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ABSTRACT

Evaluating the quality of qualitative datasets containing responses collected for
semi-structured questions is a persistent challenge. Manual analysis is slow and
subjective, while existing automated methods lack a holistic, dataset-level per-
spective crucial for mining insights. We introduce IntE, a novel framework for
the quantitative assessment of qualitative response datasets. IntE evaluates dataset
quality using the cluster distributions based on collected responses and the pre-
defined demographic distributions based on user metadata. IntE is structured into
a four-quadrant assessment that quantifies the potential of a dataset for revealing
general patterns and unique insights. The four quadrants rely on the distribu-
tions reconstructed via metadata and intra-data distances. Therefore, we propose
a content-aware multi-agent system that accurately computes inter-response dis-
similarity. This system features a two-stage adversarial framework for generating
domain-specific evaluation instructions and an adaptive anchor algorithm to en-
sure scoring consistency. We validate IntE through controlled experiments on
synthetic data, highlighting the effectiveness of its components. Additionally, a
real-world social survey case study, validated by domain experts, demonstrates
IntE’s capability to enhance knowledge discovery by accurately evaluating dataset
quality and identifying key responses for analysis.

1 INTRODUCTION

Semi-structured questions play a crucial role in studies involving human participants. They enable
researchers to gather detailed qualitative responses, uncovering general patterns and unique insights
across demographic groups (e.g., age, gender). For example, in a study on student well-being, a
question like “How have your eating habits changed since starting college?” might reveal general
patterns, such as freshmen reporting poorer diets, as well as unique insights from unexpected cases,
such as freshmen who are student-athletes maintaining healthy eating habits due to their training.

Quality evaluation of a qualitative response dataset is crucial before conducting analysis. Without
it, researchers risk wasting time analyzing low-quality responses and failing to discover both gen-
eral patterns and unique insights. However, existing quality evaluation methods are insufficient.
Traditional manual approaches are not scalable and lack the quantitative outputs needed to guide
data improvement (Mattimoe et al., 2021; Campbell et al., 2013). Most automated methods eval-
uate individual responses in isolation (Chen et al., 2023b; Swayamdipta et al., 2020), overlooking
the inter-response relationships and overall dataset structure, which are crucial for the comparative
analysis required for knowledge discovery (Fayyad et al., 1996; Glaser & Strauss, 2017).

Rather than focusing on individual responses, our work aims to evaluate a response dataset as a
whole based on how much knowledge it contains for mining group-based patterns and insights.
We propose IntE, a new quantitative quality evaluation method that assesses a qualitative dataset
by comparing its internal structure to its known demographic composition. Intuitively, since the
demographic structure (e.g., the age or gender distributions of respondents) of a dataset is known,
the quality of the dataset can be assessed by analyzing its alignment with and divergence from that
structure. Specifically, a strong alignment may suggest the dataset confirms expected, general pat-
terns. On the other hand, a divergence between the two often signals the presence of new and unique
insights. Based on this, the core idea of IntE is to assess a dataset by quantitatively (1) measuring the
alignment and divergence between a demographic distribution based on user metadata and a cluster
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distribution empirically derived from actual responses, and (2) examining the divergence within the
cluster distribution itself. This dual approach allows us to identify general patterns within dense,
homogeneous regions (e.g., high-density cluster centers), as well as to locate unique insights within
abnormal responses (e.g., outliers and cross-demographic clusters).

More specifically, IntE consists of two components. First, it uses a four-quadrant assessment
framework that operationalizes the comparison between the cluster and demographic distributions
(Sec. 3.2). This framework yields four distinct metrics that characterize a dataset’s utility for dis-
covering general patterns versus unique insights at both the distribution and data-point levels. The
four quadrants rely on the distributions reconstructed via metadata and intra-response distances.
Therefore, IntE integrates a content-aware multi-agent system to compute nuanced, inter-response
dissimilarity (Sec. 3.1). To make the agent more reliable and domain-aware, this multi-agent sys-
tem enhances the LLM-as-a-Judge paradigm (Zheng et al., 2023) with two key innovations. First,
a novel interactive instruction generation system enables efficient, domain-specific instruction gen-
eration (Sec. 3.1.2), moving beyond manual or black-box methods (Zhou et al., 2022; Shah, 2024;
Pryzant et al., 2023; Chen et al., 2023a). Second, a dynamic anchor updating algorithm (Sec. 3.1.3)
maintains a stable semantic reference frame to ensure evaluation consistency and mitigate scoring
drift, improving upon static example-based approaches (Yang et al., 2024; Dong et al., 2024).

We validate IntE through a series of controlled experiments on synthetic data and a case study on a
real-world dataset from economics research. The results demonstrate that IntE , the instruction gen-
eration module, and the anchor updating algorithm are effective, robust, and capable of accelerating
knowledge discovery in practice. In summary, our contributions are:

• We propose a four-dimensional quantitative assessment framework for data collected from
semi-structured questions, based on comparing data-driven and demographic distributions
to guide researchers on data quality and potential key data.

• We design a content-aware multi-agent system to extract inter-response dissimilarity, fea-
turing a human-in-the-loop adversarial process for instruction generation and an adaptive
anchor algorithm for evaluation consistency.

• We conduct controlled experiments via a synthetic data generation system and a real-world
case study, which validate the effectiveness and practical utility of IntE and its components.

2 RELATED WORK

Quality Evaluation of Qualitative Datasets. Traditionally, assessing the quality of qualitative
datasets, such as responses from semi-structured interviews, has been a manual process centered
on data richness and thickness (Mattimoe et al., 2021; Campbell et al., 2013; Ames et al., 2024;
Naeem et al., 2024; Johnson et al., 2020). Since the manual process is resource-intensive and time-
consuming, early computational approaches have been proposed to automate the process. However,
they often failed to capture the deep semantic nuances essential for qualitative insights (Manning &
Schutze, 1999; Cambria & White, 2014; Chang et al., 2009). The recent advent of LLMs has enabled
significant progress, with studies showing their capacity to achieve human-level performance in
assessing individual text entries against predefined criteria (Parfenova et al., 2024; Barros et al.,
2025; Gilardi et al., 2023; Chen et al., 2023b). However, this data-point-level focus (Smith et al.,
2014; Swayamdipta et al., 2020; Kuan & Mueller, 2022) overlooks the holistic quality of the entire
dataset, which is critical for assessing its potential for knowledge discovery (Fayyad et al., 1996;
Zhang et al., 2024; Reis et al., 2024; Glaser & Strauss, 2017; Ghorbani & Zou, 2019). To address
this limitation, IntE introduces a novel framework that holistically evaluates the quality and potential
of a dataset through the intrinsic cluster distribution and extrinsic demographic distribution.

LLM-based Automated Evaluation. Our approach is built on the “LLM-as-a-Judge” paradigm,
where LLMs serve as scalable proxies for human preference judgments (Zheng et al., 2023; Kim
et al., 2023; Zhu et al., 2023; Dunivin, 2024). However, this paradigm still faces several challenges.
First, LLMs are susceptible to biases, including positional and verbosity biases, which can com-
promise evaluation objectivity (Ye et al., 2024; Li et al., 2024; Wang et al., 2023; Shi et al., 2024;
Saito et al., 2023). Furthermore, ensuring consistent and reproducible judgments is difficult, as
LLMs suffer from scoring drift and low self-consistency due to sensitivity to prompt phrasing (Lee
et al., 2025; Zhou et al., 2024; Schroeder & Wood-Doughty, 2024). Finally, crafting high-quality,
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domain-specific instructions for LLM judges also remains a labor-intensive task requiring significant
expertise, which will limit rapid adaptation to new tasks (Khalid & Witmer, 2025; Raju et al., 2024).
IntE devises a content-aware multi-agent system that enhances domain adaptability and consistency
of evaluation via the interactive instruction generation and the adaptive anchor-update algorithm.

3 PROPOSED METHOD

Figure 1 shows the overview of IntE with three steps. Specifically, the input of IntE is a response
dataset (Fig. 1-a) collecting free-text responses to a question, where each response is associated
with user demographic metadata. Then, IntE uses two components to assess the quality of the re-
sponse dataset, including (1) a four-quadrant assessment framework (the third step) that compares
between the cluster and demographic distributions to quantitatively evaluate data, and (2) a content-
aware multi-agent system (the first two steps) that enhances the LLM-as-a-Judge paradigm to
compute nuanced, inter-response dissimilarity to reconstruct distributions.

In the first step, we use the Two-stage Iterative Instruction Generation (Fig. 1-b) system
(Sec. 3.1.2) to quantify nuanced response relationships, starting with automated discovery of a uni-
versal evaluation instruction, followed by context-specific refinement via human-in-the-loop.

Figure 1: Overview for IntE.

Second, this refined instruction is used to compute a pairwise dis-
similarity matrix for the responses. To ensure consistency across
these calculations, especially given the context window limitations
of LLMs, we employ an Adaptive Anchor Manifold Maintenance
(Fig. 1-c) algorithm (Sec. 3.1.3). This algorithm dynamically man-
ages a set of reference examples, or “anchors”, to provide a stable
semantic frame for the LLM evaluator.

Finally, the cluster distribution and demographic distribution
are reconstructed (Fig. 1-d). The dissimilarity matrix is used to
partition the data via ensemble clustering, yielding a cluster dis-
tribution. This is compared against the demographic distribution
derived from user metadata (Sec. 3.2.2). IntE formulates a four-quadrant assessment (Fig. 1-e)
based on the delta between these two distributions, yielding metrics that characterize the dataset
in terms of general patterns versus unique insights at both the distribution and data-point levels
(Sec. 3.2.2).

3.1 CONTENT-AWARE DISSIMILARITY EXTRACTION

3.1.1 PROBLEM FORMULATION

Given a response datasetD = {di}Ni=1 from a question with context Cxt (e.g., topic, evaluation axis),
our goal is to extract a consistent inter-response dissimilarity matrix D.

This requires designing a system that can: (i) generate an optimal evaluation instruction P ∗ tailored
to the context Cxt, and (ii) use P ∗ to compute dissimilarities while maintaining global consistency.

Let P be the space of all possible instructions. For any instruction P ∈ P , an LLM-based evaluator
E produces a dissimilarity score S = E(P, di, dj , Cxt). The quality of P is measured by its align-
ment with a reference judgment from an Oracle O (a powerful LLM or human expert), providing a
score SO. The optimization objective is to find the instruction P ∗ that minimizes the expected loss:

P ∗ = arg min
P∈P

E(di,dj)∼D
[
ℓ(E(P, di, dj , Cxt), O(di, dj , Cxt))

]
(1)

where ℓ(·, ·) is a suitable loss or pseudo-loss function. To solve this, we model instruction gen-
eration as an optimization process using feedback as a pseudo-gradient (Sec. 3.1.2). To enforce
consistency, we introduce an anchor manifold A, a set of reference responses that is dynamically
updated (Sec. 3.1.3).
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Figure 2: The Content-Aware Multi-agent System for Dissimilarity Extraction. It involves two parts:
the iterative instruction generation part (Sec. 3.1.2) and the adaptive anchor manifold updating part
(Sec. 3.1.3). The first part efficiently generates context-aware instructions for the second part to
perform dissimilarity extraction.

3.1.2 ITERATIVE INSTRUCTION GENERATION

Manually authoring context-specific evaluation instructions is not scalable, as it may involve signif-
icant human labor. We propose a two-stage framework that models instruction optimization as an
iterative refinement guided by feedback, which acts as a pseudo-gradient.

At each iteration t, an Oracle provides feedback on the current instruction P (t). This feedback,
∇̂P (t)L, consists of a corrected score and a natural language critique, (S(t)

O , F
(t)
text). An updater

LLM, LLMupdater, uses this feedback to generate a refined instruction P (t+1):

P (t+1) = LLMupdater(P
(t), ∇̂P (t)L) (2)

This formulation treats the natural language critique as a pseudo-gradient, guiding the optimization
in the high-dimensional space of instructions. The magnitude and direction of the “update” are
determined by the content of the critique. This process unfolds in two stages:

Stage 1: Automated Instruction Discovery. The goal is to generate a diverse set of high-quality,
general-purpose instructions. In this stage, the Oracle is a powerful LLM (O ≡ OLLM). The iterative
generation process runs automatically until a termination condition is met to build instructions from
none. This condition is also determined by O ≡ OLLM, additionally acting as a strict evaluator,
which assesses the instruction against rigorous criteria for universality, clarity, and quality. The
process halts when the instruction achieves a high score (e.g., greater than 0.9) and performance of
LLM-based evaluator E with instruction P . This stage concludes with a human user selecting the
most promising instruction P ∗

a from the generated candidates.

Stage 2: Human-in-the-Loop Adaptation. The objective is to specialize the selected instruction
P ∗
a for a specific task. The Oracle is a human expert (O ≡ OH ). OH provides precise, context-

aware feedback, guiding the updater LLM to converge on a specialized instruction P ∗. The loop
terminates when the expert is satisfied with the evaluator’s performance and gives no more input.

3.1.3 ADAPTIVE ANCHOR MANIFOLD MAINTENANCE

To ensure consistent dissimilarity measurements, we maintain a sorted anchor manifold A =
{a1, . . . , ak}, where each anchor aj is a (response, score) pair and k ≤ kmax. It provides a sta-
ble semantic reference for the LLM. The algorithm iteratively processes new responses and updates
the manifold to maximize semantic diversity while respecting the capacity constraint kmax.

The update cycle involves three phases: (1) Evaluation: A new candidate response d is com-
pared against other data from D under the guidance of the anchor manifold to assess dissimilar-
ity scores, which are then used to compare with the current anchors in A to determine its nov-
elty. (2) Filtration: Candidates that offer the most novelty are selected. Novelty is measured by
the Diversity Contribution Score (DCS), defined as the average dissimilarity to existing anchors:
DCS(d) = 1

k

∑k
j=1 δ(d, aj). (3) Integration and Pruning: The selected novel candidates are in-

tegrated into the manifold. If |A| > kmax, the most redundant anchor is pruned. Redundancy is
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measured by the Local Redundancy Index, ρ(aj) = 1 − δ(dj , dj−1) · δ(dj , dj+1), which identifies
anchors that are semantically interpolated by their neighbors.

The implementation of the evaluation phase adapts to the dataset size N , but instructions for both
approaches are generated through the same generation process (Sec. 3.1.2):

• For small datasets (N ≤ Nthreshold): We use a high-fidelity approach where dissimilarities
δ(di, dj) are computed via direct pairwise LLM calls. This has a complexity of O(N2).

• For large datasets (N > Nthreshold): To maintain computational feasibility, we use a
linearized O(N) approach. A computationally efficient LLM operator assigns a scalar
score S(d) to each response. All dissimilarities are then approximated as the absolute
difference between these scores: δ(di, dj) ≈ |S(di)− S(dj)|.

3.2 DATA-DISTRIBUTION-DRIVEN QUALITATIVE DATASET ASSESSMENT

3.2.1 PROBLEM FORMULATION

We formalize the dataset quality assessment problem as one of comparing two different distributions
of the data. Let the dataset be D = {di}Ni=1. Each data point di is associated with:

1. An extrinsic demographic label yi ∈ {1, . . . , C}, derived from user metadata Ii via a
mapping yi = f(Ii). This defines the demographic partition P = {Cj}Cj=1., how the data
distributes across different demographic partitions is called demographic distribution

2. An intrinsic cluster label ŷi ∈ {1, . . . ,K}, obtained by applying an unsupervised cluster-
ing to a dissimilarity matrix D ∈ RN×N . This defines the cluster partition P̂ = {Ĉk}Kk=1,
and how the data distributes across different cluster partitions is called cluster distribution.

Objective: A researcher might aim to use data either for (1) finding common responses that rep-
resent each group of people, general patterns, or (2) discovering previously unknown unique in-
sights. These analyses can be conducted at two granularities: the distribution level and the data-
point level. Aligned with these practices, we seek to define a set of normalized metrics that quantify
dataset quality by evaluating the concordance and divergence between the demographic partition P
and the cluster partition P̂ , resulting in our four-quadrant assessment framework (Fig. 3).

3.2.2 THE FOUR-QUADRANT ASSESSMENT FRAMEWORK

(1) Defining Demographic and Cluster Distributions

Extrinsic Demographic Distribution: This distribution is defined a priori from user metadata
on characteristics researchers want to analyze. A researcher-defined function, yi = f(Ii), maps
attributes (e.g., expertise level) to a demographic label for each response di. The resulting vector
y = {yi}Ni=1 represents the ground-truth or expected structure of the dataset.

Intrinsic Cluster Distribution: This distribution is derived a posteriori from the data’s internal
structure. A pairwise dissimilarity matrix D is fed into an ensemble of clustering, where we use
multiple k-means clusters and then vote for the final result (Ahmed et al., 2020). This yields a
vector of cluster assignments ŷ = {ŷi}Ni=1. Since cluster labels are arbitrary, we align them with
demographic labels by solving a maximum weight bipartite matching problem, where the weight
between a demographic group Cj and a cluster Ĉk is their Intersection-over-Union (Yu et al., 2016).

(2) Preliminaries

Let y and ŷ be the demographic and (aligned) cluster assignment vectors. Let M ∈ NC×C be
the confusion matrix where Mjk is the count of data points from demographic j in cluster k. Let
nj = |Cj | and n̂k = |Ĉk| be the sizes of demographic j and cluster k. Let D be the dissimilarity
matrix. We define:

• Average Intra-Cluster Dissimilarity (δ̄intra): The mean dissimilarity between pairs of
data points within the same cluster.

• Average Inter-Cluster Dissimilarity (δ̄inter): The mean dissimilarity between pairs of data
points in different clusters.
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Figure 3: The Four-Quadrant Assessment Framework, which evaluates a dataset based on the re-
search goal (General Patterns/Unique Insights) and the analysis level (Distribution/Data Point).

(3) Evaluation Metrics

General Pattern / Data Point: General Match Ratio (GMR). This metric assesses the global
alignment between the demographic and cluster partitions. A high GMR indicates that the dataset’s
intrinsic structure aligns with its known macroscopic properties, i.e., data exactly reflects behaviors
of humans from different groups and is easier to find representative responses for each group.

GMR = max

(
0, 1− 1√

C

∥∥∥∥α · nj −Mjj

nj
+
|nj − n̂j |

nj

∥∥∥∥
2

)
(3)

α is a parameter to adjust the importance of labeling errors over quantity difference. We recommend
it between 1 (imbalanced dataset, emphasis unequalizing) and 2 (balanced dataset, emphasis errors).

General Pattern / Distribution: Data Distinguishability Ratio (DDR). It evaluates the quality
of the cluster partition by measuring the separation between clusters relative to their internal com-
pactness. High DDR shows a well-structured partitioning where clusters are coherent and distinct,
i.e., responses collected from different groups distinctly represent the common feature of that group.

DDR = min

(
1, β · δ̄inter

δ̄intra

)
(4)

where β is a scaling hyperparameter. We suggest setting β ≈ (Scale − 2σ)/σ with σ ≈ Scale/C,
reflecting the ideal ratio of maximum inter-cluster to average intra-cluster distance.

Unique Insight / Data Point: Data Purity (DP). It evaluates the consistency of the emergent
clusters by calculating the average proportion of members that belong to the dominant demographic
in each cluster. Low DP indicates that some responses containing insights that are infrequently
shown in the group of interviewees like cross-group consensus or voices of underrepresented groups.

DP = min

(
1, η ·

(
1− 1

K

K∑
k=1

|Ĉk| −maxj |Ĉk ∩ Cj |
|Ĉk|

))
(5)

where K is the number of clusters, and η = 1 is a scaling hyperparameter, as the core term is already
a percentage-based purity metric.

Unique Insight / Distribution: Data Coverage (DC). This metric evaluates the conceptual dis-
persion of each cluster, quantifying how widely individual data points spread around the central
theme of the cluster. A high DC indicates greater intra-cluster dissimilarity relative to the baseline
threshold, emphasizing clusters with a broader spread, and may contain unique insights.

DC = max

(
0,

δ̄intra

γ

)
(6)
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where γ is a scaling hyperparameter representing a baseline for acceptable intra-cluster dissimilarity,
set relative to the typical dissimilarity σ ≈ Scale/C. The adjustment of γ (e.g., 1.2σ for small
datasets, 0.8σ for large) accounts for variations in dissimilarity estimation methods.

Response Mining. Our framework also enables the identification of specific responses for qual-
itative analysis. These responses, which either challenge expected structures or strongly represent
general patterns, are characterized as the top-k responses with the highest and lowest average dis-
similarity δ̄(di), marking them as the most central or outlier members within their clusters.

4 EXPERIMENT

We evaluate IntE through controlled experiments on synthetic data (Sec. 4.1) and a real-world case
(Sec. 4.2). All experiments use “Qwen-max-latest” unless specified otherwise (Yang et al., 2025).

Controlled experiments include: 1) a user study with 20 participants to evaluate the interactive
instruction generation system (Sec. 4.1.1); 2) an ablation and comparison study to validate the anchor
updating algorithm (Sec. 4.1.2) and statical performance of instruction generation system; and 3) a
parameter sweep study to prove IntE follows well under varying data quality (Sec. 4.1.3).

The case study (Sec. 4.2) applies IntE to qualitative responses from social science research on
human behavior changing under supervision of an expert workshop, demonstrating the real-world
applicability and the automatic response mining function of IntE.

4.1 CONTROLLED EXPERIMENT WITH SYNTHETIC DATA

All datasets in 4 domains (HCI, Finance, Additive Manufacturing, and Post-operative Medicine)
used in these controlled experiments are produced by our Controllable Synthetic Data Generation
System B.1, ensuring that ground-truth attributes are known for precise evaluation.

4.1.1 CONTROLLED USER STUDY FOR INTERACTIVE INSTRUCTION GENERATION SYSTEM

We conducted a controlled, within-subjects user study to assess our instruction generation system’s
impact on user cognitive load and efficiency.

Experimental Setup. We recruited 20 postgraduate students (11M/9F, aged 21-31) from diverse do-
mains. Participants self-rated their domain experience (M = 3.50, SD = 0.83) and familiarity with
instruction generation (M = 3.15, SD = 1.27) on a 5-point Likert scale. The system implements
the adaptation phase of Sec. 3.1.2. The baseline condition utilized the same UI but deactivated the
agent-assisted features, requiring users to compose instructions manually. Participants were tasked
with generating instructions for dissimilarity extraction for two distinct questions, using both ours
and the baseline. Each session lasted approximately 45 minutes and was compensated with 8 USD.

Figure 4: Evaluation results from the user study: (a) cognitive load (higher scores = higher load);
(b)–(c) system usability (7 = good usability).
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We evaluated both systems on Cognitive Load (NASA-TLX) (Hart & Staveland, 1988) and Sys-
tem Usability. Usability was measured with a custom 10-item questionnaire on a 7-point Lik-
ert scale, assessing: Initial-Prompt Quality (Q1), Effortless-Tuning (Q2), Focus-on-Intent (Q3),
No-Prompt-Expertise-Needed (Q4), Rapid-Iteration (Q5), Self-Confidence (Q6), High-Satisfaction
(Q7), Creative-Insights (Q8), Easy-Learning (Q9), and Will-to-Reuse (Q10).

Results and Analysis. As shown in Fig. 4, our framework significantly reduces user cognitive
load when composing instructions. It also demonstrates superior performance across all evaluated
usability dimensions. Instructions collected from this study were used in subsequent experiments.

4.1.2 ABLATION AND COMPARISON STUDY

We performed an ablation study to validate the constituent components of our adaptive anchor up-
dating algorithm (Sec. 3.1.3) and conducted comparison experiments to assess the effectiveness of
the interactive instruction generation framework (Sec. 3.1.2).

Experimental Setting. On four 15-interviewee dataset from different domains(generated via
Sec. B.1), we evaluated several ablations of our full algorithm (Full): disabling in-context learn-
ing (No Example), disabling the algorithm (Fixed Example), including all responses as can-
didates (No Novelty Check), removing example length limits (No Pruning), and using a
heuristic for score calculation (Heuristic Quality), i.e., score is the average of samples with
the smallest difference.

The framework was also tested with instructions generated under three conditions, including small
scale on 15, large scale on 15 and large scale on 90-interviewee datasets (generated via Sec. B.1). Ex-
periments included several LLMs: Qwen-max-latest, Qwen-plus-latest, Qwen-turbo-latest, GLM-
4.5, and deepseek-v3 (Yang et al., 2025; Zeng et al., 2025; Liu et al., 2024). We measured Pearson
and Spearman correlation between extracted and ground-truth dissimilarity scores. Due to the exten-
sive number of experiments, each reported value is the average performance across four randomly
selected questions from the four domains.

Table 1: Result of the ablation study and comparison study. Bold and underlined represents top 1
result and Bold represents top 2 result in ablation study. “Direct” is the manual version and “scale
up” is the result performed on the 90-dataset.

Direct Ablation Study on Small Scale (Comparision) Version
Baseline No example Fix Example No Novelty Check No Pruning Heuristic Quality

Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears.
Qwen turbo -0.083 -0.035 0.708 0.681 0.644 0.656 0.659 0.663 0.604 0.625 0.620 0.604 0.606 0.640
Qwen plus 0.228 0.292 0.725 0.718 0.674 0.659 0.760 0.757 0.700 0.683 0.652 0.667 0.643 0.636
Qwen max -0.036 -0.013 0.725 0.728 0.633 0.621 0.672 0.663 0.683 0.695 0.691 0.697 0.701 0.709

GLM 0.599 0.621 0.830 0.836 0.770 0.765 0.822 0.829 0.826 0.839 0.831 0.842 0.729 0.732
deepseek-v3 0.331 0.356 0.726 0.705 0.674 0.685 0.717 0.722 0.697 0.673 0.703 0.676 0.739 0.734

Scale up on
Large Dataset

Ablation Study on Large Scale (Direct Assigning) Version
Baseline No example Fix Example No Novelty Check No Pruning Heuristic Quality

Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears. Spear. Pears.
Qwen turbo 0.789 0.805 0.747 0.775 0.705 0.733 0.692 0.721 0.699 0.730 0.729 0.765 0.709 0.732
Qwen plus 0.813 0.824 0.719 0.741 0.796 0.810 0.735 0.756 0.757 0.777 0.762 0.780 0.767 0.790
Qwen max 0.786 0.808 0.789 0.816 0.773 0.797 0.768 0.794 0.767 0.791 0.776 0.803 0.752 0.779

GLM 0.844 0.865 0.797 0.819 0.771 0.785 0.758 0.786 0.792 0.817 0.780 0.803 0.794 0.818
deepseek-v3 0.824 0.840 0.827 0.852 0.794 0.822 0.856 0.878 0.822 0.846 0.826 0.850 0.811 0.839

Results and Analysis. As shown in Tab. 4.1.2, the full algorithm and its components are effective.
The instruction generation system provides a statistically significant improvement in instruction
quality over manual generation. The anchor updating algorithm maintains high performance as
dataset size increases. While the large-scale version yielded superior results, we posit that the small-
scale version may better model according to the following discussion.

Discussion on Large-Scale Approximation: 1. While large-scale relevance is enhanced, scalar
projection simplifies high-dimensional semantic relationships into a single value, causing informa-
tion loss. But this trade-off is essential for achieving efficiency. 2. This approach is applicable
only when responses can be reduced to a score, such as cases influenced by personal literacy levels.
Otherwise, the small-scale version can only be chosen.
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4.1.3 PARAMETER SWEEP EXPERIMENT FOR IntE EVALUATION

We evaluated the overall performance of IntE by applying it to synthetic datasets with controlled
distributional variations to validate that its behavior aligns with our design principles.

Experimental Setting. We generated two sets of 15-interviewee datasets (per Sec. B.1). In the first
set (Fixed Mean), the inter-community mean difference was fixed while variance was swept from
1 to 40. In the second set (Fixed Variance), variance was fixed at 20 while the inter-community
mean difference was swept from 5 down to 45. We applied IntE in both small-scale and large-scale
configurations to observe how its four evaluation scores responded.

Figure 5: Result of parameter sweep experiment.

Results and Analysis. Shown in Fig. 5, with increasing variance, the GNMR, DP, and DDR scores
decreased, while the DC score increased. Conversely, as the mean difference decreased, GNMR,
DP, and DDR scores increased, while the DC score remained stable. These trends are consistent
with our design, validating the behavioral correctness of IntE’s scoring functions.

4.2 CASE STUDY ON STUDENT FOOD CHOICES

To demonstrate real-world applicability, we conducted a case study using a dataset of 126 qualitative
responses on college students’ food preferences 1. The task, involving three domain experts, was
to relate student grade level (37 freshmen, 32 sophomores, 26 juniors, 27 seniors) to self-reported
changes in eating habits since starting university. The experts used our instruction generation system
(Sec. 3.1.2) to create evaluation instructions for IntE, aiming to assess data quality and automatically
identify key responses with general patterns or unique insights.

Following the recommended parameters in Sec. 3.2.2 (α = 1.0, β = 1.5, η = 25, δ = 1.0), the
resulting metrics (GMR = 0.39, DDR = 0.03, DC = 0.90, DP = 0.43) faithfully represented
the data’s quality. The analysis revealed a similar distribution of responses across all grade levels,
“getting worse” (mean = 61.69%, std = 3.87%), “keeping the same” (mean = 6.33%, std =
3.61%), and “getting better” (mean = 29.74%, std = 4.89%). This uniformity between groups
explains the low DDR and GMR scores. Meanwhile, a high mean across demographic groups and
uncleaned raw data led to high DC and low DP values.

The experts reviewed the responses given by the mining function in our system, including the top-3
most general and top-3 most unique points. They confirmed the effectiveness of IntE in surfacing
these data.

5 CONCLUSION

In this paper, we introduced IntE, a novel framework to quantitatively evaluate qualitative datasets
by measuring the divergence and alignment between an extrinsic demographic distribution and an
intrinsic cluster distribution. IntE holistically assesses a dataset’s potential for yielding both general
patterns and unique insights, enabled by a four-quadrant assessment framework and a content-aware
multi-agent system that computes robust dissimilarity scores using interactive instruction generation
and adaptive anchors. Our empirical evaluation, through controlled experiments and a real-world
case study, validated IntE. The results demonstrate that IntE effectively assesses dataset quality and
accelerates knowledge discovery by automatically surfacing high-value responses for analysis.

1https://www.kaggle.com/datasets/borapajo/food-choices
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Cauã Ferreira Barros, Bruna Borges Azevedo, Valdemar Vicente Graciano Neto, Mohamad Kassab,
Marcos Kalinowski, Hugo Alexandre D Do Nascimento, and Michelle CGSP Bandeira. Large
language model for qualitative research: A systematic mapping study. In 2025 IEEE/ACM In-
ternational Workshop on Methodological Issues with Empirical Studies in Software Engineering
(WSESE), pp. 48–55. IEEE, 2025.

Erik Cambria and Bebo White. Jumping nlp curves: A review of natural language processing
research. IEEE Computational intelligence magazine, 9(2):48–57, 2014.

John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. Coding in-depth
semistructured interviews: Problems of unitization and intercoder reliability and agreement. So-
ciological methods & research, 42(3):294–320, 2013.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan Boyd-Graber, and David Blei. Reading tea
leaves: How humans interpret topic models. Advances in neural information processing systems,
22, 2009.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models, 2023a. URL https://arxiv.
org/abs/2306.03082.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. Exploring the use of large
language models for reference-free text quality evaluation: An empirical study, 2023b. URL
https://arxiv.org/abs/2304.00723.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
context learning, 2024. URL https://arxiv.org/abs/2301.00234.

Zackary Okun Dunivin. Scalable qualitative coding with llms: Chain-of-thought reasoning matches
human performance in some hermeneutic tasks. arXiv preprint arXiv:2401.15170, 2024.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to knowledge
discovery in databases. AI magazine, 17(3):37–37, 1996.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.
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A USE OF LLM

In this paper, we used Gemini to check grammar and improve wording. It did not change the original
meaning of the text or introduce any new references or knowledge.

We also used it to search for related work. All retrieved papers were read and reviewed by the
authors, who manually decided whether to include them.

B CONTROLLABLE SYNTHETIC DATA GENERATION

We use the following controllable synthetic data generation system B.1 to controllably generate
data for experiments, ensuring that ground-truth attributes are known for precise evaluation. In the
experiment, we generated 4 datasets from different domains, including finance, medical, human-
computer interaction, and crowd-sourcing for supervised finetuning data collection. The questions
are listed below.
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B.1 CONTROLLABLE SYNTHETIC DATA GENERATION SYSTEM

We generate synthetic data with precise ground-truth attributes using a modular, four-stage pipeline
of LLM-based agents.

Community Definition. Given a questionnaire Q, an Architect Agent defines k evaluation dimen-
sions D and m user communities C (e.g., “expert”, “novice”). For each community cj , it generates
a qualitative profile Pj describing its background and behaviors.

Quantitative Score Generation. For each synthetic user i in a community cj , we generate a ground-
truth score vector si ∈ Rk. Each score si, k for dimension dk is sampled from a specified distri-
bution (e.g., N (µj,k, σ

2
j,k)), where the parameters (µj,k, σj,k) are defined per community to control

attribute levels and diversity.

Persona Instantiation. A Persona Agent creates a narrative persona pi conditioned on the commu-
nity profile Pj and score vector si. The persona’s background (e.g., education, career) is generated
to be consistent with the assigned scores: pi = AgentPersona(Pj , si).

Response Simulation. An Interviewee Agent simulates the user’s responses Ri to the questionnaire
Q. The generation is conditioned on the persona pi and score vector si, ensuring the responses
reflect the ground-truth scores. The score vector si is prioritized to ensure quantitative control:
Ri = AgentInterviewee(pi, si, Q).

For our experiments (Sec. 4.1), we applied this system to generate response sets for four question-
naires (HCI, Finance, Additive Manufacturing, and Post-operative Medicine) with quantitatively
controlled attribute distributions.

B.2 QUESTIONNAIRE

We provide the Sim-structured questionnaire in different domains here, which are used for dataset
generation in the controlled experiment.

B.2.1 FINANCE QUESTIONNAIRE

Questionnaire Name: Finance

Questions:

1. Questions related to banking services
• Financial behavior: How often do you engage in banking services? What types of

services do you typically use at the bank?
• Financial literacy: What risks do you think are associated with keeping money in the

bank?
2. Concerns about financial status

• Financial behavior: Are you concerned about your financial status (e.g., frequently
checking your bank account and income/expenditure status)?

• Financial attitude: How important do you think it is to monitor your financial status
and why?

3. Questions related to financial education
• Financial literacy: What activities in your daily life do you think are related to fi-

nance?
• Financial attitude: Do you think financial education in schools is important?

4. Questions about saving habits
• Financial behavior: Do you have good saving habits?
• Financial literacy: Do you know what methods or channels are available for saving

money?
• Financial attitude: How important do you think saving money is?

5. Perception of investment risks
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• Financial literacy: What do you think about the statement “high-yield investments
come with high risks?” Generally, how does the risk of investment change when
investors diversify their investments across different categories?

• Financial behavior: Do you pay attention to major financial news, such as stock mar-
ket fluctuations? If you participate in investments, would you take actions to diversify
your investments across different categories?

B.2.2 MEDICAL QUESTIONNAIRE

Questionnaire Name: Analysis of Health Post-Treatment with New Bone Medication

Questions:

1. Questions about new or unexpected health changes
• Symptom discovery: Thinking back to the time after your bone started feeling better,

what was the very first new or unexpected health change you noticed that was not
related to your original injury? Please describe what it was and what it felt like.

• Symptom inventory: Besides that first change, what other new health concerns have
you experienced since taking the new medication? Please list them and briefly de-
scribe each one (e.g., skin rashes, constant tiredness, digestive issues, headaches,
mood changes).

2. Questions about the timing and patterns of your new condition
• Timing and onset: For the main new health issue you mentioned, can you pinpoint

when it started in relation to when you were taking the new medicine? (e.g., “It started
a week after I began the medication,” or “It didn’t show up until a month after I finished
the full course”).

• Pattern and triggers: Have you noticed any patterns to this new condition? For
example, is it constant, or does it come and go? Is there anything that seems to make
it better or worse (like certain foods, activities, stress, or time of day)?

3. Questions about the impact of the new condition on your life
• Impact comparison: Think about the challenges of the original broken bone versus

the challenges of this new health condition. Which one has had a bigger impact on
your day-to-day life, and why?

• Life adjustments: What is one specific activity or part of your daily routine that
you’ve had to change or give up, not because of your bone, but because of this new
health condition?

4. Questions about your own thoughts and actions regarding the new condition
• Personal hypothesis: Before this questionnaire, had you already made a connection

in your own mind between the new medicine and your new health condition? What
made you suspect (or not suspect) a link?

• Communication with doctors: Have you discussed this new health issue with a doc-
tor before? If so, what was that conversation like? If not, what has held you back from
bringing it up?

5. Questions about your overall perspective on the treatment
• Future decision-making: How has this experience changed how you will approach

taking a new or experimental medication in the future? What questions would you ask
your doctor now that you might not have asked before?

• Defining successful treatment: This medicine successfully healed your bone, but
may have caused other issues. How does this experience change your personal defini-
tion of a “successful” medical treatment?

B.2.3 HUMAN-COMPUTER INTERACTION QUESTIONNAIRE

Questionnaire Name: Human-Computer Interaction (HCI)

Questions:
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1. AI System Interaction Experience Questions
• AI Response Expectations: Does the AI system’s response meet your expectations?
• AI Understanding Accuracy: Do you feel that the AI understands your needs accu-

rately when using the AI system?
• Desired AI Features: What features would you like the AI system to add to enhance

user experience?

2. Input Device Usage Experience Questions
• User Preferences: Does the current input device meet your operating habits?
• Usability Challenges: Have you encountered any inconveniences while using the

input device?
• Design Improvements: What improvements would you like to see in the design of

the input device?

3. Haptic Feedback Technology Experience Questions
• Haptic Impact on Experience: Does haptic feedback have a significant impact on

your experience in virtual reality?
• Realism of Haptics: Do you feel that the current haptic feedback technology is real-

istic enough?
• Haptic Technology Improvements: In what areas would you like to see improve-

ments in haptic feedback technology?

4. Adaptive Interface Functionality Questions
• Adaptive Interface Responsiveness: Does the adaptive interface of the system effec-

tively respond to your changing needs?
• Adaptive Interface Issues: Have you encountered any issues during the adaptive

process?
• Desired Features in Adaptive Interfaces: What features would you like to see added

to enhance the adaptability of the interface?

5. Multimodal Interaction Experience Questions
• Efficiency of Multimodal Interaction: Has multimodal interaction improved your

interaction efficiency with the system?
• Multimodal Integration Issues: Have you encountered any issues with poor integra-

tion while using multimodal interaction?
• Multimodal Interaction Improvements: In what areas would you like to see further

improvements in the multimodal interaction experience?

B.2.4 CROWDSOURCING FOR SFT COLLECTION QUESTIONNAIRE

Questionnaire Name: 3D Printing and Additive Manufacturing

Questions:

1. Questions about what 3D printing is
• Simple Explanation: If you had to explain 3D printing to a child, what would you

say? How is it different from just printing a picture on a piece of paper?
• Core Advantage: Think about making something by starting with a block of material

and carving parts away, versus 3D printing, which builds something up from nothing.
What do you feel is the biggest advantage of building things up layer by layer?

2. Questions about the ’stuff’ used in 3D printers
• Everyday Materials: If you could 3D print an object for your kitchen, like a custom

spoon or a container, what qualities would the material need to have? (e.g., should it
be flexible, strong, heat-resistant, etc.). Describe your ideal material in simple terms.

• User-Friendly Ideas: 3D printers can sometimes be tricky to use. If you were asked
to design a 3D printer for a complete beginner, what is one feature you would add to
make it super easy and fun to use, even if you make a mistake?
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3. Questions about how 3D printing is used in the real world

• Community Problem Solving: Imagine your local community was given a powerful
3D printer. What is one local problem (related to parks, schools, or helping neighbors)
that you think could be solved by printing something new?

• Factory vs Home: Do you think we will ever 3D print everything we need at home,
or will we always need big factories? Explain your thoughts on what factories will
always be better at making.

4. Questions about designing things for 3D printing

• Future of Design: 3D printing can create very complex, web-like, or hollow shapes
that are both lightweight and strong. How might this change the look and feel of
everyday items, like furniture, shoes, or bicycles, in the future?

• Smart Design Analogy: Some software can cleverly redesign a solid part, removing
all the inside material that isn’t needed for strength, kind of like how nature designs a
tree or a bone. What everyday example would you use to explain this idea of making
things “smartly hollow” to someone?

5. Questions about the future of 3D printing for society

• Optimist or Skeptic: Thinking about the future, are you more excited or more wor-
ried about everyone having access to 3D printers? Briefly explain what makes you
feel that way.

• Rules and Safety: If anyone can print anything, what is one important rule you think
society or governments should consider? Think about safety, fairness, or new kinds of
problems that could arise.

C DETAILED ALGORITHMS FOR IntE FRAMEWORK

The following tables provide a corrected and detailed workflow of the IntE framework. This includes
the overall framework (Algorithm 1), the iterative instruction generation process (Algorithm 2),
and the logically revised adaptive anchor manifold maintenance process (Algorithm 3), which now
correctly integrates computation and maintenance.

C.1 OVERALL IntE FRAMEWORK

This algorithm details the complete process for IntE, from instruction generation to metric calcula-
tion and response mining, with corrected metric names and descriptions based on the source paper.
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Algorithm 1 IntE: Data-Distribution-Driven Assessment Framework (Corrected)
1: Input: Response Dataset D, Demographic Metadata I , Mapping Function f .
2: Output: Metrics (GMR, DDR, DP, DC) and Key Responses (Patterns, Insights).

Phase 1: Dissimilarity Extraction
3: Generate an optimal instruction P ∗ using Iterative Instruction Generation (Algorithm 2).
4: Compute the dissimilarity matrix D using P ∗ and Adaptive Anchor Manifold Maintenance

(Algorithm 3).

Phase 2: Distribution Comparison
5: Define demographic distribution P: Compute labels yi = f(Ii).
6: Define cluster distribution P̂: Cluster D to obtain cluster labels ŷ.
7: Align ŷ to y using bipartite matching on Intersection over Union (IoU).

Phase 3: Assessment and Mining
8: Compute the confusion matrix M from y and aligned ŷ.
9: Calculate the following metrics:

10: GMR (General Match Ratio): Measures global alignment between P and P̂ .
11: DDR (Data Distinguishability Ratio): Evaluates inter-cluster separation versus intra-cluster

compactness.
12: DP (Data Purity): Assesses homogeneity within emergent clusters.
13: DC (Data Coverage): Measures the conceptual dispersion within clusters; high DC indicates

high diversity.
14: Perform response mining:
15: Insights: Identify outliers (responses with the highest average dissimilarity δ̄(di)).
16: Patterns: Detect archetypes (responses with the lowest average dissimilarity δ̄(di)).
17: return Metrics and Key Responses.

C.2 ITERATIVE INSTRUCTION GENERATION

This algorithm details the process for refining instructions, clarifying the nature of the feedback
provided by the Oracle.

Algorithm 2 Iterative Instruction Generation
1: Input: Instruction seed, Dataset D, Context Cxt.
2: Output: Optimized instruction P ∗.

Stage 1: Automated Discovery
3: Initialize: None as initial prompt; use Oracle OLLM , Updater LLMupdater, and Evaluator

(also OLLM ).
4: repeat
5: Sample response pairs (di, dj) ∼ D.
6: OLLM provides feedback ∇P̂ (t)L (e.g., a corrected score and natural language critique).
7: Update P (t+1) ← LLMupdater(P

(t),∇P̂ (t)L).
8: Oracle OLLM scores the updated instruction P (t+1).
9: until Evaluator score reaches a high threshold (e.g., ¿0.9).

10: Human user selects the best instruction P ∗
a from the automated results.

Stage 2: Human-in-the-Loop Adaptation
11: Initialize: P (0) ← P ∗

a ; use Oracle OH (human expert).
12: repeat
13: Present results generated by P (t) to OH .
14: OH provides feedback ∇P̂ (t)L. Stop if no feedback is given.
15: Update P (t+1) ← LLMupdater(P

(t),∇P̂ (t)L).
16: until Human expert is satisfied with the instruction’s performance.
17: return Optimized Instruction P ∗ ← P (t+1).
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C.3 ADAPTIVE ANCHOR MANIFOLD MAINTENANCE

This algorithm is substantially revised to correctly reflect the paper’s logic, where dissimilarity com-
putation and anchor maintenance are an integrated, iterative process. The anchor manifold is used
as a semantic reference during evaluation, and key steps like sorting have been added.

Algorithm 3 Adaptive Anchor Manifold Maintenance (Corrected)
1: Input: Dataset D = {d1, ..., dN}, Optimized Instruction P ∗, Maximum anchors kmax, Thresh-

old size Nthreshold.
2: Output: Dissimilarity matrix D.

Initialization
3: Initialize anchor manifold A = ∅.
4: Initialize dissimilarity matrix D as an N ×N zero matrix.
5: if N > Nthreshold then
6: Initialize an array S of size N to store scalar scores.
7: end if

Unified Computation and Maintenance Cycle
8: for each response di ∈ D do
9: % – Core Computation Step –

10: if N ≤ Nthreshold (Small Dataset) then
11: for each response dj where j > i do
12: % LLM call uses anchor manifold A as context for consistency
13: Compute δ(di, dj) = LLM(P ∗, di, dj ,A).
14: Dij = Dji = δ(di, dj).
15: end for
16: else (Large Dataset)
17: % LLM call also uses A as context to ensure consistent scoring
18: Compute scalar score S(di) = LLM(P ∗, di,A).
19: end if
20: % – Anchor Manifold Update Step –
21: Compute Diversity Contribution Score DCS(di) =

1
|A|
∑

ak∈A δ(di, ak).
22: Find anchor amin in A with the lowest DCS.
23: if DCS(di) > DCS(amin) then
24: if |A| < kmax then
25: Add di to the anchor manifold: A ← A∪ {di}.
26: Sort A (e.g., by score S(ak) or avg. dissimilarity).
27: else
28: Add di to the anchor manifold: A ← A∪ {di}.
29: Sort A (e.g., by score S(ak) or avg. dissimilarity).
30: Compute Redundancy Index ρ(aj) = 1− δ(aj , aj−1) · δ(aj , aj+1) for each aj ∈ A.
31: Remove the anchor aredundant with the highest ρ(aj) from A.
32: end if
33: end if
34: end for

Finalize Dissimilarity Matrix
35: if N > Nthreshold (Large Dataset) then
36: for i = 1 to N , j = 1 to N do
37: Dij = |S(di)− S(dj)|.
38: end for
39: end if
40: return Dissimilarity matrix D.
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D USER STUDY

As stated above, we conducted a user study to prove the efficiency of our instruction generation sys-
tem. In this section, we will state the detailed information for it, including the user study schedule
especially how to do the within-subject experiment 2, statistical significance results 3, user inter-
face D.3, participant demographics 4, and the questionnaire we used in our experiment D.5.

D.1 WITHIN SUBJECT USER STUDY SCHEDULE

The following information is the schedule of our study, which states how we assign people to each
group and how we arrange the people to meet the balance requirement.

Table 2: Overview of User Study Schedule
ID Group Participant ID Method Order Task 1 Task 2 Time
1 Finance Participant 1.1 A→ B Q1 (Method A) Q2 (Method B) 1h
2 Finance Participant 1.2 A→ B Q2 (Method A) Q3 (Method B) 1h
3 Finance Participant 1.3 A→ B Q3 (Method A) Q1 (Method B) 1h
4 Finance Participant 1.4 B→ A Q4 (Method B) Q5 (Method A) 1h
5 Finance Participant 1.5 B→ A Q5 (Method B) Q4 (Method A) 1h
6 HCI Participant 2.1 A→ B Q6 (Method A) Q7 (Method B) 1h
7 HCI Participant 2.2 A→ B Q7 (Method A) Q8 (Method B) 1h
8 HCI Participant 2.3 A→ B Q8 (Method A) Q9 (Method B) 1h
9 HCI Participant 2.4 B→ A Q6 (Method B) Q10 (Method A) 1h
10 HCI Participant 2.5 B→ A Q10 (Method B) Q9 (Method A) 1h
11 Crowdsourcing Participant 3.1 A→ B Q11 (Method A) Q12 (Method B) 1h
12 Crowdsourcing Participant 3.2 A→ B Q12 (Method A) Q11 (Method B) 1h
13 Crowdsourcing Participant 3.3 B→ A Q13 (Method B) Q14 (Method A) 1h
14 Crowdsourcing Participant 3.4 B→ A Q14 (Method B) Q15 (Method A) 1h
15 Crowdsourcing Participant 3.5 B→ A Q15 (Method B) Q13 (Method A) 1h
16 Medical Participant 4.1 A→ B Q18 (Method A) Q17 (Method B) 1h
17 Medical Participant 4.2 A→ B Q17 (Method A) Q18 (Method B) 1h
18 Medical Participant 4.3 B→ A Q16 (Method B) Q19 (Method A) 1h
19 Medical Participant 4.4 B→ A Q19 (Method B) Q20 (Method A) 1h
20 Medical Participant 4.5 B→ A Q20 (Method B) Q16 (Method A) 1h

D.2 STATISTICAL SIGNIFICANCE OF USER STUDY RESULTS

The following table (Tab. 3) shows how much and to what extent our system overcomes the baseline
system in different aspects.

Table 3: Statistical Comparison Between Baseline and Lancet
Dimension Baseline Mean Ours Mean Mean Difference t-statistic p-value Significant

1 3.30 6.35 3.05 6.45 0.00000 Yes
2 3.35 5.85 2.50 6.69 0.00000 Yes
3 3.00 6.10 3.10 5.66 0.00002 Yes
4 2.95 6.45 3.50 8.46 0.00000 Yes
5 2.85 6.35 3.50 8.74 0.00000 Yes
6 2.90 6.00 3.10 8.24 0.00000 Yes
7 3.30 6.25 2.95 7.90 0.00000 Yes
8 3.05 5.70 2.65 5.98 0.00001 Yes
9 3.75 6.25 2.50 5.35 0.00004 Yes

10 3.30 6.30 3.00 7.55 0.00000 Yes
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D.3 PROMPT GENERATION SYSTEM INTERFACE OVERVIEW

This section provides an overview of the baseline system and our proposed system, highlighting
their respective use cases and operational workflows.

D.3.1 SYSTEM OVERVIEW OF THE BASELINE

The baseline system consists of two primary stages: question selection and prompt modification.

Figure 6: In the first stage, users select a question for which they want to generate a prompt. This
serves as the entry point into the system.

After selecting a question, users proceed to the prompt modification stage.

Figure 7: In the second stage, users manually input a prompt into the Prompt Zone and click Modify
to initiate the dissimilarity extraction process. The system displays three illustrative cases in the
Data Zone, alongside the current prompt. Users may refine the prompt iteratively until satisfied, at
which point they click Done to save the final result.
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D.3.2 SYSTEM OVERVIEW OF OUR SYSTEM

Our proposed system integrates similar functionalities as the baseline but enhances the workflow
with automated features. It is designed to handle both large-scale and small-scale use cases. For
demonstration purposes, we focus on the small-scale scenario used in the user study.

Figure 8: Upon entering the system, users select a question for which they wish to generate a prompt.
This step mirrors the baseline system’s question selection process.

In contrast to the baseline system, our system provides an auto-generated initial prompt and dissim-
ilarity extraction results upon entry.

Figure 9: Upon accessing the system, users are presented with an auto-generated initial prompt and
dissimilarity extraction results in the Data Zone. Users can provide modifications in the Prompt
Zone, triggering the system to automatically adjust the prompt. Once users are satisfied, they can
click the Done button to save the final result. Alternatively, users can directly edit the prompt in the
Prompt Zone for manual adjustments.
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D.4 PARTICIPANT DEMOGRAPHICS

We collected all the participants involved in our experiment, and gender is coded as 1 for male and
2 for female.

Table 4: Participant Demographic Information
P ID Gender Age Education Field Proficiency Experience Prompt ChatGPT System

Level (years) Familiarity Usage Willingness
1.1 1 23 2 Finance Data Analysis 4 3 4 4 4
1.2 1 24 3 Economics 4 7 3 4 4
1.3 1 23 1 Finance 3 4 2 4 5
1.4 2 22 2 Finance 5 2 5 5 5
1.5 2 23 2 Finance 4 4 3 4 5
2.1 1 21 1 Computer Science, HCI & VIS 4 3 5 5 4
2.2 1 26 3 HCI 4 3 2 4 4
2.3 2 21 2 HCI 3 3 3 5 5
2.4 2 24 3 HCI 4 4 4 3 4
2.5 1 31 3 VIS/HCI 5 5 4 4 5
4.1 2 26 3 Medical AI 4 5 5 5 4
4.2 2 23 3 Medicine—Neurobiology 3 5 2 4 4
4.3 2 22 1 Medicine 2 5 1 2 5
4.4 1 23 1 Dentistry 3 5 2 2 4
4.5 2 26 1 Thoracic Surgery 3 5 2 2 4
3.1 1 23 3 LLM SFT 3 1.25 4 5 5
3.2 1 21 1 LLM SFT 3 2 3 4 5
3.3 1 25 2 LLM, 3D Printing 4 2 4 5 5
3.4 1 25 2 3D Printing 4 2 4 4 5
3.2 1 21 1 AI4Machine 4 3 4 4 5

D.5 NASA-TLX AND SYSTEM USABILITY QUESTIONNAIRE

This questionnaire is designed to collect your subjective feedback following the experimental tasks.
The results will be used solely for evaluating the rationale of the experimental design and the sys-
tem’s real-world performance. All data will be anonymized; by completing this questionnaire, you
consent to the collection and analysis of your experience.

D.5.1 PARTICIPANT INFORMATION

1. Experiment ID:

2. Which phase are you in?
• ⃝ Phase 1
• ⃝ Phase 2

D.5.2 NASA TASK LOAD INDEX (NASA TLX)

This section applies the NASA Task Load Index (NASA TLX) (Hart & Staveland, 1988) to evaluate
perceived workload. For each dimension below, please rate on a scale of 1 (low) to 20 (high):

1. Mental Demand: How mentally demanding was the task?
(Lower scores indicate less mental demand)

2. Physical Demand: How physically demanding was the task?
(Lower scores indicate less physical demand)

3. Temporal Demand: How hurried or rushed was the pace of the task?
(Lower scores indicate less time pressure)

4. Performance: How satisfied are you with your performance in the task?
(Lower scores indicate lower satisfaction)
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5. Effort: How hard did you have to work to accomplish your level of performance?
(Lower scores indicate less effort)

6. Frustration: How insecure, discouraged, irritated, stressed, or annoyed did you feel?
(Lower scores indicate less frustration)

D.5.3 PAIRWISE COMPARISON

For each pair below, please select the factor that had a greater impact on you during the task:

1. ⃝Mental Demand ⃝ Physical Demand

2. ⃝Mental Demand ⃝ Temporal Demand

3. ⃝Mental Demand ⃝ Effort

4. ⃝Mental Demand ⃝ Performance

5. ⃝Mental Demand ⃝ Frustration

6. ⃝ Physical Demand ⃝ Temporal Demand

7. ⃝ Physical Demand ⃝ Effort

8. ⃝ Physical Demand ⃝ Performance

9. ⃝ Physical Demand ⃝ Frustration

10. ⃝ Temporal Demand ⃝ Effort

11. ⃝ Temporal Demand ⃝ Performance

12. ⃝ Temporal Demand ⃝ Frustration

13. ⃝ Effort ⃝ Performance

14. ⃝ Effort ⃝ Frustration

15. ⃝ Performance ⃝ Frustration

D.5.4 SYSTEM USABILITY ASSESSMENT

Please rate your experience with the system using the following statements. Use a 7-point Likert
scale, where 1 indicates Very Dissatisfied and 7 indicates Very Satisfied:

1. How satisfied are you with the time and effort required to generate an initial prompt?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

2. How satisfied are you with the ease of modifying or refining the prompt based on the
generated results?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

3. How satisfied are you with your ability to focus on the desired outcome, rather than on the
technical details of prompt engineering?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

4. How satisfied are you with the level of prompt engineering expertise the system required
you to have to achieve your goals?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

5. How satisfied are you with the overall efficiency of the process, from your initial idea to
the final prompt?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)
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6. To what extent did the system make you feel confident during the prompt generation pro-
cess?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

7. To what extent are you satisfied with the quality of the final prompt generated through this
process?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

8. How satisfied are you with the system’s effectiveness in helping you complete your task
and inspiring new ideas?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

9. How satisfied are you with the ease of learning and using the system?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

10. How satisfied are you with the prospect of using this method again for similar tasks in the
future?
⃝ 1 (Very Dissatisfied) ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝ 6 ⃝ 7 (Very
Satisfied)

D.5.5 OPEN-ENDED FEEDBACK

If you have any additional comments or suggestions, please provide them below:

D.6 REAL DATA EVALUATION WORKSHOP

Here we provide some detailed information on the workshop experiment, including example answers
and corresponding question D.6.1, distribution of the data in different grade levels D.6.2, and mined
cases in the workshop D.6.3.

D.6.1 QUESTION AND ANSWER DATA EXAMPLE

The following are the question (Q17) and corresponding answer examples.

Question

1 Describe your eating changes since the moment you got into college

Answers example

1 ...
2 "sometimes choosing to eat fast food instead of cooking simply for

convenience."
3

4 "Accepting cheap and premade/store bought foods."
5

6 "I have eaten generally the same foods but I do find myself eating
the same food frequently due to what I have found I like from
egan and the laker."

7

8 "I started eating a lot less and healthier because I wasn’t
playing sports year round anymore."

9

10 "Freshmen year i ate very unhealthy, but now it is much healthier
because of self control."

11 ...
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Figure 10: Behavior changes across different grade levels.

D.6.2 DATA DISTRIBUTION

The following figure (Fig. 10) shows the distribution of behavior changes across different grade lev-
els, where responses getting worse are common responses and responses getting better are extreme
responses compared with those.

D.6.3 MINED RESPONSE POINTS (top− 3)

We collect the data mined by IntE. The representative responses are largely from the biggest group
(getting worse) and the unique responses are more like extreme cases.

Freshman

• Representative:

– C73: I eat a lot less and more junk food.
– C17: More Water
– C94: I eat alot of carbs and eat much more frequently

• Unique:

– C97: I’ve eaten more fruits and vegetables. Started eating seafood.
– C13: I have been eating a lot more salads and soups.
– C91: i eat healthier all around

Sophomore

• Representative:

– C88: less healthy because of less options, money and time.
– C109: Late night snacking
– C66: I snack more, having fewer full meals

• Unique:

– C85: Huge changes have occurred. I eat far healthier, less processed food, less dense
carbohydrates and way more vegetables and fruits.

– C32: none
– C118: I eat more vegetable. Since coming to college, I started to eat salads and tried

to eat salads at least three times a week.

Junior

• Representative:

– C72: I tend to snack more and have smaller meals.
– C71: I don’t eat as often
– C15: I knew I would eat alot my freshmen year, before coming to college i had a diet

plan.
• Unique:
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– C44: Now I prepare my own meals, pack my lunch every day and avoid eating out to
save money as much as possible.

– C90: I have been eating healthier especially vegetables and proteinous food
– C93: I have increased the amounts of vegetables I eat due to the unhealthy options in

our dining halls

Senior

• Representative:
– C77: I eat less healthy breakfast now, usually just grab something quick like a granola

bar.
– C45: I haven’t changed much. If anything, I have become more disciplined.
– C121: I have noticed there is less time for a prepared meal, so quick and easy has

become the norm.
• Unique:

– C113: I had to change a lot. I keep track of calories and cut out most breads and
wraps.

– C57: I have begun to eat more fruits and vegetables because I have been more aware
of my physique.

– C63: As an athlete it is important to fuel my body with important foods only.

E PROMPTS INVOLVED IN IntE

We list all the prompts involved in IntE in this section.

E.1 PROMPTS AND RESULTS FOR AUTOMATED INSTRUCTION DISCOVERY

This section provides examples of prompts and results for automated instruction discovery, focusing
on a small-scale case as an example.

E.1.1 EXAMPLE INSTRUCTION FOR INITIAL ROUND PROMPT GENERATOR

System Prompt:

"You are an expert prompt engineer specializing in creating universal
text similarity/difference calculation prompts. Your goal is to
create completely generic prompts that can work for any evaluation
criteria without specifying them."

User Prompt:

f"""Create a completely universal prompt for calculating text differences
between two text responses across ANY evaluation dimensions.

Requirements:
1. **Domain Agnostic**: The prompt should work for ANY domain (e.g.,

finance, healthcare, technology, education) without mentioning
specific domains.

2. **Condition Agnostic**: The prompt should work for ANY evaluation
criteria without specifying what those criteria are.

3. **Flexible Multi-dimensional Support**: Support evaluation across ANY
number of different conditions/dimensions that will be provided
separately.

4. **Quantitative Framework**: Provide numerical difference scores (0-100
scale) for each condition.

5. **Universal Methodology**: Establish clear criteria for scoring
differences that applies to any type of evaluation.

The prompt should:
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- Accept two text responses as input.
- Accept any list of evaluation dimensions/conditions as input (e.g., {

conditions_placeholder}).
- Evaluate differences across those dimensions independently (whatever

they may be).
- Provide numerical scores (0-100) where 0 means identical and 100 means

completely different.
- Include brief explanations for each score.
- Work for ANY type of text content and ANY type of evaluation criteria.
- NOT mention or assume any specific domains, topics, or evaluation

criteria.

Create a completely generic framework that can be applied to ANY text
difference calculation task across ANY evaluation dimensions. The
prompt should be universal enough to work whether evaluating academic
papers, customer reviews, medical reports, financial documents, or

any other text types across any conceivable evaluation criteria.

Do NOT include any specific evaluation dimensions, domain examples, or
condition descriptions in the prompt itself. Use only generic
placeholders like "condition_1", "condition_2", etc., if you need to
reference multiple evaluation dimensions."""

E.1.2 EXAMPLE INSTRUCTION FOR SEQUENTIAL ROUND PROMPT GENERATOR
(MODIFICATION)

System Prompt:

"You are an expert prompt engineer specializing in optimizing difference
calculation prompts based on user feedback."

User Prompt:

f"""---

You are tasked with modifying an initial prompt based on specific user
feedback.

---
## OBJECTIVE:
Refine the original prompt according to the user’s explicit instructions,

making only the minimal necessary changes to address the feedback.

---
## REQUIREMENTS:
1. Focus solely on the issues explicitly mentioned in the user feedback.
2. Make the smallest possible adjustments needed to align with user

instructions.
3. Preserve all other aspects of the original prompt that are not

directly addressed in the feedback.
4. If user-suggested modifications are provided, treat them as in-context

examples for adjustment.
5. Ensure the modified prompt remains clear, functional, and domain-

agnostic.

---
## ORIGINAL PROMPT:
{original_prompt}

---
## USER FEEDBACK:
{user_feedback}

---
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Please provide the optimized prompt directly. Do not alter anything
beyond what is requested by the user.

Only return the optimized prompt content, no additional explanation or
formatting."""

E.1.3 EXAMPLE INSTRUCTION FOR ORACLE (ACTING AS A HUMAN JUDGE)

System Prompt:

"You are an extremely strict and demanding expert evaluator specializing
in universal text similarity/difference calculation prompts. Your
standards are exceptionally high, and you are very critical of any
flaws or limitations in prompt design. Be harsh but constructive in
your evaluations."

User Prompt:

f"""
You are an EXTREMELY STRICT evaluator of universal text difference

calculation prompts. Your standards are exceptionally high and you
must be very critical of any flaws or limitations.

## CURRENT PROMPT TO CRITIQUE:
{prompt}

## CALCULATION RESULTS SAMPLE:
{results_summary}

## ITERATION: {iteration_count}

## EXCEPTIONALLY HIGH EVALUATION CRITERIA:

1. **PERFECT Universality**: Does this prompt work flawlessly across ALL
domains without ANY domain-specific assumptions?

2. **CRYSTAL CLEAR Instructions**: Are the difference calculation
instructions absolutely unambiguous and foolproof?

3. **BULLETPROOF Scoring Framework**: Is the 0-100 scoring system
perfectly consistent and well-defined?

4. **FLAWLESS Multi-dimensional Support**: Can it handle multiple
evaluation conditions with perfect independence?

5. **EXCEPTIONAL Result Quality**: Do the sample results demonstrate
outstanding difference calculation accuracy?

6. **ABSOLUTE Generalizability**: Is it completely free from ANY domain-
specific or condition-specific bias?

7. **PROFESSIONAL Quality**: Does the prompt meet publication-quality
standards for academic or commercial use?

## VERY STRICT SATISFACTION REQUIREMENTS:
- Score 0.9+ AND meets ALL universality criteria with NO exceptions ->

SATISFIED
- Score below 0.9 OR has ANY significant flaw -> NOT SATISFIED

## BE EXTREMELY CRITICAL OF:
- Any trace of domain-specific terminology or assumptions.
- Any condition-specific examples or references.
- Ambiguous or unclear instructions.
- Inconsistent scoring guidelines.
- Poor result quality or unreasonable scores.
- Lack of methodological rigor.
- Any limitation in universal applicability.
- Insufficient detail in the evaluation framework.
- Weak or missing guidance for edge cases.

## YOUR ROLE:
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Act as the harshest but fairest critic. Find every flaw, question every
assumption, and demand perfection. Only accept truly exceptional
prompts that could be used in professional settings without
modification.

Evaluate this prompt with MAXIMUM scrutiny and provide brutally honest
but constructive feedback.

"""

E.1.4 EXAMPLE INSTRUCTION FOR LLM-BASED EVALUATOR

System Prompt:

"You are following the user’s instructions exactly as provided."

User Prompt:

f"""
# INSTRUCTIONS (from Agent1):
{agent1_prompt}

# TEXT PAIR TO ANALYZE:

## Text Response 1 (Community: {community1}):
{response1_text}

## Text Response 2 (Community: {community2}):
{response2_text}

# CONDITIONS TO EVALUATE:
{conditions_text}

# Please follow the instructions above to calculate difference scores
between these two text responses for each condition.

"""

E.1.5 SELECTED INSTRUCTION

"""
---

### Proficiency-Based Difference Analysis

You are an expert in inferring respondent proficiency levels from
response content and calculating proficiency gaps between two
respondents.

---

### Task Overview

Your goal is to estimate each respondent’s proficiency level (0-100) from
their response content, then calculate the **proficiency difference

** between them across each condition/dimension.

---

### Analysis Process

For each condition, follow this process:

1. **Individual Proficiency Assessment**
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- Analyze each response to estimate the respondent’s proficiency level
(0-100)

- Look for: technical accuracy, vocabulary sophistication, depth of
understanding, practical experience evidence

- Consider: reasoning complexity, structured thinking, domain
knowledge demonstration

2. **Proficiency Level Indicators**
- **Expert (80-100)**: Technical terminology, systematic analysis,

deep understanding, industry insights, complex reasoning
- **Advanced (60-79)**: Solid knowledge, structured reasoning,

relevant examples, appropriate technical terms
- **Intermediate (40-59)**: Basic understanding, simple examples,

limited technical vocabulary, general concepts
- **Basic (20-39)**: Surface knowledge, everyday language, unclear

reasoning, limited understanding
- **Novice (0-19)**: Little understanding, possible misconceptions,

very basic responses, confused logic

3. **Calculate Proficiency Gap**
- Estimate Respondent A’s proficiency score for this condition
- Estimate Respondent B’s proficiency score for this condition
- Calculate the absolute difference: |Score_A - Score_B|
- This difference becomes your final score (0-100)

---

### Proficiency Gap Scoring Guide

| Proficiency Gap | Score | Description | Typical Scenarios |
|-----------------|-------|-------------|-------------------|
| **0-5 points** | **0-10** | **Minimal difference** | Both at same level

(+/-5 points) |
| **6-10 points** | **11-20** | **Small difference** | Slight proficiency

gap (+/-10 points) |
| **11-15 points** | **21-30** | **Moderate difference** | Noticeable

competency gap |
| **16-20 points** | **31-40** | **Significant difference** | Clear

expertise gap |
| **21-30 points** | **41-50** | **Large difference** | Major competency

difference |
| **31-40 points** | **51-60** | **Very large difference** | Substantial

expertise gap |
| **41-50 points** | **61-70** | **Extreme difference** | Expert vs

intermediate |
| **51-60 points** | **71-80** | **Critical difference** | Expert vs

basic |
| **61-70 points** | **81-90** | **Maximum difference** | Expert vs

novice |
| **71+ points** | **91-100** | **Complete difference** | Expert vs

complete beginner |

---

### Quality Assessment Framework

**High Proficiency Signals:**
- Uses precise, domain-appropriate terminology correctly
- Demonstrates systematic problem-solving approaches
- Provides specific, contextually relevant examples
- Shows awareness of complexity and limitations
- References advanced concepts or best practices
- Displays structured, logical reasoning

**Low Proficiency Signals:**
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- Uses vague or incorrect terminology
- Shows surface-level understanding only
- Provides generic or inappropriate examples
- Lacks awareness of complexity
- Demonstrates confused or illogical reasoning
- Relies on common sense rather than expertise

**Assessment Priority:**
- Focus on CONTENT QUALITY over communication style
- Evaluate SUBSTANTIVE KNOWLEDGE rather than confidence
- Consider DEPTH OF UNDERSTANDING over verbosity
- Look for PRACTICAL EXPERIENCE evidence

---

### Output Format

For each condition:
1. **Respondent A Proficiency**: [0-100] with brief justification
2. **Respondent B Proficiency**: [0-100] with brief justification
3. **Proficiency Gap**: [absolute difference between A and B]
4. **Final Difference Score**: [use gap as score, capped at 100]
5. **Explanation**: Key evidence supporting the proficiency assessments

Remember: Base your analysis on demonstrated competency, not
communication style or confidence level.

"""

E.2 PROMPTS FOR INTERACTIVE INSTRUCTION GENERATION SYSTEM

This section highlights examples of the prompts used for refining instructions interactively, focusing
on a small-scale case as an example.

E.2.1 EXAMPLE INSTRUCTION FOR INITIAL ROUND PROMPT GENERATOR

System Prompt:

"You are an expert prompt engineer specializing in semantic difference
analysis prompts for evaluating respondent characteristics across
various domains."

User Prompt:

f"""
Please perform a **limited enhancement and expansion** on the provided

base prompt template, with the goal of generating a **domain-
sensitive, semantically focused prompt for analyzing response
differences**.

> **Important:** Only make minimal modifications and keep all the "###
Difference Score Ranges (Fine-Grained)" unchanged - focus on **adding
new content without altering the original structure or logical flow

** of the prompt.

---

### Question Information:
Question: {question_data.get(’question’, ’’)}

The evaluation should be conducted across these dimensions/conditions:
{’, ’.join(conditions)}

Domain Context: "{domain_context}"
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---
### Original Base Prompt Template:
{self.base_prompt_template}

---

### Enhancement Requirements:

1. **Domain-Oriented Content Enhancement**
- Add domain-specific context to the original prompt based on the

given domain (e.g., finance, healthcare, technology, education).
- Clarify how knowledge, attitudes, and behaviors are typically

expressed in this domain.
- Emphasize linguistic features or response patterns that indicate

high vs. low proficiency levels within this domain.

2. **Clarify the Meaning of Each Condition**
- For each condition, provide a clear explanation: What is being

assessed?
- Describe the underlying cognitive, behavioral, or psychological

mechanism behind that dimension.
- Identify typical language or behavior patterns respondents may

exhibit in this condition.

3. **Define Semantic Difference Focus per Dimension**
- Specify what aspects of meaning should be analyzed for semantic

differences within this question and its conditions.
- Example: In a financial literacy dimension, focus on logical

reasoning vs. intuitive judgment, or the use of technical
terminology vs. everyday language.

- In a health behavior dimension, focus on risk awareness, self-
management capability, or trust in scientific information.

- Explain why these differences matter and what they reveal about the
respondent.

4. **Ensure Fully Independent Evaluation Across Conditions**
- Conduct a complete analysis for each condition separately, including

profiling, comparison, scoring, and justification.
- Avoid cross-condition interference or influence in scoring or

interpretation.
- Ensure each condition’s output is fully independent and self-

contained.

---

### Optional Example Support:
To help the model better understand the task, you may provide example

responses from two users to assist in generating a more targeted
analysis framework.

Please follow the above instructions to enhance the base prompt with **
minimal structural changes**, focusing only on **domain-relevant
expansions** and **semantic-difference enhancements**.

"""

E.2.2 EXAMPLE INSTRUCTION FOR SEQUENTIAL ROUND PROMPT GENERATOR
(MODIFICATION)

System Prompt:

"You are an expert prompt engineer specializing in optimizing difference
calculation prompts based on user feedback."
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User Prompt:

f"""
---

You are tasked with modifying an initial prompt based on specific user
feedback.

---
## OBJECTIVE:
Refine the original prompt according to the user’s explicit instructions,

making only the minimal necessary changes to address the feedback.

---
## REQUIREMENTS:
1. Focus solely on the issues explicitly mentioned in the user feedback.
2. Make the smallest possible adjustments needed to align with user

instructions.
3. Preserve all other aspects of the original prompt that are not

directly addressed in the feedback.
4. If user-suggested modifications are provided, treat them as in-context

examples for adjustment.
5. Ensure the modified prompt remains clear, functional, and domain-

agnostic.

---
## ORIGINAL PROMPT:
{original_prompt}

---
## USER FEEDBACK:
{user_feedback}

---
Please provide the optimized prompt directly. Do not alter anything

beyond what is requested by the user.
Only return the optimized prompt content, no additional explanation or

formatting.
"""

E.2.3 EXAMPLE INSTRUCTION FOR LLM-BASED EVALUATOR

System Prompt:

"You are an expert in analyzing differences between survey respondents.
Your task is to evaluate how different two people are based on their
responses, focusing on their characteristics, knowledge, and
behavioral patterns. You should provide difference scores where
higher scores indicate greater differences between respondents."

User Prompt:

f"""
# USER’S INSTRUCTIONS (PLEASE FOLLOW THE INSTRUCTIONS TO GIVE RESULTS):
{agent1_prompt}

### RESPONDENT 1:
{response1.get(’combined_answer’, ’’)}

### RESPONDENT 2:
{response2.get(’combined_answer’, ’’)}

### Conditions to evaluate:
{conditions_text}
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# ATTENTION: Please follow the user’s instructions and ensure the output
adheres to the specified format provided in the function call.

"""

E.3 PROMPTS FOR DATA GENERATION SYSTEM

This section provides the prompts used in the data generation system.

E.3.1 INSTRUCTION FOR COMMUNITY DEFINITION

System Prompt:
"You are an expert in survey analysis and demographic segmentation.
Analyze the given questionnaire to identify distinct community types that

would respond differently based on their knowledge, behavior, and
attitudes in the specific domain.

For each community, provide:
1. A descriptive name that reflects their characteristics
2. Score ranges (0-100) for each evaluation dimension that represent

their expected proficiency levels

Consider the domain context and ensure communities represent meaningful
diversity in responses."

User Prompt:
f"""Analyze this {questionnaire_name} questionnaire to identify exactly 3

distinct community types who would interact with this domain
differently.

QUESTIONNAIRE DETAILS:
- Domain: {questionnaire_name}
- Evaluation Dimensions: {’, ’.join(dimensions_list)}
- Content Overview: {questionnaire_content}

ANALYSIS REQUIREMENTS:
Please identify exactly 3 communities representing high, medium, and low

proficiency levels in this {questionnaire_name} domain. For each
community:

1. Name: Use format "level_domain_descriptor" (e.g., "
high_financial_literacy" or "expert_healthcare_professionals")

2. Description (150+ words): Include:
- Demographics (age range, education level, occupation types)
- Domain experience level and exposure history
- Behavioral patterns and interaction styles
- Attitudes, motivations, and pain points
- Knowledge depth and breadth characteristics
- Representative examples of people in this community
- How they typically approach problems in this field

3. Score Ranges:
- For each dimension ({’, ’.join(dimensions_list)}), assign

appropriate score ranges (0-100)
- High proficiency community: typically 69-100
- Medium proficiency community: typically 31-69
- Low proficiency community: typically 1-30

DOMAIN-SPECIFIC GUIDANCE:
- For Finance: Consider financial literacy levels, risk attitudes,

financial behaviors
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- For HCI: Consider technical expertise, interaction fluency, adaptive
technology use

- For Manufacturing/3D Printing: Consider technical understanding,
practical experience, creative application

- For medical questionnaires, DO NOT create communities based on medical
knowledge levels or professional backgrounds.

Instead, focus on RECOVERY STATUS and POST-TREATMENT OUTCOMES:
- Excellent Recovery Community: Patients who have recovered well from

treatment/surgery with minimal ongoing symptoms
- Moderate Recovery Community: Patients with partial recovery, still

managing some symptoms
- Poor Recovery Community: Patients with slow/incomplete recovery,

significant ongoing symptoms

The communities should represent different healing outcomes and
adaptation levels, NOT different medical expertise levels.

All patients should have similar baseline medical knowledge (typical
patient level).

Call the analyze_questionnaire_communities function with your detailed
analysis results.

"""

E.3.2 INSTRUCTION FOR PERSONA INSTANTIATION

System Prompt:

f"""You are an expert in creating realistic and diverse candidate
profiles based on detailed community characteristics and specific
proficiency scores.

Your task is to generate {candidates_per_community} distinct candidate
profiles for a given community in the {domain} domain. Each candidate
has been pre-assigned specific proficiency scores that you MUST use

to guide their background creation.

CORE PRINCIPLES:
1. **Score-Driven Background Creation**: Use the provided scores to

determine the candidate’s expertise level and create a background
that logically explains these scores

2. **Community Authenticity**: Ensure each candidate authentically
reflects the community characteristics described

3. **Occupational Diversity**: Generate diverse occupations based on the
community description rather than predefined lists

4. **Individual Coherence**: Each candidate should have a coherent life
story where their demographics, education, career, and experience
logically support their proficiency scores

SCORE INTERPRETATION GUIDELINES:
- 80-100: Expert level - extensive education, senior positions, many

years of experience, specialized training
- 60-79: Advanced level - solid education, mid-senior positions,

considerable experience, some specialization
- 40-59: Intermediate level - moderate education, mid-level positions,

some experience, general knowledge
- 20-39: Basic level - basic education, junior positions, limited

experience, foundational knowledge
- 0-19: Novice level - minimal education/experience, entry-level or non-

professional roles, very limited exposure

IMPORTANT REQUIREMENTS:
- Create backgrounds that JUSTIFY the specific scores provided
- Generate occupations that fit the community description, not from

predefined lists
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- Ensure age, education, and experience align with the proficiency levels
indicated by scores

- Make each candidate distinct while maintaining community consistency
- Include realistic personal interests that complement their professional

profile"""

User Prompt:

f"""Generate {candidates_per_community} distinct and realistic candidate
profiles for the "{community_name}" community in the {domain} domain.

COMMUNITY PROFILE:
{community_description}

PRE-ASSIGNED PROFICIENCY SCORES:
{scores_info}

DOMAIN: {domain}
EVALUATION DIMENSIONS: {’, ’.join(dimensions)}

CRITICAL REQUIREMENTS:

1. **Score-Based Background Creation**:
- Use the assigned scores to determine each candidate’s expertise

level
- Create backgrounds that logically EXPLAIN and JUSTIFY these specific

scores
- Higher scores require more education, experience, and specialized

knowledge
- Lower scores should reflect limited exposure, basic education, or

different career focuses

2. **Cross-Dimensional Consistency**:
- IMPORTANT: Each candidate should maintain consistent proficiency

levels across ALL dimensions
- If a candidate has high scores (80+) in one dimension, they should

have similarly high scores in other dimensions
- The candidate’s background, education, and experience should justify

their competency across ALL evaluation dimensions
- Avoid creating candidates who are experts in some dimensions but

novices in others within the same profile

3. **Community Authenticity**:
- Each candidate MUST reflect the community characteristics described

above
- Match the demographic patterns, behavioral traits, and knowledge

depths specified
- Embody the attitudes, motivations, and pain points mentioned in the

community description

4. **Occupation Generation**:
- Generate occupations based on the community description examples and

characteristics
- DO NOT use predefined occupation lists - create realistic jobs that

fit the community
- Ensure job complexity and seniority align with the proficiency

scores across ALL dimensions

5. **Individual Coherence**:
- Each candidate should have a coherent life story where age,

education, career path, and domain exposure logically lead to
their assigned scores across ALL dimensions

- Explain HOW they achieved their proficiency levels through their
background
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- Include realistic career progression and learning experiences that
support competency in all areas

6. **Diversity Within Community**:
- While maintaining community consistency and cross-dimensional

coherence, create variety in specific backgrounds, locations,
career paths, and personal interests

- Ensure each candidate feels like a unique individual within their
community type

Please call the generate_community_candidates_batch function with {
candidates_per_community} complete candidate profiles that
authentically represent the "{community_name}" community while having
backgrounds that justify their assigned proficiency scores across

all dimensions."""

E.3.3 INSTRUCTION FOR RESPONSE SIMULATION

System Prompt:

"You are an expert in analyzing differences between survey respondents.
Your task is to evaluate how different two people are based on their
responses, focusing on their characteristics, knowledge, and
behavioral patterns. You should provide difference scores where
higher scores indicate greater differences between respondents."

User Prompt:

f"""
CANDIDATE IDENTITY:
- ID: {candidate_id}
- Community: {community}
- Personal Story: {description}

DEMOGRAPHICS:
- Age: {demographics.get(’age’, ’N/A’)}
- Gender: {demographics.get(’gender’, ’N/A’)}
- Location: {demographics.get(’location’, ’N/A’)}
- Education: {demographics.get(’education’, ’N/A’)}

PROFESSIONAL LIFE:
- Field: {professional_background.get(’field’, ’N/A’)}
- Current Role: {professional_background.get(’occupation’, ’N/A’)}
- Experience: {professional_background.get(’years_experience’, ’N/A’)}

years
- Position Level: {professional_background.get(’current_position’, ’N/A’)

}
- Company Type: {professional_background.get(’company_type’, ’N/A’)}
- Career Journey: {professional_background.get(’career_progression’, ’N/A

’)}

PERSONAL INTERESTS: {’, ’.join(personal_interests) if personal_interests
else ’N/A’}

DOMAIN EXPERTISE:
- Years in {domain}: {domain_experience.get(’years_in_domain’, ’N/A’)}

years
- Specialization: {domain_experience.get(’specialization’, ’N/A’)}
- Key Achievements: {’; ’.join(domain_experience.get(’key_achievements’,

[])) if domain_experience.get(’key_achievements’) else ’N/A’}
- Learning Sources: {’; ’.join(domain_experience.get(’learning_sources’,

[])) if domain_experience.get(’learning_sources’) else ’N/A’}

PROFICIENCY SCORES (Critical for Response Generation):
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{scores}

### CRITICAL INSTRUCTION ###
ALWAYS PRIORITIZE ACTUAL SCORES OVER COMMUNITY/BACKGROUND DESCRIPTIONS!
The scores above are the GROUND TRUTH for this candidate’s actual

abilities.
These scores may intentionally differ from the community description or

background story as part of data simulation.
If there’s any conflict between the community description and the actual

scores, ALWAYS follow the scores.
"""

E.4 DETERMINED PROMPTS FOR WORKSHOP

This is the prompt determined to be used in the workshop experiment.

---

### Individual Response Behavior Change Assessment

You are an expert in analyzing individual response content to assess
behavior change levels across different dimensions/conditions within
the **health behavior change assessment domain**. This domain focuses
on evaluating changes in eating habits and their alignment with

healthy behaviors.

---

### Task Overview

Your goal is to analyze a SINGLE respondent’s response regarding ‘‘eating
changes since starting college’’ and provide behavior change scores

(0-100) for the condition ‘‘healthy eating changes’’, which evaluates
how much the respondent’s eating habits have improved or worsened.

The primary focus is on behavioral change, not the individual’s
current state.

---

### Analysis Process

For the condition, follow this process:

1. **Individual Behavior Change Assessment**
- Analyze the response content to estimate the respondent’s behavior

change level (0-100) based on how their eating habits have changed
.

- Look for: evidence of positive behavioral changes (e.g., "I started
eating more fruits"), negative behavioral changes (e.g., "I eat
more junk food now"), specific examples of habit modifications,
and acknowledgment of external factors influencing eating habits.

- Consider: reasoning behind changes (e.g., adapting to a healthier
lifestyle), practical steps taken (e.g., meal planning), and
awareness of health-related goals.

2. **Behavior Change Level Indicators**
- **50 (Baseline)**: No significant change in eating habits; neutral

behavior patterns without improvement or decline.
- **50-100**: Scores increase as eating habits become healthier.

Evidence includes adopting better nutritional practices, reducing
unhealthy food intake, and proactive behavior adjustments.

- **0-50**: Scores decrease as eating habits worsen. Evidence includes
increased consumption of unhealthy foods, lack of effort to

improve habits, and negative behavioral trends.
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3. **Score Assignment**
- Assign a specific behavior change score (0-100) based on evidence in

the response.
- Provide brief justification for the score.

---

### Behavior Change Scoring Guide

| Score Range | Description | Typical Evidence |
|-------------|-------------|------------------|
| **90-100** | **Significant improvement** | Clear adoption of highly

healthy eating habits, detailed examples of positive changes (e.g., "
I track my calorie intake daily"). |

| **80-89** | **Strong improvement** | Solid evidence of healthier eating
, structured efforts to modify habits (e.g., "I stopped eating fast
food"). |

| **70-79** | **Moderate improvement** | Noticeable positive changes,
some specificity in actions taken (e.g., "I try to eat vegetables
with every meal"). |

| **60-69** | **Slight improvement** | Basic efforts toward healthier
eating, limited detail but clear intent (e.g., "I’m trying to drink
more water"). |

| **50** | **No significant change** | Neutral behavior; no clear
evidence of improvement or decline (e.g., ‘‘My eating habits haven’t
really changed’’). |

| **40-49** | **Slight decline** | Minor negative changes, vague examples
of unhealthy habits emerging (e.g., "I snack more often now"). |

| **30-39** | **Moderate decline** | Clear evidence of worsening habits,
less attention to health (e.g., "I eat out more frequently"). |

| **20-29** | **Strong decline** | Significant adoption of unhealthy
eating patterns, lack of effort to improve (e.g., "I don’t care about
what I eat anymore"). |

| **0-19** | **Severe decline** | Major deterioration in eating habits,
frequent references to unhealthy behaviors (e.g., "I only eat junk
food now"). |

---

### Quality Assessment Framework

**High Behavior Change Signals:**
- Describes specific positive behavioral changes (e.g., "I started meal

prepping").
- Acknowledges external factors influencing habits (e.g., "I eat

healthier because my roommate cooks nutritious meals").
- Demonstrates awareness of health goals (e.g., "I reduced sugar intake

to feel more energetic").

**Low Behavior Change Signals:**
- Shows vague or generic statements (e.g., "I eat a bit better").
- Provides examples of negative behavioral trends (e.g., "I eat late-

night snacks every day").
- Lacks reasoning or intentionality behind changes (e.g., "I just eat

whatever is available").

**Assessment Priority:**
- Focus on BEHAVIORAL CHANGE rather than technical knowledge.
- Evaluate SPECIFIC ACTIONS taken to improve or worsen eating habits.
- Consider CONTEXTUAL FACTORS influencing dietary choices.

---

### Output Format
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For the condition:
1. **Condition Name**: [condition]
2. **Behavior Change Score**: [0-100]
3. **Key Evidence**: Brief justification (2-3 sentences max)
4. **Behavior Change Level**: [Novice/Basic/Intermediate/Advanced/Expert]

Remember: Base your assessment solely on demonstrated changes in eating
habits, focusing on behavioral trends rather than communication style
or vocabulary sophistication.

---

E.5 SYNTHETIC DATA EXAMPLE ON FINANCE

In this section, we provide some data examples generated by the Controllable Synthetic Data Gen-
eration System for reference.

E.5.1 COMMUNITY EXAMPLE

1 {
2 ...
3 {
4 "name": "medium_financial_practitioner",
5 "description": "These individuals are aged 22-45, with

undergraduate degrees in business, economics, or related
fields. Occupations range from small business owners to
mid-level corporate employees. They have moderate exposure
to financial practices, including basic banking services,
occasional investments, and some savings habits. While

they grasp fundamental financial concepts, their knowledge
lacks depth in complex areas like risk diversification or
high-yield strategies. Behaviorally, they check finances

periodically but may not consistently monitor them. They
value financial education but prioritize immediate needs
over long-term planning. For instance, a marketing manager
who saves occasionally and invests in low-risk mutual

funds typifies this group. Problem-solving approaches are
practical but less strategic.\n",

6 },
7 ...
8

9 }

E.5.2 CANDIDATE EXAMPLE

1 {
2 ...
3 {
4 "id": "C1",
5 "community": "high_financial_expert",
6 "assigned_scores": {
7 "financial attitude": 90,
8 "financial literacy": 80,
9 "financial behavior": 81

10 },
11 "description": "Candidate 1 is a seasoned Investment

Portfolio Manager with over 15 years of experience
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managing high-net-worth client accounts at an elite
private wealth management firm. Holding both an MBA in
Finance and a CFA charter, she has developed a robust
understanding of financial markets and excels in
constructing diversified portfolios that maximize
returns while mitigating risks. Her financial attitude
score of 90 reflects her disciplined approach to wealth
accumulation and risk management, always prioritizing
long-term stability over short-term gains. Despite
scoring slightly lower in financial literacy (80) and
financial behavior (81), she remains highly
knowledgeable, though some gaps exist in advanced
derivatives trading. She regularly attends investment
seminars and subscribes to financial journals to stay
updated on emerging trends. Outside work, she enjoys
mentoring young women entering finance and participating
in triathlons.",

12 "scores": {
13 "financial attitude": 90,
14 "financial literacy": 80,
15 "financial behavior": 81
16 },
17 "demographics": {
18 "age": 42,
19 "gender": "Female",
20 "location": "New York City, USA",
21 "education": "MBA in Finance, CFA Charterholder"
22 },
23 "professional_background": {
24 "field": "Investment Management",
25 "occupation": "Senior Investment Portfolio Manager",
26 "years_experience": 15,
27 "current_position": "Managing Director",
28 "company_type": "Private Wealth Management Firm",
29 "career_progression": "Started as an equity research

analyst, then transitioned into portfolio management
roles, steadily climbing the ranks to become a senior
manager."

30 },
31 "personal_interests": [
32 "Mentoring young professionals",
33 "Participating in endurance sports",
34 "Reading financial literature"
35 ],
36 "domain_experience": {
37 "years_in_domain": 15,
38 "specialization": "Wealth Management and Asset Allocation"

,
39 "key_achievements": [
40 "Increased managed assets under her division by 35% in

three years",
41 "Developed proprietary portfolio optimization model",
42 "Published articles in top finance magazines"
43 ],
44 "learning_sources": [
45 "CFA curriculum",
46 "Financial Times",
47 "Annual investment conferences"
48 ]
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49 }
50 },
51 ...
52 {
53 "id": "C6",
54 "community": "low_financial_novice",
55 "assigned_scores": {
56 "financial attitude": 31,
57 "financial literacy": 30,
58 "financial behavior": 28
59 },
60 "description": "Sophia, 25, works as a receptionist at a

small law firm. Recently, she began taking online
courses in marketing, hoping to pivot careers soon.
Financially cautious by nature, Sophia tries to stick to
a monthly budget but finds sticking to it difficult due
to fluctuating utility bills and occasional indulgences

. She has accumulated some savings but worries whether
it will suffice for future educational investments.
Understanding loans and interest rates confuses her,
making big financial decisions stressful.",

61 "scores": {
62 "financial attitude": 31,
63 "financial literacy": 30,
64 "financial behavior": 28
65 },
66 "demographics": {
67 "age": 25,
68 "gender": "Female",
69 "location": "Salt Lake City, Utah",
70 "education": "Associate degree"
71 },
72 "professional_background": {
73 "field": "Administrative Support",
74 "occupation": "Receptionist",
75 "years_experience": 4,
76 "current_position": "Office Assistant",
77 "company_type": "Law Firm",
78 "career_progression": "Promoted from temp role to

permanent staff member after demonstrating reliability
."

79 },
80 "personal_interests": [
81 "Interior decorating",
82 "Cooking healthy meals",
83 "Practicing yoga"
84 ],
85 "domain_experience": {
86 "years_in_domain": 4,
87 "specialization": "Budget creation",
88 "key_achievements": [
89 "Reduced dining-out expenses by half"
90 ],
91 "learning_sources": [
92 "Online courses",
93 "Advice from older colleagues"
94 ]
95 }
96 },
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97 ...
98 }

E.5.3 RESPONSE EXAMPLE

1 {
2 ...
3 {
4 "community": "high_financial_expert",
5 "candidate_id": "C1",
6 "candidate_demographics": {
7 "age": 42,
8 "gender": "Female",
9 "location": "New York City, USA",

10 "education": "MBA in Finance, CFA Charterholder"
11 },
12 "candidate_professional_background": {
13 "field": "Investment Management",
14 "occupation": "Senior Investment Portfolio Manager",
15 "years_experience": 15,
16 "current_position": "Managing Director",
17 "company_type": "Private Wealth Management Firm",
18 "career_progression": "Started as an equity research analyst

, then transitioned into portfolio management roles,
steadily climbing the ranks to become a senior manager."

19 },
20 "candidate_personal_interests": [
21 "Mentoring young professionals",
22 "Participating in endurance sports",
23 "Reading financial literature"
24 ],
25 "candidate_domain_experience": {
26 "years_in_domain": 15,
27 "specialization": "Wealth Management and Asset Allocation",
28 "key_achievements": [
29 "Increased managed assets under her division by 35% in

three years",
30 "Developed proprietary portfolio optimization model",
31 "Published articles in top finance magazines"
32 ],
33 "learning_sources": [
34 "CFA curriculum",
35 "Financial Times",
36 "Annual investment conferences"
37 ]
38 },
39 "question_id": "Q1",
40 "main_question": "Questions related to banking services",
41 "answers": [
42 {
43 "dimension": "financial behavior",
44 "question": "How often do you engage in banking services?

What types of services do you typically use at the
bank?",

45 "response":
46 "As a Senior Investment Portfolio Manager with over 15

years of experience in wealth management, I
engage with banking services quite regularly, but
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the frequency and type of services I use are
largely driven by both personal needs and
professional obligations. My interactions tend to
be more strategic than transactional because my
financial behavior leans toward optimizing long-
term outcomes rather than handling day-to-day
banking tasks.

47

48 On a personal level, I primarily use digital banking
platforms for routine activities like bill
payments, fund transfers, and monitoring account
balances. These services save time and align well
with my disciplined approach to managing finances
efficiently. However, given my role at the private
wealth management firm, I also frequently

interact with relationship managers at high-end
banks for specialized services such as wire
transfers for international investments, liquidity
management solutions, or structuring credit

facilities that support portfolio strategies. For
instance, when deploying capital across different
asset classes-whether it’s equities, fixed income,
or alternative investments-I need access to

institutional-grade cash management tools to
ensure seamless execution.

49

50 From a professional standpoint, I rely on custodial
banking services to handle the operational aspects
of client portfolios. This includes trade

settlements, dividend collection, tax reporting,
and performance measurement. Over the years, I’ve
developed a strong preference for banks that offer
robust technological integrations and real-time

data analytics capabilities. Such features allow
me to monitor risk exposures and make informed
decisions quickly. That said, there are still
areas where I notice gaps-for example, some banks
could improve their offerings around derivatives-
related margining requirements or tailored FX
hedging products, which is something I
occasionally encounter in my work.

51

52 I’d rate myself as highly knowledgeable about
leveraging these banking services effectively,
though I recognize there’s room to deepen my
expertise further in certain niche areas, such as
advanced treasury solutions or blockchain-based
innovations in banking. Attending annual
investment conferences and staying current with
publications like *Financial Times* helps me keep
up with emerging trends, but they haven’t all
translated into direct application yet.

53

54 To summarize, I probably interact with banking
services weekly for basic functions and monthly
for more sophisticated ones. The mix reflects my
dual focus on maintaining operational efficiency
while pursuing strategic opportunities that

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

enhance value creation-not just for myself but
also for the high-net-worth clients I serve.",

55 "dimension_score": 81
56 },
57 {
58 "dimension": "financial literacy",
59 "question": "What risks do you think are associated with

keeping money in the bank?",
60 "response":
61 "Well, as someone who’s spent over 15 years managing

wealth for high-net-worth clients, I can say that
keeping money in the bank does come with its own
set of risks-though they might not be as obvious
as some of the more volatile investments. From my
perspective, there are three key risks to consider
: inflation risk, opportunity cost, and credit
risk.

62

63 First, **inflation risk** is a big one. When you leave
money sitting in a savings or checking account,

especially in today’s low-interest-rate
environment, the returns you get often don’t keep
up with inflation. Over time, this erodes your
purchasing power. For instance, if your bank is
offering 0.5% interest on savings but inflation is
running at 3%, you’re effectively losing ground.

This is something I always emphasize with my
clients when we talk about long-term wealth
preservation-it’s not just about protecting
capital, it’s about making sure it grows in real
terms.

64

65 Second, there’s the **opportunity cost** of not
putting that money to work in other assets. As an
investment professional with expertise in asset
allocation, I know there are many ways to generate
better returns while still maintaining a

reasonable level of risk. Whether it’s through
diversified portfolios of equities, bonds, or even
alternative investments like real estate or

private equity, the potential for higher returns
exists outside traditional banking products. Of
course, these options come with their own risks,
but the trade-off is worth considering depending
on your financial goals and time horizon.

66

67 Finally, there’s **credit risk**, which refers to the
possibility that the bank itself could run into
trouble. Now, in most developed markets like the U
.S., deposit insurance programs such as FDIC
coverage protect consumers up to certain limits (
currently $250,000 per account). But if you have
significantly more than that parked in a single
institution, you need to think carefully about
diversifying across banks or using other
structures, like trusts or custodial accounts, to
mitigate this risk. It’s a point I’ve discussed
with clients who prefer to hold large cash
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balances-they sometimes underestimate how exposed
they could be without proper planning.

68

69 That said, I also recognize the value of liquidity and
safety that banks provide, particularly for short

-term needs or emergency funds. In my own practice
, I advise clients to strike a balance-keeping
enough in liquid, low-risk accounts to cover near-
term obligations while deploying the rest into
growth-oriented strategies. After all, wealth
management isn’t about chasing returns blindly; it
’s about aligning your resources with your
objectives in a disciplined way.

70

71 So, to sum it up, while banks offer security and
convenience, the risks of inflation, missed
opportunities, and institutional vulnerability
should never be ignored. These are principles I’ve
both studied extensively-through my MBA and CFA

training-and applied practically in managing
portfolios over the years.",

72 "dimension_score": 80
73 }
74 ],
75 "combined_answer":
76 "As a Senior Investment Portfolio Manager with over 15

years of experience in wealth management, I engage
with banking services regularly, though my
interactions are often more strategic than
transactional. On a personal level, I use digital
banking platforms for routine tasks like bill payments
, fund transfers, and monitoring account balances-
tools that align with my disciplined approach to
efficiency. Professionally, however, my reliance on
banking services becomes much more nuanced. For
example, I frequently work with relationship managers
at high-end banks to facilitate wire transfers for
international investments, structure credit facilities
, or manage liquidity solutions that support portfolio
strategies. Custodial banking services are also

critical in my day-to-day operations, as they handle
trade settlements, dividend collection, tax reporting,
and performance measurement for client accounts. Over
time, I’ve developed a preference for banks that

offer robust technological integrations and real-time
data analytics capabilities because these features
allow me to monitor risk exposures and make informed
decisions quickly. That said, there are still areas
where I notice gaps, such as advanced treasury
solutions or tailored FX hedging products, which I
occasionally encounter but don’t yet feel fully
equipped to navigate. While I stay updated on emerging
trends through investment conferences and financial

journals, some innovations, like blockchain-based
banking tools, haven’t translated into direct
application for me yet.

77

78 At the same time, I’m acutely aware of the risks
associated with keeping money in the bank,
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particularly when it comes to inflation, opportunity
cost, and credit risk. Inflation is a big concern-it’s
something I emphasize with clients when discussing

long-term wealth preservation. If your returns from a
savings account don’t outpace inflation, you’re
effectively losing purchasing power over time. Then
there’s the opportunity cost of not deploying that
capital into growth-oriented assets, whether it’s
equities, bonds, or alternatives like real estate. Of
course, these options come with their own risks, but
balancing safety with growth is key. Finally, there’s
credit risk-the possibility that the bank itself could
face instability. While programs like FDIC insurance

provide a layer of protection, I always advise clients
with significant cash holdings to diversify across

institutions or explore other structures to mitigate
this risk. Banks offer undeniable value in terms of
liquidity and security, especially for short-term
needs, but they’re not without their limitations.
Striking the right balance between safety and growth
is something I prioritize both personally and
professionally, even if it means acknowledging that no
solution is entirely without trade-offs.",

79 "scores": {
80 "financial attitude": 90,
81 "financial literacy": 80,
82 "financial behavior": 81
83 }
84 },
85 ...
86 {
87 "community": "low_financial_novice",
88 "candidate_id": "C8",
89 "candidate_demographics": {
90 "age": 23,
91 "gender": "Female",
92 "location": "Denver, Colorado",
93 "education": "High school diploma"
94 },
95 "candidate_professional_background": {
96 "field": "Gig Economy",
97 "occupation": "Delivery Driver",
98 "years_experience": 2,
99 "current_position": "Contractor",

100 "company_type": "Food Delivery Platform",
101 "career_progression": "Initially drove fewer hours per week;

increased workload as demand grew."
102 },
103 "candidate_personal_interests": [
104 "Trying new foods",
105 "Travel vlogs",
106 "Photography"
107 ],
108 "candidate_domain_experience": {
109 "years_in_domain": 2,
110 "specialization": "Using mobile budgeting apps",
111 "key_achievements": [
112 "Consistently saved $100/month for three consecutive

months"
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113 ],
114 "learning_sources": [
115 "Peer recommendations",
116 "Mobile app tutorials"
117 ]
118 },
119 "question_id": "Q1",
120 "main_question": "Questions related to banking services",
121 "answers": [
122 {
123 "dimension": "financial behavior",
124 "question": "How often do you engage in banking services?

What types of services do you typically use at the
bank?",

125 "response":
126 "I don’t really go to the bank all that often, to be

honest. I know they offer services like checking
accounts and savings accounts-I’ve got both-but
from what I understand, most of what I need can be
handled through their app. That’s something I’ve

been using more since it’s easier for me with my
schedule. I think you can deposit checks through
the app too, which is helpful because I’m always
on the move delivering food.

127

128 From what I’ve heard, banks also do things like loans
or help with credit cards, but I haven’t really
looked into those much yet. I’ve thought about
maybe getting a better understanding of how credit
works, though, since I want to eventually move

out of my shared apartment and maybe even start
saving up for a car. For now, I mostly just use
the basics-checking my balance, transferring money
between accounts when I remember to save a little
each month, stuff like that.

129

130 I guess if I had more time, I’d try to learn more
about other services, but right now, I’m still
figuring out the essentials. My shifts keep me
pretty busy, so I stick to what I know and what’s
quick to manage online.",

131 "dimension_score": 35
132 },
133 {
134 "dimension": "financial literacy",
135 "question": "What risks do you think are associated with

keeping money in the bank?",
136 "response":
137 "I think there are some risks with keeping money in

the bank, but I don’t know too much about it. From
what I understand, one risk might be that if the

bank has problems or goes out of business, you
could lose your money-but I’ve heard something
about insurance that’s supposed to protect it? I’m
not really sure how that works, though.

138

139 Another thing I’ve thought about is inflation. Like,
if I keep my savings in a regular account, I think
the value of my money might go down over time
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because prices for stuff go up. But honestly, I
don’t fully get how that connects to banks or what
I can do about it. It’s just something I’ve heard
people mention.

140

141 Also, I guess there’s a chance someone could hack into
your account or steal your information if the

bank’s security isn’t good enough. That makes me
nervous sometimes when I use mobile banking apps,
even though they seem pretty safe so far. I try to
check my accounts often, just in case anything

weird happens.
142

143 Overall, I know these things exist, but I don’t feel
super confident explaining them. I’ve been using
budgeting apps to track my money, and they help me
focus on saving small amounts each month instead

of worrying too much about bigger risks like this
.",

144 "dimension_score": 30
145 }
146 ],
147 "combined_answer":
148 "I don’t really go to the bank all that often, to be

honest. Most of what I need can be handled through
their app, which is super helpful for me since my
delivery shifts keep me so busy. I’ve got a checking
account and a savings account, and I use them mostly
for the basics-checking my balance, transferring money
between accounts when I remember to save a little

each month, stuff like that. I know banks offer other
services, like loans or credit cards, and I’ve thought
about trying to understand credit better because I

want to eventually move out of my shared apartment and
maybe even start saving up for a car. But for now, I

stick to what I know and what’s quick to manage online
.

149

150 From what I’ve heard, there are some risks with keeping
money in the bank, but I’ll admit I don’t fully
understand them yet. Like, if the bank has problems or
goes out of business, I think you could lose your

money-but then I’ve also heard something about
insurance that’s supposed to protect it? I’m not sure
how that works exactly. Another thing I’ve thought
about is inflation. If I keep my savings in a regular
account, I feel like the value of my money might go
down over time as prices go up, but I don’t really get
how that connects to banks or what I can do about it.
And yeah, there’s always the worry about someone

hacking into your account or stealing your information
, especially when I’m using mobile banking apps on the
go. That makes me nervous sometimes, even though they
seem pretty secure so far. I try to check my accounts
often just in case anything weird happens.

151

152 Overall, I know these risks exist, but I don’t feel super
confident explaining them. I’ve been experimenting
with budgeting apps to track my money, and they help
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me focus on saving small amounts each month instead of
stressing too much about bigger risks. For now, I’m

still figuring out the essentials, and while I’d love
to learn more, my schedule doesn’t leave much room for
diving deeper into financial strategies.",

153 "scores": {
154 "financial attitude": 26,
155 "financial literacy": 30,
156 "financial behavior": 35
157 }
158 },
159 ...
160 }
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