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Abstract

Prompting has emerged as a dominant learn-
ing paradigm for adapting large language mod-
els (LLMs). While discrete (textual) prompts
prepend tokens to the input for optimized out-
puts, soft (parameter) prompts are tuned in the
embedding space via backpropagation, requiring
less engineering effort. However, unlike semanti-
cally meaningful discrete prompts, soft prompts
are tightly coupled to the LLM they were tuned
on, hindering their generalization to other LLMs.
This limitation is particularly problematic when
efficiency and privacy are concerns, since (1) it
requires tuning new prompts for each LLM which,
due to the backpropagation, becomes increasingly
computationally expensive as LLMs grow in size,
and (2) when the LLM is centrally hosted, it re-
quires sharing private data for soft prompt tuning
with the LLM provider. To address these con-
cerns, we propose a framework for Privacy Of
Soft-prompt Transfer (POST), a novel method
that enables private soft prompt tuning on a small
language model and then transfers the prompt
to the large LLM. Using knowledge distillation,
we first derive the small language model directly
from the LLM to facilitate prompt transferabil-
ity. Then, we tune the soft prompt locally, if
required with privacy guarantees, e.g., according
to differential privacy. Finally, we use a small
set of public data to transfer the prompt from the
small model to the large LLM without additional
privacy leakage. Our experimental results demon-
strate that our method effectively transfers soft
prompts while protecting local data privacy and
reducing the computational complexity over soft
prompt tuning on the large model.
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Figure 1. POST DX Framework. o An LLM provider com-
presses @, into a smaller LLM ®, by using knowledge distillation.
o The private data owner learns a specific soft prompt ps on the
®, using their private dataset (optionally with differential privacy
guarantees). 9 The LLM provider obtains the soft prompt p;
for solving the user’s task by transferring ps to the target LLM
®,—solely relying on a small public dataset and no access to the
private data for transfer.

1. Introduction

Large Language Models (LLMs) are strong general-purpose
language generators that can be adapted to solve various
private downstream tasks [4; 20]. One prominent paradigm
for adapting LLMs to private tasks is prompting [4; 20].
Soft prompts, which prepend trainable vectors to the input
and can be tuned automatically on the private data using
gradient-based approaches, are generally known to yield
higher performance at lower computational costs [16].

Yet, soft prompt tuning has two major limitations. 1) As
LLMs grow in size [10; 2; 1], it becomes significantly more
expensive in terms of compute. 2) At the same time, when
the LLM is centrally hosted, it requires users to share their
private data with the LLM provider, which causes privacy
leakage. An alternative solution to address the privacy con-
cern would be for the LLM provider to share their LLM with
the user. However, this would put the intellectual property
of the LLM provider at risk. From the user’s perspective, it
would also be impractical as they lack the computational re-
sources to deploy and backpropagate through large models.

A potential solution to both problems is to tune the soft
prompt locally on a smaller model and then transfer it to the



large LLLM, which is commonly known as “’prompt trans-
fer” [26; 29; 30]. However, soft prompts are highly coupled
to the LLM they were tuned on, making them difficult to
transfer. Existing approaches for transferring soft prompts
between two LLMs either require both the local small and
the central large model to access the private data [26], lead-
ing to privacy leakage, or are ineffective, as the transferred
prompt’s utility on the large central LLM often underper-
forms compared to the prompted small model [29], disin-
centivizing the use of the large model altogether.

To address these challenges, we propose POST, a frame-
work for Privacy Of Soft-prompt Transfer. POST consists
of three key steps. (1) First, the LLM provider performs
a knowledge distillation [12] to compress their large LLM
into a smaller model. (2) Next, the user performs local
prompt tuning using their private data on this smaller model,
potentially incorporating formal privacy guarantees through
differential privacy [8]. The user then provides this prompt
to the LLM provider, who finally (3) transfers the prompt to
achieve strong performance on the large LLM. To prevent
any additional privacy leakage from the user’s private data,
we equip POST with a novel prompt transfer method that
relies purely on access to a small public dataset rather than
the user’s private data for transfer. We provide an overview
of POST in Figure 1.

Our thorough experimental evaluation on both masked lan-
guage models and auto-regressive language models demon-
strates that our method can efficiently and privately transfer
soft prompts at high utility. In summary, we make the fol-
lowing contributions:

* We propose POST, a framework for privacy of soft prompt
transfer. POST preserves the confidentiality of the users’
private data and can be additionally equipped with strong
privacy guarantees according to differential privacy.

* We design a novel method to transfer private prompts
between LLMs by purely relying on public data which we
integrate into POST.

* We provide detailed experimental analysis on four datasets
and two different types of LLMs to show the effectiveness
and efficiency of our method.

2. Background

Prompt Tuning. Prompt tuning (PT) aims to adapt a
pre-trained LLM to various natural language downstream
tasks. There are two major types of prompts, 1) hard or
discrete prompts [24; 25; 9], which are discrete textual to-
kens prepended to the input text of the LLM, and 2) soft
prompts [11; 19; 33] which are tunable embedding vectors
provided to the LLM’s input. While discrete prompts re-
quire thorough engineering to yield good performance on
downstream tasks, soft prompts can be tuned through stan-
dard gradient-based training approaches [14].

Soft Prompt Transfer. Tuning soft prompts via backprop-
agation can be computationally expensive as LLMs grow in
size. This motivates the emergence of attempts to transfer,
i.e., to reuse, existing soft prompts. There are two broad sce-
narios for prompt transfer, cross-task transfer [27; 26; 32]
and more difficult cross-model transfer. Su et al. [26] ad-
dress the latter, i.e., transferring the soft prompt between
different LLMs by using guidance of the private data. How-
ever, this exposes the private data directly to the second
LLM. Wu et al. [29] present a zero-shot prompt transfer
method, where source prompts tuned on a given LLM are
encoded into a relative space and used as a form of sup-
port vector when finding target prompts on the second, i.e.,
target model. Unfortunately, in their approach, the target
model with the transferred prompt performs worse than the
prompted source model, leaving no incentive to use the
target model rather than the source model with the prompt.

Differential Privacy for Soft Prompts. Differential pri-
vacy (DP) [7] is a mathematical framework that provides pri-
vacy guarantees for ML by implementing the intuition that
amodel M : I — S, trained on two neighboring datasets
D, D’ that differ in only one data point, will yield roughly
the same output, i.e., Pr[M(D) € S] < e - Pr[M(D’) €
S] + 4. The privacy parameter ¢ specifies by how much
the output is allowed to differ and J is the probability of
failure to meet that guarantee. To adapt soft prompts with
DP guarantees, Duan et al. [6] proposed the PromptDPSGD
algorithm.

3. Setup and Problem Formulation

The Setup. We consider a setup LLM Provider

with two parties, an LLM provider

and a user, as shown in Figure 2.

The LLM provider deploys a X X
general-purpose LLM and offers = Private
paid query access to it. The user == Data
holds private data and wants to User

adapt the LLM on this data to
solve their downstream tasks
while ensuring the confidentiality
and privacy of their data towards the LLM provider.

Figure 2. The Setup.

The Problem. Unfortunately, since soft prompt tuning
relies on computing the gradients of the data with respect
to the model, both data and LLM are required to “’interact”
directly. The problem is that the user cannot share their data
with the LLM provider due to privacy concerns while the
LLM provider cannot share their LLM because of 1) intel-
lectual property concerns and since 2) this would disrupt
their business model, as users would no longer be required
to pay for accessing model queries. Additionally, most users
would lack the necessary computational resources to tune
the soft prompt on the large LLM locally, as this requires



calculating gradients over the entire model. Consequently,
due to these limitations, the powerful LLM could not be
used for private tasks.

4. Our Private Transfer of Soft Prompts
Framework

We solve the above-mentioned problem by proposing
Privacy Of Soft-prompt Transfer (POST). POST consists
of three main building blocks, (1) a knowledge distillation
from the LLM to a small model, (2) private prompt tuning,
and (3) a privacy-preserving prompt transfer using public
data. We detail those building blocks in the following.

4.1. Knowledge Distillation

We denote the large LLM (teacher) model as ®;, the small
student models as ®;, the input sequence to an LLM as z.
We leverage KD in [23] to derive @, from ®,. Different
from previous work in LLM distillation [23; 30] that mod-
erately compresses the LLM and tunes the whole model
to recover performance as much as possible, we perform
a more aggressive KD without emphasis on the student
model’s performance.

The objective used in the knowledge and the way we con-
struct the student model is show in Appendix C.1

4.2. Private Prompt Tuning

The goal is to tune a local prompt ps on the small source
model @, using the private data D,,,.; such that p, minimizes
the loss £ on the private downstream task as

arg min Z L(Ds,ps + ). @))

Ps €Dy,

This approach can be performed with standard PT. However,
this only provides confidentiality for the private data since
the data is not directly sent to the LLM provider. Recent
work [5], however, highlights that private information can
leak from tuned prompts.

To formally bound privacy leakage, ps can also be tuned
with DP guarantees, for example, using the PromptDPSGD
algorithm [6]. During optimization, PromptDPSGD clips
the per-sample gradients of the loss to a clip norm ¢ and
adds Gaussian noise drawn from A (0,02, ¢?) to provide
(e, 6)-DP guarantees.

4.3. Privacy-Preserving Prompt Transfer through
Public Data

The prompt ps, tuned on the small source model @, could,
in principle, be directly applied to the large target LLM ®,.
However, as described above, they do not initially perform
very well on other LLMs. A naive solution is to fine-tune

the target prompt p; on the private data D,,.;. However, this
would disclose the private data to the LLM provider and
is, hence, not acceptable. As an alternative, we propose a
privacy-preserving prompt transfer that leverages a small
public dataset D,,,;, in an efficient transfer step to derive a
high-utility prompt p; from p;.

We start by initializing the target prompt p; with the same
initialization of pj, then iteratively update p;. For the itera-
tive update, we use the loss function

L=(1-a)l1+aLls, 2

that consists of two different loss terms. The first loss term
is defined as

Li= Y KLDiv(®i(pi + 1)), Ps(ps + ).  (3)

#€Dpup

where KLDiv denotes the Kullback—Leibler divergence. It
aims for aligning the predictions of the prompted source

and target model on the public data. The second loss term
is defined by

Lo= 3 KLDiv((®:(pitd))—Di(2)), (@s(petd)—Da(2)),
ZED
“
and optimizes to align the direction change induced by the
private prompt between ®; and ®,, again on the public data.

The hyperparameter « in Equation (2) controls the balance
between the two loss terms. We observe that a good choice
of a depends largely on the model’s zero-shot performance.

S. Empirical Evaluation
5.1. Experimental Setup

Models and Datasets. To obtain the compressed model,
we follow Sanh et al. [23] to aggressively distill a 12-layer
Roberta-base [17] into a 2-layer model and a 48-layer GPT2-
XL [21] into a 4-layer small model. We evaluate the per-
formance of our proposed method on four classification
datasets: sst2 from the GLUE benchmark [28], imdb [18],
tweet [22] and arisetv [3]. We use these four datasets along
with agnew [31] as public datasets to facilitate the prompt
transfer. We discuss the choice of the public datasets for
transfer in detail in Appendix C.4. We follow Li et al. [15]
to formulate the classification task as a text-infilling task.

KD, Prompt Tuning, and Prompt Transfer. We fol-
low [23] to set the hyperparameters of knowledge distil-
lation (see Appendix C.1 for details). To train soft prompt,
we follow settings in Su et al. [26]. When applying DP, we
use PromptDPSGD proposed by Duan et al. [6]. Our prompt
tuning settings are presented in Appendix C.3. During the
prompt transfer, the model provider has no access to the
private dataset to find the right moment to stop the transfer,



Table 1. Runtime of POST vs. Full PT. We present the runtime
for our method, split by its individual components and compare
against full prompt tuning on the large LLM. We use arisetv and
sst2 as private data. We execute 5000 steps of transfer. PT on
d,, &, takes 20 epochs until convergence. All experiments are
executed on a single A100 GPU.

Method arisetv (min) sst2 (min)
__ PTon®: 184 _ 2660
(1) PT on &4 23 310
(2) Transfer 99 99
Ours total (1)+(2) 122 409

so we report the transferred accuracy at fixed steps. We use
5000 steps for Roberta-base and 8000 steps for GPT2-XL.
For each private dataset, we report the transfer performance
obtained using two different public datasets.

Metrics and Baselines. To evaluate the success of our
method, we report the accuracy of the test data split of
our private datasets for the large LLM with the transferred
prompt (Private Transfer). As baselines for comparison,
we include the zero-shot performance of the large LLM on
the private tasks’ test sets (Full ZS), representing the lower
bound our method should improve upon. Additionally, we
provide the performance of tuning the prompt for the large
LLM on the private training data, which, due to privacy con-
cerns, is not feasible in practice (Full PT). This serves as the
theoretical upper bound for potential performance. We also
report the accuracy of the prompted compressed model after
tuning the prompt on it (Compressed PT), as our private
transfer must improve over this metric to justify using the
large LLM instead of the small prompted one. Finally, we
report the direct transfer accuracy (Direct Transfer), which
is the accuracy achieved when the prompt tuned on the small
model is directly applied to the large one, highlighting the
effectiveness of our prompt transfer step.

5.2. Private Prompt Transfer with POST

Confidential Transfer. In Table 2, we evaluate the perfor-
mance of our method in a scenario where only the confi-
dentiality of the private data is protected. Therefore, the
user locally tunes a soft prompt without DP guarantees. For
each private dataset, we experiment with two different pub-
lic datasets for prompt transfer and report the respective
transferred accuracy on the private dataset. We first observe
that the transferred performance is significantly higher than
the zero-shot performance. Additionally, after the prompt
transfer with POST, we outperform the small compressed
prompted model, giving users a strong incentive to transfer
their prompt back to the large LLM. Additionally, we show
that our prompt transfer described in Section 4.3 is highly
effective as it improves over the direct transfer performance
by a large margin. For the arisetv dataset, the transferred
soft prompt even outperforms the soft prompt directly tuned
on the large model. In contrast to the soft prompt trans-

fer method by Wu et al. [29] which showed a decrease in
accuracy after transfer, our results highlight the practical
applicability and the benefits of using our method.

Differntially Private and Confidential Transfer. In addi-
tion to just transferring the locally tuned prompt—which
provides confidentiality of the private data towards the LLM
provider—we also perform experiments where we tune the
local prompt with DP. This yields provable upper bounds for
the privacy leakage towards the LLM provider and towards
third parties that might interact with the prompted LLMs
eventually. Since the prompt transfer is executed using a few
public data points, no additional privacy leakage is incurred
in that step. We show the results of our experiments with pri-
vacy guarantees for € = 8 in Table 3. The trends observed
for the confidential prompt transfer also hold under local
soft prompt tuning with DP. In particular, we observe that
the improvement of the transfer performance to the large
LLM over the performance on the prompted compressed
model is even more significant than in the non-DP setup.

5.3. Number of Public Samples, Transfer Steps, and
Runtime

We also investigate the influence of the size of the public
dataset required to complete the transfer and how many
transfer steps are required to obtain good performance. The
results in Appendices D.2 and D.3 show that our method
only needs less than 100 samples and executes about 1000
steps for Roberta-base and about 2000 steps for GPT2 to
achieve comparable performance.

We also compare the runtime of our method with prompt tun-
ing on the full model in Table 1. We show that our method
can achieve 1.5x speedup on the smaller arisetv dataset, and
about 6x speedup on sst2 dataset when transferring with
5000 steps. See Appendix D.4 for detail. These results high-
light that our POST also yields substantial improvements in
computational efficiency

5.4. Comparing against State-of-the-Art Prompt
Transfer Approaches

We compare against two baselines, namely the Zero-Shot
transfer by Wu et al. [29] and DP-OPT by Hong et al. [13].
Zero-Shot transfer operates in the same setup as we do and
also relies on soft prompts. They perform prompt transfer by
using the embeddings of some tokens from the vocabulary
as a form of support vector to transform the source prompts
into a relative space, and then search for the corresponding
target prompt embeddings for the target model. To provide
the optimal source model for their approach, we use a com-
pressed model that we obtained by keeping the embedding
layer frozen during KD (see row 3 in Table 11). DP-OPT,
in contrast to ours, is designed for discrete prompts. They
first tune a discrete prompt locally and then directly use it



Table 2. Confidential prompt transfer performance. We compress Roberta-base and GPT2-XL, tune prompts for different private
dataset on the compressed models, and transfer them back using different public datasets (POST). Our POST significantly improves
performance over the small prompted model and our prompt transfer yields a strong improvement over the direct transfer.

POST (ours)

Private Full ZS Full PT  Compressed PT Direct Transfer Public Testacc  Public  Testacc
sst2 72.25 91.74 79.10 76.49 tweet 87.73 imdb 85.21
imdb 72.19 89.88 78.85 76.92 tweet 83.96 sst2 80.27
tweet 36.53 68.68 56.65 43.10 imdb 54.55 sst2 58.25
arisetv 38.80 78.55 70.98 47.82 agnews 82.73 tweet 68.48
(a) Roberta-base.
POST (ours)
Private Full ZS Full PT  Compressed PT Direct Transfer Public Testacc ~ Public  Testacc
sst2 60.78 94.84 80.94 59.06 tweet 85.89 imdb 83.49
imdb 60.27 93.28 81.32 60.34 tweet 83.93 sst2 82.15
tweet 34.71 68.60 63.13 41.50 imdb 61.75 sst2 57.70
arisetv 52.98 87.22 77.10 55.43 agnews 87.56 tweet 82.12
(b) GPT2-XL.

Table 3. Differentially Private and Confidential prompt transfer performance. We compress Roberta-base and GPT2-XL, tune
prompts for different private dataset on the compressed models with Differential Privacy guarantees (¢ = 8), and transfer them back using
different public datasets (POST). Our POST significantly improves performance over the small prompted model and our prompt transfer
yields a strong improvement over the direct transfer.

POST (ours)

Private Full ZS Full PT  Compressed PT Direct Transfer Public Testacc ~ Public  Test acc
sst2 72.25 90.14 67.54 77.06 tweet 84.40 imdb 81.42
imdb 72.19 88.55 7222 74.35 tweet 79.64 sst2 80.64
tweet 36.53 62.05 40.87 43.15 imdb 55.65 sst2 59.25
arisetv 38.80 72.53 64.25 47.34 agnews 79.11 tweet 71.98
(a) Roberta-base.
POST (ours)
Private Full ZS FullPT  Compressed PT Direct Transfer Public Testacc  Public  Testacc
sst2 60.78 91.28 74.31 57.80 tweet 79.93 imdb 84.06
imdb 60.27 89.59 74.81 63.66 tweet 78.03 sst2 75.16
tweet 3471 61.47 48.60 41.50 imdb 58.05 sst2 54.75
arisetv 52.98 79.03 67.16 57.25 agnews 82.12 tweet 80.55
(b) GPT2-XL.

Table 4. Baseline comparison. We present the performance of our method against state-of-the-art baselines. We report test accuracies
over different private datasets D,.;. For our POST, we report the accuracies under the best public dataset (see Table 2 and Table 3).

Method D, (38 sst2 imdb tweet arisetv

OPT [13] GPT2-XL our compressed 60.67 61.70 30.70 42.87

OPT [13] GPT2-XL GPT2 62.16  63.18 3520 46.38

Zero-Shot Transfer [29] GPT2-XL our compressed 63.65 61.27 41.60 56.64

Zero-Shot Transfer [29] with DP GPT2-XL our compressed 63.42 61.71 41.35 57.25
77777 POST (ours) =~ GPT2-XL ~ ourcompressed  85.89 8393 ~ 61.75 87.56

DP-POST (ours) GPT2-XL  our compressed 84.06  78.03  58.05 82.12

on the large model. Since their method relies on the small
model having good performance, we execute their method
in two setups for a fair comparison. 1) We tune their source
prompt using our compressed model as the small model,
and 2) we use GPT2 as the small model. The latter is ex-
pected to have significantly higher performance and yield
better prompts. To avoid the massive hyperparameter tuning
required for the private tuning in DP-OPT, we resolve to the
standard OPT without DP guarantees following their imple-
mentation [13]. The obtained results represented an upper
bound of DP-OPT, as introducing DP usually degrades per-
formance. Our results in Table 4 highlight that our POST

significantly outperforms all baselines.

6. Conclusions

We present POST, a framework for the private transfer
of soft prompts that enables adapting LLMs of an LLM
provider with users’ private data while protecting both the
user’s privacy and the LLM provider’s intellectual prop-
erty. POST achieves significant improvements on the private
tasks through the prompt transfer, improves computational
efficiency of prompt tuning, and outperforms all private
prompt transfer baselines. Thereby, our work paves the way
for a wider and more trustworthy application of LLMs.
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A. Limitations

Our work proposes a method to protect the privacy and confidentiality of private data during the prompt tuning phase,
however, we didn’t address the privacy leakage risk during the inference phase. Also, compression of the LLMs through
knowledge distillation techniques may be computationally expensive for LLM providers. Additionally, in our method, the
selection of a public dataset will affect the transfer performance of soft prompts. While we observe, in general, that public
datasets that have a similar structure to the private data work best for transfer, there is no ideal strategy for selecting the
optimal public dataset

B. Broader Impacts

Regarding the broader impacts of our work, we propose a private transfer of soft prompts from a small language model to a
large LLM. The primary positive societal impact of our work is that our method can protect local data privacy and also
the intelligent property of the large model provider, which encourages wider and more trustworthy applications of LLMs.
Additionally, since our transfer enables more compute efficient prompt tuning and enables to re-use existing prompts, it can
have a positive environmental impact.

C. Experimental Setup
C.1. Knowledge Distillation

We follow the procedure of [23] to initialize and distill our compressed model. In detail, we rely on the following loss
from [23] to distill ®, from P,:
»Cdistil = aceﬁce + almﬁlm + Oécos£cos~ (5)

The objective is a linear combination of distillation loss L., language modeling loss L;,,, and embedding cosine loss L ,s.
Where L. is the Kullback—Leibler divergence loss between the logits of ®¢ and ®;, L;,,, is the standard objective used in
pre-train a language model, i.e., the cross entropy loss for predicting the masked/next tokens, and L, is the cosine distance
of the embedding of ®; and ®; with a.., oy, and a5 weighting the respective losses.

We use the first and last layers of Roberta-base and the first two and last two layers of GPT2-XL to initialize our compressed
Roberta-base and GPT2-XL before knowledge distillation. We also initialize the small student model’s word embedding
and language modeling head the same as their teacher model. We conduct experiments on whether to freeze the language
modeling head and/or word embedding during knowledge distillation. The model’s structure and size are listed in Table 5.

Table 5. Model size before and after distillation.

model layer number  hidden dimension ~ head number  parameter num (M)
Roberta-base 12 768 12 125

our distilled Roberta-base 2 768 12 53
GPT2-XL 48 1600 25 1560

our distilled GPT2-XL 4 1600 25 205

During knowledge distillation, we use the BookCorpus [34] dataset, and we took the checkpoint model that distilled for
50,0000 steps. The hyperparameters used in knowledge distillation are shown in Table 6.

Table 6. Hyperparameters in knowledge distillation.

Qe A Qeos Ir batch size

5.0 2.0 1.0 0.00025 5

C.2. Text-infilling tasks

We use the text-infilling setting for the classification task. The setting is to let the model predict the ground truth text instead
of using a classification head to output the class probability. To increase the robustness of this method, we use multiple
ground truth text labels, and compare the average probability of outputting those text labels. See Table 7 for task templates
and the ground truth labels used in our experiment.



Table 7. Task template and ground truth labels used in text-infilling. <s>means the sentence used in the dataset.
Dataset Task Template Roberta Task Template GPT2 ~ Ground Truth Text Label

5590 2993

sst2 <s>, it was <mask> <s>, it was : [” terrible”,” negative”,” bad”,” poor”,” awful’]

[ positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]
: [ terrible”,” negative”,” bad”,” poor”,” awful’]
: [ positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

2399

0
1
imdb <s>, it was <mask> <s>, it was 0
1
tweet <s>, it was <mask> <s>, it was 0: [ terrible”,” negative™,” bad”,” poor”,” awful”]
1
2
0
3

950

: [ moderate™,” neutral”,” balanced”]]

: [ positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]
: [ business”], 1: [ sports™], 2: [ politics”]

: [ health”],4: [ entertainment”],5: [ technology”,” science™]

arisetv <s>, it was about <mask> <s>, it was about

C.3. Prompt tuning

Following [26]’s setting, we use the soft prompt with a length of 100 tokens in all our experiments. We follow [6]’s setting
to obtain DP private prompt with PromptDPSGD. Table 8 shows the hyperparameters used in this experiment.

Table 8. Hyperparameters used during promptDPSGD.

dataset 5 epochs Ir
sst2 1.5 x 107° 20 0.1
imdb 4x107° 20 0.1
tweet 2x107° 20 0.1
arisetv 2x 1074 20 0.1

C.4. Public Datasets for Prompt Transfer

We rely on small public datasets to perform our prompt transfer. A question is the right choice of the public dataset. We
normally choose the public dataset that performs a similar task as the private dataset, such as choosing imdb or tweet as
the public dataset of sst2 as they are all sentiment classification tasks. Transferring with a public dataset that performs a
different task from the private dataset may lead to suboptimal performance, we tested this setting to transfer soft prompt
trained on arisetv, a topic prediction dataset. The transfer performance of using tweet as public dataset is acceptable but
generally worse than using agnews, another topic prediction dataset, as a public dataset. In general, we found that the public
and private dataset do not need to have the same structure, such as class number. For example, using tweet (3 classes)
as a public dataset leads to better transfer performance than imdb (2 classes) on sst2 (also 2 classes). This highlights the
robustness of our method and the broad selection of public datasets for the transfer.

We report the hyperparameters used in the transfer experiments as Tables 9 and 10.

Table 9. Hyperparameters used during prompt transfer.

model batch size  optimizer Ir
Roberta-base 32 Adam 0.001
GPT-XL 8 Adam 0.001

Table 10. Setting of o for different datasets and models during prompt trasnfer.

dataset
model sst2 imdb tweet arisetv
Roberta-base 0.8 0.8 0.5 0.5
GPT2-XL 0.7 0.7 0.2 0.6




D. Additional Experiments
D.1. Ablations

We also investigated the best way of performing KD to improve prompt transferability. In particular, we analyzed the impact
of keeping the word embedding or(and) language modeling heads frozen during KD on the prompt transfer performance.
Our results in Table 11 highlight that keeping the language modeling head fixed performs slightly better than the alternative
which mainly perform on-par. These results indicate that the successful transfer of our method is robust to the KD and
independent of any specific KD setting.

Table 11. Analyzing the KD setup. We perform an ablation on different designs of the KD and present their impact on the prompt
transfer for the private arisetv dataset, using agnews as public data. We analze different combinations of freezing the embedding (Fix
emb) and freezing the language modeling head (Fix head).

model Fix emb Fix head Acc. model Fix emb Fix head Acc.
X v 81.68 £0.764 X v 87.52 £0.505
v v 80.79 +0.885 v v 86.51 +0.726
Roberta-base v X 80.84 +0360 | OPT2XL v X 86.81 +0.732
X X 80.11 £0.738 X X 87.48 £0.170

D.2. Effect of Number of Public Samples used for Transfer

We also investigate the influence of the size of the public dataset required to complete the transfer. Our results in Figure 3
show that we can already yield high transfer performance with less than 100 public data points. This small size of public
datasets needed makes our method highly practical.
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Figure 3. Effect of number of public samples. We depict the number of samples from the public dataset used to perform our prompt
transfer. We plot results for arisetv as the private dataset with data subsampled from agnews as public data. Our results highlight that with
even less than 100 public data samples, our transfer yields high performance.

D.3. Effect of Number of Transfer Steps

We additionally investigate how many transfer steps are required to obtain good performance. Based on the insights from
the previous section, we randomly subsample 128 samples from the agnews dataset as public data and report the achieved
accuracy on arisetv as private data over different numbers of transfer steps. Our results in Figure 4 highlight that only a small
number of transfer steps is enough for convergence and high accuracy on the private task. In particular, while for GPT2-XL,
performance converges at around 2,000 steps for Roberta-base, we already observe convergence starting at 1,000 steps.

D.4. Runtime of our Method vs. Full Prompt Tuning on the Large Model

While, in practice, tuning the large LLM with the private data exhibits severe privacy risks and is, hence, not applicable,
we compare runtimes to get an insight on the computational gains introduced by tuning the prompt on a small model and
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Figure 4. Effect of number of transfer steps. We vary the number of steps during our private prompt transfer. We plot results for arisetv
as the private dataset and agnews as public data. We observe that already a small number of transfer steps yields high performance.

then transferring it. Since the PT time is determined by the size of the dataset if we want to backpropagate over all private
training examples, we present the runtimes of our approach vs. prompt tuning on the large LLM for two different-sized
datasets in Table 1. While on the small arisetv dataset, PT on the large model takes 150% of the time of executing our POST,
for the larger sst2 datasets, our method improves the runtime roughly by a factor of six (409 instead of 2660 minutes on
an A100). These results highlight that beyond the privacy protection, our POST also yields substantial improvements in
computational efficiency.

11



