form of sheaf-based
attention demonstrates competitive performance with state-of-the-art models on tasks re-
lated to oversmoothing and heterophily. We hope the present work will encourage further
integration between sheaves and the attention mechanisms often employed in deep learning
models.
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