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Abstract

Neural approaches have become very popular
in the domain of Question Answering, however
they require a large amount of annotated data.
Furthermore, they often yield very good perfor-
mance but only in the domain they were trained
on. In this work we propose a novel approach
that combines data augmentation via question-
answer generation and active learning to im-
prove performance in low resource settings,
where the target domain is vastly different from
the source domain. Furthermore, we investigate
data augmentation via generation for question
answering in three different low-resource set-
tings relevant in practice and how this can be
improved: 1) No labels for the target domain,
2) static, labelled data for the target domain and
3) an Active Learning approach with labels for
the target domain provided by an expert. In
all settings we assume sufficient amount of la-
belled data from the source domain is available.
We perform extensive experiments in each of
the above conditions. Our findings show that
our novel approach, which combines data aug-
mentation with active learning, boosts perfor-
mances in the low-resource, domain-specific
setting, allowing for low-labelling-effort ques-
tion answering systems in new, specialized do-
mains. They further demonstrate how to best
utilize data augmentation to boost performance
in these settings.

1 Introduction

Machine Reading Question Answering (MRQA)
is a challenging and important problem as it facil-
itates targeted information extraction from docu-
ments and allows users to get fast, easy access to a
vast amount of documents available, e.g. finding so-
lutions to software errors, or searching for common
sense knowledge. As MRQA models need plenty
of annotations, several methods exist to augment
data by generating new question-answer pairs with
the ultimate goal of improving quality of predic-
tions. Some of these approaches show a real benefit

in the downstream MRQA task; however, there is
no work focusing on employing this kind of data
augmentation in low-resource, domain-specific set-
tings often observed in practice. In these cases,
most of the times only few annotated samples are
available due to the specialized domain being usu-
ally vastly different from the source domain of the
publicly available labelled data; moreover, labeling
is expensive as it requires a significant amount of
time from domain experts. However, we argue that
it is feasible and not too expensive to collect and an-
notate a small set of samples (e.g. 200), accurately
selected to boost performance of the MRQA model.
In this work we introduce a novel approach that fol-
lows this idea. Although Shakeri et al. (2020) show
that a question-answer generation approach trained
on SQuUAD (Rajpurkar et al., 2016) transfers fairly
well to other domains, this does not hold in the case
of datasets from specialized domains that are very
relevant in practice. Additionally, so far it stays
unclear how few samples from the target domain,
selected based on various criteria, affect the perfor-
mance of the MRQA model when they are used in
the training of the sample generation model as well.
In this work we introduce a novel approach that
enables this and also investigate the performance
of data generation for MRQA in different low-
resource, domain-specific settings. For the first set-
ting (S1) we assume to have only unlabelled target
domain data available in addition to samples from a
potentially large source domain and study the gen-
eralization to low-resource domains. In addition to
that we also consider two other cases with labelled
samples from the target domain. For these low-
resource settings we distinguish between having
static, labelled data available (S2) and having dy-
namically labelled data (S3), e.g. a domain expert
labelling on demand. We employ a state-of-the-art
model for generating question-answer pairs on doc-
uments from the target domain and test its perfor-
mance also in S2. For S3, we apply Active Learn-



ing (AL) in order to label those samples which are
most relevant for increasing performance, with the
aim of reducing the amount of labelled samples
needed. We consider these annotated samples in
both stages, the data generation part as well as the
MRQA model. In our experiments we observe
large improvements for the MRQA task for two
domain-specific datasets, namely TechQA (Castelli
et al., 2019) and BioASQ (Tsatsaronis et al., 2015),
with few samples annotated. Moreover, the perfor-
mance in both cases outperforms the setting with a
full set of annotated data.

Our main contributions are as follows: 1) We
introduce a novel approach that combines MRQA
data augmentation via question-answer generation
with Active Learning. 2) We identify the most
relevant samples for AL by adapting to our set-
ting scoring functions recently used for unsuper-
vised quality assessment of machine translation. 3)
We introduce a new sample relevance score spe-
cific to data generation by coupling the generated
samples with the eventual task so that the MRQA
model influences the data augmentation process.
4) We perform extensive experiments' to demon-
strate how to best utilize data augmentation via data
generation to boost performance in low-resource,
domain-specific settings.

2 Related Work
2.1 Low-Resource MRQA

There are several approaches dealing with low-
resource tasks, including settings where few la-
belled data are available and others where no labels
are available at all. One approach is to use pre-
trained language models (LM) (Alberti et al., 2019;
Radford et al., 2019; Lewis et al., 2019), which
can be especially useful in cases where little or
no labelled data exists and it is costly to generate
more. In the best case, the LM can be used without
further fine-tuning. Otherwise, if unlabelled data is
available, it may be used for adaptation of the LM
in a self-supervised fashion.

If the low-resource domain is accompanied by
some annotated samples, weak supervision — where
labelled data is used as prior knowledge — is
relevant (Hedderich et al., 2021; Wang et al.,
2019). Moreover, data augmentation (Zhang et al.,
2020; Van et al., 2021) and LM domain adapta-
tion (Nishida et al., 2020; Zhang et al., 2020) have

'The implementation for the experiments can be found
here: https://www.removed-for-anonymity.edu/

been shown to improve performance for the MRQA
task. Another approach is to use domain transfer,
where a model is trained on a source domain and
then adapted to a different target domain e.g. by
employing adversarial training (Lee et al., 2019).
Last but not least, the use of AL for MRQA (Hong
et al., 2019) has been shown to be helpful as well.
However till date, it is limited to the model eventu-
ally used in the target domain (Hong et al., 2019).

2.2 Data Generation

Recent work has shifted domain adaptation to a
data generation approach (Shakeri et al., 2020; Al-
berti et al., 2019; Puri et al., 2020; Luo et al., 2021;
Lee et al., 2020). In this approach, given a pas-
sage of text, the generator model learns to output
question-answer pairs. The generation model is
trained on a large amount of data from the source
domain and can be applied to any document in any
target domain, commonly employing pre-trained
transformers (Vaswani et al., 2017) as decoder.
Common generation methods focus only on gen-
erating the question and assess their performance
exclusively on the generated question using auto-
matic metrics (Sun et al., 2018; Liu et al., 2020;
Tuan et al., 2019; Mitkov and Ha, 2003; Ma et al.,
2020; Song et al., 2018; Duan et al., 2017; Yin
et al., 2021; Sachan and Xing, 2018; Chen et al.,
2020; Tang et al., 2017; Zhao et al., 2018; Du et al.,
2017). Only a few approaches work to generate
full question-answer pairs, where the generated
data is evaluated by means of the MRQA model.
While Klein and Nabi (2019) and Luo et al. (2021)
only perform in-domain experiments — where the
training data and data used for generating new sam-
ples comes from the same domain — Shakeri et al.
(2020) and Lee et al. (2020) show the generaliz-
ability of their data generation models by also per-
forming out of domain experiments. Furthermore,
automatically generated question-answer pairs can
be filtered (Alberti et al., 2019; Puri et al., 2020;
Shakeri et al., 2020) to get rid of noisy samples.

3 Method

We focus on two main approaches relevant for the
low-resource, domain-specific setting. The first
one solely uses data augmentation with two differ-
ent sample filtering scores. The second one is our
novel approach that addresses the MRQA task by
combining data generation with minimal human
input in an AL setup. The sample selection in the
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Figure 1: An overview of our approach: Samples for
annotation are either chosen randomly or selected via
the AL procedure, which takes the current models into
account. The target domain is annotated by a data gener-
ation model which outputs question-answer pairs given
a context.

AL setting is done by adapting and combining vari-
ous existing scores, with the addition of one novel
score. A high-level overview of our approach is
provided in figure 1.

3.1 MRQA Model

We employ pre-trained BERT (Devlin et al., 2019)
for encoding the question concatenated with the
context. On top, a span extraction head models the
probability for each context token being the start
and the end of the answer span.

3.2 Data Generation for MRQA

Model We denote the question as g, the answer
as a and the corresponding context as c. For the
data generation model we use the QA2S model pro-
posed by Shakeri et al. (2020) because this model
shows best overall performance in their and our
experiments. It makes use of a pre-trained encoder-
decoder LM and it is fine-tuned to generate the
question given the context, followed by generat-
ing the answer given the context and the previ-
ously decoded question in a subsequent decoding
step. Hence the same model is trained to approxi-
mate probability distributions p(a|q, ¢) and p(q|c).
Therefore, the question is generated in an auto-
regressive manner and conditioned on the context:

T
plgle) =) " log plarlger, c). (1)
t=1

Similarly, the answer is conditioned on the context
and the question:

T

p(a\q,c) = Zlogp(at|a<t7Q7C)' (2)
t=1

Special tokens <a>, </a> and <g>, </g> mark
the answer and the question in the sequence, re-
spectively. During inference, a two-step decoding
process is used and <a> and <g> are given as
begin-of-sequence tokens to start generating the
answer and the question, respectively.

Decoding Generating questions in the first step is
done by nucleus sampling (Holtzman et al., 2020)
from the output distribution over the vocabulary
considering 95% of the probability mass and top
20 tokens in each step. The answer is then decoded
greedily with a beam search of size 10. Samples
for which the answer does not occur in the con-
text are discarded. Furthermore, only samples for
which the corresponding end tokens are predicted
correctly are considered as valid.

Filtering Finally, only a subset of the generated
samples are kept by using two sample filtering ap-
proaches, namely the LM score filtering introduced
by Shakeri et al. (2020) and round-trip consistency
(RTcons) (Alberti et al., 2019). In LM score filter-
ing, the generated samples are sorted according to
the probability p(y|y<¢, ) as given by the genera-
tion model and the top n samples are kept (we use
n = 5). For RTcons, an MRQA model is used to
assess a generated question-answer pair: The gen-
erated question along with the context is fed into an
MRQA model to predict the answer. The sample is
discarded if the predicted answer does not match
the generated one. Because RTcons might discard
all samples generated from a context, we also fine-
tune the MRQA model (pre-trained on the source
domain) used for RTcons on the target domain if
samples exist in the target domain.

3.3 Active Learning

AL is an iterative technique applied to reduce the
amount of annotated samples needed for training
while at the same time reaching high quality perfor-
mance. At its core, a human with expert knowledge
of the domain annotates selected samples. We im-
plemented different sequence scoring functions in
order to use them in an AL scenario for our spe-
cific task. While we borrow Sentence Probability
(SP), Dropout-based Sentence Probability (D-SP)
and Dropout-based Lexical Similarity (LS) from



Algorithm 1 Model Training with AL

Require:
data Dpoo)s Peval

scoring function fscore

iterations 7, num samples n

1: initialize models MGen’MMRQ A With pre-trained

weights
2: Dipgin =0
3: for iteration = 1,2,...,r do
4: Dgelected ¢ select n top scoring samples using

fscore and MGep, MMRrQA for labelling

Dirain < Dirain Y Dselected
pool < Ppool \ Pselected
7: re-initialize models Mgep, MMRQ A With pre-
trained weights
8: train MGen; MMRQ A 00 Dipqi, and load best mod-
els evaluated on Dgy 41 (€.g. loss, F1)
9: end for

unsupervised quality estimates (Fomicheva et al.,
2020; Xiao et al., 2020) and adapt them as scoring
functions in our setting, we also introduce round-
trip scoring (RT) that utilizes the MRQA model
in the sample selection process. We believe that,
during data generation, it is important to link the
sample selection with the eventual downstream task
in order to generate high quality samples. Finally,
we also compare scoring functions based on the
data generation model with an approach that di-
rectly uses the MRQA model. For this purpose
we use Bayesian Active Learning by Disagreement
(BALD) (Houlsby et al., 2011; Gal et al., 2017).
Our novel approach combining data generation
with AL is shown in Algorithm 1.

3.3.1 Scoring functions for generation model

Sentence Probability This scoring function
makes use of the probability distribution of the
data generation model. We score the contexts ac-
cording to the sentence probability of the answer
being generated:

T
1
SP(0) = T tz_; logp(atla<t,c,q,0)  (3)
We generate the question and answer by decoding
with beam search of size 10 and greedy decoding,
but do only use the produced answer for scoring a
sample’s context.

Dropout-based Sentence Probability In con-
trast to SP, D-SP makes use of multiple data gener-
ation models to compute the sentence probability:

1 N
D-SP = — nz_:l SP(6,,) 4)

We employ dropout at inference time (as well as
during training) to realize different subsets of the
model, as described by Gal and Ghahramani (2016),
running N forward passes. Note that the output is
decoded similarly as in SP, and the same prediction
is used in all forward passes.

Dropout-based Lexical Similarity For this scor-
ing function, multiple answers are decoded using
multiple models (again realized via dropout), and
all of them are compared pairwise at the lexical
level (with ¢ # j):

N N
1
LS = ————— Y ) Meteor(a;,a;) (5)
N (N —1) p J

Decoding is again implemented greedily using
beam search of size 10.

Because the ultimate goal is to improve the
MRQA model, we propose the following novel
methods that integrate the MRQA model in the
computation of the ranking scores:

Round-trip (RT) For each generated question-
answer pair from the given context (generation is
done similar to SP), we apply an MRQA model
on it and compute the F1 score between the pre-
dicted answer and the answer generated by the data
generation model and use it to rank the samples.

D-SP+RT We combine the D-SP and the RT
scores sample-wise to obtain the final ranking score.
We rescale the D-SP score such that the best pre-
diction is assigned 1.0 (i.e. the ranges match the
RT score) and distribution is similar to RT:

D-SP+RT = exp(4 x D-SP)2 +RT  (6)

3.3.2 Scoring function for MRQA model

In case of only using the MRQA model, we use the
BALD score (Houlsby et al., 2011) to measure the
uncertainty of the model’s predictions over training
data D and model weights 6 using entropy H:

H[y|:E,D] - EGNp(6|'D)H[y’$79] (7

In order to make computation feasible we calculate
the BALD score (using dropout) independently for
start and end probabilities. The sum of both scores
is then used to order and rate the samples.

4 Experimental Setup

In our experiments we consider three different low-
resource settings: 1) only unlabelled data from the



target domain (S1), 2) statically labelled data from
the target domain (S2) as well as 3) dynamically
labelled data from the target domain (S3).

4.1 Data

We use SQuAD as source domain and NaturalQues-
tions (NQ), TechQA and BioASQ as target domains
(some statistics are summarized in table 1). The
main reason for choosing these datasets (and their
sampled low-resource versions) is to have exam-
ples of two very specialized domains (TechQA,
BioASQ) completely different from the source do-
main, as well as an example of a domain overlap-
ping with the source domain (NQ). In addition to
each full domain we create two low-resource sce-
narios, one by choosing 200 samples randomly (de-
noted as NQ-200, TechQA-200 and BioASQ-200)
and the second via the AL procedure described in
section 3.3, respectively. These correspond to our
settings where few training data is available (S2 and
S3). More details can be found in the appendix.

context tokens questions tokens answer tokens

Domain

min | max mean min | max | mean | min | max | mean
SQuAD | 25 | 853 155.75 1 61 1229 | 1 68 4.23
NQ 10 | 3143 | 2454 7 29 976 |1 270 | 5.25
TechQA | 38 | 38925 | 1484.08 | 6 561 | 69.37 | 5 545 | 98.76
BioASQ | 27 | 960 33771 |5 36 15.06 | 1 76 4.42

Table 1: Statistics of the train split of the domains used
in this work obtained with the tokenizer for BERT.

4.2 Question & Answer Generation

Training Similarly to Shakeri et al. (2020) we
use bart-large (Lewis et al., 2019) in our data
generation model. It contains 406M parameters
and it is trained for 5 or 10 epochs depending on
whether training is performed on the source domain
or on the target domain only. We use cross entropy
loss to train it on the source domain, and select the
model with the best loss on the evaluation data. For
the low-resource target domains we additionally
experiment training the data generation model only
on target data, as well as combined with the source
domain. In the latter case we train the data genera-
tion model with samples from the source domain
first and fine-tune on the target domain afterwards.

To fit the context concatenated with the question
into the model we split the context into several
chunks. In the training we only consider those
chunks where the answer does occur in the context.
Additionally, since TechQA has long questions, we
truncate the questions to the first 200 tokens to
allow for sufficient context in the input.

Synthetic Data Generation Regarding the ques-
tion generation (i.e. the first decoding step), we
allow contexts to have a size of up to 724 tokens
so that the generated questions may comprise up
to 300 tokens, as both will be fed into the model
in the second decoding step. Chunking this input
is difficult since aggregating generated text is not
simple (especially if outputs do not overlap). We
generate 10 questions per input followed by one an-
swer for each question-context pair, yielding up to
10 samples per context. In total we choose 100000
documents from the target domain, selecting first
550 tokens and ignoring contexts with less than 100
tokens. For NQ, only 50535 documents remain.

4.3 MRQA Model

We use bert-base-uncased in the MRQA
model with a maximum input length of 512 to-
kens and a stride of 128. As for the data generation
model we similarly truncate questions in case of
TechQA (whether from the train/dev corpus or syn-
thetically generated. Since chunking is applied
to the inputs and predictions are aggregated after-
wards (by choosing the best span over all chunks’
predictions), it may happen that the answer of a
sample is not completely included in a chunk’s
context. We especially observe this for TechQA,
where the performance on the evaluation data is
greatly degraded as the model never has the chance
to predict the answer correctly for some samples.

4.4 Active Learning

For the low-resource domains employing AL we
score available samples using each of the scoring
functions as described in Section 3.3, running 10
forward passes for D-SP, LS, D-SP+RT and BALD.
We run 4 iterations starting with all available sam-
ples from the target domain in the pool and select
the 50 samples the model is least confident about.
In each iteration we remove the selected samples
from the query pool and train the models on all
selected samples so far, always starting with the
model trained on the source domain (or synthetic
data for MRQA). Since D-SP, LS and RT are com-
putationally expensive, with LS actually decoding
generated text after each forward pass, performing
AL with LS, RT and D-SP+RT on NQ was not fea-
sible for us. Hence we randomly selected 10000
samples from this domain for use with AL, denoted
as NQ#10000 in our experiments.



Setting Fine-tune data

Fine-tune data

Filtering

NQ NQ-200

TechQA

TechQA-200
EM Fl

BioASQ

BioASQ-200
EM Fl

for generation model for MRQA model EM Fl EM Fl EM Fl EM Fl
S1 - SQuAD 4342 58.12 4342 58.12 0.63 17.06 0.63 17.06 48.50 62.99 48.50 62.99
S2 SQuAD + Target 67.53£0.24 7931 +0.19 4926 £0.23 62.72+03 33.13+143 6030+£0.32 27.75£0.64 56.19+0.89 7821 +1.02 8277+0.72 67.31 £0.72 7396 +0.32
S2* - Target - 66.63 78.64 22.94 32.24 26.88 55.9 21.88 52.45 78.07 80.64 49.50 54.54
st SQuAD Synthetic LM 50.72 63.8 50.72 63.8 0.63 19.76 0.63 19.76 50.5 62.99 50.5 62.99
SQuAD Synthetic RTcons 51.37 64.38 51.37 64.38 1.88 16.34 1.88 16.34 50.17 62.92 50.17 62.92
SQuAD Synthetic + Target LM 67.63 +£0.12 7945+ 0.03 5279+0.19 6551 +0.19 34.13+094 6042+049 2775+075 5712+ 1.04 8246+ 088 87.08+0.53 69.24 £ 045 76.65+0.48
SQuAD Synthetic + Target  RTcons 67.39 £ 021 79.34+0.18 5235+0.08 6533+0.1 3413+129 61334131 2825+092 5690+ 1.08 81+0.71 85924032 64.85+0.71 7266+ 0.80
Target Synthetic LM - 44.62 555 15.63 42.22 11.25 35.87 76.41 82.35 62.79 69.37
Target Synthetic RTcons 49.92 61.23 21.88 48.68 20.63 46.55 70.1 77.95 65.78 72.64
2 Target Synthetic + Target LM 46.82£0.16 59.1+0.19 31.88+1.05 58.78+0.6 30.75+1.08 57.11+£089 8492405 87.66+06 7336+1.06 78.14+1.01
- Target Synthetic + Target  RTcons 50.09+0.12 61.92+0.1 3388+047 6088+0.71 30.63+04 559+0.87 8352+0.16 87.01+0.20 73.36+0.64 77.96+0.53
SQuAD + Target Synthetic LM 53.96 66.4 17.5 39.88 17.5 36.5 75.08 83.74 70.1 77.24
SQuAD + Target Synthetic RTcons 54.67 66.98 2438 43.93 23.13 41.36 76.08 82.08 68.44 76.15
SQuAD + Target Synthetic + Target LM 54.61 £0.15 67.13+0.15 37+073 6278 +044 30.63+083 57.04+1.24 8551058 88.95+035 7236+095 80.15+0.85
SQuAD + Target Synthetic + Target  RTcons 54.67 £ 0.13 67.124+0.14 385+ 1.51 6221+ 1.15 3025+0.75 5658+ 1.06 8425405 88.07+0.31 70.83+049 7835+ 0.50

Table 2: EM and F1 scores (with standard deviation across 5 runs where indicated) on the dev sets for the downstream
MRQA task for NaturalQuestions, TechQA and BioASQ, as well as their low-resource versions with 200 samples
drawn randomly. In contrast to NQ we also consider TechQA and BioASQ as low-resource domain, with only
450 and 1052 training samples, respectively. The results for training the MRQA model on the synthetic data when
SQuAD is available only are the same for the target domains and their respective low-resource variants, as no target
domain data was used for training, neither in the data generation nor in the MRQA model. Best results per domain
(excluding AL) are marked bold. S1 considers only the source domain for training, whereas S2 adds few samples

from the target domain.
* Supervised target domain

5 Experimental Results

5.1 Unlabelled target domain & low-resource
samples drawn randomly

In our experiments (cf. table 2) we observe that
SQuAD cannot be used in the first setting (S1)
directly (i.e. without synthetic data generation) on
TechQA (F1 of 17.06% vs. 55.9% (TechQA) and
52.45% (TechQA-200)). However, with labelled
target domain data available in addition to SQuAD,
performance increases to 60.3% F1 on TechQA
and 56.19% F1 on TechQA-200. Regarding NQ
cast as low-resource domain, performance drops
(32.24% F1) with supervised in-domain data only
and, without any synthetic data, SQuAD already
improves NQ-200 (58.12% F1). We see further
gain of 4.6% F1 if the MRQA model is fine-tuned
on NQ-200. With the same amount of samples in
the BioASQ domain the performance of the MRQA
model increases from 54.54% F1 if trained on in-
domain data only to 62.99% if only SQuAD data is
used. Fine-tuning on BioASQ data yields 73.96%
F1 (BioASQ-200) and 82.77% F1 (BioASQ).
When only unlabelled data is available in the
target domain we see small gains (+2.7% F1) for
TechQA when training the MRQA model on syn-
thetic data if only SQuAD is used (in training the
data generation model). LM filtering works better
than RTcons filtering likely for the same reason that
the downstream MRQA model trained on SQuAD
does not perform well on TechQA and a domain
independent filtering avoids this issue. In the case
of NQ-200, RTcons filtering works best, yielding
64.38% F1, which is supported by Shakeri et al.
(2020) showing the same trend. With this setup we

do not observe any benefit for BioASQ.

Comparing performance for TechQA and
TechQA-200 on synthetic data only in S2 (that
means with few labelled target data available), the
data generation model trained only on target data
(thus omitting the source domain at all) shows a
better performance (48.68% F1 vs. 43.93% F1
(TechQA) and 46.55% F1 vs. 41.36% F1 (TechQA-
200)). However, if the MRQA model is also fine-
tuned on the target domain data, we get best re-
sults with 62.78% F1 (TechQA) and 57.12% F1
(TechQA-200) if data generation is trained on
SQuAD (in case of TechQA additionally to tar-
get data). In contrast we consistently get better
results for NQ-200 if SQuAD is used as well. The
low-resource version of NQ performs best if both
the data generation and the MRQA model are fine-
tuned on its samples (67.13% F1), but there is no
significant difference whether target data is used
in fine-tuning the MRQA model or not. We con-
sistently get large gains and best results for the
TechQA domains if the MRQA model is further
fine-tuned on target domain data. Similarly, we
observe best performance for BioASQ-200 if the
MRQA model is fine-tuned on the target domain
with a score of 80.15% F1 (fine-tuning the data gen-
eration model on the target domain data as well).

5.2 AL for Data Generation & MRQA

In total, as can be seen in table 3, AL improves
MRQA for all domains. Our newly introduced
scoring function RT and its extension D-SP+RT
together outperform the other AL approaches on
two domains, TechQA (58.89% F1) and NQ#10000



Fine-tune data . NQ NQ#10000 TechQA BioASQ
Setup AL strategy ¢ NIRQA model  TIMtering EM Fl EM Fl EM Fl EM Fl
Sp Synthetic LM 53.45 66.24 54 66.51 13.75 3551 65.78 75.27
Sp Synthetic RTcons 54.49 67.24 55.31 67.94 21.88 41.98 67.11 76.52
SP Synthetic + Target LM 5430+0.18 66.89 £0.15 5448 +02 67.32+0.18 30.38+0.85 56.514+0.73 72.03+£0.77 80.63 +0.59
SP Synthetic + Target RTcons 54.48 +0.02 67.23+0 5539 +£0.07 68.04 £0.07 31+£0.75 5643 +£0.7 68.77+0.66 77.2+0.52
D-SP Synthetic LM 53.96 66.57 54.53 67.02 16.25 36.69 68.11 77.21
Gen* D-SP Synthetic RTcons 54.68 67.23 54.82 67.11 28.13 46.56 66.11 74.91
D-SP Synthetic + Target LM 54404023 67.13 £0.14 55.11 £0.08 67.86 & 0.08 30 £+ 0.88 55.64 £ 044 7535+ 0.64 82.57 +£0.52
D-SP Synthetic + Target RTcons 54.80 +£0.16 67.68 +0.11 5498 +£0.03 67.50+0.08 325+0.56 56.17+0.41 72.56+0.68 80.06+0.75
LS Synthetic LM - - 54.53 67.11 18.13 37.63 66.45 75.53
LS Synthetic RTcons - 54.78 67.61 23.75 43.31 66.45 74.93
LS Synthetic + Target LM - - 5483+ 0.19 67.75+£0.16 30.63+0.79 55424047 68.64+04 79.06+ 0.24
LS Synthetic + Target RTcons - - 5478 £ 0 67.61 +£0 31254+ 125 555+1.39 71.89+0.72 79.95+0.53
RT Synthetic LM - - 54.5 66.64 16.88 37.32 67.77 76.76
RT Synthetic RTcons - - 54.85 67.48 23.13 45.97 65.12 74.25
RT Synthetic + Target LM - - 5543 £0.05 6828+0.08 31.5+1.09 56.85+0.53 71.96+0.16 80.23 +0.44
MRQA™* RT Synthetic + Target RTcons - - 55+0.18 67.71+0.14 32+047 58.89+0.62 70.56+0.95 79.17+0.86
D-SP+RT Synthetic LM - - 54.88 66.86 18.13 35.69 67.11 75.63
D-SP+RT Synthetic RTcons - - 54.25 66.69 23.13 45.03 66.78 75.35
D-SP+RT Synthetic + Target LM - - 5555 +0.14 67.77+0.15 2838 +£1.16 53.844+039 71.69+1.08 7877+1.13
D-SP+RT Synthetic + Target RTcons - - 54.65+0.08 67.50 £0.08 30.754+0.73 57.81 £0.36 67.97+045 76.39+042
MRQA-  BALD Synthetic + Target LM 5249 +£043 66.05+041 53.10+047 6658 +042 29.25+0.25 56.124+1.06 68.7+1.02 77.44+0.53
only™* BALD Synthetic + Target RTcons 5253 +044 66.18 £0.36 52.74+0.48 6639+ 024 27.88+129 57.044+093 65.18+1.75 74.15+1.28

Table 3: EM and F1 scores (with standard deviation across 5 runs where indicated) for AL on target domain
(setting S3) where target refers to the samples selected via AL (4 iterations with 50 samples queried). In all cases
the data generation model is trained on SQuUAD and fine-tuned on target domain data. AL improves results in
all low-resource settings, and consistently improves NQ and NQ#10000 where many samples are available to be
queried. Best overall results for low-resource domains are marked bold.

* makes only use of the data generation model during scoring and trains the data generation model on the newly

annotated samples followed by synthetic data generation.

** like Gen, but makes use of the MRQA model during scoring.
*** data generation model was trained on SQuAD data only, hence the MRQA pre-trained model from table 2 (first
two synthetic rows) has been used (i.e the best models without target domain data).

(68.28% F1). Although RT scoring also performs
better on BioASQ than random sampling, we get
the best results by using D-SP (82.57%).

BALD performs better than random sampling in
terms of F1 score if applied to the MRQA model
pre-trained on synthetic data except for TechQA
(for which the F1 score is lower but the EM score
higher). However, as expected, it performs worse
than if data generation is employed for the MRQA
task, highlighting the benefit of data augmentation
for the MRQA task and the application of AL at
the data generation model.

6 Insights and Lessons Learned

6.1 Insights of drawn samples

To better understand the performance of the con-
sidered AL methods, we have analyzed different
aspects of the samples selected for labelling.

Overlap of drawn samples We analyzed the
overlap of the chosen samples between the different
AL strategies. Table 4 reflects this for the BioASQ
domain. We observe rather small sample overlap
among the approaches, a trend that holds for the
other domains as well.

Distribution of scores Figure 2 shows the distri-
bution of scores over all available samples in each

BALD SP LS RT D-SP+RT D-SP RANDOM
BALD 200 39 44 42 54 49 42
SP 39 200 49 49 66 72 40
LS 44 49 200 37 48 46 41
RT 42 49 37 200 63 49 15
D-SP+RT 54 66 48 63 200 82 42
D-SP 49 72 46 49 82 200 36
RANDOM 42 40 41 15 42 36 200

Table 4: Overlap of samples for the various AL ap-
proaches on BioASQ: The overlap of the scoring func-
tions is rather small.

iteration of AL for TechQA. We observe a steep
ascent with RT where, depending on the dataset,
many samples are rated as 0 and many as 1. This
indicates that both models, data generation and
MRQA, work very well in combination. The RT
scoring is also a good measure to quantify the dif-
ference between the target domain and the source
domain. For example, for both NQ and BioASQ
RT scores are much better than those for TechQA.
This is probably because the RT method considers
the downstream MRQA task when computing the
score where the distribution shift is larger for more
specialized domains. Therefore, for the TechQA
dataset one might as well select all 200 samples
in one iteration instead of annotating 50 samples
in four consecutive iterations. Another interesting



0 50 100 150 200 250 300 350 400
samples (ordered by score)

Figure 2: Sample score distribution for TechQA: RT
scores many samples low, but surprisingly also rates
some samples best although the task of predicting the
generated answer for a generated question is complex.
Scores have been rescaled to [0, 1].

behavior we observe is that RT scores samples best
in the first iteration. This might occur due to poten-
tial overfitting of the data generation model, being
trained with 50 samples from the target domain.

@ not select samples

@ selected samples
30 B

-40 -20 0 20 40

Figure 3: Sample encoding distribution from MRQA on
BioASQ with RT for samples selected (221 instances)
after the last iteration.

Distribution of samples In order for the MRQA
model to perform well, it is important that a set
of diverse samples is selected in the AL strategy.
We visualize the diversity of the sample selection
process for each AL strategy using t-SNE. Figure 3
visualizes samples drawn according to RT after the
last iteration using BioASQ and shows their diver-
sity. More examples can be found in the appendix.

6.2 Lessons Learned

S1: MRQA domain transfer, where no labelled data
from the target domain is available, yields poor per-
formance for specialized domains. This can be very
well observed for TechQA, with the domain being
very different from the one of the source SQuAD
dataset. In this scenario data generation also does
not warrant an improvement, as showcased for the

BioASQ dataset. In case of TechQA, very little im-
provement could be observed. This could be due to
the style of the generated questions and the target
domain questions differing too much.

S2: Adding labelled samples from the target do-
main already increases performance without data
augmentation via generation, especially for very
specialized domains. When a small amount of la-
belled samples from the target domain exists, gen-
erating synthetic data to augment the training set
still offers a robust solution, independently from
the similarity between source and target domains.
We observe improved results for all target domains
if SQuAD is used in training the data generation
model. This underlines our hypothesis that data
generation improves MRQA performance even if
target domain training data is available as questions
are asked on contexts from the target domain.

S3: For all domains, applying AL shows an im-
provement when compared to S1 and S2, especially
in the data generation process. Furthermore, our
proposed method - RT scoring - provides a compet-
itive scoring function. F1 scores are consistently
increased by 1.15% (NQ), 1.77% (TechQA) and
2.42% (BioASQ). We expect that this improvement
could be further increased when more (unlabelled)
samples are available for querying. This can thus
be used as an approach to minimize the costly an-
notation effort in specialized domains.

7 Conclusion

Although data scarcity is known in practice, there
is a lack of approaches that address this problem
for the MRQA task in specialized domains. There-
fore, realistic low-resource domains and appropri-
ate methods are needed since deep learning models
usually work well when plenty of annotated, in-
domain data are available. In our work we demon-
strated how to best utilize data augmentation via
generation to boost performance when addressing
the challenging MRQA problem in low-resource,
domain-specific settings relevant in practice. We
also introduced a novel approach that combines
data generation with active learning when tackling
the MRQA problem to enable performance boost
with low labelling effort. To this end we assessed
AL performance when applied to the MRQA model
directly as well as in the process of generating data
and showed significant predictive performance im-
provements, also when using our newly introduced
scoring function tailored to the MRQA task.
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A Data

SQuAD We use the official SQuAD 1.1
dataset (Rajpurkar et al., 2016) and its split in train-
ing and development sets comprised of 87599 and
and 10570 samples, respectively. We use SQuAD
as source domain for training the data generation
model and for training the MRQA model in the in-
domain setting, as well as together with the target
data in case of the low-resource scenarios.

NaturalQuestions We use the NaturalQuestions
dataset (Kwiatkowski et al., 2019), preprocessed
for the MRQA Shared Task 2019 (Fisch et al.,
2019). The train split contains 104071 samples
while the dev split has 12836 samples. In our work
this dataset is used due to its domain being similar
to the one of SQUAD. The documents from the
training set are used to generate question-answer
pairs while documents from the dev set are ex-
cluded.

TechQA TechQA is a dataset released by
IBM (Castelli et al., 2019). Questions are asked in
a forum post style and the answer is given as spans
within technotes (i.e. the documents). It contains
600 training samples including unanswerable ques-
tions. In our work we only consider the answerable
subset of 450 questions. The official dev data with
160 answerable samples was used for evaluation
since the test set is kept secret to ensure integrity
of the benchmark. Passages from the corpus con-
taining 800K+ documents were used to generate
data.

BioASQ Regarding the BioASQ dataset (Tsat-
saronis et al., 2015), we rely on the version pre-
processed for the MRQA Shared Task 2019 (Fisch
et al., 2019). It includes a dev set with 1504 sam-
ples. We create random splits for training, develop-
ment and testing with 70%, 20% and 10% of sam-
ples, respectively. For the data generation process
we crawl PubMed abstracts as unlabelled passages.

B Implementational Details

In our implementation we rely on PyTorch (Paszke
et al.,, 2017) and the transformers library (Wolf
et al., 2020) for the models as well as training. The
datasets library (Lhoest et al., 2021) is used for
loading and preprocessing data.


http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2010.09692
http://arxiv.org/abs/2010.09692
http://arxiv.org/abs/2010.09692
http://arxiv.org/abs/2010.05904
http://arxiv.org/abs/2010.05904
http://arxiv.org/abs/2010.05904
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424
https://doi.org/10.18653/v1/D18-1424

B.1 Hyperparameters

The MRQA as well as the data generation model
have been trained with Adam Optimizer (Kingma
and Ba, 2017), a learning rate of 3e—5 and a
batch size of 24. Warm-up was set to 10%
for training the data generation while it was dis-
abled in case of MRQA training. Similar to
the models used for the downstream MRQA task
bert-base-uncased was used for RTcons fil-
tering.

MRQA model training turned out to be quite
fluctuating in terms of the evaluation score. Hence
we performed a hyperparameter search including
learning rate, warm-up steps (using linear sched-
uler), L2 regularization, pre-trained weight decay
for the encoder and for the output layer separately,
freezing the encoder or its embedding, training of
only top-n layers and re-initializing top-n layers.
As a result, only pre-trained weight decay on the
encoder with A = le—7 was employed while all
layers were trained without re-initialization.

C Further Analysis

Tables 5 and 6 show the statistics and sample over-
lap for all domains.

Figure 4 shows the distribution of scores over all
queryable samples in each iteration of AL for the
different datasets.

Figure 5 shows the sample distribution for
BioASQ using RT scoring for AL.
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#samples  # unique contexts  # instances (rc / qa2s)

#samples  # unique contexts  # instances (rc / qa2s) BALD 200 200 311/229
BALD 200 194 269/217 SP 200 185 7467377
LS 200 199  403/262

Sp 200 161 807 /405
RT 200 197 436/273

D-SP 200 181  619/338
RANDOM 200 200 2407213 D-SP+RT 200 195  643/340
D-SP 200 192 654/353
RANDOM 200 200 240/213

(@ NQ
(b) NQ#10000
#samples  # unique contexts  # instances (rc / qa2s) #samples  # unique contexts  # instances (rc / qa2s)
BALD 200 177 909/513 BALD 200 199 236/200
SP 200 175 1635/851 SP 200 200 225/200
LS 200 177 1597/ 832 LS 200 200 220/200
RT 200 182 1185/643 RT 200 199 221/200
D-SP+RT 200 181  1595/847 D-SP+RT 200 197 222/200
D-SP 200 176 1614/855 D-SPp 200 199 227/200
RANDOM 200 182 1034 /557 RANDOM 200 199  216/200
(c) TechQA (d) BioASQ

Table 5: Statistics for the various domains: Although the amount of unique contexts fluctuates between the AL
strategies, there is no correlation with the performance on the MRQA model.

BALD SP LS RT D-SP+RT D-SP RANDOM

BALD SP D-SP RANDOM

BALD 200 8 1l 3 8 6 0
BALD 200 0 0 0 SP 8 200 20 18 38 42 6
Sp 0 200 5 1 LS 11 20 200 7 20 21 5
RT 318 7 200 17 10 0
D-Sp 0 2200 0 D-SP+RT 8 38 20 17 200 70 3
RANDOM 0 1 0 200 D-SP 6 42 21 10 70 200 5
RANDOM 0 6 5 0 3 5 200
(a) NQ
(b) NQ#10000
BALD SP LS RT D-SP+RT D-SP RANDOM BALD SP LS RT D-SP+RT D-SP RANDOM
BALD 200 95 88 86 88 87 96 BALD 200 39 44 42 54 49 4
SP 95 200 129 103 133 134 93 SP 39 200 49 49 66 7 40
LS 88 129 200 99 116 111 85 LS 44 49 200 37 48 46 41
RT 86 103 99 200 106 101 58 RT 42 49 37 200 63 49 15
D-SP+RT 88 133 116 106 200 135 82 D-SP+RT 54 66 48 63 200 82 4
D-SP 87 134 111 101 135 200 88 D-SP 49 72 46 49 82 200 36
RANDOM 9 93 85 58 82 88 200 RANDOM 42 40 41 15 42 36 200
(c) TechQA (d) BioASQ

Table 6: Overlap for the domains: Although the overlap is quite high for TechQA, we explain this with the small
amount of total samples available. In contrast we see a small overlap for large datasets like NQ.
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(a) Sample score distribution for NQ.

—BALD iteration 0

+ BALD iteration 3
— s iteration 0
- - P teration 1
- 5P ieration 2
SP iteration 3
— LS eration 0
- - Siteration 1
- LS iteration 2.
LS teration 3
RTiteration 0
R iteration 1
R iteration 2
R iteration 3
— D-SP+RT iteration 0
- - DSPHRT ieration 1
- D-SP4RT ieration 2.
D-SP+RT iteration 3
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- - DsP iteration 1
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(b) Sample score distribution for NQ#10000.

—BALD iteration 0
- - BALD iteration 1
== BALD iteration 2

BALD ieration 3

score

R iteration 3
— DSP4RT ieration 0
- - D-SP4RT ieration 1
== D-SP4RT iceration 2.
D-5P+RT iteration 3
— D-sP iteration 0
- - DPiteration 1
-~ DsPiteration 2
D-SP iteration 3

samples (ordered by score)

(c) Sample score distribution for TechQA.

—BALD iteration 0
- - BALD iteration 1
- BALD iteration 2.

BALD ieration 3

score

D-5P iteration 3

0 20 a0 &0 a0 1000
samples (ordered by score)

(d) Sample score distribution for BioASQ.

Figure 4: Sample score distributions for the datasets used in this work. Scores have been rescaled to [0, 1].
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RT iteration 0 RTiteration 1 RT iteration 2 RT iteration 3
MRQA model - 59 selected instances MRQA model - 14 selected nstances MRQA model - 168 selected instances MRQA model - 221 selected instances
“
.

R iteration 1 R ieration 2 R iteration 3
QA25 model - 100 selected instances Q425 model - 150 selected nstances. QA2S model - 200 selected instances

Figure 5: Visualization of sample encoding distribution on BioASQ with RT on both models, MRQA as well as
data generation, via t-SNE of the last layer hidden states, sentence representation by averaging over tokens.
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