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ABSTRACT
Cardiovascular diseases (CVDs) are a group of heart and blood vessel disorders that is one of the
most serious dangers to human health, and the number of such patients is still growing. Early and
accurate detection plays a key role in successful treatment and intervention. Electrocardiogram (ECG)
is the gold standard for identifying a variety of cardiovascular abnormalities. In clinical practices and
most of the current research, standard 12-lead ECG is mainly used. However, using a lower number
of leads can make ECG more prevalent as it can be conveniently recorded by portable or wearable
devices. In this research, we develop a novel deep learning system to accurately identify multiple
cardiovascular abnormalities by using only three ECG leads which are I, II, and V1. Specifically,
we use three separate One-dimensional Convolutional Neural Networks (1D-CNNs) as backbones to
extract features from three input ECG leads separately. The architecture of 1D-CNNs is redesigned for
high performance and low computational cost. A novel Lead-wise Attention module is then introduced
to aggregate outputs from these three backbones, resulting in a more robust representation which
is then passed through a Fully-Connected (FC) layer to perform classification. Moreover, to make
the system’s prediction clinically explainable, the Grad-CAM technique is modified to produce a
highly meaningful lead-wise explanation. Finally, we employ a pruning technique to reduce system
size, forcing it suitable for deployment on hardware-constrained platforms. The proposed lightweight,
explainable system is named LightX3ECG. We get classification performance in terms of F1 scores of
0.9718 and 0.8004 on two large-scale ECG datasets, i.e., Chapman and CPSC-2018, respectively, which
surpass current state-of-the-art methods while achieving higher computational and storage efficiency.
Visual examinations and a sanity check are also performed to strictly demonstrate the strength of our
system’s interpretability.

1. Introduction
Cardiovascular diseases (CVDs) are one of the primary

sources of death globally, accounting for 17.9 million deaths
in 2019, representing 32% of all deaths worldwide. Also,
three-quarters of these deaths take place in low- and middle-
income countries, according to World Health Organization 1.
Therefore, it is critical to detect these heart problems as soon
as possible so that treatment may begin with counseling and
medications. Electrocardiogram (ECG) is a waveform rep-
resentation of the electrical activity of the heart obtained by
placing electrodes on the body surface. The usual structure
of an ECG beat [1], as illustrated in Figure 1, consists of three
main components: P wave, which represents depolarization
of atria; QRS complex, which represents depolarization of
ventricles; and T wave, which represents repolarization of
ventricles. Other parts of the signal include PR, QT intervals,
or PR, ST segments. This electrical signal is a widely used,
non-invasive tool for identifying cardiovascular abnormali-
ties in patients. However, ECG analysis is a professional and
time-consuming task, it requires cardiologists with a high
degree of training to carefully examine and recognize patho-
logical patterns in ECG recordings. This challenge, coupled
with the rapid increase in ECG data, makes computer-aided,

∗Corresponding author: cuong.dd@vinuni.edu.vn
1www.who.int/health-topics/cardiovascular-diseases

automatic ECG analysis more and more essential, especially
in low- and middle-income countries, where high-quality and
experienced cardiologists are extremely scarce.

Figure 1: The usual structure of an ECG beat
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The 12-lead ECG, which is standard for hospital and clinic
usage, is typically recorded from electrodes placed on the
patient’s limbs and on the surface of the chest. Thus, twelve
ECG leads can be broken down into two main types: six limb
leads (I, II, III, aVR, aVL, aVF) and six chest leads (V1, V2,
V3, V4, V5, V6). Conventional 12-lead ECG has also been
demonstrated to be effective for various ECG analysis tasks
by many previous efforts [2, 3, 4]. Acquiring 12-lead ECG,
on the other hand, is heavily relied on clinical equipment
with limited accessibility, particularly for medical institutes
in remote areas. Over the past decade, especially in recent
years, breakthroughs in ECG technologies have led to the
development of smaller, lower-cost, and easier-to-use ECG-
enabled devices [5, 6, 7, 8]. These advancements have paved
the way for point-of-care screening and continuous monitor-
ing using signals recorded by these devices [9, 10]. However,
these devices only produce a subset of standard twelve leads,
sometimes even just one lead. This raises an urgent need for
building ECG analysis methods that only rely on this subset
of leads rather than the entire set. Beyond monitoring, devel-
oping and integrating analysis tools into these devices can
also aid in the early detection of CVDs, as well as support and
save time for cardiologists in their manual analysis process.
In this study, we use a combination of only three ECG leads
(I, II, and V1) as input for the proposed system to strike a
balance between high classification performance and ease
of signal acquisition. Leads I and II are used because they
are easy to acquire and favored by cardiologists for quick
review. They also represent relatively enough information
for six limb leads, according to some laws and equations
[11]. Lead V1 is used to incorporate information about chest
leads into the input. Importantly, the combination of three
leads I, II, and V1 resemble an orthogonal set of leads, which
can constitute all ECG leads by a good linear approximation,
therefore can possibly perform similarly for the diagnosis of
many cardiovascular abnormalities [12, 13].
Existing approaches for automatic ECG analysis can be di-
vided into two categories: traditional methods and deep
learning-based methods. In traditional methods, which are
also known as two-stage methods, human experts hand-craft
meaningful features from raw ECG signals such as statistical
features (e.g., mean, standard deviation, variance, and per-
centile) or time- and frequency-domain features, referred to
as expert features [14, 15]. Then, these features are concate-
nated and fed into some kinds of machine learning algorithms.
The performance of these methods significantly depends on
the capability of the machine learning algorithms applied and
the hand-crafted feature extraction stage, which requires ex-
pertise to select optimal features. The second approach is to
use end-to-end deep learning models that offer a high model
capability without the need for domain knowledge and an
explicit feature extraction stage [16]. These types of models
have gained significant improvements compared to the for-
mer approach [4]. Deep learning models have dramatically
improved the state-of-the-art in speech recognition, visual ob-

ject recognition, object detection, and many other areas such
as drug discovery and genomics [17]. Despite their superior
performance, deep learning models are plagued by two well-
known drawbacks: their black-box nature and increasingly
large model size which limit their applicability in real-world
scenarios. In this study, we aim to design an accurate ECG
classification system that also overcomes these two issues.
In almost all previous works on deep learning-based 12-lead
ECG classification, all twelve leads are standardized to the
same length, then vertically stacked together to form a uni-
fied input and fed into a followed deep learning model [4, 3].
This strategy works well when dealing with 12-lead ECG.
However, when dealing with a smaller number of leads, such
as three, we propose to use three distinct models as separate
backbones to handle three input ECG leads separately, which
will be demonstrated in this study to give us better perfor-
mance. This multi-input strategy is reasonable since these
kinds of signals usually require separate treatment. In more
detail, we employ three distinct redesigned One-dimensional
Squeeze-and-Excitation Residual Networks (1D-SEResNets)
[18], an improved version of ResNet architecture with the
Squeeze-and-Excitation modules, which are highly effective
for dealing with ECG data, to extract features from three
input signals. Then, inspired by the attention mechanism
[19, 20], we design a novel Lead-wise Attention module as
our aggregation technique to explore the most essential input
lead and merge outputs of these backbones, resulting in a
more robust representation that is then sent through an FC
layer to perform classification.
Although deep learning models can achieve state-of-the-art
performance in a range of predictive tasks, they are often
viewed as black boxes. In many applications, especially in
the medical domain, understanding the model’s behavior is
as important as the accuracy of its predictions since it is diffi-
cult for cardiologists or pathologists to accept unexplainable
decisions [21]. This makes Explainable AI (XAI) become a
highly active research topic in the past few years [22]. In this
study, we also construct an XAI framework for our 3-lead
ECG classification task using class activation maps. Our XAI
technique called Lead-wise Grad-CAM provides three differ-
ent class activation maps for three input ECG leads, giving
more clinical interpretability to our system. Another disad-
vantage of deep learning models, as previously discussed, is
the expansion in model size. The majority of existing ECG
classification research is primarily concerned with enhanc-
ing classification performance while paying little attention
to model size, leading to memory-intensive models that are
impractical for hardware-constrained platforms deployment
[23]. To improve the proposed system’s suitability for point-
of-care screening and remotemonitoring deployment on these
platforms, we apply a pruning technique to make the system
lightweight and easy to distribute while just slightly sacrific-
ing its performance.
To summarize, our main contributions are as follows:
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Figure 2: An overview of the proposed system. Dashed arrows indicate the interpreting stage

• We propose an accurate deep learning system for 3-lead
ECG classification which consists of three redesigned 1D-
SEResNet backbones followed by a novel Lead-wise At-
tention module and an FC layer, as shown in Figure 2.

• A novel XAI technique named Lead-wise Grad-CAM is in-
troduced, which is adapted from the common Grad-CAM
technique on the system’s architecture, giving a better ex-
planation for the made prediction.

• We further employ a pruning technique to reduce the sys-
tem’s space on memory while mostly preserving its classi-
fication performance.

• Extensive experiments are conducted on two large-scale
multi-lead ECG datasets, i.e., Chapman and CPSC-2018
where our system shows superior performance in both
multi-class and multi-label classification manners while
enhancing compactness and clinical interpretability.

The rest of this article is organized as follows. Section 2
provides a survey of literature related to our work. In Section
3, we present the components of the proposed system in detail.
Section 4 describes the experimental setup and our results.
An ablation study is performed in Section 5. Finally, we give
further discussions and conclude this work in Section 6.

2. Related Works
In this section, we discuss some research directions and

existing works that are highly related to our work, including
deep learning-based ECG analysis, reduced-lead ECG classi-
fication, and explainable AI for ECG classification.

Deep learning-based ECG Analysis. In the research com-
munity, deep learning-based methods have been the pre-
ferred approach for ECG analysis over the last few years
[16]. Specifically, 1D-CNNs have become popular when
dealing with ECG data because of their one-dimension struc-
ture. Acharya et al. [24] early developed a 9-layer 1D-CNN
to identify 5 different types of cardiovascular abnormalities.
Recently, researchers have begun to use more sophisticated
1D-CNN architectures, particularly ones whose 2D version
achieves high image classification accuracy. For instance,
Zhang et al. [25] proposed using 1D-ResNet34, Zhu et al.
[26] ensembled two 1D-SEResNet34s and one set of expert
rules to respectively identify 9 and 27 types of abnormalities.
Furthermore, in order to capture both spatial and temporal
patterns in ECG signals, Yao et al. [27] constructed Time-
Incremental ResNet18 (TI-ResNet18), a combination of a
1D-ResNet18 and an LSTM network, Murugesan et al. [28]
combined an Inception and an LSTM network to constitute
ECGNet, identifying 9 and 3 types of abnormalities, respec-
tively. Other than CVD detection, deep learning models
have been employed on ECG data for other variety of tasks.
Li et al. [29] combined a sparse Autoencoder and Hidden
Markov Model for diagnosing obstructive sleep apnea. More-
over, Santamaria-Granados et al. [30] focused on emotion,
classifying the affective state of a person. Attia et al. [31]
performed a proof of concept study on non-invasive drug
assessment based on ECG signals. Rahman et al. [32] and
Özdemir et al. [33] tried to early diagnose COVID-19 using
ECG trace images. Deshmane et al. [34] designed an ECG-
based biometric human identification using machine learning
and deep learning techniques in smart health applications.
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Reduced-lead ECG Classification. In recent years, some
small, low-cost, and easy-to-use ECG-enable devices with dif-
ferent advantages have been introduced in the market [6, 7, 8].
These devices are different from clinical equipment in that
they only provide a subset of standard twelve ECG leads,
sometimes just one. Thus, in most cases, newer methods are
being developed to do ECG classification based on single- or
reduced-lead data rather than standard 12-lead data. While
single-lead ECG is currently limiting in performance, early
studies have suggested that reduced-lead ECG may hold po-
tential. Hannun et al. [35] used single-lead ECG data from
Zio Patch devices to identify atrial fibrillation. Drew et al.
[36] demonstrated that interpolated 12-lead ECG, which is
derived from a reduced-lead set (limb leads plus V1 and V5),
is comparable to standard 12-lead ECG for diagnosing wide-
QRS-complex tachycardias and acute myocardial ischemia.
Xue [37] used the same set of leads to evaluate the changes
in morphology due to a matrix-based 12-lead conversion and
the possibility of adapting the changes with the new crite-
ria trained with a large ischemia ECG database. Green et
al. [38] also found that the leads III, aVL, and V2 together
yielded a similar performance as the full 12-lead ECG for
diagnosing acute coronary syndrome. Cho et al. [39] claimed
that myocardial infarction could be detected not only with a
conventional 12-lead ECG but also with a limb 6-lead ECG.
Although the potential of reduced-lead ECG was verified,
there has not been much research done in this area yet. Our
work provides further support to demonstrate the ability of
reduced-lead ECG for identifying a wide range of cardiovas-
cular abnormalities, not just a few.
Explainable AI for ECG Classification. While the black-
box nature of deep learning models may be ignorable in
many contexts, it leads to a lack of responsibility and trusts
in decisions made in sensitive areas like medicine and health-
care. Hence, researchers have started to bring popular XAI
techniques applied to image data into ECG data. Hughes
et al. [40] proposed to use of Linear Interpretable Model-
Agnostic Explanations (LIME). Zhang et al. [25], Anand
et al. [41] applied SHapley Additive exPlanations (SHAP)
analysis to test the interpretability of an ECG classification
model. LIME and SHAP are both perturbation-based tech-
niques that provide explanations based on the variation of
output after applying perturbations to input. Some disad-
vantages of these techniques are combinatorial complexity
explosion and producing explanations by very concrete class
activation maps [42]. Due to inherent smoothing in provided
explanations, some XAI techniques such as Grad-CAM [43]
and its variants are recently more preferred. Vijayarangan et
al. [44], Raza et al. [45] employed Grad-CAM on 1D-CNN
for single-lead ECG classification. Ganeshkumar et al. [46]
further applied Grad-CAM on a multi-lead circumstance but
generated the same class activation map for multiple input
signals. In this work, we leverage the system’s architecture
with a multi-input strategy and our Lead-wise Attention mod-
ule to adapt Grad-CAM and provide one different informative
class activation map for each of the three input leads.

3. Proposed System
In this section, we present the whole proposed system in

detail. Firstly, the architecture of 1D-SEResNet backbones is
described. Next, we sequentially introduce our novel Lead-
wise Attention module and XAI technique, Lead-wise Grad-
CAM. The pruning technique, which is used to establish
LightX3ECG, is briefly discussed last. An overview of our
LightX3ECG is shown in Figure 2.

3.1. 1D-SEResNet Backbones
To achieve high performance and low computational cost
backbones, we redesign 1D-SEResNet18 [18], which con-
sists of 18 main layers, in two steps as follows.
First, Convolution (Conv) layers are modified with a much
larger kernel size to expand those receptive fields in order
to capture longer patterns in ECG signals. This strategy has
been suggested asmore effective for ECG data in specific [47],
and time-series data, in general, [48]. Second, we replace all
of the standard Conv layers with Depth-wise Separable Conv
(DSConv) layers for reducing the number of parameters of
the model. Introduced in MobileNets [49, 50], DSConv splits
the computation of standard Conv into two parts. The first
part is depth-wise, in which each filter only convolutes each
input channel. Another part is point-wise, using a 1x1 filter
to combine multi-channel outputs of depth-wise layers. This
design reduces the total number of parameters of our system
by 80%. This architecture is used for all three backbones and
is illustrated in Figure 3.

3.2. Lead-wise Attention
To achieve an end-to-end classification system, the outputs,
also known as features or embeddings, extracted from back-
bones, must be combined. Typically, one can combine these
features by simply applying a summation or concatenation
operation to them, but this is usually ineffective due to their
simplicity. Inspired by the success of the attention mecha-
nism in many areas [20], we propose a Lead-wise Attention
module to more effectively ensemble these features together
and acquire a final robust feature which is then routed to the
last FC layer, the classifier, to perform classification. Our
Lead-wise Attention module is described in Figure 4.
Firstly, features from backbones are concatenated and sent
through a sequential list of layers including an FC, a Batch-
Norm, a Dropout, followed by another FC layer and a Sigmoid
function to determine the attention score, or importance score
for each feature. Subsequently, the final feature is obtained by
taking a weighted sum over these features by corresponding
generated scores. This module can be formulated:

fmerged =
3
∑

i=1
�ifi, (1)

� = Sigmoid(FC(FC(Concat[fi|i = 1, 3]))). (2)
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Figure 3: The architecture of 1D-SEResNet backbones

Figure 4: The proposed Lead-wise Attention module

3.3. Lead-wise Grad-CAM
A class activation map, or CAM, is a heatmap that highlights
class-specific regions of an image that the model looked
at to classify that image. In the domain of imaging, Grad-
CAM [43] is one of the most famous techniques to provide
interpretability to 2D-CNNs which uses values of gradients
flowing into the final Conv layer to produce a CAM [51, 52].
In this work, we subtly adapt Grad-CAM to our system for
the same aim, which we refer to as Lead-wise Grad-CAM, in
the following steps.
First, similar to standard Grad-CAM, we employ values of
gradients flowing into the final Conv layers of three back-
bones to gather three distinct CAMs Ci,i=1,3 correspondingto three input ECG leads. In addition to CAMs provided by
Grad-CAM, the proposed system has an additional source of
interpretability, the importance scores �i,i=1,3 gathered from
the Lead-wise Attention module that show the contribution

of each backbone’s feature to the prediction of the system,
therefore, show the contribution of each input signal. To
take advantage of this insight from our Lead-wise Attention
module, we multiply three CAMs by corresponding impor-
tance scores to get more informative heatmaps. Finally, for
visualization, these heatmaps are normalized and overlaid on
corresponding input ECG lead:

Mi = normalize(�iCi) (3)

3.4. Pruning
A deep learning-based method often involves a large model
and massive computation. Hence, when operating the pro-
posed system on portable or wearable devices, issues such
as insufficient memory or computational resources are no-
ticeable. As a direct solution, we apply the weights pruning
[53, 54] technique to compress the system and make it can
be executed completely on these devices.
Weights pruning is a post-training model compression tech-
nique to make a trained model more sparse. This is accom-
plished by increasing the number of zero-valued elements
present in the model’s weights. In this work, we prune 80%
weights of the system with the lowest L1-norm in order to
reduce the system’s space on memory 3 times while mostly
maintaining its classification performance, and finally estab-
lishing LightX3ECG as a result. The idea is that weights
with small L1-norm, or absolute value, contribute little to the
prediction of the system, so they are less important and can
be zeroed out.
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4. Experiments and Results
In this section, we comprehensively describe our study

design and all experimental results. Two datasets and im-
plementation details are introduced first, then we report the
performance of LightX3ECG and its interpretability.
4.1. Datasets
To benchmark the performance of the proposed system, we
conduct experiments on two of the largest public real-world
datasets for ECG classification, i.e., Chapman and CPSC-
2018. Diagnosis class frequency and patient characteristics
of these two datasets are shown in Table 1.
Chapman [55]. Chapman University and Shaoxing People’s
Hospital collaborated to establish this large-scale multi-class
ECG dataset which consists of 10.646 12-lead ECG record-
ings. Each recording is taken over 10 seconds with a sam-
pling rate of 500 Hz and labeled with 11 common diagnostic
classes. The amplitude unit is a microvolt. These 11 classes
are grouped into 4 categories including AFIB, GSVT, SB,
and SR. AFIB consists of atrial fibrillation and atrial flutter,
GSVT contains supraventricular tachycardia, atrial tachycar-
dia, atrioventricular node reentrant tachycardia, atrioventricu-
lar reentrant tachycardia, and sinus atrium to atrial wandering
rhythm, SB only includes sinus bradycardia, and SR includes
sinus rhythm and sinus irregularity.
CPSC-2018 [56]. In 2018, the first China Physiological Sig-
nal Challenge organized during the 7th International Confer-
ence on Biomedical Engineering and Biotechnology released
a publicly available large-scalemulti-label ECG dataset. This
dataset contains 6.877 12-lead ECG recordings with a sam-
pling rate of 500 Hz and durations ranging from 6 to 60
seconds. Millivolt is the amplitude unit. These ECG record-
ings are labeled with 9 diagnostic classes including NSR
(normal sinus rhythm), AF (atrial fibrillation), IAVB (first-
degree atrioventricular block), LBBB (left bundle branch
block), RBBB (right bundle branch block), PAC (premature
atrial contraction), PVC (premature ventricular contraction),
STD (ST-segment depression), STE (ST-segment elevation).
4.2. Implementation Details
To ensure the reproducibility of our results, the experimental
setup is described in detail below.
Data Preprocessing: As a deep learning system requires
inputs to be of the same length, all ECG recordings are fixed
at 10 seconds in length in both datasets. This is done by
truncating the part exceeding the first 10 seconds for longer
recordings and padding shorter ones with zero. We take leads
I, II, and V1 from each ECG recording to construct the input
with the shape of 3x5000 and feed it into our system.
Data Augmentation: To reach a better generalization, we addi-
tionally propose the DropLead augmentation technique which
randomly drops one of three input signals with a probability
of 50% during training. This is accomplished by masking
the selected signal with all of zero. DropLead is not applied
during the inference stage.

Table 1: Description of two datasets
Mean and standard deviation are reported for age

Chapman
Class Frequency (%) Male (%) Age
AFIB 2225 (20.90) 1298 (58.34) 72.90 ± 11.68
GSVT 2307 (21.67) 1152 (49.93) 55.44 ± 20.49
SB 3889 (36.53) 2481 (63.80) 58.34 ± 13.95
SR 2225 (20.90) 1025 (46.07) 50.84 ± 19.25
CPSC-2018
Class Frequency (%) Male (%) Age
NSR 918 (13.35) 363 (39.54) 41.56 ± 18.45
AF 1221 (17.75) 692 (56.67) 71.47 ± 12.53
IAVB 722 (10.50) 490 (67.87) 66.97 ± 15.67
LBBB 236 (03.43) 117 (49.58) 70.48 ± 12.55
RBBB 1857 (27.00) 1203 (64.78) 62.84 ± 17.07
PAC 616 (08.96) 328 (53.25) 66.56 ± 17.71
PVC 700 (10.18) 357 (51.00) 58.37 ± 17.90
STD 869 (12.64) 252 (29.00) 54.61 ± 17.49
STE 220 (03.20) 180 (81.82) 52.32 ± 19.77

Training and Evaluation: For evaluation, we apply a 10-
fold cross-validation strategy following some previous works
[55, 25]. We stratify and divide each of the two datasets
into 10 folds and perform 10 rounds of training and evalua-
tion. At each round, 8 folds; 1 fold; and 1 remaining fold are
used as training, validation, and test set, respectively. In the
multi-label classification manner, the optimal threshold of
each class is searched in a range (0.05, 0.95) with a step of
0.05 to achieve the best F1 score on the validation set. We
report the average performance of 10 rounds on the test set
in terms of precision, recall, F1 score, and accuracy. For
training, the proposed system is optimized from scratch by
Adam optimizer [57] with an initial learning rate of 1e-3 and
a weight decay of 5e-5 for 70 epochs. We use the Cosine
Annealing scheduler [58] in the first 40 epochs to reschedule
the learning rate to 1e-4 and then keep it constant in the last
30 epochs. Cross-entropy and binary cross-entropy are uti-
lized as loss functions in multi-class and multi-label manners,
respectively. Finally, after weights pruning is applied, our
system is fine-tuned for 5 epochs with the same setting except
the learning rate is held constant at 1e-4. All experiments
are run on a machine with an NVIDIA GeForce RTX 3090
TURBO 24G.

4.3. System Performance
We get F1 scores of 0.9718 and 0.8004 on two datasets, i.e.,
Chapman and CPSC-2018, respectively. Overall, accuracy
for each class exceeds 0.92 and the average exceeds 0.96 in
both. However, we also observe that F1 scores of PAC and
STE classes are limited, which could be due to the insuffi-
ciency of these diagnosis classes in the CPSC-2018 dataset.
Detailed performance is presented in Table 2.
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Table 2: Performance detail of LightX3ECG on two datasets

Chapman
Class Precision Recall F1 score Accuracy
AFIB 0.9750 0.9662 0.9706 0.9878
GSVT 0.9510 0.9612 0.9561 0.9807
SB 0.9823 0.9987 0.9904 0.9930
SR 0.9860 0.9550 0.9703 0.9878
Average 0.9736 0.9703 0.9718 0.9873
CPSC-2018
Class Precision Recall F1 score Accuracy
NSR 0.6903 0.8342 0.7554 0.9266
AF 0.9344 0.9461 0.9402 0.9789
IAVB 0.9014 0.8828 0.8920 0.9775
LBBB 0.9038 0.8704 0.8868 0.9913
RBBB 0.9454 0.9428 0.9441 0.9702
PAC 0.6972 0.5758 0.6307 0.9353
PVC 0.8796 0.7197 0.7917 0.9637
STD 0.7870 0.7824 0.7847 0.9469
STE 0.6486 0.5217 0.5783 0.9746
Average 0.8209 0.7862 0.8004 0.9628

For benchmarking, we compare LightX3ECGwith some pop-
ular ECG classification methods, which can be considered
state-of-the-art including 1D-ResNet34 [25], 1D-SEResNet34
[26], TI-ResNet18 [27], InceptionTime [48], and ECGNet
[28]. For fair comparisons, all of these methods are imple-
mented and trained using 3-lead ECG as input and settings
similar to our system. Comparisons of F1 scores, complex-
ity, and compactness are shown in Table 3. LightX3ECG
outperforms other methods in both datasets while achieving
the lowest computational cost with FLOPs at 1.34B. In terms
of storage, our system only takes up 6.52MB on disk, which
is much less than the other three methods. Additionally, the
performance of the system without applying weights pruning
shows that effectively using this technique helps reduce the
system’s space significantly with a negligible side-effect.
4.4. System Interpretability
A comprehensive validation is conducted to demonstrate
LightX3ECG’s interpretability, including a visual check and
a methodical check.
4.4.1. Visual examinations
For visual check, we carefully review the explanation from the
system for a sample ECG recording, drawn from the CPSC-
2018 dataset, belonging to each of the diagnosis classes and
compare it with some cardiological evidence collected from
a variety of sources [59, 60, 61, 62, 63, 64] and the LITFL
ECG Library [65].
1) NSR (normal sinus rhythm). An NSR ECG recording
has a normal P wave preceding each QRS complex, which is

also standard, as seen in Figure 1. Also, P waves upright in
leads I and II. From activation maps in Figure 5, we can see
that system strongly focuses on regions of P waves in leads I
and II. Thus, the explanation is consistent with the diagnostic
criteria of NSR. The importance scores indicate that lead I
contributed more to the system’s prediction than others.

Figure 5: The explanation for a sample NSR ECG recording

2) AF (atrial fibrillation). AnAFECG recording has irregular
QRS complexes with the lack of P waves. Also, fibrillatory
waves are usually visible in lead V1. From activation maps
in Figure 6, we can see that system recognizes the lack of
P waves in leads I and II, and fibrillatory waves in lead V1.
Thus, the explanation is consistent with the diagnostic cri-
teria of AF. The importance scores indicate that three leads
contributed roughly equally to the system’s prediction.

Figure 6: The explanation for a sample AF ECG recording

3) IAVB (first-degree atrioventricular block). An IAVB ECG
recording has prolonged PR intervals. Also, P waves are
buried in the preceding T wave. From activation maps in Fig-
ure 7, we can see that system recognizes the prolonged PR
intervals in leads I and II. Thus, the explanation is consistent
with the diagnostic criteria of IAVB. The importance scores
indicate that three leads contributed roughly equally to the
system’s prediction.
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Table 3: Comparison of the proposed system to other methods

Method F1 on Chapman F1 on CPSC-2018 No. Params (M) No. FLOPs (B) Size (MB)
1D-ResNet34 [25] 0.9624 0.7684 16.61 5.91 58.18
1D-SEResNet34 [26] 0.9659 0.7845 16.76 5.91 58.75
TI-ResNet18 [27] 0.9647 0.7872 11.39 1.42 40.51
InceptionTime [48] 0.9417 0.7352 0.45 2.29 1.63
ECGNet [28] 0.9652 0.7880 1.03 1.97 3.75
LightX3ECG (Ours) 0.9718 0.8004 5.31 1.34 6.52
LightX3ECG (w/o pruning) 0.9722 0.8010 5.31 1.34 19.28

Figure 7: The explanation for a sample IAVB ECG recording

4) LBBB (left bundle branch block). An LBBB ECG record-
ing has broad QRS complexes. Also, S waves are fairly deep
in lead V1. From activation maps in Figure 8, we can see that
system recognizes broad QRS complexes in lead I, and deep
S waves in lead V1. Thus, the explanation is consistent with
the diagnostic criteria of LBBB. The importance scores indi-
cate that leads I and V1 mostly contributed to the system’s
prediction.

Figure 8: The explanation for a sample LBBB ECG recording

5) RBBB (right bundle branch block). An RBBB ECG record-

ing has wide slur S waves in lead I. Also, “M-shaped” QRS
complexes are visible in lead V1. From activation maps in
Figure 9, we can see that system recognizes wide slur S waves
in lead I, and “M-shaped” QRS complexes in lead V1. Thus,
the explanation is consistent with the diagnostic criteria of
RBBB. The importance scores indicate that leads I and V1
mostly contributed to the system’s prediction.

Figure 9: The explanation for a sample RBBB ECG recording

6) PAC (premature atrial contraction). A PAC ECG record-
ing has abnormal (non-sinus) P waves followed by a normal
QRS complex. Also, P waves are usually negative in lead II.
From activation maps in Figure 10, we can see that system
recognizes non-sinus P waves in leads II and V1, specifically
negative P waves in lead II. Thus, the explanation is con-
sistent with the diagnostic criteria of PAC. The importance
scores indicate that leads II and V1 mostly contributed to the
system’s prediction.
7) PVC (premature ventricular contraction). A PVC ECG
recording has some sporadic periods that are abnormal com-
pared to surrounding periods. Also, QRS complexes in these
periods are irregular too. From activation maps in Figure 11,
we can see that system recognizes abnormal periods com-
pared to surrounding periods in lead II and irregular QRS
complexes in these periods. Thus, the explanation is con-
sistent with the diagnostic criteria of PVC. The importance
scores indicate that lead II contributed more to the system’s
prediction than others.
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Figure 10: The explanation for a sample PAC ECG recording

Figure 11: The explanation for a sample PVC ECG recording

8) STD (ST-segment depression). As its name, an STD ECG
recording has depressed ST segments. From activation maps
in Figure 12, we can see that system recognizes depressed ST
segments in leads I and II. Thus, the explanation is consistent
with the diagnostic criteria of STD. The importance scores
indicate that leads I and II mostly contributed to the system’s
prediction.
9) STE (ST-segment elevation). As its name, an STE ECG
recording has elevated ST segments. From activation maps
in Figure 13, we can see that system recognizes elevated ST
segments in leads I and II. Thus, the explanation is consistent
with the diagnostic criteria of STE. The importance scores
indicate that leads I and II mostly contributed to the system’s
prediction.

4.4.2. Sanity check
Recent works in the literature on XAI research have strongly
emphasized the importance of implementing sanity checks
[66] in order to assess the quality of XAI techniques method-
ically [67, 68]. These types of checks verify whether or not
the provided explanation is related to the model’s parameters
or the data used for training, hence, evaluating whether an
XAI technique is suitable to deploy or not.

Figure 12: The explanation for a sample STD ECG recording

Figure 13: The explanation for a sample STE ECG recording

For this purpose, we perform a simple parameter random-
ization test, which is one of two forms of sanity checks, to
assess our Lead-wise GradCAM technique. In particular, by
using Lead-wise GradCAM, we compare explanations for a
hundred ECG recordings from our trained system (original
system) with those from the randomized system. the random-
ized system is accomplished by randomly reinitializing the
final FC layer, classifier, of the original system. Figure 14
shows an example of this comparison, as we expect, expla-
nations differ. We also report the average Spearman’s rank
correlation of these explanations in Table 4. Lead-wise Grad-
CAM and SHAP analysis [25] both pass this sanity check,
but our technique gives a lower correlation score.

Table 4: Spearman’s rank correlation of explanations
between the original system and randomized system

Method Chapman CPSC-2018
SHAP [25] 0.16 0.18
Lead-wise Grad-CAM (Ours) 0.10 0.11
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Table 5: Comparison with different chest leads on the performance of LightX3ECG in terms of F1 scores

Dataset (I, II, and V1) (I, II, and V2) (I, II, and V3) (I, II, and V4) (I, II, and V5) (I, II, and V6)
Chapman 0.9718 0.9702 0.9705 0.9702 0.9714 0.9711
CPSC-2018 0.8004 0.8002 0.7997 0.7959 0.8001 0.7992

Figure 14: An example of a comparison between explanations
from the original system and the randomized system

5. Ablation Studies
In this section, we conduct two types of ablation studies

to validate the effect of three selected input leads and explore
the contribution of the Lead-wise Attention module on the
performance of LightX3ECG.
5.1. Chest Lead Substitution
In particular, we fix leads I and II as our limb leads while
substituting lead V1 with another chest lead to create a new
orthogonal combination of three leads that we use as input
for the system. Table 5 shows that the performance is fairly
consistent among combinations and the combination of leads
(I, II, and V1) produces the best performance in both datasets
by a slight margin.

5.2. Lead-wise Attention Analysis
We conduct a thorough investigation of the proposed Lead-
wise Attention (Att) module in order to verify two crucial
questions. First, how much does the module improve the
overall performance of the system? Second, what is the ef-
fect of the module when it is integrated into other networks?
To address the first question, we respectively replace the
Lead-wise Attention module with two simple, common oper-
ators that are feature averaging and concatenation to show the
change in the system’s performance. We can observe from
Table 6 that the proposed module significantly contributes to
the overall system compared to the two mentioned operators,
making it surpass other networks.

Table 6: Contribution of the Lead-wise Attention module
to the whole system

Operator/Module F1 on Chapman F1 on CPSC-2018
Averaging 0.9683 0.7846
Concatenation 0.9694 0.7881
Lead-wise Attention 0.9722 0.8010

For the second question, we conduct experiments by inte-
grating the Lead-wise Attention module into other networks
described in Subsection 4.3 including TI-ResNet18 [27], In-
ceptionTime [48], and ECGNet [28], then compare the results.
From Table 7, we can observe that the module consistently
gives boosts to the performance of these networks.

Table 7: Integration of Lead-wise Attention module
into other networks

Network F1 on Chapman F1 on CPSC-2018
w/o Att w/ Att w/o Att w/ Att

TI-ResNet18 0.9647 0.9698 0.7872 0.7902
InceptionTime 0.9417 0.9438 0.7352 0.7412
ECGNet 0.9652 0.9703 0.7880 0.7916

6. Discussions
After illustrating the proposed system, experimental re-

sults, and ablation analysis, we further provide comprehen-
sive discussions to explain the strengths and weaknesses of
our system below.
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When compared to previous works on the same topic, our sys-
tem performs competitively on diagnosis and interpretation.
The following reasons may contribute to improvements: (i)
We propose to process three input ECG leads separately by
three distinct backbones. Also, the backbone architecture is
designed to be efficient for ECG signals. (ii) The Lead-wise
Attention module is the most important component of the
system, which significantly contributes to the system’s better
performance. (ii) Based on the attention module, the XAI
technique can provide a lead-wise explanation and explore the
most important lead contributing to the system’s prediction.
However, there are still some drawbacks to the proposed sys-
tem: (i) The system might miss important information when
using reduced-lead ECG data, resulting in the impossibility
to detect certain types of cardiovascular abnormalities. (ii)
The multi-input architecture of LightX3ECG is not suitable
for small-scale datasets and leads to difficulty in training, as
well as a high storage cost which needs a practical technique
like weights pruning to compensate.

7. Conclusion
In this article, we introduce an efficient and accurate deep

learning system that uses an orthogonal set of three 10-second
ECG leads (I, II, and V1) to identify cardiovascular abnor-
malities. We pose a new state-of-the-art for the 3-lead ECG
classification task, where the proposed system outperforms
most of the existing methods available for ECG classification
in terms of F1 scores, complexity, and compactness. Addi-
tionally, we focus heavily on the XAI framework, which can
give a more meaningful and clinical explanation for the sys-
tem’s prediction, making it more valuable in medical contexts.
Our system is also compressed to be ready for the production
stage. Moreover, our source code is made available to the
public to encourage further development 2. In the future,
LightX3ECG will be improved to identify wider varieties of
cardiovascular abnormalities, as well as be generalized on
different sources of data. Demographic data such as age and
gender will be incorporated to boost current performance.
And a novel XAI framework for this multi-modal input will
be also developed.
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A. Appendix
In this section, we provide supplementary figures for

Subsection 4.4, including more examples for visual exami-
nations, related to Figures 5-13, and more examples for the
sanity check, related to Figure 14.
A.1. Visual examinations

1) NSR (normal sinus rhythm)

Figure 15: The explanation for another NSR ECG recording

2) AF (atrial fibrillation)

Figure 16: The explanation for another AF ECG recording

3) IAVB (first-degree atrioventricular block)

Figure 17: The explanation for another IAVB ECG recording
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4) LBBB (left bundle branch block)

Figure 18: The explanation for another LBBB ECG recording

5) RBBB (right bundle branch block)

Figure 19: The explanation for another RBBB ECG recording

6) PAC (premature atrial contraction)

Figure 20: The explanation for another PAC ECG recording

7) PVC (premature ventricular contraction)

Figure 21: The explanation for another PVC ECG recording

8) STD (ST-segment depression)

Figure 22: The explanation for another STD ECG recording

9) STE (ST-segment elevation)

Figure 23: The explanation for another STE ECG recording
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A.2. Sanity check

Figure 24: Some examples of comparison between explanations from the original system and the randomized system
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