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Abstract

In this paper, we tackle the task of scene-aware 3D human motion forecasting,
which consists of predicting future human poses given a 3D scene and a past human
motion. A key challenge of this task is to ensure consistency between the human
and the scene, accounting for human-scene interactions. Previous attempts to do
so model such interactions only implicitly, and thus tend to produce artifacts such
as “ghost motion" because of the lack of explicit constraints between the local
poses and the global motion. Here, by contrast, we propose to explicitly model
the human-scene contacts. To this end, we introduce distance-based contact maps
that capture the contact relationships between every joint and every 3D scene
point at each time instant. We then develop a two-stage pipeline that first predicts
the future contact maps from the past ones and the scene point cloud, and then
forecasts the future human poses by conditioning them on the predicted contact
maps. During training, we explicitly encourage consistency between the global
motion and the local poses via a prior defined using the contact maps and future
poses. Our approach outperforms the state-of-the-art human motion forecasting
and human synthesis methods on both synthetic and real datasets. Our code is
available at https://github.com/wei-mao-2019/ContAwareMotionPred.

1 Introduction

Human motion prediction has a broad application potential covering human robot interaction [17],
autonomous driving [23], virtual/augmented reality (AR/VR) [28] and animation [31]. As such, it
has been an active research topic for decades [4, 27, 30, 35]. Nevertheless, most methods [19, 1,
22, 32, 9, 18, 21, 5] disregard the fact that humans evolve in 3D environments, thus ignoring the
human-scene interactions. By contrast, in this work, we tackle the task of scene-aware human motion
forecasting, which aims to incorporate the scene context to predict future 3D human motions.

While some recent works in human motion prediction [6, 8] and human synthesis [33] have started
to explore the use of scene context, they do so implicitly, by taking an embedding of a 2D scene
image [6], a 3D scene [33], or a specific object [8] as an additional input to their model. While
such embeddings encode valuable information, they do not provide precise cues to help placing the
human in the scene. In the context of synthesizing a static human body in a scene, some efforts have
nonetheless been made to incorporate more precise information, such as the distance between every
scene point and the closest vertex on body surface [36], or a semantic scene label, e.g., floor, sofa, at
every vertex on the 3D body mesh [12]. However, while such representations allow one to place a
human in the scene, they remain under-constrained for motion prediction. Specifically, they impose
neither temporal consistency, nor consistency between local pose changes and global motion. As
such, they yield artifacts such as “ghost motion".

In this paper, we address this by explicitly modeling the contact between the human body joints
and the scene. To this end, we introduce per-joint contact maps that encode the distance between
each joint and every 3D scene point. Such contact maps constrain both the global motion and the
local human pose, thus avoiding the “ghost motion" issue. As illustrated in Fig 1, our human motion
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(a) predict the future contact maps (b) forecast the future human poses

Figure 1: Our approach. Given the historical motion, depicted as gray skeletons, and the 3D scene,
(a) our model first predicts per-joint contact maps in the future frames, shown with color maps.
Here, for visualization purpose, we only show the contact maps of the left foot (blue) and right foot
(red). (b) Conditioned on the predicted contact maps, we then forecast future poses, shown as orange
skeletons. The per-joint contact maps provide strong cues about the 3D human joint locations.

prediction framework therefore consists of a two-stage pipeline that first predicts the future contact
maps and then forecasts the future human poses by conditioning them on the predicted maps.

Specifically, we obtain a compact temporal representation of the historical contact maps using a
similar Discrete Cosine Transform (DCT) encoding strategy to that of [22] for human motion, and
use a feed-forward 3D scene encoding network, i.e., PVCNN [20], to predict the future contact maps
from the scene point cloud, past human motion and the historical contact maps. To then forecast
human motion, we retain the closest contact points for every human joint according to the predicted
contact maps and forecast the global translations and then the local poses given these points and the
past human motion. Consistency between the global translations and the local poses is achieved via a
prior defined using the predicted human poses and the contact points.

Our contributions can be summarized as follows. (i) We introduce a distance-based per-joint contact
map that captures fine-grained human-scene interactions to avoid generating unrealistic human mo-
tions. (ii) We further propose a two-stage pipeline whose first stage models the temporal dependencies
of past contact maps and predicts the future ones, and whose second stage forecasts the future human
motion conditioned on these contact maps. Our experiments on both synthetic and real datasets
demonstrate the benefits of our approach over the state-of-the-art human motion forecasting and
human motion synthesis methods.

2 Related Work

Human motion prediction. Modeling 3D human motion has been a long-standing research goal [4,
27, 30, 35]. While traditional methods [4, 35], relying on either Hidden Markov Models [4] or the
Gaussian process latent variable model [35], can tackle periodic and simple non-periodic motions,
such as walking and golf swing, more complex motions have been shown to be better modeled
via deep learning frameworks [19, 1, 22, 32, 9, 18, 21, 5], which can be roughly categorized into
feed-forward models [19, 22, 21] and recurrent networks [1, 32, 9, 18, 5] according to their temporal-
spatial encoding strategies. Despite the success of these methods at forecasting complex motions,
they typically only predict local poses, disregarding global motion and any scene information. In
this paper, we seek to predict future human motions that are consistent with the 3D scenes they are
performed in.

Recently, a few works [8, 6] have started to incorporate scene context in motion forecasting. In
particular, Corona et al. [8] introduced a semantic-graph model that extracts a joint embedding of the
human pose and an object of interest, such as a cup. This method, however, is ill-suited to model
interactions with the whole scene itself, for example the floor or stairs that the person touches while
walking. In [6], Cao et al. proposed a multi-stage pipeline that breaks down the motion forecasting
into three sub-tasks: predicting a 2D goal, planning a 2D and 3D path, forecasting the 3D poses
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following the path. To this end, they extracted a scene representation using 2D images and let their
model learn the scene constraints implicitly. This strategy, however, cannot handle scene occlusions
and does not enforce consistency between the local and global motion. More importantly, both these
methods aim to learn interactions implicitly. By contrast, our contact maps explicitly encode the
human-scene interactions, leading to direct constraints at the human joint level.

Scene-aware human synthesis. Synthesizing a realistic human in a 3D scene has recently gained
an increasing popularity [36, 37, 12, 34, 33, 10]. A cornerstone in the success of these methods
is the modeling of human-scene interactions. To achieve this, many of these works [37, 34, 33]
follow a similar approach to [6], modeling the human-scene interactions implicitly, via either Gen-
erative Adversarial Networks (GANs) [34], or Variational Autoencoders (VAEs) [37, 33]. Three
methods [36, 12, 10] nonetheless exploit explicit representations of human-scene interaction. In
particular, POSA [12] uses a body-centric representation of the human-scene interaction where a
semantic scene label, e.g., floor, sofa, is assigned to every human mesh vertex. This label encodes the
contact probability to the scene surface and the corresponding semantic scene label. However, this
semantic representation does not provide any information about the 3D location of the human body,
and is thus ill-suited to the motion forecasting task. In PLACE [36], Zhang et al. introduce a contact
representation based on Basic Point Sets (BSP) [26]. Specifically, given a set of basic 3D scene
points, they represent the human-scene interaction using the minimum distance from every such point
to the human body surface. As in the semantic-based case, this strategy only gives a weak prior on
the human pose, as it does not explicitly defines which joint should be in contact with which scene
point. In SAMP [10], their approach only models a coarse interaction of the human with a given
object in the final frame by predicting the final root location and orientation. Such coarse interaction
however cannot constrain the poses at intermediate frames. By contrast, our per-joint contact maps
provide a more detailed contact information for every human joint at each future frame.

Hand-object interaction Although hand-object contact relationships have already been studied
for the task of grasping [2, 29, 3, 14], existing methods cannot be naively applied to human-scene
interactions because their object-centric contact relationships tend to be static across time. For
example, when we are using a hammer, we will grasp the handle tightly, and thus the contact region
between our palms and the hammer does not change across time. By contrast, our human-scene
contact maps change across the frames for almost all human activities. This motivates us to propose a
distance-based per-joint contact map at each frame.

3 Approach

Let us now introduce our approach to scene-aware 3D human motion forecasting. Following previous
work [22], a sequence of P past human poses is represented as X = [x1,x2, · · · ,xP ] ∈ RP×J×3,
where xp ∈ RJ×3 encodes the 3D locations of all J joints at time p in a global reference frame. The
3D scene is represented as a set of 3D points S ∈ RN×3. Given the historical motion X and the
3D scene S, our goal is then to forecast T future human poses Y = [xP+1,xP+2, · · · ,xP+T ] ∈
RT×J×3. To this end, we introduce a two-stage pipeline that first predicts future human-scene contact
maps, and then forecasts the future poses by conditioning them on these contact maps. An overview
of our pipeline is shown in Fig. 2. Below, we present our contact representation, and our pipeline to
predict future contact maps and future motion.

3.1 Per-joint Scene Contact Map

We represent human-scene contact using the distances between the human joints and the scene points.
Specifically, given a human pose x and a 3D scene S, we first compute the per-joint distance map
d ∈ RJ×N , where each entry djn encodes the ℓ2 distance between the j-th human joint and n-th
scene point, i.e.,

djn = ∥xj − Sn∥2 , (1)

where j ∈ {1, 2, · · · , J} and n ∈ {1, 2, · · · , N}.

In the distance map, the scene points that are less relevant to a human joint, because they are far away
from it, have a higher value. This will tend to give them more influence when used in a deep neural
network and may in turn cause issues when training our contact prediction module. To address this,
we normalize the distance map to obtain a continuous contact map c ∈ RJ×N whose elements are
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Figure 2: Network architecture. Our contact prediction network (top row) takes as input the scene
points S, the past contact maps C and the past human motion X to predict the future contact maps
M̂. From these contact maps, we then extract the per-joint contact points Q̂ for future time instants.
Conditioned on these contact points, our motion forecasting network (bottom row) forecasts the
global translations Ŷroot and then the local poses Ŷlocal.

defined as

cjn = e−
1
2

d2
jn

σ2 , (2)

where the constant σ is the normalizing factor. In such a contact map, closer scene points have higher
values than far-away ones, whose values will be very close to zero.

Given the 3D scene S and past human poses X, we compute the sequence of past contact maps
C = [c1, c2, · · · , cP ] ∈ RP×J×N as described above. Our goal then is to predict the future contact
maps M = [cP+1, cP+2, · · · , cP+T ] ∈ RT×J×N . In the next section, we introduce a contact map
prediction module to do so.

3.2 Contact Prediction Network

Since our contact maps are based on distances, they are smooth over time. Therefore, similar to [22]
for human motion, we adopt a temporal encoding strategy based on the Discrete Cosine Transform
(DCT). With the DCT, a sequence is represented as a linear combination of a set of pre-defined cosine
bases. By discarding the high-frequency components, the DCT provides a compact representation,
which nicely captures the smoothness of the sequence.

More formally, let us denote a P -frame sequence of contact values between the j-th human joint and
the n-th scene point as c̃jn = [c1jn, c2jn, · · · cPjn]. This sequence can be fully represented using P
DCT coefficients, with the l-th one given by

hljn =

√
2

P

P∑
p=1

cpjn
1√

1 + δl1
cos

( π

2P
(2p− 1)(l − 1)

)
, (3)

where l ∈ {1, 2, · · ·P} and δij denotes the Kronecker delta function, i.e.,

δij =

{
1 if i = j

0 if i ̸= j .
(4)

Given these DCT coefficients, the sequence in the original space can be obtained via the Inverse
Discrete Cosine Transform (IDCT) as

cpjn =

√
2

P

L∑
l=1

hljn
1√

1 + δl1
cos

( π

2P
(2p− 1)(l − 1)

)
, (5)
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where L is the number of DCT coefficients used. For a lossless reconstruction, L = P , but when the
sequence is smooth, one can ignore the coefficients of the high-frequency DCT bases and thus use
L < P at a negligible loss.

Recall that our goal is to predict the future T contact maps M = [cP+1, cP+2, · · · , cP+T ] from
the past P ones C = [c1, c2, · · · , cP ]. To leverage the DCT representation, we then reformulate
this problem as learning a mapping from the DCT coefficients of the past contact maps to those of
the future ones. Specifically, following the padding strategy of [22], we first repeat the last contact
map cP T times to create a sequence of P + T contact maps C

′
= [c1, c2, · · · , cP , cP , · · · , cP ] ∈

R(P+T )×J×N . We then compute the DCT coefficients of this sequence and define it as H ∈ RL×J×N .
Note that for each joint we only retain the first L DCT coefficients. Our goal then is to learn a residual
between these DCT coefficients H and those of the real sequence [c1, c2, · · · , cP+T ].

We formulate this as a point-cloud encoding problem. That is, for each scene point, we regard
the corresponding DCT coefficients of all joints as its feature. Thus, every scene point has an
initial feature vector of size LJ . Our contact prediction network then takes as input the 3D scene
points S, the DCT features H and the past human poses X, and outputs the future contact maps
Ĉ = [ĉ1, ĉ2, · · · , ĉP+T ] as

Ĉ = IDCT(H+ F(S,H,Gx(X))) , (6)

where F represents the trainable point-cloud processing model and Gx is the GRU encoder.

Specifically, as shown in Fig. 2, we use the Point-Voxel CNN (PVCNN) [20] to encode the 3D
scene with its DCT feature vectors. The PVCNN was designed to process a 3D point cloud. It
incorporates voxel-based convolutions and point-based representations, leading to a memory- and
computation-efficient structure for 3D data. We adapt the PVCNN to also take as input the past
human poses X, encoded by a Gated Recurrent Unit (GRU) [7], to predict a residual of the DCT
coefficients. We then obtain the predicted contacted maps Ĉ = [ĉ1, ĉ2, · · · , ĉP+T ] via the IDCT.

Note that, here, we seek not only to predict the future contact maps but also to recover the past ones.
To this end, we use the average ℓ2 loss between the ground-truth contact maps and the predicted ones.
Formally, this loss is defined as

ℓmap =
1

(P + T )JN

P+T∑
p=1

J∑
j=1

N∑
n=1

∥cpjn − ĉpjn∥22 . (7)

3.3 Motion Forecasting Network

Given the future contact maps M and the past human motion X, our human motion forecasting
module aims to predict the future human poses Y. To this end, we first extract the closest contact
scene point to each joint from the contact maps. Given these contact points, we first use a simple
neural network to predict the future path (global translations) and then forecast the future local poses
with an RNN-based model. Let us discuss these steps in more detail.

Contact points. Since our focus now is to predict the 3D location of human joints, we propose to
retain the most relevant scene point i.e., the closest one to each joint. Specifically, given the contact
map at time step p cp ∈ RJ×N and the 3D scene points S ∈ RN×3, we would like to find the scene
point that is closest to each human joint. Let us denote the resulting contact points as qp ∈ RJ×4,
each row of which stores the 3D location of the scene point closest to the corresponding human joint
together with a binary value indicating whether the joint truly is in contact with the scene or not.
More formally, the contact point for joint j is computed as

qpj =

[Sk, 1] , where k = argmax
n={1,2,··· ,N}

cj,n , if cj,k > ϵ

[0, 0, 0, 0] otherwise ,

where Sk is the 3D location of the k-th scene point, and ϵ is a threshold to determine whether
the joint is in contact with the scene or not. We compute such contact points for the entire future
sequence, which yields a sequence of contact points Q = [qP+1,qP+2, · · · ,qP+T ] ∈ RT×J×4,
where qp ∈ RJ×4 is the contact points at the p-th time step.
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Motion forecasting. As shown in Fig 2, our forecasting model first predicts the global translation in
each frame and then the local motion given the global translations. Specifically, given the past motion
X and the contact points Q, we use a simple multilayer perceptron (MLP) to predict the future global
translations Yroot ∈ RT×3 as

Ŷroot = M(G̃x(X),Q) , (8)

where M represents the MLP and G̃x is the GRU to encode the past motion.

The global translations are then fed into a GRU to predict the local pose at each future time
step. Assuming that the past and future local pose sequences are represented by Xlocal =
[xlocal

1 ,xlocal
2 , · · · ,xlocal

P ] ∈ RP×(J−1)×3 and Ylocal = [xlocal
P+1,x

local
P+2, · · · ,xlocal

P+T ] ∈ RT×(J−1)×3,
respectively, this can be expressed as

x̂local
p = x̂local

p−1 + G(x̂local
p−1, x̂

root
p ,qp, G̃x(X)) , (9)

where G denotes the GRU to predict the furture poses, p ∈ {P + 1, P + 2, · · · , P + T}, and
x̂local
p ∈ R(J−1)×3, x̂root

p ∈ R3 and qp ∈ RJ×4 are the local human pose, global translation and
contact points at time p, respectively.

The global translation and local motion prediction modules are trained jointly. To this end, we use 3
loss terms. The first one is a global translation loss defined as

ℓroot =
1

T

P+T∑
p=P+1

∥xroot
p − x̂root

p ∥22 , (10)

where xroot
p ∈ R3 and x̂root

p ∈ R3 are the ground-truth and predicted global translations at time p.

The second loss accounts for the local human pose prediction and is expressed as

ℓlocal =
1

T (J − 1)

P+T∑
p=P+1

J−1∑
j=1

∥xlocal
pj − x̂local

pj ∥22 , (11)

where xlocal
pj ∈ R3 and x̂local

pj ∈ R3 are the ground-truth and predicted local positions of the j-th joint
at time p.

Finally, our third loss term encodes a contact prior based on the contact points. We define it as

ℓcontact =
1

TJ

P+T∑
p=P+1

J∑
j=1

qpj4∥x̂pj − qpj([1:3])∥22 , (12)

where x̂pj ∈ R3 is the predicted location of joint j at time p, obtained by adding the predicted global
translation at time p to the corresponding local pose. qpj[1:3] ∈ R3 and qpj4 ∈ {0, 1} are the 3D
coordinates of the contact scene point and the indicator value, respectively.

The overall loss is then expressed as

ℓmotion = λ1ℓroot + λ2ℓlocal + λ3ℓcontact . (13)

We use a stage-wise training strategy where the contact prediction network and motion forecasting
network are trained separately. During training, the motion forecasting network is given the ground-
truth contact points as input. At test time, we first compute the contact points from the predicted
contact maps and then use these contact points to forecast the future human motion.

4 Experiments

4.1 Datasets

We evaluate our method on two datasets, GTA-IM [6] and PROX [11].

GTA-IM. The GTA Indoor Motion dataset [6] is a large-scale synthetic dataset that captures human-
scene interactions. It consists of 50 different characters performing various activities in 7 different
scenes. Each scene is a building, and each building has several rooms on one or more floors. The
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Path Error (mm) Pose Error (mm)

method 0.5s 1.0s 1.5s 2.0s mean 0.5s 1.0s 1.5s 2.0s mean

LTD [22] 67.0 119.3 207.6 375.6 147.4 67.5 93.8 98.9 103.5 80.5
DMGNN [18] 82.7 158.0 227.8 286.9 156.2 47.5 69.1 85.6 95.3 64.9

SLT∗ [33] 45.9 117.0 186.7 267.1 121.8 70.8 181.4 150.2 196.0 112.6

Ours 58.0 103.2 154.9 221.7 108.4 50.8 67.5 75.5 86.9 61.4
Ours w/o contact 61.1 111.7 171.0 249.0 118.8 57.8 74.8 82.4 98.1 68.2

Ours w/ GT contact 52.4 77.8 95.8 129.5 74.1 49.8 64.8 70.4 78.3 58.2
Table 1: Quantitative results on GTA-IM [6]. We report the MPJPE in millimeter for both the
global translations (path error) and the local poses (pose error). The “mean” error was obtained
by averaging over the 60 future time steps. The ∗ indicates that we adapted the official SLT [33]
code, designed for motion synthesis, to our task. We also show ablation results of our model without
contact maps (“Ours w/o contact”) and with ground-truth contact maps (“Ours w/ GT contact”).

Path Error (mm) Pose Error (mm)

method 0.5s 1.0s 1.5s 2.0s mean 0.5s 1.0s 1.5s 2.0s mean

LTD [22] 117.8 232.0 346.9 461.2 236.3 156.0 273.9 387.7 497.9 273.3
DMGNN [18] 119.1 242.7 360.2 462.4 243.7 91.0 141.3 171.8 187.8 129.1

SLT∗ [33] 105.8 227.2 384.1 453.5 255.0 112.1 230.6 233.7 269.6 175.5

Ours 93.3 187.2 284.4 381.2 192.2 89.9 127.5 149.3 167.5 116.8
Ours w/o contact 104.9 196.5 290.0 385.5 200.1 90.3 135.4 160.5 184.1 122.4

Ours w/ GT contact 73.9 106.7 104.6 117.4 88.0 83.7 112.9 125.2 132.9 101.1
Table 2: Quantitative results on PROX [11]. Our model outperforms baseline models by a large
margin across all time steps.

dataset contains around 1 million RGB-D frames together with the corresponding 3D human poses.
We use 4 of the scenes as our training set (“r001",“r002",“r003",“r006") and the remaining 3 as our
test set (“r010",“r011",“r013")1. To obtain the 3D point clouds of the different scenes, we register
their depth maps from different videos sequences with the ground-truth camera extrinsic matrices.
Following [6], we use 21 out of the 98 human joints provided by the dataset. The videos run at 30Hz.
We train our models to observe the past 30 time steps (1 second) and predict the future 60 time steps
(2 seconds).

PROX. Proximal Relationships with Object eXclusion (PROX) [11] is a real dataset captured using a
Kinect-One sensor. It comprises 12 different scenes with 20 subjects interacting with the scenes. The
dataset also provides SMPL-X parameters [25] as the ground-truth human pose and shape in each
frame. Since these parameters were obtained by a frame-wise fitting algorithm, the motion sequences
are jittery and thus ill-suited to our task. We therefore refine the dataset via a simple temporal
optimization process to generate smooth motions. More details are provided in the supplementary
material. Following [33], we use 8 scenes for training (“N3Library”, “MPH112”, “MPH11”, “MPH8”,
“BasementSittingBooth”, “N0Sofa”, “N3Office”, “Werkraum”) and 4 scenes for testing (“MPH16”,
“MPH1Library”, “N0SittingBooth”, “N3OpenArea”). We use the 22 body joints of SMPL-X model.
As for GTA-IM, the frame-rate of this dataset is 30 Hz, and we train our models to take the past 30
time steps as input and predict the future 60 steps.

4.2 Metrics, Baselines & Implementation

Metrics. We use the Mean Per Joint Position Error (MPJPE) [13] to evaluate both the global
translations (path error) and the local motion (pose error).

Baselines. We compare our method with two human motion prediction models (LTD [22] and
DMGNN [18]) and one scene-aware human motion synthesis method (SLT [33]). LTD [22] is a repre-
sentative feed-forward method based on Graph Convolutional Networks (GCNs) [16]. DMGNN [18]

1Note that the dataset does not provide an official training-testing split. We use this split to balance the
number of motion sequences in training and testing.
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Figure 3: Predicted contact maps on GTA-IM [6] (top) and PROX [11] (bottom). We show the
contact maps of four joints: left foot (blue points), left elbow (purple points), right foot (red points)
and right elbow (green points). To show the influence of our contact maps, we also show the past
motion (grey skeleton), ground-truth future motion (orange) and our predictions (blue).

is a state-of-the-art RNN-based approach for human motion prediction. SLT [33] is a stage-wise
approach to synthesize long-term human motions. We used the official implementations of LTD [22]
and DMGNN [18] to train them on our datasets. For SLT [33], we adapted the official code to our
task e.g., we modified their model so as to take the past motion as input. The detail of these changes
are provided in the supplementary material.

Implementation details. Our models are implemented in Pytorch [24] and trained using the
ADAM [15] optimizer. Both our contact prediction network and motion forecasting one are trained
for 50 epochs with learning rates of 0.0005 and 0.001, respectively. The training of each network takes
about 12 hours on a 24GB NVIDIA RTX3090Ti GPU and the evaluation of one sample takes around
90 ms during testing. For both datasets, the normalizing factor σ, the number of DCT coefficients
L and the contact threshold ϵ are set to 0.2, 20 and 0.32, respectively. For the motion forecasting
network, the loss weights (λ1, λ2, λ3) are set to (1.0, 1.0, 0.1) for both datasets. For each motion
sequence, we randomly sample 5000 scene points that are within 2.5 meters away from the root joint
of the last observed pose. Additional implementation details are given in the supplementary material.

4.3 Results

Quantitative results. We provide quantitative results on GTA-IM and PROX in Table 1 and 2,
respectively. Our approach outperforms the baselines for 3D paths and poses on both datasets across
almost all time steps by a large margin. Specifically, the baseline models either perform well for the
3D path but comparatively poorly for the local poses, e.g., SLT [33] with an average path error of
121.8mm but the highest pose error on GTA-IM, or the reverse, e.g., DMGNN [18]. By contrast, our
models produce more accurate 3D paths and poses than those of the baselines.

As an ablation study, we trained our human motion forecasting network without contact maps (“Ours
w/o contact”) and observe an increase of up-to 10mm in the mean path error and 7mm in the mean
pose error. By contrast, using the ground-truth contact maps (“Ours w/ GT contact”) yields a further
performance boost, especially on the mean path error with a decrease of up-to 104mm. This indicates
the effectiveness of conditioning the motion predictions on per-joint contact maps.

Qualitative results. We show our contact maps of four joints (left foot, left elbow, right foot and right
elbow) in Fig. 3. Our model predicts accurate contact maps for diverse motions, such as “walking”
(top) and “sitting down” (bottom). Note that, for the sample from GTA-IM [6] where the subject is
about to walk around a corner, our contact maps precisely capture the contacts between the left elbow
and the wall (shown as purple points on the wall), leading to accurate human motion predictions.
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Figure 4: Qualitative comparison. We show the results of DMGNN [18], SLT [33] and our model
on GTA-IM [6] (top) and PROX [11] (bottom). The past, ground-truth future and predicted future
motions are shown in grey, orange and blue, respectively, and the shade of each color indicates the
time step. The baseline methods, which either do not consider scene context [18] or implicitly model
the human-scene interactions [33], tend to produce unrealistic human movements, e.g, ghost motion
(highlighted with a red box) or walking through a sofa (highlighted with green boxes).

We further compare our results with those of the baselines in Fig. 4. We restrict this comparison to
DMGNN [18] and SLT [33], which are quantitatively more accurate than LTD [22]. The complete
comparison is included in the supplementary material. Due to the lack of explicit constraints on
global motion and local movements, the baseline methods tend to produce unrealistic human motions,
such as motions with almost no local movements but large global translations, i.e., ghost motion
(highlighted with a red box), walking through a sofa (highlighted with green boxes). Thanks to our
per-joint contact maps, our results are more plausible and closer to the ground truth.

5 Conclusion

In this paper, we have introduced a framework for scene-aware human motion forecasting that
encourages consistency between global motion and local poses by exploiting human-scene contacts.
To this end, we have proposed a per-joint contact map representation that captures the contact
relationships between every human joint and the scene points. Our model consists of two stages. We
first predict the per-joint contact maps given the motion history, and then forecast the future global
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translations and local poses given the estimated future contact maps. Thanks to the explicit constraints
provided by our per-joint contact maps, our method yields more plausible and more accurate future
human motions than the state-of-the-art motion prediction or scene-aware human synthesis strategies.

Limitations & Societal Impacts One limitation of our work is that the quality of our predicted
motions depends on that of the contact maps. As evidenced by our results with ground-truth contact
maps, improving the contact map predictions translates in better motion predictions. This will
therefore be one of our future research directions. Additionally, in many applications where the
human shape matters, our joint-based contact map may not be enough to regularize the human surface.
In our future work, we would like to extend our contact map to human surface. Furthermore, in real
application, a potential risk of our method is that it may predict future motions that do not obey real
physical rules, e.g., motion with imbalanced forces. For example, in the scenario of human-robot
interaction where the agent i.e., a robot, needs to plan its actions according to the future human
motion, such physically unrealistic future motion may lead to unsafe situations such as collision.
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