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Abstract
Proximal operators are ubiquitous in inverse problems, commonly appearing as
part of algorithmic strategies to regularize problems that are otherwise ill-posed.
Modern deep learning models have been brought to bear for these tasks too, as
in the framework of plug-and-play or deep unrolling, where they loosely resem-
ble proximal operators. Yet, something essential is lost in employing these purely
data-driven approaches: there is no guarantee that a general deep network repre-
sents the proximal operator of any function, nor is there any characterization of
the function for which the network might provide some approximate proximal.
This not only makes guaranteeing convergence of iterative schemes challenging
but, more fundamentally, complicates the analysis of what has been learned by
these networks about their training data. Herein we provide a framework to de-
velop learned proximal networks (LPN), prove that they provide exact proximal
operators for a data-driven nonconvex regularizer, and show how a new train-
ing strategy, dubbed proximal matching, provably promotes the recovery of the
log-prior of the true data distribution. Such LPN provide general, unsupervised,
expressive proximal operators that can be used for general inverse problems with
convergence guarantees. We illustrate our results in a series of cases of increas-
ing complexity, demonstrating that these models not only result in state-of-the-art
performance, but provide a window into the resulting priors learned from data.

1 Introduction
Inverse problems involve estimating some underlying variables that have undergone a degradation
process, such as in denoising, deblurring, inpainting, or compressed sensing [14, 75]. While these
problems are naturally ill-posed, solutions to any of these problems involve, either implicitly or ex-
plicitly, the utilization of priors, or models, about what type of solutions are preferable [34, 13, 6].
Traditional methods model this prior distribution directly, by constructing functions (or regulariza-
tion terms) that promote specific properties in the resulting estimate, such as for it to be smooth
[101], piece-wise smooth [81, 18], or for it to have a sparse decomposition under a given basis or
even a potentially overcomplete dictionary [19, 87]. On the other hand, from a machine learning per-
spective, the complete restoration mapping has also been modeled by a regression function, typically
by providing a large collection of input-output (or clean-corrupted) pairs of samples [68, 75, 112].

An interesting third alternative combines these two approaches by making the insightful observation
that for almost any inverse problem, a proximal step for the regularization function is needed. Such
a sub-problem can be loosely interpreted as a denoising step and, as a result, off-the-shelf and very
strong-performing denoising algorithms (such as those given by modern deep learning methods)
can be employed as a subroutine. The Plug-and-Play (PnP) framework is one such example of this
idea [103, 108, 70, 110, 52, 93], but others exist as well [80, 79]. While these alternatives work
very well in practice, little is known about the approximation properties of these methods. For
instance, do these denoising networks actually (i.e., provably) provide a proximal operator for some
regularization function? Moreover, and from a variational perspective, would this regularization
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function recover the correct regularizer, such as the (log) prior of the data distribution? While
some answers exist [48, 65, 26, 113, 41], they rely on generally restrictive settings (see a thorough
discussion of related works in Appendix A). More broadly, the ability to characterize a data-driven
(potentially nonconvex) regularizer that enables good restoration is paramount in applications that
demand notions of robustness and interpretability, and this remains an open challenge.

In this work, we address these questions by proposing a new class of deep neural networks, termed
learned proximal networks (LPN), that exactly implement the proximal operator of a general learned
function. Such a LPN implicitly, but exactly, learns a regularization function that can be character-
ized and evaluated, shedding light onto what has been learned from data. In turn, we present a new
training problem, which we dub proximal matching, that provably promotes the recovery of the cor-
rect regularization term (i.e., the log of the data distribution), which need not be convex. Moreover,
the ability of LPNs to implement exact proximal operators allows for guaranteed convergence to
critical points of the variational problem, which we derive for a representative PnP reconstruction
algorithm under no additional assumptions on the trained LPN. We demonstrate through experi-
ments on synthetic data and hand-written digits that our LPNs can recover the correct underlying
data distribution, and further show that LPNs lead to state-of-the-art reconstruction performance on
tasks such as image deblurring, CT reconstruction and compressed sensing, while enabling precise
characterization of the data-dependent prior learned by the model.

2 Background
Consider an unknown signal in an Euclidean space, x ∈ Rn, and a known measurement operator
that maps to an output space, A : Rn → Rm. The goal of inverse problems is to recover x from its
noisy observation y = A(x) + v ∈ Rm, where v is a noise or nuisance term. A prior is typically
needed to regularize the problem, which can generally take the form minx

1
2∥y − A(x)∥

2
2 + ϕ(x),

for a function ϕ(x) : Rn → R promoting a solution that is likely under the prior distribution of x.

Figure 1: Illustra-
tion of Prop. 1 with
ϕ(·) = ∥ · ∥1.

Proximal operators For a given functional ϕ as above, its proximal opera-
tor proxϕ is defined by [72, 11] proxϕ(y) := argminx

1
2∥y − x∥2 + ϕ(x).

The continuous proximal of a (potentially nonconvex) function can be fully
characterized as the gradient of a convex function (illustrated in Figure 1).
Proposition 1. [Characterization of continuous proximal operators, [44,
Corollary 1]] Let Y ⊂ Rn be non-empty and open and f : Y → Rn
be a continuous function. Then, f is a proximal operator of a function
ϕ : Rn → R ∪ {+∞} if and only if there exists a convex differentiable
function ψ such that f(y) = ∇ψ(y) for each y ∈ Y .

Plug-and-Play The Plug-and-Play (PnP) framework employs off-the-shelf
denoising algorithms to solve general inverse problems within an ADMM ap-
proach [16]. PnP replaces the explicit solution of proxϕ with generic denoising algorithms, such as
BM3D [29, 103] or CNN-based denoisers [70, 108, 110, 52, 107, 106, 100], bringing the benefits of
advanced denoisers to general inverse problems. While useful in practice, such denoisers are not in
general proximal operators. Although PnP has achieved impressive results with deep learning based
denoisers, little is known about the implicit prior–if any–encoded in these denoisers, thus dimin-
ishing the interpretability of the reconstruction results. Furthermore, although certain convergence
guarantees have been derived for PnP with MMSE denoisers [105], it chiefly relies on the assump-
tion that the denoiser is non-expansive (which can be hard to verify or enforce in practice). See
Appendix A for a more comprehensive review of related works.

3 Learned Proximal Networks
First, we present a way to parameterize a neural network such that its mapping is guaranteed to
be the proximal operator of some (potentially nonconvex) scalar-valued functional. Motivated by
Proposition 1, we parameterize gradients of convex functions by differentiating a neural network
that implements a convex function, which can be implemented by an input convex neural network
(ICNN) [4]. Consider a single-layer neural network characterized by the weights W ∈ Rm×n, bias
term b ∈ Rm and a scalar non-linearity g : R → R. Such a network, at a sample x, is given by
z = g(Wx+ b). With this notation, we now define our Learned Proximal Networks (LPN).
Proposition 2 (Learned Proximal Networks). Consider a scalar-valued (K + 1)-layered neural
network ψθ : Rn → R defined by ψθ(x) = wT zK + b and the recursion

z1 = g(H1x+ b1), zk = g(Wkzk−1 +Hkx+ bk), k ∈ [2,K]
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where θ = {w, b, (Wk)
K
k=2, (Hk,bk)

K
k=1} are learnable parameters, and g is a convex, non-

decreasing and C2 scalar function. Assume that all entries of Wk and w are non-negative, and
let fθ be the gradient map of ψθ w.r.t. its input, i.e. fθ = ∇xψ. Then, there exists a function
ϕθ : Rn → R ∪ {+∞} such that fθ(x) = proxϕθ

(x), ∀ x ∈ Rn.

Recovering the prior from its proximal Once an LPN fθ is obtained, we would like to recover
its “primitive” function, ϕθ, since this function is precisely the regularizer used in the variational
objective, minx

1
2∥y − A(x)∥

2
2 + ϕθ(x). To start with, Gribonval and Nikolova [44] characterize

ϕθ(fθ(y)) as a function of fθ and ψθ. However, to evaluate the prior ϕθ(x) at an arbitrary point
x, we must invert fθ, i.e. find y such that fθ(y) = x. To achieve this, inspired by [46], we add a
quadratic term to ψθ, ψθ(x;α) = ψθ(x) +

α
2 ∥x∥

2
2, with α ∈ R+, turning ψθ strongly convex – and

its gradient map, fθ = ∇ψθ, invertible and bijective. We then compute this inverse by minimizing
the convex objective miny ψθ(y)− ⟨x,y⟩.
Training LPNs via proximal matching To solve inverse problems efficiently, it is crucial that
LPN learns the prox of the correct data prior, i.e., the prox of negative log likelihood prox− log px .
Unfortunately, the prior distributions of real-world data are typically unknown, making supervised
training infeasible. Thus, we propose a way to learn this from only i.i.d. samples from the unknown
data distribution. We train LPN to perform denoising by minimizing Ex,y [d(fθ(y),x)] , where d is
a distance function, and y = x + σv with v ∼ N (0, I). Unfortunately, popular choices for d, e.g.
the squared ℓ2, ℓ1 or LPIPS [111] loss, do not lead to the desired proximal operator of the log prior,
since they do not yield the MAP estimate (see an example in Figure 2). We thus propose a new loss
function that promotes the recovery of the true proximal operator, termed proximal matching loss:

LPM (θ; γ) = E
x,y

[ℓγ(∥fθ(y)− x∥2)] , ℓγ(x) = 1− 1
(πγ2)n/2 exp

(
−x

2

γ2

)
, γ > 0, (3.1)

where n is the dimension of x. We show that, given sufficient samples and network capacity, mini-
mizing LPM yields the true proximal operator almost surely as γ ↘ 0.
Theorem 3.1 (Learning via Proximal Matching). Consider a signal x ∼ px, where x is bounded
and px is a continuous density, and a noisy observation y = x + σv, where v ∼ N (0, I) and
σ > 0. Let ℓγ(x) : R → R be defined as in (3.1). Consider the optimization problem f∗ =
argminf measurable limγ↘0 Ex,y [ℓγ (∥f(y)− x∥2)] . Then, almost surely (i.e., for almost all y),
f∗(y) = argmaxc px|y(c) ≜ prox−σ2 log px(y).

Solving Inverse Problems with LPN Once trained, LPN can be used to solve inverse problems
with the PnP framework (see Algorithm 3, Appendix D.3 for using LPN with PnP-PGD). We show
that, guaranteeing the employed denoiser is indeed a proximal operator enables convergence guar-
antees without stringent conditions, such as nonexpansivity or enforcing the denoiser to take a re-
strictive form, in contrast to previous PnP schemes [83, 91, 92, 26, 27, 96, 47, 48, 105, 45, 85, 98].
Theorem 3.2. Consider the sequence of iterates xk, k ∈ {0, 1, . . . }, defined by Algorithm 3 run
with a linear measurement operator A and a LPN fθ with softplus activations, trained with 0 <
α < 1. Assume that the step size satisfies 0 < η < 1/∥ATA∥. Then, the iterates xk converge
to a fixed point x∗ of Algorithm 3: that is, there exists x∗ ∈ Rn such that limk→∞ xk = x∗, and
fθ (x

∗ − η∇h(x∗)) = x∗.

4 Experiments
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Figure 2: The proximal operator fθ , convex potential ψθ , and log-
prior ϕθ learned by LPN via different losses: the squared ℓ2 loss, ℓ1
loss, and the proposed proximal matching loss LPM . The ground-
truth data distribution is the Laplacian p(x) = 1

2
exp(−|x|), with

log-prior − log p(x) = |x| − log( 1
2
). The gray dashed line shows

the ground-truth for each case.

Learning soft-thresholding from
Laplacian distribution We first
train LPN on i.i.d. samples from
the 1-D Laplacian distribution
p(x) = 1

2 exp (−|x|). The nega-
tive log likelihood (NLL) is the ℓ1
norm, − log p(x) = |x| − log( 12 ),
and its proximal operator is
the soft-thresholding function
prox− log p(x) = sign(x)max(|x| −
1, 0). As visualized in Figure 2, when
using either the ℓ2 or ℓ1 loss, the
learned prox differs from the correct
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(a) Adding Gaussian noise with standard deviation σ.
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(b) Convex combination of two images (1−λ)x+λy.

Figure 3: The log-prior ϕθ learned by LPN on MNIST, evaluated at images with various perturbation types
and to different degrees: (a) additive Gaussian noise and (b) convex combination between two images. Violin
plots show the learned priors evaluated over 100 test images.

soft-thresholding function, verifying our analysis in Section 3. When we switch to the proximal
matching loss LPM , the learned proximal matches the soft-thresholding function, corroborating our
theoretical analysis in Theorem 3.1 and showcasing the importance of proximal matching loss.

Table 1: Results for inverse problems.

METHOD PSNR (↑) SSIM (↑)

Tomographic reconstruction
FBP 21.29 .203

Operator-agnostic
AR [65] 33.48 .890
Ours 34.14 .891
Operator-specific
UAR [74] 34.76 .897

Compressed sensing (compression rate = 1/16)
Sparsity (Wavelet) 26.54 .666
AR [65] 29.71 .712
Ours 38.03 .919

Compressed sensing (compression rate = 1/4)
Sparsity (Wavelet) 36.80 .921
AR [65] 37.94 .920
Ours 44.05 .973

Learning a prior for MNIST Next, we train an
LPN on MNIST [59] and evaluate the obtained prior
on a series of inputs with different types and degrees
of perturbations in order to gauge how such modifi-
cations to the data are reflected by the learned log-
prior. Figure 3a visualizes the change of prior ϕθ af-
ter adding increasing levels of Gaussian noise. As
expected, as the noise level increases, the values re-
ported by the log prior also increases, reflecting that
they are less likely according to the true distribution
of the real images. We also present a study that de-
picts the non-convexity of the learned log prior in
Figure 3b. This is natural, since the convex combi-
nation of two images no longer resembles a natural
image, hence the true prior should indeed be noncon-
vex. LPN can correctly learn such nonconvexity in the
prior, while existing approaches using convex priors, either hand-crafted [101, 81, 66, 12, 33, 20] or
data-driven [74, 26], are suboptimal by not faithfully capturing the true prior.

Solving inverse problems with LPN We showcase the capability of LPN for two realistic inverse
problems: sparse-view CT reconstruction and compressed sensing, on the public Mayo-CT dataset
[69] of Computed Tomography images. For sparse-view CT, as shown in Table 1 and Figure 6a
(Appendix G.3), our method significantly improves over the baseline FBP [104], outperforms the
task-agnostic counterpart AR [65], and performs just slightly worse than the task-specific approach
UAR [74] – without even having had access to the used forward operator. Figure 6b (Appendix G.3)
and Table 1 depict the compressed sensing results, where LPN significantly outperforms the Wavelet
baseline and AR, demonstrating much better generalizability to different forward operators. Addi-
tionally, we experiment with deblurring on CelebA [63] and include the results in Appendix G.4.

5 Conclusion

The learned proximal networks presented in this paper form a class of neural networks that guaran-
tees to parameterize proximal operators. We showed how the “primitive” function of the proximal
operator parameterized by an LPN can be recovered, allowing explicit characterization of the prior
learned from data. Furthermore, via proximal matching, LPN can learn the true prox of the log-
prior of an unknown distribution from only i.i.d. samples. When used to solve general inverse
problems, LPN achieves state-of-the-art results while providing more interpretability by explicit
characterization of the (nonconvex) prior, with convergence guarantees. The ability to not only pro-
vide unsupervised models for general inverse problems but, chiefly, to characterize the priors learned
from data open exciting new research questions of uncertainty quantification [5, 97, 90], sampling
[36, 25, 54, 53, 51, 36], equivariant learning [23, 21, 22], learning without ground-truth [95, 94, 38],
and robustness [49, 30], all of which constitute matter of ongoing work.
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[8] Hédy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods. Mathematical Programming. A Publication of the Mathe-
matical Programming Society, 137(1):91–129, February 2013. ISSN 0025-5610, 1436-4646.
doi: 10.1007/s10107-011-0484-9.

[9] Thilo Balke, Fernando Davis Rivera, Cristina Garcia-Cardona, Soumendu Majee,
Michael Thompson McCann, Luke Pfister, and Brendt Egon Wohlberg. Scientific compu-
tational imaging code (scico). Journal of Open Source Software, 7(LA-UR-22-28555), 2022.

[10] Heinz H Bauschke, Sarah M Moffat, and Xianfu Wang. Firmly nonexpansive mappings
and maximally monotone operators: Correspondence and duality. Set-Valued and Varia-
tional Analysis, 20(1):131–153, March 2012. ISSN 1877-0533, 1877-0541. doi: 10.1007/
s11228-011-0187-7.

[11] Amir Beck. First-order methods in optimization. SIAM, 2017.

[12] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[13] Martin Benning and Martin Burger. Modern regularization methods for inverse problems.
Acta numerica, 27:1–111, 2018.

[14] Mario Bertero, Patrizia Boccacci, and Christine De Mol. Introduction to inverse problems in
imaging. CRC press, 2021.
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A Related Works

Deep Unrolling In addition to Plug-and-Play, deep unrolling is another approach using deep neu-
ral networks to replace proximal operators for solving inverse problems. Similar to PnP, the deep
unrolling model is parameterized by an unrolled iterative algorithm, with certain (proximal) steps
replaced by deep neural nets. In contrast to PnP, the unrolling model is trained in an end-to-end
fashion by paired data of ground truth and corresponding measurements from specific forward
operators. Truncated deep unrolling methods unfold the algorithm for a fixed number of steps
[42, 1, 61, 3, 2, 109, 71, 39, 102, 56, 24, 67, 88], while infinite-step models have been recently
developed based on deep equilibrium learning [40, 62, 113]. In future work, LPN can improve the
performance and interpretability of deep unrolling methods in e.g., medical applications [58, 35, 84]
or in cases that demand the analysis of robustness [89]. The end-to-end supervision in unrolling can
also help increase the performance of LPN-based methods for inverse problems in general.

Explicit Regularizer A series of works have been dedicated to designing explicit data-driven
regularizer for inverse problems, such as RED [80], AR [65], ACR [73], UAR [74] and others
[60, 57, 26, 113, 41]. Our work contributes a new angle to this field, by learning a proximal operator
for the log-prior and recovering the prior from the learned proximal.

Gradient Denoiser Gradient step (GS) denoisers [26, 47, 48] are a cluster of recent approaches
that parameterize a denoiser via the gradient map of a neural network. Although these works share
similarities to our LPN, there are a few key differences.

1. Parameterization. In GS denoisers, the denoiser is parameterized by a gradient descent step:
f = Id−∇g, where Id represents the identity operator, and g is a scalar-valued function
that is parameterized directly by a neural network [26], or defined implicitly by a network
N : Rn → Rn: g(y) = 1

2∥y −N(y)∥22 [47, 48]. Cohen et al. [26] also experiment with a
denoiser architecture analogous to our LPN architecture, but find its denoising performance
to be inferior to the GS denoiser (we will discuss this further in the final bullet below). In
order to have accompanying convergence guarantees when used in PnP schemes, these
GS parameterizations demand special structures on the learned denoiser—in particular,
Lipschitz constraints on∇g—which can be challenging to enforce in practice.

2. Proximal operator guarantee. The GS denoisers in Cohen et al. [26], Hurault et al. [47]
are not a priori guaranteed to be proximal operators. Hurault et al. [48] proposed a way
to guarantee the GS denoiser to be a proximal operator by limiting the Lipschitz constant
of ∇g, also exploiting the characterization of Gribonval and Nikolova [44]. However, as a
result, their denoiser necessarily has a bounded Lipschitz constant, even within the support
of the data distribution, limiting the generality and universality of the proximals that can
be approximated. On the other hand, LPNs could parameterize any continuous proximal
operator on a compact domain given universality of ICNN [46].

3. Training. All GS denoiser methods used the conventional ℓ2 loss for training. We pro-
pose the proximal matching loss and show that it is essential for the network to learn the
correct proximal operator of the log-prior of data distribution. Indeed, we attribute the in-
ferior performance of the ICNN-based architecture that Cohen et al. [26] experiment with,
which is analogous to our LPN, to the fact that their experiments train this architecture
on MMSE-based denoising, where “regression to the mean” on multimodal and nonlin-
ear natural image data hinders performance (see, e.g., Delbracio and Milanfar [31] in this
connection). The key insight that powers our successful application of LPNs in experi-
ments is the proximal matching training framework, which allows us to make full use of
the constrained capacity of the LPN in representing highly expressive proximal operators
(corresponding to (nearly) maximum a-posteriori estimators for data distributions).

B Additional Theorems

B.1 Learning via proximal matching (discrete case)

Theorem B.1 (Learning via Proximal Matching (Discrete Case)). Consider a signal x ∼ P (x),
with P (x) a discrete distribution, and a noisy observation y = x + σε, where ε ∼ N (0, I) and

12



σ > 0. Let mγ(x) : R → R be defined by mγ(x) = 1 − exp
(
−x

2

γ2

)
2. Consider the optimization

problem
f∗ = argmin

f measurable
lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] .

Then, almost surely (i.e., for almost all y), f∗(y) = argmaxc P (x = c | y).

The proof is deferred to Appendix C.3.

C Proofs

In this section, we include the proofs for the results presented in this paper.

C.1 Proof of Proposition 2

Proof. By Amos et al. [4, Proposition 1], ψθ is convex. Since the activation g is differentiable, ψθ is
also differentiable. Hence, fθ = ∇ψθ is the gradient of a convex function. Thus, by Proposition 1,
fθ is a proximal operator of a function.

C.2 Proof of Theorem 3.1

Proof. First, note by linearity of the expectation that for any measurable f , one has

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] = 1− lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
, (C.1)

where φγ2/2 denotes the density of an isotropic Gaussian random variable with mean zero and
variance γ2/2. Because p(x) is a continuous density with respect to the Lebesgue measure dx, by
Gaussian conditioning, we have that the conditional distribution of x given y admits a density px|y
with respect to dx as well. Taking conditional expectations, we have

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= lim
γ↘0

EyEx|y
[
φγ2/2(f(y)− x)

]
. (C.2)

From here, we can state the intuition for the remaining portion of the proof. Intuitively, because the
Gaussian densityφσ2/2 concentrates more and more at zero as γ ↘ 0, and meanwhile is nevertheless
a probability density for every γ > 0,3 the inner expectation over x | y leads to simply replacing the
integrand with its value at x = f(y); the integrand is of course the conditional density of x given
y, and from here it is straightforward to argue that this leads the optimal f to be (almost surely) the
conditional maximum a posteriori (MAP) estimate, under our regularity assumptions on p(x).

To make this intuitive argument rigorous, we need to translate our regularity assumptions on p(x)
into regularity of px|y, interchange the γ limit in (C.2) with the expectation over y, and instantiate
a rigorous analogue of the heuristic “concentration” argument. First, we have by Bayes’ rule and
Gaussian conditioning

px|y(x) =
φσ2(y − x)p(x)

(φσ2 ∗ p)(y),
where ∗ denotes convolution of densities; the denominator is the density of y, and it satisfies φσ2 ∗
p > 0 since φσ2 > 0. In particular, this implies that px|y is a continuous function of (x,y), because
p(x) is continuous by assumption. We can then write, by the definition of convolution,

Ex|y
[
φγ2/2(f(y)− x)

]
= φγ2/2 ∗ px|y(f(y)),

so following (C.2), we have

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= lim
γ↘0

Ey

[
φγ2/2 ∗ px|y(f(y))

]
. (C.3)

2This definition of mγ differs slightly from the one in (3.1), but the two definitions are equivalent in terms
of minimization objective as they only differ by a scaling constant.

3For readers familiar with signal processing or Schwartz’s theory of distributions, this could be alternately
stated as “the small-variance limit of the Gaussian density behaves like a Dirac delta distribution”.
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We are going to argue that the limit can be moved inside the expectation in (C.3) momentarily; for
the moment, we consider the quantity that results after moving the limit inside the expectation. To
treat this term, we apply a standard approximation to the identity argument to evaluate the limit
of the preceding expression. [86, Ch. 3, Example 3] implies that the densities φγ2/2 constitute an
approximation to the identity as γ → 0, and because px|y is continuous, we can then apply [86, Ch.
3, Theorem 2.1] to obtain that

lim
γ↘0

φγ2/2 ∗ px|y(f(y)) = px|y(f(y)).

In particular, after justifying the interchange of limit and expectation in (C.3), we will have shown,
by following our manipulations from (C.1), that

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)] = 1− Ey

[
px|y(f(y))

]
. (C.4)

We will proceed to conclude the proof from this expression, and justify the limit-expectation inter-
change at the end of the proof. The problem at hand is equivalent to the problem

argmax
f measurable

Ey

[
px|y(f(y))

]
.

Writing the expectation as an integral, we have by Bayes’ rule as above

Ey

[
px|y(f(y))

]
=

∫
Rd

φσ2(y − f(y))p(f(y))dy.

Let us define an auxiliary function g : Rd × Rd → R by g(x,y) = φσ2(y − x)p(x). Then

Ey

[
px|y(f(y))

]
=

∫
Rd

g(f(y),y)dy,

and moreover, for every y, g( · ,y) is continuous and compactly supported, by continuity and bound-
edness of the Gaussian density and the assumption that p(x) is continuous and the random variable
x ∼ p(x) is bounded. We have for any measurable f

g(f(y),y) ≤ max
x∈Rd

g(x,y). (C.5)

Our aim is thus to argue that there is a choice of measurable f such that the preceding bound can be
made tight; this will imply that any measurable f maximizing the objective Ey[px|y(f(y))] satisfies
g(f(y),y) = maxx∈Rd g(x,y) almost surely, or equivalently that f(y) ∈ argmaxx∈Rd g(x,y)
almost surely. The claim will then follow, because argmaxx∈Rd g(x,y) = argmaxx∈Rd px|y(x).

To this end, define h(y) = maxx∈Rd g(x,y). Then by the Weierstrass theorem, h is finite-valued,
and for every y there exists some c ∈ Rd such that h(y) = g(c,y). Because g is continuous,
it then follows from Rockafellar and Wets [78, Theorem 1.17(c)] that h is continuous. Moreover,
because g is continuous and for every y, g( · ,y) is compactly supported, g is in particular level-
bounded in x locally uniformly in y in the sense of Rockafellar and Wets [78, Definition 1.16],
and it follows that the set-valued mapping y 7→ argmaxx g(x,y) : Rd ⇒ Rd is compact-valued,
by the Weierstrass theorem, and outer semicontinuous relative to Rd, by Rockafellar and Wets [78,
Example 5.22]. Applying Rockafellar and Wets [78, Exercise 14.9, Corollary 14.6], we conclude
that the set-valued mapping y 7→ argmaxx g(x,y) is measurable, and that in particular there exists
a measurable function f∗ : Rd → Rd such that f∗(y) ∈ argmaxx g(x,y) for every y ∈ Rd. Thus,
there is a measurable f attaining the bound in (C.5), and the claim follows after we can justify the
preceding interchange of limit and expectation.

To justify the interchange of limit and expectation, we will apply the dominated convergence theo-
rem, which requires us to show an integrable (with respect to the density of y) upper bound for the
function y 7→ Ex|y[φγ2/2(f(y)− x)]. For this, we calculate

Ex|y
[
φγ2/2(f(y)− x)

]
=

1

(φσ2 ∗ p)(y)

∫
Rd

φσ2(y − x)p(x)φγ2/2(f(y)− x)dx

≤ 1

(φσ2 ∗ p)(y)

[
sup
x

φσ2(y − x)p(x)

] ∫
Rd

φγ2/2(f(y)− x)dx
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=
1

(φσ2 ∗ p)(y)

[
sup
x

φσ2(y − x)p(x)

]
,

by Hölder’s inequality and the fact that φγ2/2 is a probability density. Because the random variable
x ∼ p(x) is assumed bounded, the density p(x) has compact support, and the density p(x) is
assumed continuous, so there exists R > 0 such that if ∥x∥2 > R then p(x) = 0, and M > 0 such
that p(x) ≤M . We then have

sup
x

φσ2(y − x)p(x) ≤M sup
x

φσ2(y − x)1∥x∥2≤R.

This means that the supremum can attain a nonzero value only on points where ∥x∥2 ≤ R. On
the other hand, for every y with ∥y∥2 ≥ 2R, whenever ∥x∥2 ≤ R the triangle inequality implies
∥y − x∥2 ≥ ∥y∥2 − ∥x∥2 ≥ 1

2∥y∥2. Because the Gaussian density φσ2 is a radial function, we
conclude that if ∥y∥2 ≥ 2R, one has

sup
x

φσ2(y − x)p(x) ≤Mφσ2(y/2) = CMφ4σ2(y),

where C > 0 depends only on d. At the same time, we always have

sup
x

φσ2(y − x)p(x) ≤ M

(2πσ2)d/2
.

Consequently, we have the composite upper bound

sup
x

φσ2(y − x)p(x) ≤

{
M

(2πσ2)d/2
∥y∥2 < 2R

2Mφ4σ2(y) ∥y∥2 ≥ 2R,

and by our work above

Ex|y
[
φγ2/2(f(y)− x)

]
≤ 1

(φσ2 ∗ p)(y)
×

{
M

(2πσ2)d/2
∥y∥2 < 2R

2Mφ4σ2(y) ∥y∥2 ≥ 2R.

Because φσ2∗p is the density of y, this upper bound is sufficient to apply the dominated convergence
theorem to obtain

lim
γ↘0

Ex,y

[
φγ2/2(f(y)− x)

]
= Ey lim

γ↘0
Ex|y

[
φγ2/2(f(y)− x)

]
.

Combining this assertion with the argument surrounding (C.4), we conclude the proof.

Remark (Other loss choices). Theorem 3.1 also holds for any mγ such that mγ is uniformly (in γ)
bounded above, for each γ > 0 uniquely minimized at 0, and supx∈Rmγ(x) − mγ(∥x∥2) is an
approximation to the identity as γ ↘ 0 (see [86, Ch. 3, §2]).

C.3 Proof of Theorem B.1

Proof. For brevity, we denote argmaxc P (x = c | y) by MAP[x | y], i.e., the maximum a posteri-
ori estimate of x given y.

First, we show that MAP[x | y] is unique for almost all y.

Consider y such that MAP[x | y] is not unique. There exists i ̸= j, such that

P (xi | y) = P (xj | y)
⇐⇒ p(y | xi)P (xi) = p(y | xj)P (xj)

⇐⇒ − 1

2
∥y − xi∥2 + σ2 logP (xi) = −

1

2
∥y − xj∥2 + σ2 logP (xj)

⇐⇒ ⟨y, xi − xj
2
⟩ = 1

2
∥xi∥2 −

1

2
∥xj∥2 − σ2 logP (xi) + σ2 logP (xj).

i.e., y lies in a hyperplane defined by xi,xj (note that xi ̸= xj). Denote the hyperplane by

Hi,j :=
{
y | ⟨y, xi − xj

2
⟩ = 1

2
∥xi∥2 −

1

2
∥xj∥2 − σ2 logP (xi) + σ2 logP (xj)

}
.
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Consider
U := ∪i ̸=jHi,j .

We have that ∀y with non-unique MAP[x | y],

∃i ̸= j,y ∈ Hi,j
⇐⇒ y ∈ U .

Note that U has zero measure as a countable union of zero-measure sets, hence the measure of all y
with non-unique MAP[x | y] is zero. Hence, for almost all y, MAP[x | y] is unique.

Next, we show that for almost all y,

f∗(y) = argmin
c

Ex|y[1c̸=x].

Note that

lim
γ↘0

Ex,y [mγ (∥f(y)− x∥2)]

=Ex,y

[
lim
γ↘0

mγ (∥f(y)− x∥2)
]

=Ex,y

[
1∥f(y)−x∥2 ̸=0

]
=Ex,y

[
1f(y) ̸=x

]
.

Above, the first equality uses the monotone convergence theorem. Use the law of iterated expecta-
tions,

Ex,y

[
1f(y)̸=x

]
= EyEx|y

[
1f(y)̸=x

]
.

We will use this expression to study the global minimizers of the objective. By conditioning,

Ex|y
[
1f(y) ̸=x

]
≥ min

c
Ex|y[1c̸=x],

and so
Ey

[
Ex|y

[
1f(y) ̸=x

]
−min

c
Ex|y[1c̸=x]

]
≥ 0.

Because p(y) > 0, it follows that every global minimizer of the objective f∗ satisfies

Ex|y
[
1f∗(y)̸=x

]
= min

c
Ex|y[1c ̸=x] a.s.

Hence, for almost all y,

f∗(y) ∈ argmin
c

Ex|y[1c ̸=x].

Finally, we show that argminc Ex|y[1c ̸=x] = MAP[x | y]. The claim then follows from our
preceding work showing that MAP[x | y] is almost surely unique. Consider

Ex|y[1c̸=x] =
∑
i

P (xi | y)1c̸=xi

=
∑
i

P (xi | y)(1− 1c=xi
)

=
∑
i

P (xi | y)−
∑
xi=c

P (xi | y)

= 1− P (x = c | y).

Hence,

argmin
c

Ex|y[1c̸=x] = argmax
c

P (x = c | y)

= MAP[x | y].
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C.4 Proof of Theorem 3.2

We provide a proof of Theorem 3.2 under slightly more general assumptions in these appendices.
The result is restated in this general setting below, as Theorem C.1.
Theorem C.1. Consider the sequence of iterates xk, k ∈ {0, 1, . . . }, defined by Algorithm 3 run
with a continuously differentiable measurement operator A and a LPN fθ with softplus activations,
trained with 0 < α < 1. Assume further that the data fidelity term h(x) = 1

2∥y − A(x)∥22 is
definable in an o-minimal structure4 and has L-Lipschitz gradient5, and that the step size satisfies
0 < η < 1/L. Then, the iterates xk converge to a fixed point x∗ of Algorithm 3: that is, there exist
x∗ ∈ Rn such that

fθ (x
∗ − η∇h(x∗)) = x∗, (C.6)

and limk→∞ xk = x∗. Furthermore, x∗ is a critical point6 of h + 1
ηϕθ, where ϕθ is the prior

associated to the LPN fθ (i.e., fθ = proxϕθ
).

Remark. Theorem 3.2 asserts fixed-point convergence of the iterates of Algorithm 3, and examining
the proof of the more general version in Theorem C.1 shows moreover that xk converges to a critical
point of h + 1

ηϕθ, where ϕθ is the implicitly-defined prior associated to fθ, i.e. fθ = proxϕθ
.

It is straightforward to adapt the proof of this result to using LPN in other PnP schemes such as
PnP-ADMM (Algorithm 4), which is used in our experiments on inverse problems in Section 4, by
appealing to different convergence analyses from the literature (see [99, Theorem 5.6], for example).
We emphasize that Theorems 3.2 and C.1 require the bare minimum of assumptions on the learned
LPN. This should be contrasted to PnP schemes which utilize a black-box denoiser for improved
performance—convergence guarantees in this setting require restrictive a priori assumptions on the
denoiser such as contractivity [83] or (firm) nonexpansivity [91, 92, 26, 27, 96, 47, 48],7 which are
difficult to verify or enforce in practice without sacrificing denoising performance—as well as PnP
schemes that sacrifice expressivity for a principled approach by enforcing that the denoiser takes a
restrictive form, such as being a (Gaussian) MMSE denoiser [105], a linear denoiser [45], or the
proximal operator of an implicit convex function [85, 98]. Additionally, as shown in Gribonval [43],
when interpreted as proximal operators, the prior in MMSE denoisers can be drastically different
from the original (true data) prior, raising concerns about the correctness of the reconstruction result.

Because LPNs are by construction guaranteed to be proximal operators, as we have described in
Section 3, we immediately obtain convergence guarantees for PnP schemes with LPN denoisers as a
consequence of classical optimization analyses. Our proof appeals to a special case of a convergence
result of [15] (see also [8, 37] for earlier results). Before proceeding to the proof, we state a few
settings and results from Boţ et al. [15] that are useful for proving Theorem C.1, for better readability.
Problem 1 ([15, Problem 1]). Let f : Rm → (−∞,+∞] be a proper, lower semicontinuous
function which is bounded below and let h : Rm → R be a Fréchet differentiable function with
Lipschitz continuous gradient, i.e. there exists L∇h ≥ 0 such that ∥∇h(x)−∇h(x′)∥ ≤ L∇h∥x−
x′∥ for all x,x′ ∈ Rm. Consider the optimization problem

(P ) inf
x∈Rm

[f(x) + h(x)].

Algorithm C.1 ([15, Algorithm 1]). Choose x0,x1 ∈ Rm, α, α > 0, β ≥ 0 and the sequences
(αn)n≥1, (βn)n≥1 fulfilling

0 < α ≤ αn ≤ α ∀n ≥ 1

4This mild technical assumption is satisfied by an extremely broad array of nonlinear operators A: for
example, any A which is a polynomial in the input x (in particular, linear A), or a rational function with
nonvanishing denominator, is definable, and compositions and inverses of definable funtions are definable, so
that definability of A implies definability of h [7]. We discuss these issues in more detail in the proof of the
result.

5This is a very mild assumption. For example, when A is linear, the gradient of the data fidelity term ∇h
has a Lipschitz constant no larger than ∥A∗A∥, where ∥ · ∥ denotes the operator norm of a linear operator and
A∗ is the adjoint of A.

6In this work, the set of critical points of a function f is defined by crit(f) := {x : 0 ∈ ∂f(x)}, where ∂f
is the limiting (Mordukhovich) Fréchet subdifferential of f (see definition in [15, Section 2]).

7Sun et al. [91] prove their results under an assumption that the denoiser is “θ-averaged” for θ ∈ (0, 1);
see [91, §A]. When θ = 1

2
, this coincides with the definition of firm nonexpansivity (c.f. [10]), which is

itself a special case of nonexpansivity (Lipschitz constant of the denoiser being no larger than 1). As a point of
reference, every convex function h satisfies that proxh is firmly nonexpansive [76]. However, if h is nonconvex,
proxh need not even be Lipschitz—consider projection onto a nonconvex set.
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and
0 ≤ βn ≤ β ∀n ≥ 1.

Consider the iterative scheme

(∀n ≥ 1) xn+1 ∈ argmin
u∈Rm

{DF (u,xn) +αn⟨u,∇h(xn)⟩+ βn⟨u,xn−1−xn⟩+αnf(u)}. (C.7)

Here, F : Rm → R is σ-strongly convex, Fréchet differentiable and ∇F is L∇F -Lipschitz continu-
ous, with σ, L∇F > 0; DF is the Bregman distance to F .
Theorem C.2 ([15, Theorem 13]). In the setting of Problem 1, choose α, α, β satisfying

σ > αL∇h
+ 2β

α

α
. (C.8)

Assume that f + h is coercive and that

H : Rm × Rm → (−∞,+∞], H(x,x′) = (f + h)(x) +
β

2α
∥x− x′∥2, ∀(x,x′) ∈ Rm × Rm

is a KL function8. Let (xn)n∈N be a sequence generated by Algorithm C.1. Then the following
statements are true:

1.
∑
n∈N ∥xn+1 − xn∥ < +∞

2. there exists x ∈ crit(f + h) such that limn→+∞ xn = x.

Now, we prove Theorem C.1.

Proof of Theorem C.1. By Lemma C.4, there is a coercive function ϕθ : Rd → R∪{+∞} such that
fθ = proxϕθ

. The idea of the proof is to apply Theorem C.2 to our setting; this requires us to check
that Algorithm 3 maps onto Algorithm C.1, and that our (implicitly-defined) objective function and
parameter choices satisfy the requirements of this theorem. To this end, note that the application of
fθ in Algorithm 3 can be written as

xk+1 = fθ (xk − η∇h(xk))

= argmin
x′∈Rn

1

2
∥x′ − (xk − η∇h(xk))∥

2
2 + ϕθ(x

′)

= argmin
x′∈Rn

1

2
∥x′ − xk∥

2
2 + ⟨x

′ − xk, η∇h(xk)⟩+ ϕθ(x
′)

= argmin
x′∈Rn

1

2
∥x′ − xk∥

2
2 + η⟨x′,∇h(xk)⟩+ η · 1

η
ϕθ(x

′)

showing that Algorithm 3 corresponds to Algorithm C.1 with the Bregman distance DF (x,y) =
1
2∥x − y∥22 (and correspondingly F (x) = 1

2∥x∥
2
2, which satisfies σ = L∇F = 1), the momentum

parameter β = βn = 0, the step size αn = α = α = η, and f = 1
ηϕθ. In the framework of Boţ et al.

[15], Algorithm 3 minimizes the implicitly-defined objective h+ η−1ϕθ. Moreover, one checks that
our choice of constant step size 0 < η < 1/L verifies the necessary condition (C.8), and because
h ≥ 0, coercivity of ϕθ implies that h+ η−1ϕθ is coercive. The final hypothesis to check, which is
slightly technical, is to show that the implicit objective h + η−1ϕθ is a KL function—this suffices
to apply Theorem C.2 since for Algorithm 3, the parameter β in Theorem C.2 is zero. To this end,
we make use of the fact that any proper lower-semicontinuous function definable in an “o-minimal”
structure is a KL function [7, Theorem 4.1]; we will argue that our objective h+ η−1ϕθ is definable
to conclude convergence to a critical point of h + η−1ϕθ with Theorem C.2, then show that the
convergence implies the asserted fixed point convergence (C.6). Because finite linear combinations
of definable functions are definable and h is assumed definable (see [7, §4.3]: here and below, we
make extensive use of the properties asserted in this section of this reference), it suffices to show that
ϕθ is definable. To this end, notice that the defining equation for ϕθ in the α ∈ (0, 1) setting, namely
(C.9), expresses ϕθ as a finite linear combination of finite products and compositions of different
functions; we will argue that each constituent function is definable.

8In this work, a function being KL means it satisfies the Kurdyka-Łojasiewicz property [64], see [15, Defi-
nition 1].
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1. α-free LPN ψθ. The definition of ψθ in Proposition 2 ensures that whenever (each coor-
dinate function of) the elementwise activation function g is definable, ψθ is definable (fol-
lowing the inductive argument in the proof of Lemma C.4), by the fact that finite sums and
compositions of definable functions are definable [7, Definition 4.1], and that affine func-
tions are definable. In the present setting, the softplus activation g = β−1 log(1+exp(βx))
is definable, because exp is definable in a certain o-minimal structure and inverses of de-
finable functions are definable. Thus ψθ is definable.

2. Gradient of α-free LPN ∇ψθ. This step of the proof uses the chain rule (essentially, the
backpropagation algorithm to compute ∇ψθ), and the fact that finite products of definable
functions remain definable. Arguing inductively (as in the inductive argument in the proof
of Lemma C.4), it follows that ∇ψθ is definable if the derivative of the activation function
g is definable. We calculate g′(x) = (1 + exp(−βx))−1, which is a composition of a
linear function (definable), the exponential function (definable), and a rational function
with nonvanishing denominator on the range of the exponential function (semialgebraic
[28, §2.2.1], hence definable). This shows that∇ψθ is definable.

3. Inverse of α-regularized LPN f−1
θ . The map fθ(x) = ∇ψθ(x) + αx is definable, as a

sum of definable functions (by our work above). Because inverses of invertible definable
functions are definable, and because fθ is invertible (by Lemma C.4), it follows that f−1

θ is
definable.

4. Squared ℓ2 norm. This is a polynomial function, hence semialgebraic and definable.

Thus h + η−1ϕθ is definable, continuous (by Lemma C.4), and proper (as a sum of real-valued
functions, again by Lemma C.4), and therefore has the KL property. We can therefore apply Theo-
rem C.2 to conclude convergence to a critical point of h + η−1ϕθ. Finally, by Lemma C.3 and the
continuity of fθ and∇h, we conclude convergence to a fixed point, x = fθ(x− η∇h(x)), which is
identical to (C.6).

Lemma C.3 (Convergence Implies Fixed Point Convergence). Suppose F : Rn → Rn is a contin-
uous map that defines an iterative process, xk+1 = F(xk). Assume xk converges, i.e., ∃ x∗ such
that limk→∞ xk = x∗. Then, x∗ is a fixed point of F , i.e., x∗ = F(x∗).

Proof.

x∗ = lim
k→∞

xk = lim
k→∞

xk+1 = lim
k→∞

F(xk) = F
(

lim
k→∞

xk

)
= F(x∗).

The fourth equality follows from continuity of F .

Lemma C.4 (Regularity Properties of LPNs). Suppose fθ is a LPN constructed following the recipe
in Proposition 2, with softplus activations σ(x) = (1/β) log(1 + exp(βx)), where β > 0 is an
arbitrary constant, and with strong convexity weight 0 < α < 1. Let fθ(y) = ∇ψθ(y) + αy be the
defining equation of the LPN. Then there is a function ϕθ : Rn → R∪{+∞} such that fθ = proxϕθ

.
Moreover, we have the following regularity properties:

1. ϕθ is coercive, i.e., we have ϕθ(x)→ +∞ as ∥x∥2 → +∞.

2. fθ : Rn → Rn is surjective and invertible, with an inverse mapping f−1
θ : Rn → Rn which

is continuous.

3. ϕθ is continuously differentiable and real-valued. In particular, it holds

ϕθ(x) = (1− α)⟨f−1
θ (x),∇ψθ(f−1

θ (x))⟩

+
α(1− α)

2
∥f−1
θ (x)∥22 − 1

2∥∇ψθ(f
−1
θ (x))∥22 − ψθ(f−1

θ (x)).
(C.9)

Remark. Lemma C.4 does not, strictly speaking, require the softplus activation: the proof shows
that any Lipschitz activation function with enough differentiability and slow growth at infinity, such
as another smoothed verison of the ReLU activation, the GeLU, or the Swish activation, would also
work.

19



Proof of Lemma C.4. The main technical challenge will be to establish coercivity of ϕθ, which al-
ways exists as necessary, by Propositions 1 and 2. We will therefore pursue this estimate as the main
line of the proof, establishing the remaining assertions in the result statement along the way.

By Proposition 2, there exists ϕθ such that fθ = proxϕθ
. Now, using [44, Theorem 4(a)], for every

y ∈ Rn,
ϕθ(fθ(y)) = ⟨y, fθ(y)⟩ − 1

2∥fθ(y)∥
2
2 −

(
ψθ(y) +

α
2 ∥y∥

2
2

)
.

Using the definition of fθ and minor algebra, we rewrite this as

ϕθ(fθ(y)) = ⟨y,∇ψθ(y) + αy⟩ − 1
2∥∇ψθ(y) + αy∥22 −

(
ψθ(y) +

α
2 ∥y∥

2
2

)
= (1− α)⟨y,∇ψθ(y)⟩+

α(1− α)
2

∥y∥22 − 1
2∥∇ψθ(y)∥

2
2 − ψθ(y). (C.10)

At this point, we observe that by Lemma C.5, the map fθ : Rn → Rn is invertible and surjective,
with a continuous inverse mapping. This establishes the second assertion that we have claimed. In
addition, taking inverses in (C.10) implies (C.9) and as a consequence the fact that ϕθ is real-valued,
and the fact that it is continuously differentiable on Rn is then an immediate consequence of [44,
Corollary 6(b)]. To conclude, it only remains to show that ϕθ is coercive, which we will accomplish
by lower bounding the RHS of (C.10). By Lemma C.6, ψθ is L-Lipschitz for a constant L > 0.
Thus, we have for every y (by the triangle inequality)

|ψθ(y)| ≤ L∥y∥2 +K

for a (finite) constant K ∈ R, depending only on θ. Now, the Cauchy-Schwarz inequality implies
from the previous two statements (and ∥∇ψθ∥2 ≤ L by the Lipschitz property of ψθ)

ϕθ(fθ(y)) ≥ −(1− α)∥y∥2∥∇ψθ(y)∥2 +
α(1− α)

2
∥y∥22 − 1

2∥∇ψθ(y)∥
2
2 − L∥y∥2 −K,

≥ −L(1− α)∥y∥2 +
α(1− α)

2
∥y∥22 −

L2

2
− L∥y∥2 −K.

We rewrite this estimate with some algebra as

ϕθ(fθ(y)) ≥ ∥y∥2
(
α(1− α)

2
∥y∥2 − L(1− α)− L

)
− L2

2
−K.

Next, we notice that when 0 < α < 1, the coefficient α(1 − α) > 0; hence there is a constant
M > 0 depending only on α and L such that for every y with ∥y∥2 ≥M , one has

α(1− α)
2

∥y∥2 − L(1− α)− L ≥
α(1− α)

4
∥y∥2.

In turn, iterating this exact argument implies that there is another constant M ′ > 0 (depending only
on α, L, and K) such that whenever ∥y∥2 ≥M ′, one has

ϕθ(fθ(y)) ≥
α(1− α)

8
∥y∥22.

We can therefore rewrite the previous inequality as

ϕθ(x) ≥
α(1− α)

8
∥f−1
θ (x)∥22, (C.11)

for every x such that ∥f−1(x)∥2 ≥ M ′. To conclude, we will show that whenever ∥x∥2 → +∞,
we also have ∥f−1

θ (x)∥2 → +∞, which together with (C.11) will imply coercivity of ϕθ. To this
end, write ∥ · ∥Lip for the Lipschitz seminorm:

∥f∥Lip = sup
y ̸=y′

∥f(y)− f(y′)∥2
∥y − y′∥2

,

and note that ∥fθ∥Lip ≤ ∥∇ψθ∥Lip + α. By Lemma C.7, ∇ψθ is L∇ψθ
-Lipschitz continuous, thus

fθ is (L∇ψθ
+ α)-Lipschitz continuous,

∥fθ(y)− fθ(y′)∥2 ≤ (L∇ψθ
+ α)∥y − y′∥2.
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Thus, taking inverses, we have

∥f−1
θ (x)− f−1

θ (0)∥2 ≥
1

L∇ψθ
+ α
∥x∥2,

and it then follows from the triangle inequality that whenever x is such that ∥x∥2 ≥ 2(L∇ψθ
+

α)∥f−1
θ (0)∥2, we have in fact

∥f−1
θ (x)∥2 ≥

1

2(L∇ψθ
+ α)

∥x∥2.

Combining this estimate with (C.11), we obtain that for every x such that ∥x∥2 ≥ 2(L∇ψθ
+

α)∥f−1
θ (0)∥2 and ∥x∥2 ≥ 2M ′(L∇ψθ

+ α), it holds

ϕθ(x) ≥
α(1− α)

32(L∇ψθ
+ α)2

∥x∥22.

Taking limits in this last bound yields coercivity of ϕθ, and hence the claim.

Lemma C.5 (Invertibility of fθ and Continuity of f−1
θ ). Suppose fθ is a LPN constructed following

the recipe in Proposition 2, with softplus activations σ(x) = (1/β) log(1 + exp(βx)), where β > 0
is an arbitrary constant, and with strong convexity weight 0 < α < 1. Then fθ : Rn → Rn is
invertible and surjective, and f−1

θ : Rn → Rn is C0.

Proof. The proof uses the invertibility construction that we describe methodologically in Section 3.
By construction, we have fθ = ∇ψθ + α Id, where Id denotes the identity operator on Rn (i.e.,
Id(x) = x for every x ∈ Rn).

For a fixed x ∈ Rn, consider the strongly convex minimization problem miny ψθ(y) +
α
2 ∥y∥

2
2 −

⟨x,y⟩. By first-order optimality condition, the minimizers are exactly {y | ∇ψθ(y) + αy = x}.
Furthermore, since the problem is strongly convex, it has a unique minimizer for each x ∈ Rn [17].
Therefore, for each x ∈ Rn, there exists a unique y such that x = ∇ψθ(y) + αy = fθ(y).

The argument above establishes that fθ : Rn → Rn is injective and surjective; hence there exists
an inverse f−1

θ : Rn → Rn. To conclude the proof, we will argue that f−1
θ is continuous. To

this end, we use the characterization of continuity which states that a function g : Rn → Rn
is continuous if and only if for every open set U ⊂ Rn, we have that g−1(U) is open, where
g−1(U) = {x ∈ Rn | g(x) ∈ U} (e.g., [82, Theorem 4.8]). To show that f−1

θ is continuous, it is
therefore equivalent to show that for every open set U ⊂ Rn, one has that fθ(U) is open. But this
follows from invariance of domain, a standard result in algebraic topology (e.g., [32, Proposition
7.4]), since fθ is injective and continuous. We have thus shown that fθ is invertible, and that its
inverse is continuous, as claimed.

Lemma C.6 (Lipschitzness of ψθ). ψθ is Lψθ
-Lipschitz continuous for a constant Lψθ

> 0, i.e.,
|ψθ(y)− ψθ(y′)| ≤ Lψθ

∥y − y′∥2, for all y,y′ ∈ Rn.

Proof. Note that the derivative σ′ of the softplus activation satisfies σ′(x) = 1/(1 + exp(−βx)),
which is no larger than 1, since exp(x) > 0 for x ∈ R. Here and below, if F is a map between
Euclidean spaces we will write DF for its differential (a map from the domain of F to the space of
linear operators from the domain of F to the range of F ). Hence the activation function g in Propo-
sition 2 is 1-Lipschitz with respect to the ℓ2 norm, since the induced (by elementwise application)
map g : Rn → Rn defined by g(y) = [σ(x1), . . . , σ(xn)]

T satisfies

Dg(y) =

σ
′(x1)

. . .
σ′(xn)

 ,
which is bounded in operator norm by supx |σ′(x)| ≤ 1. First, notice that

∥ψθ(y)− ψθ(y′)∥2 = ∥wT (zK(y)− zK(y′))∥2
≤ ∥w∥2∥zK(y)− zK(y′)∥2
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by Cauchy-Schwarz. Meanwhile, we have similarly

∥z1(y)− z1(y
′)∥2 ≤ ∥H1∥∥y − y′∥2,

where ∥ · ∥ denotes the operator norm of a matrix, and for integer 0 < k < K + 1

∥zk(y)− zk(y
′)∥2 ≤ ∥Wk∥∥zk−1(y)− zk−1(y

′)∥2 + ∥Hk∥∥y − y′∥2.

By a straightforward induction, it follows that ψθ is L-Lipschitz for a constant L > 0 (depending
only on θ).

Lemma C.7 (Lipschitzness of∇ψθ). ∇ψθ is L∇ψθ
-Lipschitz continuous, for a constant L∇ψθ

> 0.

Proof. We will upper bound ∥∇ψθ∥Lip by deriving an explicit expression for the gradient. By the
defining formulas in Proposition 2, we have

ψθ(y) = wT zK(y) + b.

The chain rule gives
∇ψθ(y) = DzK(y)∗w,

where ∗ denotes the adjoint of a linear operator, so for any y,y′ we have

∥∇ψθ(y)−∇ψθ(y′)∥2 =
∥∥(DzK(y)−DzK(y′))

∗
w
∥∥
2

≤
∥∥(DzK(y)−DzK(y′))

∗∥∥ ∥w∥2
= ∥DzK(y)−DzK(y′)∥ ∥w∥2
≤ ∥DzK(y)−DzK(y′)∥F ∥w∥2,

where the first inequality uses Cauchy-Schwarz, the third line uses that the operator norm of a linear
operator is equal to that of its adjoint, and the third line uses that the operator norm is upper-bounded
by the Frobenius norm. This shows that we obtain a Lipschitz property in ℓ2 for ∇ψθ by obtaining
one for the differential DzK of the LPN’s last-layer features. To this end, we can use the chain rule
to compute for any integer 1 < k < K + 1 and any δ ∈ Rn

Dzk(y)(δ) = g′ (Wkzk−1(y) +Hky + bk)⊙ [WkDzk−1(y)(δ) +Hkδ] ,

where g′ is the derivative of the softplus activation function g, applied elementwise, and ⊙ denotes
elementwise multiplication, and similarly

Dz1(y)(δ) = g′ (H1y + b1)⊙ [H1δ] .

Now notice that for any vectors v and y and any matrix A such that the sizes are compatible, we
have v ⊙ (Ay) = diag(v)Ay. Hence we can rewrite the above recursion in matrix form as

Dzk(y) = diag (g′ (Wkzk−1(y) +Hky + bk))︸ ︷︷ ︸
Dk(y)

[WkDzk−1(y) +Hk] ,

and similarly
Dz1(y) = diag (g′ (H1y + b1))︸ ︷︷ ︸

D1(y)

H1.

We will proceed with an inductive argument. First, by the submultiplicative property of the Frobe-
nius norm and the triangle inequality for the Frobenius norm, note that we have if 1 < k < K + 1

∥Dzk(y)−Dzk(y
′)∥F ≤ ∥Dk(y)−Dk(y

′)∥F
+ ∥Dk(y)WkDzk−1(y)−Dk(y

′)WkDzk−1(y
′)∥F

≤ ∥Dk(y)−Dk(y
′)∥F

+ ∥Dk(y)WkDzk−1(y)−Dk(y)WkDzk−1(y
′)∥F

+ ∥Dk(y)WkDzk−1(y
′)−Dk(y

′)WkDzk−1(y
′)∥F

≤ ∥Dk(y)−Dk(y
′)∥F

+ ∥Dk(y)Wk∥F∥Dzk−1(y)−Dzk−1(y
′)∥F

+ ∥Dzk−1(y
′)∥F∥Dk(y)Wk −Dk(y

′)Wk∥F
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≤ (1 + ∥Wk∥F) ∥Dk(y)−Dk(y
′)∥F

+ ∥Dk(y)∥F∥Wk∥F∥Dzk−1(y)−Dzk−1(y
′)∥F.

Now, as we have shown above, g′(x) = (1 + exp(−βx))−1 ≤ 1 for every x ∈ R. This implies
∥Dk(y)∥F ≤

√
nk,

where nk is the output dimension of k-th layer. Moreover, we calculate with the chain rule

g′′(x) =
βe−βx

(1 + e−βx)2
,

and by L’Hôpital’s rule, we have that limx→+∞
x

(1+x)2 = 0, so that by continuity, g′′ is bounded for
x ∈ R. It follows that g′ is Lipschitz. Notice now that
∥Dk(y)−Dk(y

′)∥F = ∥g′ (Wkzk−1(y) +Hky + bk)− g′ (Wkzk−1(y
′) +Hky

′ + bk)∥2
≤ ∥g′∥Lip (∥Wk∥F∥zk−1(y)− zk−1(y

′)∥2 + ∥Hk∥F∥y − y′∥2, )
where in the second line we used the fact that the derivative of an elementwise function is a diagonal
matrix together with the triangle inequality and Cauchy-Schwarz. However, we have already argued
previously by induction that ψθ is Lipschitz, and in particular each of its feature maps zk is Lipschitz.
We conclude that Dk is Lipschitz, and the Lipschitz constant depends only on θ. This means that
there are constants Lk, L′

k depending only on n and θ such that
∥Dzk(y)−Dzk(y

′)∥F ≤ Lk∥y − y′∥2 + L′
k∥Dzk−1(y)−Dzk−1(y

′)∥F.
Meanwhile, following the same arguments as above, but in a slightly simplified setting, we obtain

∥Dz1(y)−Dz1(y
′)∥F = ∥D1(y)H1 −D1(y

′)H1∥F
≤ ∥H1∥F∥D1(y)−D1(y

′)∥F
≤ ∥g′∥Lip∥H1∥2F∥y − y′∥2,

which demonstrates that Dz1 is also Lipschitz, with the Lipschitz constant depending only on θ. By
induction, we therefore conclude that there is L∇ψθ

> 0 such that
∥∇ψθ(y)−∇ψθ(y′)∥2 ≤ L∇ψθ

∥y − y′∥2,
with L∇ψθ

depending only on θ and nk.

D Algorithms

D.1 Algorithm for Prior Estimation

Algorithm 1 Prior estimation from LPN

Input: Learned proximal network fθ(·), ψθ(·) that satisfies fθ = ∇ψθ, query point x
1: Find y such that fθ(y) = x, by solving miny ψθ(y)− ⟨x,y⟩ or miny ∥fθ(y)− x∥22
2: ϕ← ⟨y,x⟩ − 1

2∥x∥
2 − ψθ(y)

Output: ϕ ▷ The prior at x

D.2 Algorithm for LPN training

Algorithm 2 Training the LPN with proximal matching loss

Input: Training dataset D, initial LPN parameter θ, loss schedule γ(·), noise standard deviation σ,
number of iterations K, network optimizer Optm(·, ·)

1: k ← 0
2: repeat
3: Sample x ∼ D, ε ∼ N (0, I)
4: y← x+ σε
5: LPM ← mγ(k)(∥fθ(y)− x∥2)
6: θ ← Optm(θ,∇θLPM ) ▷ Update network parameters
7: k ← k + 1
8: until k = K

Output: θ ▷ Trained LPN
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D.3 Algorithm for solving inverse problems with LPN and PnP-PGD

Algorithm 3 Solving inverse problems with LPN and PnP-PGD

Input: Trained LPN fθ, measurement operator A, measurement y, data fidelity function h(x) =
1
2∥y −A(x)∥

2
2, initial estimation x0, step size η, number of iterations K

1: for k = 0 to K − 1 do
2: xk+1 ← fθ (xk − η∇h(xk))
3: end for

Output: xK

D.4 Algorithm for solving inverse problems with LPN and PnP-ADMM

Algorithm 4 Solving inverse problem with LPN and PnP-ADMM

Input: Trained LPN fθ, measurement operator A, measurement y, initial estimation x0, number of
iterations K, penalty parameter ρ

1: u0 ← 0, z0 ← x0

2: for k = 0 to K − 1 do
3: xk+1 ← argminx

{
1
2∥y −A(x)∥

2
2 +

ρ
2∥zk − uk − x∥22

}
4: zk+1 ← fθ (uk + xk+1)
5: uk+1 ← uk + xk+1 − zk+1

6: end for
Output: xK

E Experimental Details

E.1 Details of Laplacian experiment

The LPN architecture contains four linear layers and 50 hidden neurons at each layer, with β = 10
in softplus activation. The LPN is trained by Gaussian noise with σ = 1, Adam optimizer [55]
and batch size of 2000. For either ℓ2 or ℓ1 loss, the model is trained for a total of 20k iterations,
including 10k iterations with learning rate lr = 1e− 3, and another 10k with lr = 1e− 4. For the
proximal matching loss, we initialize the model from the ℓ1 checkpoint, and train according to the
schedule in Table 2.

Number of
iterations γ in LPM Learning rate

2k 0.5 1e− 3
2k 0.5 1e− 4
4k 0.4 1e− 4
4k 0.3 1e− 4
4k 0.2 1e− 5
4k 0.1 1e− 5
4k 0.1 1e− 6

Table 2: The schedule of training LPN with proximal matching loss in the Laplacian experiment.

E.2 Details of MNIST experiment

The LPN architecture is implemented with four convolution layers and 64 hidden neurons at each
layer, with α = 0.01 and softplus β = 10. The model is trained on the MNIST training set con-
taining 50k images, with Gaussian noise with σ = 0.1 and batch size of 200. The LPN is first
trained by ℓ1 loss for 20k iterations; and then by the proximal matching loss for 20k iterations,
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with γ initialized at 0.64 ∗ 28 = 17.92 and halved every 5k iterations. The learned prior is evalu-
ated on 100 MNIST test images. Conjugate gradient is used to solve the convex inversion problem:
miny ψθ(y)− ⟨x,y⟩ in prior estimation.

E.3 Details of CelebA experiment

We center-cropped CelebA images from 178× 218 to 128× 128, and normalized the intensities to
[0, 1]. Since CelebA images are larger and more complex than MNIST, we use a deeper and wider
network. The LPN architecture includes 6 convolution layers with 128 hidden neurons per layer,
with α = 1e − 6 and β = 10. For LPN training, we use Gaussian noise with standard deviation
σ = 0.1. We pretrain the network with ℓ1 loss for 20k iterations with lr = 1e − 3. Then, we
train with proximal matching LPM for 20k iterations using lr = 1e − 4, with the schedule of γ as
follows: initialized at 0.64×

√
128× 128× 3 ≈ 142, and multiplied by 0.5 every 5k iterations. We

use a batch size of 64 throughout the training.

PnP We use PnP-ADMM to perform deblurring on CelebA for all the denoisers concerned, i.e.,
BM3D, DnCNN, and our LPN (see Algorithm 4). For all models, we use the same set of hyperpa-
rameters for ADMM: number of iterations K = 10 and penalty parameter ρ = 0.2. We implement
the PnP-ADMM algorithm based on the SCICO package [9].

E.4 Details of Mayo-CT experiment

We use the public dataset from Mayo-Clinic for the low-dose CT grand challenge (Mayo-CT) [69],
which contains abdominal CT scans from 10 patients and a total of 2378 images of size 512× 512.
Following [65], we use 128 images for testing and leave the rest for training. The LPN architecture
contains 7 convolution layers with 256 hidden neurons per layer, with α = 0 and β = 100. During
training, we randomly cropped training images into patches of size 128 × 128. At test time, LPN
is applied with a sliding window of the same size and a stride of 64. The training procedure of
LPN is the same as for CelebA, except that γ in proximal matching loss is initialized to 0.64 ×√
128× 128 ≈ 82.

Sparse-view CT Following Lunz et al. [65], we simulate CT sinograms using a parallel-beam
geometry with 200 angles and 400 detectors. The angles are uniformly spaced between −90◦ and
90◦. White Gaussian noise with standard deviation σ = 2.0 is added to the sinogram data to simulate
noise in measurement. We implement AR in PyTroch based on its public TensorFlow code9; for
UAR, we use the publicly available code and model weights 10.

Compressed sensing For compressed sensing, we implement the random Gaussian sampling ma-
trix following Jalal et al. [50], and add noise of σ = 0.001 to the measurements. The wavelet-based
sparse recovery method for compressed sensing minimizes the object 1

2∥y − Ax∥22 + λ∥Wx∥1,
where A is the sensing matrix and W is a suitable wavelet transform. We select the “db4” wavelet
and λ = 0.01. We use proximal gradient descent with a step size of 0.5, stopping criterion
∥xk+1 − xk∥1 < 1e− 4, and maximum number of iterations = 1000.

PnP We use LPN with PnP-ADMM. For sparse-view CT, we use the following hyperparameters:
number of iterations K = 15, scale of data fidelity term = 8, and penalty parameter ρ = 0.05. For
compressed sensing, we use the following: number of iterations K = 80, scale of data fidelity term
= 1, and penalty parameter ρ = 0.05.

F Discussions

F.1 Other ways to parameterize gradients of convex functions via neural networks

Input convex gradient networks (ICGN) [77] provide another way to parameterize gradients of con-
vex functions. The model performs line integral over Positive Semi-Definite (PSD) Hessian matri-
ces, where the Hessians are implicitly parameterized by the Gram product of Jacobians of neural

9AR: https://github.com/lunz-s/DeepAdverserialRegulariser.
10UAR: https://github.com/Subhadip-1/unrolling_meets_data_driven_regularization.
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networks, hence guaranteed to be PSD. However, this approach only permits single-layer networks
in order to satisfy a crucial PDE condition in its formulation [77], significantly limiting its repre-
sentation capacity. Furthermore, the evaluation of the convex function is less straightforward than
ICNN, which is an essential step in prior estimation from LPN (see Section 3). We therefore adopt
the differentiation-based parameterization in this work and leave the exploration of other possibili-
ties to future research.

G Additional Experimental Results

G.1 Learning soft-thresholding from Laplacian distribution
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Figure 4: The proximal operator fθ , convex potential ψθ , and log-prior ϕθ learned by LPN via different losses:
the square ℓ2 loss, ℓ1 loss, and the proposed proximal matching loss LPM with different γ ∈ {0.5, 0.3, 0.1}.
The ground-truth data distribution is the Laplacian p(x) = 1

2
exp(−|x|), with log-prior − log p(x) = |x| −

log( 1
2
). With proximal matching loss, the learned proximal fθ progressively approaches the ground-truth

prox|·| as γ shrinks from 0.5 to 0.1.

G.2 Learning a prior for MNIST – image blur

0.0 0.5 1.0 2.0 4.0

0

5

10

15

20

Le
ar

ne
d 

pr
io

r, 

Figure 5: The prior ϕθ learned by LPN on MNIST, evaluated at images blurred by Gaussian kernels with an
increasing standard deviation σ. Left: the prior over 100 test images. Right: the prior at individual examples.
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Besides perturbing the images by Gaussian noise and convex combination in Section 4, we also blur
the images by Gaussian kernels with increasing standard deviations, with results shown in Figure 5.
Again, the prior increases as the images become blurrier, coinciding with the distribution of real
hand-written digit images.

G.3 Inverse problems on Mayo-CT

(a) Sparse-view tomographic reconstruction.

(b) Compressed sensing (compression rate = 1/16).

Figure 6: Inverse problems on Mayo-CT.

G.4 Deblurring on CelebA

We showcase the capability of LPN for a realistic inverse problem: deblurring on CelebA. We
employ the PnP-ADMM framework for deblurring, and compare with other state-of-the-art PnP
approaches: PnP-BM3D [103, 29] and PnP-DnCNN [110, 108]. Table 3 and Figure 7 demonstrate
superior performance of LPN compared to state-of-the-art methods, while allowing for explicit eval-
uation of the used prior.

(a) σblur = 1.0, σnoise = 0.02. (b) σblur = 1.0, σnoise = 0.04.

Figure 7: Deblurring results on CelebA using ADMM-based plug-and-play with different denoisers (BM3d,
DnCNN, and our LPN), for different Gaussian blur kernel standard deviation σblur and noise standard deviation
σnoise. PSNR and SSIM are presented above each prediction.

Table 3: Deblurring on CelebA. Results are averaged over 20 test images.

METHOD σblur = 1, σnoise = .02 σblur = 1, σnoise = .04 σblur = 2, σnoise = .02 σblur = 2, σnoise = .04

PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)
Blurred and Noisy 27.0 ± 1.6 .80 ± .03 24.9 ± 1.0 .63 ± .05 24.0 ± 1.7 .69 ± .04 22.8 ± 1.3 .54 ± .04
PnP-BM3D [103] 31.0 ± 2.7 .88 ± .04 29.5 ± 2.2 .84 ± .05 28.5 ± 2.2 .82 ± .05 27.6 ± 2.0 .79 ± .05

PnP-DnCNN [110] 30.7 ± 2.5 .87 ± .04 30.3 ± 2.2 .86 ± .04 28.2 ± 2.0 .80 ± .05 28.0 ± 2.0 .80 ± .05
Ours 31.7 ± 2.9 .90 ± .04 31.1 ± 2.5 .89 ± .04 28.8 ± 2.2 .83 ± .05 28.5 ± 2.1 .82 ± .05
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