
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEARLY SPACE-OPTIMAL GRAPH AND HYPERGRAPH
SPARSIFICATION IN INSERTION-ONLY DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of graph and hypergraph sparsification in insertion-only
data streams. The input is a hypergraph H = (V,E,w) with n nodes, m hyper-
edges, and rank r, and the goal is to compute a hypergraph Ĥ that preserves the
energy of each vector x ∈ Rn in H , up to a small multiplicative error. In this
paper, we give a streaming algorithm that achieves a (1+ε)-approximation, using
O
(
rn
ε2 log2 n log r

)
· poly (log logm) bits of space, matching the sample com-

plexity of the best known offline algorithm up to poly (log logm) factors. Our ap-
proach also provides a streaming algorithm for graph sparsification that achieves
a (1 + ε)-approximation, using O

(
n
ε2 log n

)
· poly(log log n) bits of space, im-

proving the current bound by log n factors. Furthermore, we give a space-efficient
streaming algorithm for min-cut approximation. Along the way, we present an on-
line algorithm for (1 + ε)-hypergraph sparsification, which is optimal up to poly-
logarithmic factors. Hence, we achieve (1 + ε)-hypergraph sparsification in the
sliding window model, with space optimal up to poly-logarithmic factors. Lastly,
we give an adversarially robust algorithm for hypergraph sparsification using nr3

ε2 ·
poly (log n, log r, log logm) bits of space, avoiding logm factors.

1 INTRODUCTION

Graphs are fundamental structures that naturally model complex relationships in real-world data,
from social networks and transportation systems to knowledge graphs and human brains. Because
of their great expressive power, these relational models are fundamental to research in computer
science, data science, and machine learning, in addition to many other fields. Graph cuts are used
to partition graphs into distinct regions by minimizing a cost function, thereby providing insight-
ful information. For example, in image segmentation, graph cuts help separate objects from the
background by modeling pixels as nodes in a graph and optimizing the partitioning based on in-
tensity or color differences (Boykov & Kolmogorov, 2004). In network clustering, graph cuts are
used to detect communities within social networks by partitioning nodes into groups with strong
internal connections while minimizing connections between different groups (Newman, 2006). In
hierarchical clustering, sparse graph cuts are used to increasingly refine subgraphs to achieve better
performance for Dasgupta’s objective (Dasgupta, 2016; Braverman et al., 2025; Deng et al., 2025).
More generally, spectral methods not only preserve key quantities such as cut sizes, but also accom-
modate more complex partitioning, e.g., multi-way cuts, and consider other concepts such as the
graph Laplacian and its eigenvalues.

With the explosive growth of large-scale databases and the increasing demand for scalable machine
learning and AI systems, graphs have become more complex and massive than ever before. In many
modern applications, the sheer volume of graphs create significant computational bottlenecks, mak-
ing it crucial to obtain smaller approximate graphs while preserving key features. Cut sparsifiers
and spectral sparsifiers are smaller, efficient representations of large-scale graphs that approximately
preserve cut sizes and spectral properties, respectively. These techniques are therefore often used
to accelerate graph-related algorithms and reduce computation overhead. For instance, graph spar-
sifiers have been used to enhance the performance of graph representation learning methods by re-
ducing irrelevant information and preserving important structural features in the graph (Calandriello
et al., 2018; Zhu et al., 2019; Zeng et al., 2020; Zheng et al., 2020; Braverman et al., 2021a; Chun-
duru et al., 2022; Zhang et al., 2024), spectral sparsifiers have been used to construct lightweight

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

graph neural networks while maintaining their overall effectiveness (Li et al., 2023; Xie et al., 2024),
and hypergraph sparsifiers have been used to produce efficient algorithms related to cuts and flows
(Chekuri & Xu, 2017; Chandrasekaran et al., 2018; Chekuri & Xu, 2018; Veldt et al., 2023), which
have been applied to hypergraph partitioning and clustering (Akbudak et al., 2013; Deveci et al.,
2013; Ballard et al., 2016) and machine learning tasks (Li & Milenkovic, 2017; 2018; Veldt et al.,
2020). In addition, graph sparsification is a key algorithmic component in theoretical computer sci-
ence, e.g., computing the eigenvalues of the Laplacian matrix (Soma & Yoshida, 2019) and solving
the Laplacian system, which produces fast symmetric diagonally dominant (SDD) system solvers
(Koutis et al., 2014; Spielman & Teng, 2014; Soma & Yoshida, 2019).

Data streams. As datasets have grown dramatically in size in recent years, there is an increasing
interest in large-scale computational models that avoid storing the entire dataset or making multi-
ple passes over it. This has led to the development of the streaming model, which processes data
sequentially under strict memory constraints, making it well-suited for handling massive datasets
efficiently, e.g., network activity logs, IoT device streams, financial transactions, database event
records, and real-time scientific observations. In this paper, we ask: Do graph sparsification prob-
lems require additional space complexity in the streaming model, compared to the offline setting?

1.1 OUR CONTRIBUTIONS

In this paper, we provide algorithms for cut and spectral sparsification problems, losing only poly-
iterated logarithmic factors in space, i.e., polylog(log n) factors for a graph with n vertices.

Graph sparsification. The graph sparsification problem has been extensively studied (Spielman &
Srivastava, 2008; Batson et al., 2014; Lee & Sun, 2017; Jambulapati & Sidford, 2018), and there
are well-known constructions for spectral sparsifiers with O

(
n
ε2

)
edges. We provide efficient algo-

rithms for graph spectral sparsification in insertion-only streams that have optimal space complexity
compared to the best sample complexity of an offline algorithm, up to poly-iterated logarithmic fac-
tors in n. Here, we represent a graph as a three-tuple G = (V,E,w), where V is the set of vertices
with size n, E is the set of edges with size m = poly(n), and w : E → [poly(n)] is the weight
assignment function, where the weights are positive integers upper bounded by poly(n). We give
our formal statement as follows.

Theorem 1.1 (Streaming graph sparsification, informal version of Theorem E.3). Given a graph
G = (V,E,w) with n vertices defined by an insertion-only stream, there is an algorithm that gives
a (1 + ε)-spectral sparsifier with probability 1 − 1

poly(n) , storing n
ε2 poly(log log n) edges, i.e.,

n
ε2 log npoly(log log n) bits, and using poly(n) update time.

By comparison, offline constructions for graph spectral sparsifiers can be combined with the merge-
and-reduce framework for coreset constructions to achieve algorithms with O

(
n
ε2 log

4 n
)

edges in
the insertion-only setting. Additionally, Cohen et al. (2020) produced a spectral sparsifier with
O
(

n
ε2 log

2 n
)

edges in the online model, and similarly, Kapralov et al. (2020) achieved a spectral
sparsifier with O

(
n
ε2 log n

)
edges in the dynamic streaming model, where both insertions and dele-

tions of edges are permitted; both of these results can also be applied to the insertion-only setting.
Here, we note that storing each edge in the sparsifier uses O (log n) bits of space. Our result avoids
the additive log n factors in previous results, achieving a nearly-optimal space.

Graph min-cut approximation. In addition, we construct a space-efficient streaming algorithm
that approximates the graph min-cut in insertion-only data streams.

Theorem 1.2 (Streaming min-cut approximation, informal version of Theorem E.14). Given a
graph G = (V,E,w) with n vertices defined by an insertion-only stream, there is an algorithm
which outputs a (1 + ε)-approximation to the size of the min-cut of G with probability 1− 1

poly(n) ,
storing n

ε · polylog(n,
1
ε) edges, i.e., n

ε · polylog(n,
1
ε) bits, and using poly(n) update time.

We remark that our result improves on the logarithmic dependence in n compared to the previous
work (Ding et al., 2024).That is, our algorithm uses O

(
n
ε · log

c(nε) log
1
ε

)
bits of space, while the

algorithm of Ding et al. (2024) uses O
(
n
ε · log

c+1(nε)
)

bits of space.

Hypergraph sparsification. Hypergraphs are a generalization of graphs where each hyperedge can
connect more than 2 nodes, enabling the representation of multi-way relationships beyond pairwise

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

connections. This ability to capture higher-order correlations makes hypergraphs particularly valu-
able in various applications, such as hypergraph neural networks (Feng et al., 2019; Gao et al., 2023;
Feng et al., 2024) and hypergraph clustering (Takai et al., 2020). Soma & Yoshida (2019) formalized
the definition of a (1 + ε)-hypergraph spectral sparsifier and gave a construction with O

(
n3

ε2 log n
)

hyperedges. Bansal et al. (2019) achieved an upper bound ofO
(

nr3

ε2 log n
)

, where r = maxe∈E |e|
is the rank of the hypergraph. Kapralov et al. (2021) gave an upper bound of O

(
n
ε4 log

3 n
)
. Jambu-

lapati et al. (2023) and Lee (2023) simultaneously improved the upper bound to O
(

n
ε2 log n log r

)
.

Note that the above results are in the offline setting and it is uncertain whether they can be adapted to
our streaming setting. In contrast, existing algorithms use O

(
nr
ε2 · log

2 n log r
)

hyperedges (Soma
et al., 2024) or n

ε2 · polylog(m) hyperedges (Khanna et al., 2025b). However, they are not tight in r
and logm factors, which is prohibitively large for streaming large-scale hypergraphs, since r could
be Ω(n) and m could be Ω(2n) in the worst case. Therefore, the goal of our work is to improve both
the r and logm factors in the streaming setting. We give the first streaming algorithm that is optimal
up to poly-iterated logarithmic factors in m, compared to the current best offline sample complexity.

Theorem 1.3 (Streaming hypergraph sparsification, informal version of Theorem E.7). Given a
hypergraph H = (V,E,w) with n vertices, m hyperedges, and rank r defined by an insertion-only
stream, there is an algorithm that gives a (1 + ε)-spectral sparsifier with probability 1 − 1

poly(m)

storing n
ε2 log n · poly(log r, log logm) hyperedges, i.e., rn

ε2 log2 n · poly(log r, log logm) bits, and
using poly(n) update time.

Here, we note that storing each hyperedge requires O (r log n+ log logm) bits of space (see Re-
mark D.7). Our algorithm only loses polylog r and poly(log logm) factors, which are at most
polylog n in the worst case, shaving off the undesirable poly(n) factors when m = Ω(2n).

In addition, we give an online sampling scheme for hypergraph spectral sparsification with efficient
space. The online setting is a more restrictive setting that must immediately and irrevocably decide
whether each arriving edge should be sampled or discarded, i.e., online algorithms cannot retract
decisions. Online algorithms are particularly useful in settings where intermediate results must be
reported as the stream continues. They are beneficial in practice because downstream computation
can begin immediately when an item is sampled, as the item will not be removed at a later time.

Theorem 1.4 (Online hypergraph sparsification, informal version of Theorem E.4). Given a hyper-
graph H = (V,E,w) with n vertices, m hyperedges, and rank r defined by an insertion-only stream,
there is an online algorithm that uses n log npoly(log logm) bits of working memory and gives a
(1 + ε)-spectral sparsifier with probability 1− 1

poly(m) with O
(

n
ε2 log n logm log r

)
hyperedges.

For comparison, Soma et al. (2024) provided an online algorithm that outputs a (1 + ε)-hypergraph
sparsifier using O

(
nr
ε2 · log

2 n log r
)

hyperedges. However, they require O
(
n2
)

working mem-
ory to store the sketch that defines their sampling probability. Our algorithm improves this bound
to n log npoly(log logm) bits, significantly reducing memory consumption. This result resolves
Question 6.2 of Soma et al. (2024), which asks for improvements in space complexity.

Adversarial robustness. We also obtain hypergraph sparsifiers in the adversarially robust streaming
model. This model is framed as a two-player game between an adaptive adversary, who generates
the input stream, and a randomized algorithm, which processes the inputs and outputs an estimate.
Unlike the standard streaming setting, future inputs may depend on previous interactions between
the adversary and the algorithm. Specifically, the game proceeds in m rounds: in each round the
adversary selects an input based on past inputs and outputs and sends to the algorithm, then the algo-
rithm responds with a new estimate. This formulation captures the adaptive nature of real-world data
streams and parallels adversarial robustness research in machine learning, where inputs are strate-
gically chosen to exploit vulnerabilities in learning systems, such as adversarial examples in neural
networks (Goodfellow et al., 2015), optimization-based evasion attacks (Carlini & Wagner, 2017;
Athalye et al., 2018), adversarial training (Madry et al., 2018), and trade-offs between accuracy
and robustness (Tsipras et al., 2019; Chen et al., 2022). Importantly, adaptivity need not arise from
malicious attacks: it can also result from queries by vast database with inner correlation or from
queries designed to optimize an underlying objective (Hassidim et al., 2020), settings where stan-
dard streaming algorithms fail. Given these perspectives, the adversarially robust streaming model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

has attracted significant attention (Ben-Eliezer et al., 2020; Ben-Eliezer & Yogev, 2020; Hassidim
et al., 2020; Alon et al., 2021; Braverman et al., 2021a; Kaplan et al., 2021; Woodruff & Zhou, 2021;
Beimel et al., 2022; Ben-Eliezer et al., 2022a;b; Chakrabarti et al., 2022; Avdiukhin et al., 2019; As-
sadi et al., 2023; Attias et al., 2023; Cherapanamjeri et al., 2023; Dinur et al., 2023; Woodruff et al.,
2023a; Gribelyuk et al., 2024; Woodruff & Zhou, 2024; Gribelyuk et al., 2025).

Ben-Eliezer et al. (2020) introduced a framework that transforms a streaming algorithm to an adver-
sarially robust streaming algorithm by setting the failure probability δ sufficiently small. Combining
this framework with our high-probability result, which is a corollary of our streaming algorithm (see
Appendix E.4), we obtain an adversarially robust algorithm with efficient space.

Theorem 1.5 (Robust hypergraph sparsification, informal version of Theorem E.11). Given a graph
H = (V,E,w) with n vertices, m edges, and rank r defined by an insertion-only stream, there
exists an adversarially robust algorithm that constructs a (1+ε)-spectral sparsifier with probability
1 − δ

poly(m) storing n
ε2 poly(log n, log r, log log

m
δ) hyperedges and nr2

ε2 · poly(log n, log log
m
δ)

edges in the associated graph, i.e., nr3

ε2 · poly(log n, log r, log log
m
δ) bits in total.

The sliding window model. An additional application of our online algorithms is to the sliding win-
dow model. Recall that the streaming model defines an underlying dataset while remaining oblivious
to the times at which specific data points arrive, and is thus unable to prioritize recent data over older
data. By comparison, the more general sliding window model considers the most recent W updates
{xn−W+1, . . . , xn} to be the active data, which is crucial in situations where newer information is
more relevant or accurate, such as tracking trends in financial markets or analyzing recent Census
data. Indeed, the sliding window model outperforms the streaming model in various applications
(Babcock et al., 2002; Datar et al., 2002; Papapetrou et al., 2015; Wei et al., 2016), especially for
time-sensitive settings such as data summarization (Chen et al., 2016; Epasto et al., 2017), social
media data (Osborne et al., 2014), and network monitoring (Cormode & Muthukrishnan, 2005; Cor-
mode & Garofalakis, 2008; Cormode, 2013). The sliding window model is particularly useful when
computations must focus only on the most recent data. This is important in cases where data re-
tention is limited by regulations. For example, Facebook stores user search histories for up to six
months (Facebook), Google stores browser data for up to nine months (Google), and OpenAI re-
tains API inputs and outputs for up to 30 days (OpenAI). The sliding window model captures the
ability to expire data, in alignment with these time-based retention policies, and consequently has re-
ceived significant attention in various problems (Lee & Ting, 2006; Braverman & Ostrovsky, 2007;
Braverman et al., 2012; 2018; 2021b; Woodruff & Zhou, 2021; Ajtai et al., 2022; Jayaram et al.,
2022; Blocki et al., 2023; Cohen-Addad et al., 2025). Applying our online algorithm, we utilize a
framework for the sliding window model to achieve an algorithm for hypergraph sparsification:

Theorem 1.6 (Streaming hypergraph sparsification in the sliding window model, informal version
of Theorem F.2). Given a hypergraph H = (V,E,w) with n vertices, m hyperedges, and rank r
defined by the sliding window model, there is an algorithm that gives a (1 + ε)-spectral sparsifier
with probability 1− 1

poly(n) , storing n
ε2 polylog(m, r) hyperedges, i.e., rn

ε2 log n polylog(m, r) bits.

Concurrent and independent work. We remark that Goranci & Momeni (2025); Khanna et al.
(2025a) recently also achieved online and dynamic algorithms for hypergraph sparsification that
samples n

ε2 · polylog(m) hyperedges. Our algorithm has a suboptimal update time, but we achieve
better space complexity, which is prioritized in the streaming setting. In addition, we note that
Khanna et al. (2025b) recently showed that in an insertion-only stream, a hypergraph cut sparsifier
can be computed using nr

ε2 · polylog(n) bits of space, avoiding the additive logm factors. By com-
parison, our streaming algorithm for spectral sparsification, which generalizes a cut sparsifier, also
avoids the logm dependency. We refer the reader to Appendix A.2 for a more detailed discussion.

1.2 PRELIMINARIES

In this section, we introduce several important definitions and techniques related to graphs and
hypergraphs. We refer the reader to Appendix B for a comprehensive discussion. For an integer
n > 0, we use the notation [n] = {1, . . . , n}. We use poly(n) to denote a fixed polynomial of n,
whose degree is determined by setting parameters in the algorithm accordingly. We use polylog(n)

to denote poly(log n). We use Õ (F) = F polylogF to hide the polylogarithmic factors.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Hypergraphs. For a hypergraph H = (V,E,w), its energy function QH : Rn → R is QH(x) :=∑
e∈E Qe(x) =

∑
e∈E w(e) · maxu,v∈e(xu − xv)

2, where Qe(x) is the energy of a hyperedge
e. A weighted hypergraph Ĥ is a (1 + ε)-multipicative spectral sparsifier for H if it preserves the
energy of all vectors x up to an ε-multiplicative error: |QĤ(x) − QH(x)| ≤ ε · QH(x),∀x ∈
Rn. The definition of the associated graph relates a hypergraph to a graph with the same set of
vertices. Given a hypergraph H , its associated graph G = (V,E) is by replacing each hyperedge
e = (u1, . . . , ur) ∈ H with the

(
r
2

)
edges (ui, uj), where 1 ≤ i < j ≤ r, each with weight w(e).

Graph Laplacian. We review the graph Laplacian that encodes the structure of a graph into a
matrix. The graph Laplacian is an n × n matrix where its diagonal stores the weighted degree for
each node, and the other entries store the weight of each edge (i, j) in G. The graph Laplacian
provides a way to view the graph spectral sparsifier problem as a matrix spectral approximation
problem so that one can implement numerical linear algebra methods. The graph Laplacian LG can
be written as the Gram matrix A⊤A, where the incidence matrix A consists of binary row vectors
representing each weighted row uv in graph G. That is, ai := auv =

√
w(e) · (χu − χv), where χi

denotes the elementary row vector with a single nonzero entry in the i-th coordinate. In the graph
spectral sparsification problem, the energy is defined to be x⊤LGx, which is x⊤A⊤Ax. This relates
the graph sparsification problem to the matrix spectral approximation problem as follows.

Spielman & Srivastava (2008) introduced the notion of the effective resistance re = w(e) · (χu −
χv)L

−1
G (χu − χv)

⊤ of an edge e in the graph, encoding the importance of e. They construct a spar-
sifier with O

(
n
ε2

)
edges by sampling each edge with probability proportional to re. The effective

resistance re turns out to be the leverage score of the row ai in the incidence matrix A, defined by
τi = ai(A

⊤A)−1a⊤i , where ai is the row representing e. Thus, sampling edges in the graph is
equivalent to sampling rows from the incidence matrix A.

Online leverage score. Another core technical tool is online row sampling (Cohen et al., 2020). In
the online setting, we only have access to the prefix matrix Ai that arrives before the current row ai.
Therefore, we consider the online variation of leverage scores: τOL

i (A) := ai(A
⊤
i Ai)

−1a⊤i . Then,
sampling with probability proportional to τOL

i (A) gives us an online spectral approximation.

2 ONLINE HYPERGRAPH SPECTRAL SPARSIFIER

We start with hypergraph sparsification as it generalizes cut and graph sparsification. We defer the
complete analysis to Appendix C and Appendix D. A natural starting point to sample hyperedges
is to consider its associated graph and the effective resistance of edges in the clique defined by
the hyperedge. Bansal et al. (2019) adopted this idea and sets the sampling probability as pe ∝
maxu,v∈e ruv , where ruv is the effective resistance of edge (u, v) in the associated graph. However,
this loses a poly(r) factor in the sample complexity. To avoid this, Kapralov et al. (2021) introduced
a novel weight assignment scheme for the edges in the associated graph. For a hyperedge e with
weight w(e) in the hypergraph, they assign a weight zuv to each u, v ∈ e in the associated graph so
that they satisfy

∑
u,v∈e zuv = w(e), that is, all edges in the clique defined by e sum up to w(e).

Let A be the incidence matrix of the associated graph, and let Z denote the diagonal weight matrix,
where its (i, i)-th entry is the weight zi of the edge represented by the i-th row in matrix A. They

define the effective resistance of an edge i in the re-weighted associated graph to be τi(Z
1/2A)
zi

, where
τi(Z

1/2A) is the leverage score of the i-th row in the weighted incidence matrix Z1/2A. Now, Z is

chosen to satisfy that for all edges i in the clique of hyperedge e, the ratios τi(Z
1/2A)
zi

are within γ
fractions of each other, where γ is a constant. The intuition for this assignment is to “balance” the
effective resistance of each edge in the clique. Kapralov et al. (2021) showed that sampling e with
probability proportional to the γ-balanced ratios gives an improved sample complexity.

Jambulapati et al. (2023) stated a more general definition of sampling probability, which is called the
“group leverage score overestimate”, and still gives a valid spectral sparsifier. Indeed, for any weight
assignment with

∑
u,v∈e zuv = w(e), if we sample each hyperedge e with probability higher than

the maximum of all ratios τi(Z
1/2A)
zi

of edges i in the clique of e, the correctness of the sparsifier is
guaranteed. Then, we are left to choose a proper Z that gives the desired sample complexity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 2.1 (Sampling probability for each hyperedge). Given a hypergraph H = (V,E,w) and
its associated graph G = (V, F, z), where the weight assignment z satisfies

∑
u,v∈e zuv = w(e)

for all e ∈ E, let A be the corresponding incidence matrix for G. Let Z be the weight matrix.
We set the sampling probability of e to satisfy pe ≥ w(e) · maxu,v∈e auv(A

⊤ZA)−1a⊤uv . Here,

auv(A
⊤ZA)−1a⊤uv = τuv(Z

1/2A)
zuv

. We use quv to denote this ratio in the following sections.

Jambulapati et al. (2023) applied a refined chaining argument by leveraging Talagrand’s growth
function framework to achieve a tighter bound. Their analysis can be applied as a black-box if the
sampling probabilities satisfy the condition in Definition 2.1: (1) They are an overestimate; (2) Their
values are defined independently of whether other hyperedges are sampled.

Online hyperedge sampling probability. In the online setting, a technical challenge is that we can
only define the weights Zt based on the hyperedges that arrived before time t and their associated
graph with incidence matrix At. However, the sampling probabilities must satisfy Definition 2.1 for
the complete hypergraph and its corresponding associated graph with incidence matrix A.

We determine the weight assignment in an online manner. That is, when the local weight Zt at time
t is defined, we fix it when the next hyperedge e arrives and add the new weights {zuv | u, v ∈ e}
to Zt to define Zt+1. Thus, the matrix Z

1/2
t At is consistent along the way, and hence τi(Z

1/2
t At)
zi

is

an overestimate of τi(Z
1/2A)
zi

due to the monotonicity of online leverage scores. Then, we define the
sampling probability pet as satisfying pet ≥ w(e) ·maxu,v∈e auv(A

⊤
t ZtAt)

−1a⊤uv . Therefore, the
sampling probabilities pet satisfy Definition 2.1, and so using the chaining argument in (Jambulapati
et al., 2023) gives the correctness of our algorithm.

However, the above process requires us to store the entire matrix Z1/2A, which uses a prohibitively
large working memory. To solve this problem, we propose a local weight-assignment subroutine
with reduced working memory based on online row sampling (Cohen et al., 2020). Let B be a
matrix, and let Bi denote the matrix formed by the first i rows of B. In online row sampling,

we sample the newly arrived row bi with probability p̄i ∝ bi(B̃i−1

⊤
B̃i−1)

−1b⊤
i , where the pre-

fix matrix B̃i−1 consists of the rows sampled from previous steps, and we add bi/p̄i to B̃i−1 if
it is sampled. We adapt this idea to our online sampling procedure in an iterative way. Suppose
that we have a re-weighted incidence matrix M that is a 2-approximate spectral approximation of
Z

1/2
t At. We use M to determine the weights zt+1 of the newly arrived hyperedge et+1 by calling

GETWEIGHTASSIGNMENT(M, e), which is a local version of the balanced-weight-assignment pro-
cedure in (Kapralov et al., 2021). Then we sample the weighted edge vector auv ·

√
zt+1,uv by online

row sampling and add to M, so the resulting matrix is still a 2-approximate spectral approximation
to the matrix Z

1/2
t+1At+1, which suffices for our purpose. Our algorithm is given in Algorithm 1.

Note that the chaining argument in Jambulapati et al. (2023) requires that the sampling probabilities
are assigned independently. Our algorithm satisfies this condition by a de-coupling technique. First,
we stress that the construction of M by online row sampling from Z1/2A and sampling the hyper-
edges are separate procedures with independent inner randomness. Consider a fixed stream of hyper-
edges e1, · · · , em. Let Mt denote the matrix M at time t. When the inner randomness of online row
sampling is fixed, the sequence of matrices M1, · · · ,Mm is also fixed. Then, the sampling probabil-
ities pet are defined independently, each based on the value of maxu,v∈e auv ·w(et)·(M⊤M)−1·a⊤uv .
Thus, the sampling scheme of each et is independent of whether the previous hyperdges are sampled.

3 STREAMING MODEL

We now present streaming algorithms for graph sparsification using nearly optimal space. We begin
with the classic merge-and-reduce framework for constructing (1+ε)-coresets in streams. An online
(1 + ε)-coreset for graph sparsification for a graph G defined by a stream of edges e1, . . . , em is a
subset Ĝ of weighted edges such that for any x ∈ Rn and any t ∈ [m], we have (1 − ε)QGt

(x) ≤
Q

Ĝt
(x) ≤ (1 + ε)QGt

(x), where Gt is the set of hyperedges of G that have arrived by time t.

Let S(·) → R>0 denote a mapping from input parameters to the sample complexity of an online
algorithm. The online coresets for graph sparsification sample S(n, logm, ε, δ) edges for an in-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Online Hyperedge Spectral Sparsifier

1: Require: Stream of m hyperedges for hypergraph H with rank r

2: Ensure: Spectral sparsifier Ĥ for H
3: Ĥ ← ∅, ρ← O

(
1
ε2 logm log r

)
, M← ∅

4: for hyperedge et do
5: zt ← zt−1 ∪ GETWEIGHTASSIGNMENT(M, et)
6: for u, v ∈ et do
7: Sample weighted row auv ·

√
zt,uv to M by online row sampling (Cohen et al., 2020)

8: {M is a 2-spectral approximation to Z
1/2
t At at all times t, i.e., 1

2 ·M
⊤M ⪯ A⊤

t ZtAt ⪯
2 ·M⊤M}

9: end for
10: for u, v ∈ et do
11: quv ← auv · w(et) · (M⊤M)−1 · a⊤uv
12: end for
13: pet ← min{1, 2ρ ·maxu,v∈et quv}
14: With probability pet , Ĥ ← Ĥ ∪ 1

pet
· et

15: Return Ĥ
16: end for

put stream of length m on a graph with n nodes, accuracy ε ∈ (0, 1), and failure probability δ,
with high probability. The merge-and-reduce approach partitions the stream into blocks of size
S
(
n, logm, ε

2 log(mn) ,
δ

poly(mn)

)
and builds a

(
1 + ε

2 log(mn)

)
-coreset for each block, so that each

coreset can be interpreted as the leaves of a binary tree with height at most log(mn), as the binary
tree is balanced and has at most m leaves corresponding to the edges that arrive in the data stream
(see Figure 4). For each node in the binary tree, a coreset of size S

(
n, logm, ε

2 log(mn) ,
δ

poly(mn)

)
is built from the coresets representing the two children of the node. Assuming that the coreset
construction admits a merging procedure, i.e., by taking the graph consisting of the union of the
weighted edges in each of the coresets, then the root of the tree represents a coreset for the entire

stream with distortion at most
(
1 + ε

2 log(mn)

)log(mn)

≤ (1 + ε) and failure probability δ.

Cohen-Addad et al. (2023) improved the above framework by adding an online sampling procedure
ahead of the merge-and-reduce approach. Suppose that the online sampling procedure is nearly
optimal. Then the input stream of the merge-and-reduce approach is significantly shorter. In the
graph sparsification problem, there is an online algorithm that samples O

(
n
ε2 log n

)
edges, so the

coresets only have size S
(
n, log log n, ε

2 log log(n) ,
δ

polylog(n)

)
. This turns polylog(n) factors into

polylog log(n) factors, which is more space-efficient for huge graphs.

Next, using this framework, we obtain spectral sparsifier, min-cut approximation algorithm and
robust algorithm in the streaming setting with nearly-optimal space. We introduce the core idea here
and we defer the complete analysis to Appendix E.

Graph spectral sparsifier. The framework produces space-optimal streaming algorithms for
achieving graph and hypergraph sparsifiers. For graph sparsification, we merge the two child core-
sets using the offline algorithm given by (Batson et al., 2014), and we use the online graph spectral
sparsifier in (Cohen et al., 2020) to define the prefix substream S ′. For hypergraph sparsification,
we merge the two child coresets using the offline algorithm given by (Jambulapati et al., 2023), and
we use our online hypergraph spectral sparsifier in Theorem C.7 to define the prefix substream S ′.
All subroutines are space-efficient, ensuring that the streaming algorithm has nearly-optimal space.

Graph min-cut approximation. The streaming framework also solves the graph min-cut approxi-
mation problem, which asks for a (1+ε)-approximation to the size of the min-cut. Ding et al. (2024)
proposed an algorithm in the offline setting and they by applying merge-and-reduce directly to the
input data stream, which loses an extra log n factor. We show that using the aforementioned frame-
work, where we first obtain an online graph spectral sparsifier and then run the offline algorithm in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

each coreset, we can improve this log n factor to a log 1
ε while maintaining a poly(n) update time,

achieving more efficient space.

Adversarial robustness. The streaming framework also provides a hypergraph sparsification algo-
rithm with probability 1 − δ

poly(m) with only additive log log 1
δ factor in space, which further gives

a space-efficient robust algorithm. Recall that the robust framework in (Ben-Eliezer et al., 2020)
transforms a streaming algorithm to an adversarially robust streaming algorithm by setting the fail-
ure probability δ sufficiently small, as long as the streaming problem has a small ε-flip number.
Let f be the targeted function and {xt}Tt=1 be an input stream. The ε-flip number is defined as the
number of times f(x1, . . . , xt) increases by an ε-fraction. In the hypergraph sparsification problem,
the graph Laplacian of the input hypergraph’s associated graph has eigenvalues that increase by an
ε-fraction at most n logm

ε times, so the ε-flip number is n logm
ε . Using our high-probability result,

c.f., Appendix E.4, applying the above framework gives an adversarially robust algorithm without
additional polylog(m) dependences in space complexity.

4 EXPERIMENTS

In this section, we perform a number of empirical evaluations to complement our theoretical results.
The experiments are conducted using an Apple M2 CPU, with 16 GB RAM and 8 cores.

Experiment setup. We compare the performance between three algorithms: the online algorithm,
the merge-and-reduce approach applying directly to the input stream, and our streaming algorithm.
In each comparison, we set a budget for the number of sampled edges and compare the multiplicative
error of the three algorithms. For each experiment, we iterate 5 − 10 times and take the arithmetic
mean. We first test synthetic graphs. Given inputs n and m, we randomly generate a graph with n
vertices and m edges: for each edge, we uniformly sample two vertices from [n] and select its weight
from the distribution U(1, 10). We allow multi-edges in the graph. We then test the Facebook ego
social network from the Stanford Large Network Dataset Collection (SNAP) (McAuley & Leskovec,
2012). We choose the graph from user 107 with n = 1034 and m = 53498, and we also select its
weight from the distribution U(1, 10) since the original graph is unweighted.

Graph metric. Let LG and L̂G be the graph Laplacian of the original graph and the sparsified graph,
respectively. We note that the multiplicative error of the sparsifier is maxx∈Rn

xT (LG−L̂G)x
xTLGx

, which

is the generalized Rayleigh quotient of matrices LG and L̂G. To measure this quantity, we solve the
generalized eigenvalue problem (LG− L̂G)x = λ ·LGx and obtain the maximum eigenvalue, which
equals to the multiplicative error by the properties of generalized Rayleigh quotient.

Fine-tuning the parameters. Given a budget l, we fine-tune the parameters for each method such
that they output roughly l edges, and thus ensure that they have the same space budget. In the online
algorithm, we sample each edge et with probability ρ · ret , where ret is the effective resistance of
et in the graph LG(t) constructed by the previously arrived edges. Since we do not have a fixed
relationship between the sum of online leverage scores and n, we fine-tune the parameter ρ such that
the mean of 10 trials is within l ± 200. Note that the second approach and our streaming algorithm
includes implementing offline algorithm to construct the merge-and-reduce coresets. In the offline
algorithm, we sample each edge e with probability ρ · re, where re is its effective resistance. Due to
the equivalence between the effective resistance and the leverage score of the incidence matrix, we
have

∑
e∈G re = n, and so the expected number of sampled edges is ρn. Thus, we set ρ = l/n such

that we sample l edges in expectation, and the actual number of samples only varies a little due to the
concentration. Then, we use the same parameter ρ for the offline algorithm in the second approach
and our streaming algorithm to ensure fair comparison. In our streaming algorithm, recall that we
run an online algorithm to obtain the prefix substream S ′ (which is not stored), we tune the length
of S ′ to have the optimal error bound. We explicitly list our choice of parameters in Appendix G.

We adapt the code for efficiently estimating the effective resistances in the experiments of Chen
et al. (2024). In the online algorithm, we do a batch implementation to save time. We partition the
stream into batches with 100 edges and use the same LG(t) to compute the effective resistances for
a batch, so we do not have to re-construct the Laplacian within a batch.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Results and discussion. In the first experiment, we fix the number of vertices and edges in the
graph and compare the performance under different budgets l. For the synthetic graph, we set
n = 100,m = 50000, and l ∈ {500, 1000, 1500, 2000, 2500, 3000}. For the Facebook graph, we
set l ∈ {10000, 15000, 20000, 25000}. The results are displayed in Figure 1.

Fig. 1: Comparison under different budgets. The x-axis shows the space budget and the y-axis
shows the multiplicative error. The left is the synthetic graph and the right is the Facebook graph.
We include the result of the online algorithm as a baseline.

For both graphs, the merge-and-reduce methods obtain ∼ 0.3 multiplicative error using < 50%
budget, and our streaming algorithm (blue line) has the lowest multiplicative error under various
budgets. This occurs because our algorithm applies the merge-and-reduce method to the online
substream S ′, resulting in a shorter tree height compared to directly applying merge-and-reduce to
the original stream. Since errors accumulate at each tree level, our algorithm generally outperforms
others. However, its advantage diminishes as the budget increases. This is because with large
budgets, we set large coreset sizes; and so the heights of the two methods are roughly the same,
reducing the advantage of our algorithm. In addition, at extremely low budgets (e.g., l = 500 in the
synthetic graph), our algorithm performs similarly to the merge-and-reduce algorithm. This implies
a trade-off between the accuracy of the online substream and the tree height, when the budget is
extremely low compared to n. If we set a small budget for S ′, the accuracy of the prefix online
algorithm is suboptimal; on the contrary, if we set a large budget for S ′, then it increases the tree
height. Both situations hinder the performance of our algorithm.

Fig. 2: Comparison under different numbers of edges

In the second experiment, we fix the budget and compare the performance under different numbers of
edges m. We use the synthetic graph; and we set n = 100, l = 1500, and m ∈ {i · 10000, i ∈ [10]}.
The results are displayed in Figure 2, showing that our algorithm generally outperforms the merge-
and-reduce method as m increases. This advantage is because we set our budget as l = 1500,
which is substantial compared to n, enabling the prefix online substream S ′ to have a high-quality
approximation while maintaining a small tree height. Consequently, this enhances our algorithm’s
performance. In summary, our experiments demonstrate the optimality of our streaming algorithm
under dense graphs and limited budgets, matching the theoretical guarantees.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Miklós Ajtai, Vladimir Braverman, T. S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff,
and Samson Zhou. The white-box adversarial data stream model. In PODS ’22: International
Conference on Management of Data, 2022, pp. 15–27, 2022. 4

Kadir Akbudak, Enver Kayaaslan, and Cevdet Aykanat. Hypergraph partitioning based models
and methods for exploiting cache locality in sparse matrix-vector multiplication. SIAM J. Sci.
Comput., 35(3), 2013. 2

Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev. Adversarial
laws of large numbers and optimal regret in online classification. In STOC: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pp. 447–455, 2021. 4

Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Coloring in graph streams
via deterministic and adversarially robust algorithms. In Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pp. 141–153, 2023. 4

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In Proceedings of the 35th International Conference on Machine Learning, ICML,
volume 80 of Proceedings of Machine Learning Research, pp. 284–293. PMLR, 2018. 3

Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial stream-
ing via differential privacy and difference estimators. In 14th Innovations in Theoretical Computer
Science Conference, ITCS, pp. 8:1–8:19, 2023. 4

Dmitrii Avdiukhin, Slobodan Mitrovic, Grigory Yaroslavtsev, and Samson Zhou. Adversarially
robust submodular maximization under knapsack constraints. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD, pp. 148–156.
ACM, 2019. 4

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 1–16, 2002. 4

Grey Ballard, Alex Druinsky, Nicholas Knight, and Oded Schwartz. Hypergraph partitioning for
sparse matrix-matrix multiplication. ACM Trans. Parallel Comput., 3(3):18:1–18:34, 2016. 2

Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification for
graphs and hypergraphs. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pp. 910–928, 2019. 3, 5, 24, 25

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
Rev., 56(2):315–334, 2014. 2, 7, 16, 28

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower
bounds. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pp.
1671–1684, 2022. 4

Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pp.
49–62, 2020. 4

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems PODS20, 2020. 4, 8, 32

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense-
sparse trade-offs. In 5th Symposium on Simplicity in Algorithms, SOSA@SODA, pp. 214–227,
2022a. 4

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. J. ACM, 69(2):17:1–17:33, 2022b. 4

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, and Samson Zhou. Differentially private l2-
heavy hitters in the sliding window model. In The Eleventh International Conference on Learning
Representations, ICLR, 2023. 4

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–
1137, 2004. 1

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings, pp. 283–293, 2007.
4

Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding windows.
J. Comput. Syst. Sci., 78(1):260–272, 2012. 4

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. Nearly
optimal distinct elements and heavy hitters on sliding windows. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp.
7:1–7:22, 2018. 4

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay,
David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding
window models. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pp. 517–528, 2020. 19

Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Sam-
son Zhou. Adversarial robustness of streaming algorithms through importance sampling. In Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 3544–3557, 2021a. 1, 4

Vladimir Braverman, Viska Wei, and Samson Zhou. Symmetric norm estimation and regression on
sliding windows. In Computing and Combinatorics - 27th International Conference, COCOON,
Proceedings, pp. 528–539, 2021b. 4

Vladimir Braverman, Jon C. Ergun, Chen Wang, and Samson Zhou. Learning-augmented hierarchi-
cal clustering. In Proceedings of the 42nd International Conference on Machine Learning, ICML,
2025. 1

Daniele Calandriello, Ioannis Koutis, Alessandro Lazaric, and Michal Valko. Improved large-scale
graph learning through ridge spectral sparsification. In Proceedings of the 35th International
Conference on Machine Learning, ICML, volume 80, pp. 687–696. PMLR, 2018. 1

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy, SP, pp. 39–57. IEEE Computer Society, 2017. 3

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph
streams. In 13th Innovations in Theoretical Computer Science Conference, ITCS, pp. 37:1–37:23,
2022. 4

Karthekeyan Chandrasekaran, Chao Xu, and Xilin Yu. Hypergraph k-cut in randomized polynomial
time. In In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 1426–1438, 2018. 2

Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1085–1100,
2017. 2

Chandra Chekuri and Chao Xu. Minimum cuts and sparsification in hypergraphs. SIAM J. Comput.,
47(6):2118–2156, 2018. 2

Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding windows.
CoRR, abs/1611.00129, 2016. 4

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiefeng Chen, Xi Wu, Yang Guo, Yingyu Liang, and Somesh Jha. Towards evaluating the robustness
of neural networks learned by transduction. In The Tenth International Conference on Learning
Representations, ICLR. OpenReview.net, 2022. 3

Yuhan Chen, Haojie Ye, Sanketh Vedula, Alex Bronstein, Ronald Dreslinski, Trevor Mudge, and
Nishil Talati. Demystifying Graph Sparsification Algorithms in Graph Properties Preservation. In
50th International Conference on Very Large Databases (VLDB 2024). ACM, 2024. 8

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P. Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. In The Eleventh
International Conference on Learning Representations, ICLR, 2023. 4

Chandan Chunduru, Chun Jiang Zhu, Blake Gains, and Jinbo Bi. Heterogeneous graph sparsification
for efficient representation learning. In IEEE International Conference on Bioinformatics and
Biomedicine, BIBM, pp. 1891–1896, 2022. 1

Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory Comput,
16:1–25, 2020. 2, 5, 6, 7, 16, 19, 20, 21, 24, 28, 29

Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. Streaming euclidean k-median and
k-means with o(log n) space. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 883–908, 2023. 7, 28, 31

Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Qiaoyuan Yang, Yubo Zhang, and Samson Zhou. Fair
clustering in the sliding window model. In The Thirteenth International Conference on Learning
Representations, ICLR, 2025. 4

Graham Cormode. The continuous distributed monitoring model. SIGMOD Rec., 42(1):5–14, 2013.
4

Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: querying and tracking
distributed data streams. In EDBT 2008, 11th International Conference on Extending Database
Technology, Proceedings, pp. 745, 2008. 4

Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences in network
data streams. IEEE/ACM Trans. Netw., 13(6):1219–1232, 2005. 4

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pp. 118–127. ACM, 2016. 1

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. 4

Chengyuan Deng, Jie Gao, Jalaj Upadhyay, Chen Wang, and Samson Zhou. On the price of differ-
ential privacy for hierarchical clustering. In The Thirteenth International Conference on Learning
Representations, ICLR, 2025. 1

Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. Hypergraph sparsification and its application
to partitioning. In 42nd International Conference on Parallel Processing, ICPP 2013, pp. 200–
209, 2013. 2

Matthew Ding, Alexandro Garces, Honghao Lin Jason Li, Jelani Nelson, Vihan Shah, and David P.
Woodruff. Space complexity of minimum cut problems in single-pass streams. arXiv preprint
arXiv: 2412.01143, 2024. 2, 7, 16, 33, 34

Itai Dinur, Uri Stemmer, David P. Woodruff, and Samson Zhou. On differential privacy and adap-
tive data analysis with bounded space. In Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Proceedings, Part III, pp. 35–65, 2023. 4

Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam. Submodular
optimization over sliding windows. In Proceedings of the 26th International Conference on World
Wide Web, WWW, pp. 421–430, 2017. 4

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Facebook. https://www.facebook.com/policy.php. 4

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pp. 3558–3565, 2019. 3

Yifan Feng, Yihe Luo, Shihui Ying, and Yue Gao. Lighthgnn: Distilling hypergraph neural net-
works into mlps for 100x faster inference. In The Twelfth International Conference on Learning
Representations, ICLR, 2024. 3

Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
IEEE Trans. Pattern Anal. Mach. Intell., 45(3):3181–3199, 2023. 3

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR, 2015. 3

Google. https://policies.google.com/technologies/retention. 4

Gramoz Goranci and Ali Momeni. Fully dynamic spectral sparsification of hypergraphs. CoRR,
abs/2502.01421, 2025. 4, 17

Elena Gribelyuk, Honghao Lin, David P. Woodruff, Huacheng Yu, and Samson Zhou. A strong sep-
aration for adversarially robust l0 estimation for linear sketches. In 65th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 2318–2343, 2024. 4

Elena Gribelyuk, Honghao Lin, David P. Woodruff, Huacheng Yu, and Samson Zhou. Lifting linear
sketches: Optimal bounds and adversarial robustness. In Proceedings of the 57th ACM Symposium
on Theory of Computing, STOC, 2025. (to appear). 4

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversarially
robust streaming algorithms via differential privacy. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.
3, 4

Arun Jambulapati and Aaron Sidford. Efficient Õ(n/ε) spectral sketches for the laplacian and its
pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 2487–2503, 2018. 2

Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Chaining, group leverage score overestimates,
and fast spectral hypergraph sparsification. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC, pp. 196–206, 2023. 3, 5, 6, 7, 18, 19, 20, 30, 31

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and
sliding windows. In PODS ’22: International Conference on Management of Data, pp. 29–40,
2022. 4

Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming using the bounded storage model. In Advances in Cryptology - CRYPTO
- 41st Annual International Cryptology Conference, CRYPTO Proceedings, Part III, pp. 94–121,
2021. 4

Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron
Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic streams. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 1814–1833,
2020. 2, 16

Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph
sparsifiers of nearly linear size. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 1159–1170, 2021. 3, 5, 6, 22, 23

David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. 34

Sanjeev Khanna, Huan Li, and Aaron Putterman. Near-optimal linear sketches and fully-dynamic
algorithms for hypergraph spectral sparsification. arXiv preprint arXiv:2502.03313, 2025a. 4, 16,
17

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan. Near-optimal hypergraph sparsifica-
tion in insertion-only and bounded-deletion streams, 2025b. 3, 4, 16, 17

Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD linear
systems. SIAM J. Comput., 43(1):337–354, 2014. 2

James R. Lee. Spectral hypergraph sparsification via chaining. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC, pp. 207–218, 2023. 3, 16, 17, 30

Lap-Kei Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 724–732, 2006. 4

Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 678–687,
2017. 2

Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. Interpretable sparsification
of brain graphs: Better practices and effective designs for graph neural networks. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023,
pp. 1223–1234, 2023. 2

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems, pp. 2308–2318, 2017. 2

Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger inequalities and
spectral clustering. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 3020–3029, 2018. 2

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR. OpenReview.net, 2018. 3

Julian J. McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In Pe-
ter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 25: 26th Annual Confer-
ence on Neural Information Processing Systems NIPS, pp. 548–556, 2012. 8

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582, 2006. 1

OpenAI. https://openai.com/enterprise-privacy/. 4

Miles Osborne, Sean Moran, Richard McCreadie, Alexander von Lünen, Martin D. Sykora, Am-
paro Elizabeth Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yulan He, Tom Jackson, Fabio
Ciravegna, and Ann O’Brien. Real-time detection, tracking, and monitoring of automatically dis-
covered events in social media. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL, pp. 37–42, 2014. 4

Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketching distributed
sliding-window data streams. VLDB J., 24(3):345–368, 2015. 4

Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 2570–2581, 2019.
2, 3, 17

Tasuku Soma, Kam Chuen Tung, and Yuichi Yoshida. Online algorithms for spectral hypergraph
sparsification. In Integer Programming and Combinatorial Optimization - 25th International
Conference, IPCO, Proceedings, pp. 405–417, 2024. 3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing STOC, pp. 563–568. ACM,
2008. 2, 5, 17, 18

Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl., 35(3):835–
885, 2014. 2

Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. Hypergraph clustering based
on pagerank. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1970–1978, 2020. 3

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In 7th International Conference on Learning Repre-
sentations, ICLR. OpenReview.net, 2019. 3

Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut objectives in
hypergraphs. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1708–1718, 2020. 2

Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Augmented sparsifiers for generalized hyper-
graph cuts. J. Mach. Learn. Res., 24:207:1–207:50, 2023. 2

Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix sketch-
ing over sliding windows. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference, pp. 1465–1480. ACM, 2016. 4

David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 4622–4666, 2023. 19

David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 1183–1196, 2021. 4

David P. Woodruff and Samson Zhou. Adversarially robust dense-sparse tradeoffs via heavy-hitters.
In Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems, NeurIPS, 2024. 4

David P. Woodruff, Fred Zhang, and Samson Zhou. On robust streaming for learning with experts:
Algorithms and lower bounds. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems, NeurIPS, 2023a. 4

David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in the sliding win-
dow model. In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2023b. 34, 35

Beini Xie, Heng Chang, Ziwei Zhang, Zeyang Zhang, Simin Wu, Xin Wang, Yuan Meng, and
Wenwu Zhu. Towards lightweight graph neural network search with curriculum graph sparsifica-
tion. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 3563–3573, 2024. 2

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations, ICLR, 2020. 1

Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci curvature-based graph sparsification for con-
tinual graph representation learning. IEEE Trans. Neural Networks Learn. Syst., 35(12):17398–
17410, 2024. 1

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and
Wei Wang. Robust graph representation learning via neural sparsification. In Proceedings of
the 37th International Conference on Machine Learning, ICML, volume 119, pp. 11458–11468,
2020. 1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Chun Jiang Zhu, Sabine Storandt, Kam-yiu Lam, Song Han, and Jinbo Bi. Improved dynamic graph
learning through fault-tolerant sparsification. In Proceedings of the 36th International Conference
on Machine Learning, ICML, volume 97, pp. 7624–7633, 2019. 1

A OUR RESULTS

In this section, we summarize our results for graph and hypergraph sparsification, and we provide
additional discussion about the concurrent work.

A.1 SUMMARIZE OF OUR RESULTS

We summarize our results in Figure 3. Our algorithms improve on the polylogarithmic factors in
space bounds in prior work and have the same asymptotic bound as the offline algorithms up to
poly-iterated logarithmic factors. We note that the update time of our algorithms is poly(n), which
could be potentially improved if we relax the space constraint. For instance, one can apply the
merge-and-reduce framework (see detailed discussion Section 3) directly to the input data stream
and use near-linear time offline algorithms to construct the coresets, achieving near-linear update
time in the stream length. However, these approaches incur additional logm factors in the space
complexity, which is prohibitively large for many streaming applications, where space efficiency is
critical due to restricted memory constraints. In contrast, our work focuses on achieving nearly-tight
space usage and is well-suited for processing massive datasets.

Type of sparsifier Setting Reference Space

Graph spectral Offline (Batson et al., 2014) O
(

n
ε2 log n

)
Graph spectral Online (Cohen et al., 2020) O

(
n
ε2 log

3 n
)

Graph spectral Streaming (Kapralov et al., 2020) O
(

n
ε2 log

2 n
)

Graph spectral Streaming Theorem 1.1 O
(

n
ε2 log n poly(log log n)

)
Graph min-cut Offline (Ding et al., 2024) O

(
n
ε logc n

)
Graph min-cut Streaming (Ding et al., 2024) O

(
n
ε logc+1 n

)
Graph min-cut Streaming Theorem 1.2 O

(
n
ε logc n log 1

ε

)
Hypergraph spectral Offline (Lee, 2023) rn

ε2 log2 n log r

Hypergraph spectral Online (Khanna et al., 2025b) rn
ε2 polylog(m)

Hypergraph spectral Online Theorem 1.4 rn
ε2 log2 n logm log r

Hypergraph spectral Streaming Theorem 1.3 rn
ε2 poly(log n, log logm)

Fig. 3: Comparison of our results and the optimal results in offline, online and streaming settings.
The space is measured in number of bits.

A.2 CONCURRENT AND INDEPENDENT WORK

We summarize several relevant results from concurrent and independent work.

Online algorithms. We remark that Khanna et al. (2025a) recently also achieved an online al-
gorithm for hypergraph sparsification that samples n

ε2 · polylog(m) hyperedges. Their approach is
based on maintaining a logarithmic number of spanners and adding arriving hyperedges to a spanner
based on connectivity within the spanner and a geometrically decreasing probability. In fact, due
to efficient subroutines for these algorithms, their update time is near-linear. Our algorithm has a
suboptimal update time, but we achieve better sample complexity and efficient working memory. By

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

comparison, our approach is based on computing a balanced solution to an optimization problem,
and it is not clear whether there exists an efficient algorithm to achieve a fast update time. We also
achieve an algorithm for online spectral sparsification with fast update time while losing poly(r)
factors, which suffices for the remainder of our applications.

Dynamic algorithms. The framework in (Khanna et al., 2025a) also solves hypergraph sparsifi-
cation in the fully-dynamic setting, where both insertions and deletions are allowed and time effi-
ciency is prioritized. Their algorithm maintains a sparsifier with n

ε2 · polylog(m) hyperedges while
requiring sublinear update time in m. Similarly, Goranci & Momeni (2025) provided dynamic al-
gorithms for hypergraph sparsification using nr3 poly(log n, 1

ε) space and r4 poly(log n, 1
ε) update

time. These results naturally generalize the insertion-only streaming setting. Although they achieve
better time efficiency, their space bounds lose polynomial factors in r and logm. As we mentioned
earlier, their sub-optimal space usage hinders the applications in the streaming setting, where the
space efficiency is prioritized. On the contrary, our algorithm reduces the polylog(m) factors to
poly(log logm) factors while maintaining a poly(n) update time, making significant improvements
for dense hypergraphs (e.g., m = Ω(2n)).

Hypergraph cut sparsifier. In addition, we note that Khanna et al. (2025b) recently showed that
in an insertion-only stream, a hypergraph cut sparsifier can be computed using rn

ε2 ·polylog(n) bits of
space, establishing an Ω(logm) separation from hypergraph cut sparsification in dynamic streams.
Their algorithm estimates the strength of components in the hypergraph, and whenever a component
gets sufficiently large strength, it contracts the component to a single vertex to save space. This
idea extends their result to a more general bounded-deletion setting: if the stream has at most k
hyperedge deletions, then rn

ε2 log k polylog(n) bits of space suffice for hypergraph cut sparsification.
By comparison, our approach is based on a streaming framework that implements merge-and-reduce
coreset construction to the output of an online algorithm. We achieve an algorithm that solves
hypergraph spectral sparsification in insertion-only streams using rn

ε2 log2 n log r poly(log log(m))
bits of space, which generalizes the hypergraph cut sparsification result. Assuming there are no
multi-hyperedges in the hypergraph, i.e., m = O (2n), our algorithm uses rn

ε2 log r polylog(n) bits
of space, and hence it avoids extraneous dependence on polylog(m) factors, i.e., we have the same
dependencies as (Khanna et al., 2025b) in the logm factors. In addition, in terms of the dependence
on log n, our space bound has a factor of Õ

(
log2 n

)
, as opposed to polylog(n) in (Khanna et al.,

2025b), and thus we achieve a better space complexity when m is relatively small.

B PRELIMINARIES

In this section, we introduce several important definitions and techniques related to graphs and
hypergraphs. For an integer n > 0, we use the notation [n] to denote the set {1, . . . , n}. We use
poly(n) to denote a fixed polynomial of n, whose degree can be determined by setting parameters in
the algorithm accordingly. We use polylog(n) to denote poly(log n). We use Õ (F) = F polylogF
to hide the polylogarithmic factors.

Hypergraphs. We state the formal definition of the hypergraph energy function and the hyper-
graph spectral sparsifier.

Definition B.1 (Energy). For a hypergraph H = (V,E,w), we define QH : Rn → R to be the
following analog of the Laplacian quadratic form QH(x) =

∑
e∈E w(e) · maxu,v∈e(xu − xv)

2.
We define the energy Qe(x) of a hyperedge e to be Qe(x) = w(e) ·maxu,v∈e(xu − xv)

2, such that
QH(x) =

∑
e∈E Qe(x).

The above definition carries a physical interpretation as the potential energy of a family of rubber
bands. One can consider a hyperedge e as a rubber band stretched to encircle several locations
{xv, v ∈ e}, so maxu,v∈e(xu − xv)

2 is proportional to its potential energy Lee (2023). Soma &
Yoshida (2019) introduced the following notion of the hypergraph spectral sparsifier, generalizing
the definition for graphs (Spielman & Srivastava, 2008). The hypergraph spectral sparsifier is defined
as a re-weighted subset Ĥ of the original hypergraph H , which preserves the energy of x on H up
to a (1 + ε)-approximation for all vectors x ∈ Rn.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Definition B.2 (Hypergraph spectral sparsifier). A weighted hypergraph Ĥ is a (1+ε)-multiplicative
spectral sparsifier for H if

|QĤ(x)−QH(x)| ≤ ε ·QH(x), ∀x ∈ Rn (1)

A natural way to relate a hypergraph to a multi-graph is to replace a hyperedge with r nodes by a
clique of

(
r
2

)
edges formed by the nodes in that hyperedge, which is stated in the following definition

of associated graph.
Definition B.3 (Associated graph). Given a hypergraph H , we define a multi-graph G = (V,E)
to be the associated graph of H by replacing each hyperedge e = (u1, . . . , ur) ∈ H with the

(
r
2

)
edges (ui, uj), where 1 ≤ i < j ≤ r, each with weight w(e).

Graph Laplacian. We review the graph Laplacian that encodes the structure of a graph into a
matrix. The graph Laplacian is an n × n matrix where its diagonal stores the weighted degree for
each node, and the other entries store the weight of each edge (i, j) in G. The graph Laplacian
provides a way to view the graph spectral sparsifier problem as a matrix spectral approximation
problem so that one can implement numerical linear algebra methods to solve it.
Definition B.4 (Graph Laplacian). Given a weighted graph G = (V,E,w) with n vertices, the
graph Laplacian matrix LG ∈ Rn×n is defined as

LG =
∑

e=(u,v)∈E

w(e) · (χu − χv)
⊤(χu − χv),

where χi denotes the elementary row vector with a single nonzero entry in the i-th coordinate.

The graph Laplacian can be written as the Gram matrix A⊤A, where the incidence matrix A consists
of binary vectors representing each weighted row in graph G.
Fact B.5. The graph Laplacian LG has the following properties:

(1) Let Luv be the graph Laplacian for an edge uv, so that

Luv = w(e) · (χu − χv)
⊤(χu − χv).

Then LG =
∑

e=(u,v)∈E Luv .

(2) For each i, j ∈ [n], the (i, j)-th entry of LG is the weighted degree deg(i) =∑
(i,j)∈E:u∈V w(ij) for i = j and −w(ij) for i ̸= j, where w(ij) is the weight of edge

(i, j).

(3) Let A ∈ R|E|×n be the incidence matrix of G, where each row ai of A corresponds to an
edge e = (u, v) ∈ E, so that auv := ai =

√
w(e) · (χu − χv). Then LG = A⊤A.

We remark that the matrix A sometimes denotes the adjacency matrix, an n× n square matrix with
Auv = w(e) if (u, v) ∈ E, in some other definitions of the graph Laplacian, e.g., L = D−A. Here,
we stick to the notion of the incidence matrix A in (Jambulapati et al., 2023), which is different from
the definition of the adjacency matrix. In addition, we sometimes abuse the subscript in this paper,
e.g., ai = auv if e = (u, v) is represented by the i-th row in the incidence matrix A.

In the graph spectral sparsification problem, the energy is defined to be x⊤LGx, which is x⊤A⊤Ax.
Thus, sampling the edges of the graph is equivalent to sampling rows from the matrix A. In the
hypergraph spectral sparsification problem, the definition of energy is slightly different. However,
we can still relate it to the graph Laplacian of its associated graph as follows.
Fact B.6. Let H = (V,E,w) be a hypergraph, let G = (V, F,w) be its associated graph, and let
Luv be the graph Laplacian for edge (u, v) in graph G. The energy Qe(x) of a hyperedge e satisfies

Qe(x) = max
u,v∈e

x⊤Luvx

Spielman & Srivastava (2008) introduced the following definition of the effective resistance of an
edge in the graph, and they sample the edge with probability proportional to its effective resistance,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

which results in sample complexityO
(

n
ε2 log n

)
. Due to the equivalence mentioned above between

spectral sparsification and matrix spectral approximation, the effective resistance of an edge e turns
out to be the leverage score of the row ai in the incidence matrix A, where ai is the row representing
e.
Lemma B.7 (Effective resistance and leverage score). For a graph G = (V,E,w), the effective
resistance of an edge e = (u, v) ∈ E is the quantity re = w(e) · (χu − χv)L

−1
G (χu − χv)

⊤, where
χi denotes the elementary row vector with a single non-zero entry in the i-th coordinate. Given a
matrix A ∈ Rn×d, the leverage score of row ai is the quantity τi = ai(A

⊤A)−1a⊤i . Let A be the
incidence matrix of G. Let ai be the row that represents the edge e. Then, we have re = τi.

Online leverage scores. We introduce a core technical tool given by (Cohen et al., 2020), which
gives the matrix spectral approximation in the online setting, i.e., the rows arrive sequentially in a
stream. When a row ai arrives, we only have access to matrix Ai, which is a part of the matrix A
that arrives before ai. Therefore, we consider the following online variation of leverage scores to
approximate the real leverage scores.
Definition B.8 (Online leverage scores). Given a matrix A ∈ Rn×d, let Ai denote the first i rows
of A, i.e., Ai = a1 ◦ . . . ◦ ai, where ◦ denotes the row-wise concatenation operator. The online
leverage score of row ai is the quantity ai(A

⊤
i Ai)

−1a⊤i .

The next statement shows that the online leverage score is in fact an overestimate of the leverage
score of ai in the whole matrix A.
Lemma B.9 (Monotonicity of leverage scores). (Braverman et al., 2020; Cohen et al., 2020;
Woodruff & Yasuda, 2023) Given a matrix A ∈ Rm×n, let τ(ai) denote the leverage score of
ai and let τOL(ai) denote the online leverage score of row ai. Then τOL(ai) ≥ τ(ai).

The next statement bounds the sum of online leverage scores, which bounds the sample complexity.

Theorem B.10 (Sum of online leverage scores). (Cohen et al., 2020) Given a matrix A ∈ Rm×n,
let τOL(ai) denote the online leverage score of row ai. Then

∑m
i=1 τ

OL(ai) = O (n log κ), where
κ = ∥A∥2 ·maxi∈[n] ∥A−1

i ∥2 is the online condition number of A.

With the above properties of monotonicity and bounded sum, one can generalize the following result
for the online matrix spectral approximation.
Theorem B.11 (Online row sampling). (Cohen et al., 2020) Given a matrix A ∈ Rm×n defined
by an insertion-only stream, let τOL(ai) denote the online leverage score of row ai. Then sampling
O (n log n log κ) rows with probability proportional to τOL(ai) gives a 2-spectral approximation to
A at all times.

C ONLINE HYPERGRAPH SPECTRAL SPARSIFIER

In this section, we present the complete analysis for our online sparsifier.

C.1 MISSING PROOFS IN SECTION 2

We provide the missing proofs in Section 2. For simplicity, we paste our algorithm in Algorithm 2.

We next show the correctness and bound the sample complexity of our algorithm. To begin with, we
state the result of the chaining argument from (Jambulapati et al., 2023).
Theorem C.1 (Correctness, see Theorem 10 in (Jambulapati et al., 2023)). Given a hypergraph
H = (V,E,w) and its associated graph G = (V, F) with valid weight assignment z, let pe be
chosen independently according to Definition 2.1. Let ρ = O

(
1
ε2 logm log r

)
. Suppose that we

sample each hyperedge e in H with probability p̂e = min{1, pe · ρ} and scale by 1
p̂e

if e is sampled.
Then, the resulting hypergraphH is a (1+ε)-spectral sparsifier for H with probability 1− 1

poly(m) .

Next, we assume that there is a way to define the weight matrix Zt locally such that the sampling
probability pet defined by pet ≥ w(e) ·maxu,v∈e auv(A

⊤
t ZtAt)

−1a⊤uv satisfies Definition 2.1 and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 Online Hyperedge Spectral Sparsifier

1: Require: Stream of m hyperedges for hypergraph H with rank r

2: Ensure: Spectral sparsifier Ĥ for H
3: Ĥ ← ∅, ρ← O

(
1
ε2 logm log r

)
, M← ∅

4: for hyperedge et do
5: zt ← zt−1 ∪ GETWEIGHTASSIGNMENT(M, et) {See Theorem C.2}
6: for u, v ∈ et do
7: Sample weighted row auv ·

√
zt,uv to M by online row sampling (Cohen et al., 2020)

8: {M is a 2-spectral approximation to Z
1/2
t At at all times t, i.e., 1

2 ·M
⊤M ⪯ A⊤

t ZtAt ⪯
2 ·M⊤M}

9: end for
10: for u, v ∈ et do
11: quv ← auv · w(et) · (M⊤M)−1 · a⊤uv
12: end for
13: pet ← min{1, 2ρ ·maxu,v∈et quv}
14: With probability pet , Ĥ ← Ĥ ∪ 1

pet
· et

15: Return Ĥ
16: end for

is smaller than the sum of online leverage scores of Z1/2A. We state the result as follows and defer
the discussion to Appendix C.2.

Theorem C.2. Given a graph G = (V, F) with weight assignment Z and incidence
matrix A and a hyperedge e ⊂ V with weight w(e), then there is a procedure
GETWEIGHTASSIGNMENT(Z1/2A, e) that assigns a weight zuv to each edge u, v ∈ e
such that it satisfies (1)

∑
u,v∈e zuv = w(e), and (2) maxu,v∈e auv(A

⊤ZA)−1a⊤uv =

O
(∑

u,v∈e τuv(Z
1/2A)

)
, where τ is the leverage score function.

Then, by Theorem C.1 and Theorem C.2, sampling each hyperedge e with probability defined by
pet ≥ w(e)·maxu,v∈e auv(A

⊤
t ZtAt)

−1a⊤uv gives a valid sparsifier with desired sample complexity.
Recall that this approach implies a suboptimal working memory. We apply the online row sampling
scheme to sample from Z1/2A, reducing the rows we store.

Notice that the chaining argument in (Jambulapati et al., 2023) requires that the sampling probabili-
ties be assigned independently. The following statement shows that pet is defined independently of
whether the previous hyperedges are sampled.

Lemma C.3. For each time t, the sampling probability pet is independent of the hyperedges that
have been sampled previously.

Proof. First, we stress that the construction of M by online row sampling from Z1/2A and sampling
the hyperedges are separate procedures with independent inner randomness. Consider a fixed stream
of hyperedges e1, · · · , em. Let Mt denote the matrix M at time t. When the inner randomness of
online row sampling procedure is fixed, the sequence of matrices M1, · · · ,Mm is also fixed. Then,
the sampling probabilities pet are defined independently, each based on the value of maxu,v∈e auv ·
w(et)·(M⊤M)−1·a⊤uv . Thus, it is independent of the hyperedges that have been sampled previously.

Next, we show the correctness of Algorithm 2.

Lemma C.4. Algorithm 2 outputs a (1 + ε)-hypergraph spectral sparsifier with probability 1 −
1

poly(m) .

Proof. By the guarantee of Theorem B.11, M is a 2-spectral approximation to Z
1/2
t At at all times

t. Then, the estimated quadratic form quv satisfies quv ≥ 2auv(A
⊤ZA)−1a⊤uv . In addition, by

Theorem C.2, our weight assignment satisfies
∑

u,v∈e zuv = w(e) for each e, so the sampling

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

probabilities pet satisfy Definition 2.1. Moreover, by Lemma C.3, the sampling probabilities are
defined independently of previously sampled hyperedges. Thus, we can apply Theorem C.1 directly
to show that Ĥ is a (1 + ε)-hypergraph spectral sparsifier with probability 1− 1

poly(m) .

Next, we upper bound the sample complexity and the working memory, where the latter is the
number of rows that we store in M to compute the sampling probabilities of the hyperedges.
Lemma C.5. With probability 1 − 1

poly(m) , Algorithm 2 samples O
(

n
ε2 log n logm log r

)
hyper-

edges. Moreover, it uses O
(
n log2 n logm

)
bits of working memory.

Proof. To bound the sample complexity, we only need to bound
∑m

t=1 pet , where pet ≤ ρ ·
maxu,v∈et quv due to our definition. Notice that the local weight assignment Zt+1 is defined by
the sparsified graph with weighted incident matrix M at time t, then by Theorem C.2, our weight
assignment guarantees that maxu,v∈et quv = O

(∑
u,v∈e τuv(M)

)
. Since M is a 2-spectral ap-

proximation to Z
1/2
t At at all times t, we have

m∑
t=1

max
u,v∈et

quv = O

(
m∑
t=1

∑
u,v∈e

τuv(Mt)

)

= O

 |F |∑
i=1

τOL
i (Z1/2A)

 ,

where Mt is the matrix M defined at time t, |F | is the number of rows in the incidence matrix A,
and τOL denotes the online leverage score operator. Utilizing Theorem B.10, we bound the sum of
online leverage scores on the RHS of the above equation by O (n log κ). Therefore, we have

m∑
t=1

max
u,v∈et

quv = O (n log κ) ,

where κ = ∥A∥2 ·maxi∈[n] ∥A−1
i ∥2 is the online condition number of A. We state an upper bound

on the online condition number.

Fact C.6 (see Corollary 2.4 in (Cohen et al., 2020)). Suppose that all hyperedge weights are integers
from [poly(n)], then we have log κ = O (log n).

Suppose that the condition in Fact C.6 is satisfied, we have
m∑
t=1

max
u,v∈et

quv = O (n log n) .

Then, due to our choice of overestimate parameter ρ, we have
m∑
t=1

pet =

m∑
t=1

ρ · max
u,v∈et

quv = O
(n

ε2
log n logm log r

)
.

Thus, we sample O
(

n
ε2 log n logm log r

)
hyperedges in expectation. Note that the inner random-

ness of sampling each hyperedge with probability pe is independent, then by standard concentra-
tion inequalities, the number of sampled hyperedges is O

(
n
ε2 log n logm log r

)
with probability

1− 1
poly(n) .

In addition, by the guarantee of online row sampling in Theorem B.11, it suffices to sample
O (n log n logm) rows in Z1/2A to construct the 2-approximation M. Since we only need to store
M to compute the sampling probabilities, Algorithm 2 uses O

(
n log2 n logm

)
bits of working

memory.

Combining Lemma C.4 and Lemma C.5, we have the following result for hypergraph spectral spar-
sification.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem C.7 (Online hypergraph spectral sparsifier). Given a hypergraph H = (V,E,w) with n
vertices, m hyperedges, and rank r, there exists an online algorithm with O

(
n log n log2 m

)
bits

of working memory that constructs a (1 + ε)-spectral sparsifier with probability 1 − 1
poly(m) by

sampling O
(

n
ε2 log n logm log r

)
hyperedges.

C.2 EXISTENCE OF ONLINE (γ, e) BALANCED WEIGHT ASSIGNMENT

In this section, we show how to construct the local weight assignment in Theorem C.2. In the offline
setting, the “balancing weight” method mentioned previously is used to upper bound the number of
samples. Suppose that for a hyperedge e, all edges u, v ∈ e have the same ratio τi(Z

1/2A)
zi

. Then,

pe = w(e) · auv(A⊤ZA)−1a⊤uv = w(e) · τuv(Z
1/2A)

zuv
.

Here, (u, v) can be any edge in e. Hence, we have zuv · pe = w(e) · τuv . Recall that our weight
assignment satisfies

∑
u,v∈e zuv = w(e), then summing up the previous equation for all u, v ∈ e

gives pe =
∑

u,v∈e τuv(Z
1/2A), which is exactly the sum of the leverage scores as we desired.

Since exact balanced weights are hard to find, we turn to the definition of γ-balanced weight assign-
ment, where the ratios τi(Z

1/2A)
zi

are within a γ fraction of each other. This only loses a constant
factor to the sample complexity.

We extend this definition to the online setting. Now, we have a weight matrix Z, an incidence matrix
A, and an incoming hyperedge e. We assign weights to each edge in e such that they satisfy the
definition of γ-balanced weights.
Definition C.8 (Online (γ, e)-balanced weight assignment). Given a weighted graph G = (V, F, z)
and a hyperedge e ⊂ V with weight w(e), we assign a weight zuv to each edge u, v ∈ e such that∑

u,v∈e zuv = w(e) and add (u, v) to G. We call it an online (γ, e)-balanced weight assignment if
it satisfies

γ · min
u,v∈e:zuv>0

τuv(Z
1/2A)

zuv
≥ max

u′,v′∈e

τu′v′(Z1/2A)

zu′v′
.

Kapralov et al. (2021) provided a greedy algorithm that shifts the weights from the edges with
a higher ratio to the edges with a lower ratio. They prove that such weight shift operations always
increase the spanning tree potential (ST-potential) of the graph by a certain amount, which is defined
as follows.

Ψ(G) = log

 ∑
T∈T(G)

∏
u,v∈T

zuv

 .

Here, T(G) is the set of all spanning trees of G. Since the ST-potential is upper bounded, this
process terminates in finite steps and results in a valid set of weights. We demonstrate that the
greedy algorithm can be applied in the online setting by showing that weight shift operations still
increase the ST-potential. Now, we formalize the definition of the weight shift operation.
Definition C.9 (Weight shift). Given a weighted graph G = (V, F, z), an edge (u, v) ∈ F , and a
weight shift factor λ ∈ R, the graph G + λ · uv is the weighted graph G′ = (V, F, z′) such that
z′uv = max{0, zuv + λ} and z′u′v′ = zu′v′ for all (u′, v′) ∈ F\{(u, v)}.

The following lemma upper bounds the ratio quv (see Definition 2.1) of a bridge in a graph, which
is later used to prove that we never set the weight of a bridge to 0; thus, the connectivity ensures that
the ST-potential is always well-defined.
Lemma C.10 (Upper bound, see Fact 2.8 in (Kapralov et al., 2021)). For any weighted graph
G = (V, F, z) and any edge (u, v) ∈ F , we have zuv · quv ≤ 1, with equality if and only if (u, v) is
a bridge.

The following lemma states the increment in the ST-potential when we operate a weight shift.
Lemma C.11 (Reduction lemma, see Lemma 5.7 in (Kapralov et al., 2021)). Given a weighted
graph G = (V, F, z) and real number γ > 1, let (u, v) ̸= (u′, v′) be two edges in F such that

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 3 Online (γ, e)-balanced weight assignment

1: Require: Given weighted graph G = (V, F,w), hyperedge e ⊂ V with weight w(e)
2: Ensure: Online (γ, e)-balanced weight assignment
3: Initialize: for all (u, v) ∈ e, set zuv = w(e)/|e|
4: G← (V, F ∪

⋃
u,v∈e(u, v), z)

5: While G is not online (γ, e)-balanced weight assignment do
6: Select u, v ̸= u′, v′ ∈ e such that quv > γ · qu′v′ and zu′v′ > 0 {quv is the ratio in

Definition 2.1}
7: λ← min{zuv, γ−1

2γ·quv
}

8: zuv ← zuv + λ
9: zu′v′ ← zu′v′ − λ

10: Return G

quv > γ · qu′v′ . Then for any λ ≤ zuv , shifting λ weight from (u, v) to (u′, v′) results in an
increment of at least log

(
1 + λγ · quv − λ · quv − λ2γ · q2uv

)
of the ST-potential of G.

With the above results, we show that the greedy algorithm terminates in a finite number of steps.

Theorem C.12. Algorithm 3 terminates in a finite number of steps.

Proof. This proof follows closely from the proof of Theorem 5.8 in (Kapralov et al., 2021), except
that we have a prefix-graph G and we only assign new weights to the newly arrived hyperedge e.

First, we note that G is never disconnected. Otherwise, we need to set λ = zuv for some bridge
(u, v) ∈ e so that it has zero weight after the weight shift. By Lemma C.10, we have zuv = 1

quv
>

γ−1
2γ·quv

. So, we would set λ to γ−1
2γ·quv

instead, which is a contradiction. Therefore, the ST-potential
Ψ(G) is always well-defined.

From Lemma C.11, whenever we make a weight shift in an unbalanced pair, the ST-potential of G
increases by

log
(
1 + λγ · quv − λ · quv − λ2γ · q2uv

)
.

Next, we classify our weight shift operation into two types. When λ = γ−1
2γ·quv

, the increment is at

least cγ := log 1+(γ−1)2

4γ > 0. When λ = zuv , the increment is positive, and zu′v′ is set to zero. We
specify these two cases as follows:

• 1. Ψ(G) at least increases by a constant cγ > 0.

• 2. Ψ(G) increases by a positive amount, and zu′v′ is set to zero.

Now, we define G0 to be the weighted graph at the initialization stage of Algorithm 3, and we define
G∞ to be a complete graph with node set V with uniform weight w(e) +

∑
(u,v)∈F zuv , where F

is the edge set before adding hyperedge e. Note that
∑

u,v∈e zuv = w(e) by definition, then by the
monotonicity of Ψ, Ψ(G) ≤ Ψ(G∞) for all G obtained in Algorithm 3. Therefore, there can be at
most Ψ(G∞)−Ψ(G)

cγ
steps of weight shifts of the first type.

For the second type, if zuv ̸= 0, then the number of zeros in the weight assignment for e increases
by 1, which only happens a finite number of times. Therefore, we only need to consider zuv = 0. In
this case, we switch the weight of (u, v) and (u′, v′), and set ∪u,v∈ezuv remains the same. Then, the
weight assignment z can only be in finite stages without reverse. Thus, the number of weight shifts
of type two is finite, and hence Algorithm 3 terminates in finite steps.

Due to the algorithm’s construction, it must output an online (γ, e)-balanced weight assignment
when it terminates. Therefore, we show the existence of such weight assignment.

Theorem C.13. Given a weighted graph G = (V, F, z) and a hyperedge e ⊂ V with weight w(e),
there exists an online (γ, e)-balanced weight assignment.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D FAST ONLINE HYPERGRAPH SPECTRAL SPARSIFIER

In this section, we give an online algorithm with a faster update time based on (Bansal et al., 2019).
We also include a result with success probability 1 − δ

poly(m) , which is used to give a streaming
algorithm later, and show that the dependence on δ only increases the space by a log log 1

δ factor.

As we mentioned previously, Bansal et al. (2019) constructed the associated graph by assigning
weight w(e) to each edge of the hyperedge e, and they sample e with probability

pe ∝ max
u,v∈e

ruv, where ruv = w(e) · (χu − χv)
⊤ · LG · (χu − χv).

We extend this procedure to the online setting by maintaining a 2-spectral approximation L̂G(t) to
the graph Laplacian LG(t) at all times using online row sampling (Cohen et al., 2020). Then, we
use L̂G(t) to define the sampling probabilities. Our algorithm is displayed in Algorithm 4.

Algorithm 4 Online Hyperedge Spectral Sparsifier

1: Require: Stream of m hyperedges for hypergraph H with rank r

2: Ensure: Spectral sparsifier Ĥ for H
3: Ĥ ← ∅, ρ← O

(
r4

ε2 log
m
δ

)
4: Let G be the associated graph of H . Let 1

2 · LG(t) ⪯ L̂G(t) ⪯ 2 · LG(t) for all t ∈ [m] {Use
online row sampling in Theorem B.11}

5: for hyperedge et do
6: for u, v ∈ et do
7: r̂u,v ← w(et) · (χu − χv)

⊤ · L̂G(t)
−1
· (χu − χv)

8: end for
9: pet ← min{1, ρ ·maxu,v∈et r̂u,v}

10: With probability pet , Ĥ ← Ĥ ∪ 1
pet
· et

11: end for

The energy of the hypergraph reported by Algorithm 4 can be written as a random variable∑
e∈E XeQe(x), where Xe is 1/pe with probability pe and 0 otherwise. Then, the error of our

approximation is
∑

e∈E(Xe−1) ·Qe(x). Bansal et al. (2019) simplified this term to a sub-Gaussian
random process Vx. Then, they bound its increment by a simpler Gaussian process Ux, which can
be further bounded by Talagrand’s chaining theorems. We show that their bound on the supremum
of Vx can be directly applied to prove our results. Intuitively, this is because the approximation
L̂G(t) always gives an overestimate of the effective resistance, which means that we over-sample
the hyperedges.

We remark that to show that the output Ĥ of Algorithm 4 satisfies the spectral sparsification guar-
antee in Eq. (1), it suffices to show its correctness for hypergraphs where all hyperedges have size
between [r/2, r] (see Lemma 5.2 of (Bansal et al., 2019)). In addition, we have (see Lemma 5.5 of
(Bansal et al., 2019))

2

r(r − 1)
x⊤LGx ≤ QH(x) ≤ 4

r
x⊤LGx for all x ∈ Rn,

if all hyperedges have size between [r/2, r]. Thus, we only need to show that

|QĤ(x)−QH(x)| ≤ ε

r2
x⊤LGx for all x ∈ Rn.

Next, we introduce a normalized version of Qe(x).
Definition D.1 (Normalized energy, implicitly defined in Section 5.2 of (Bansal et al., 2019)). For
a hyperedge e in H , let pe denote its sampling probability, and let Xe be a random variable that is
1/pe with probability pe and 0 otherwise. Setting z = L

1/2
G x and Yuv = L

−1/2
G LuvL

−1/2
G gives

Qe(x) = max
u,v∈e

x⊤Luvx = max
u,v∈e

z⊤Yuvz

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We define We(z) = maxu,v∈e z
⊤Yuvz and WH(z) =

∑
e∈E We(z). Let Ĥ be constructed with

sampling distribution pe and rescaled factor Xe, then WĤ(z) =
∑

e∈E XeWe(z).

With the normalized definition, our desired equation becomes

|WĤ(z)−WH(z)| ≤ ε

r2
for all z ∈ B2 (2)

where B2 is the unit-ℓ2-ball in the subspace restricted to the image of LG. We prove Eq. (2) in the
following statements. First, we draw an equivalence between ∥Yuv∥ and the effective resistance ruv .
Fact D.2. Let ∥ · ∥ denote the spectral norm of a matrix, we have ∥Yuv∥ = ruv .

Proof. Notice that Yuv = L
−1/2
G LuvL

−1/2
G , so we have

Yuv = w(e) · L−1/2
G · (χu − χv)

⊤(χu − χv) · L−1/2
G

= w(e) ·
(
(χu − χv) · L−1/2

G

)⊤
· (χu − χv) · L−1/2

G ,

where e is the weight of the corresponding hyperedge in H . Notice Yuv is a rank-1 matrix spanned
by vector (χu − χv) · L−1/2

G , thus, we have

∥Yuv∥ = λmax(Yuv) = w(e) · (χu − χv) · L−1/2
G ·

(
(χu − χv) · L−1/2

G

)⊤
= w(e) · (χu − χv) · L−1

G · (χu − χv)
⊤ = ruv.

Now, we state the bound on the supremum of the random process Vz defined in (Bansal et al., 2019).

Theorem D.3 (Supremum of random process, see Theorem 5.15 in (Bansal et al., 2019)). For a
hyperedge e in H , let G be the associated graph of H , we define the effective resistance of e as
re = maxu,v∈e ruv , where ruv is measured in graph G. Let S ⊂ E(H) be a subset of hyperedges
such that ∥Yuv∥ ≤ b for all u, v ∈ e and e ∈ S, where l is some constant. For independent
Rademacher variables εe and vector z ∈ Rn, let

Vz =
∑
e∈S

εeWe(Z).

Then, we have E
[
supz∈B2

Vz

]
= O

(√
b log n

)
, and for all u ≥ 0, we have

Pr

[
sup
z∈B2

Vz ≥ O
(√

b log n+ 2u
√
b
)]
≤ 2e−u2

.

With the above lemmas, we show the correctness of our online algorithm.

Lemma D.4. Let Ĥ be the output of Algorithm 4, it is a (1 + ε)-multiplicative spectral sparsifier
for H with probability 1− δ

poly(m) .

Proof. Fix a time t in the stream, let H be the hypergraph, and let Ĥ be the sparsifier. Notice that the
sampling probability of each hyperedge is solely determined by the calculation of the online leverage
scores τOL, which is independent of the hyperedges sampled from previous arrivals. Therefore, we
can view the sampling procedure as a re-ordered procedure.

We state an iterative sampling process introduced by (Bansal et al., 2019). Let τOL
e = maxu,v∈e τ

OL
uv ,

where τOL
uv is calculated at the time that e is sampled. We round each sampling probability pe up

to the nearest integer powers of 2. This ensures pe ≥ min{1, τOL
e · ρ}, while at most doubling the

expected sample complexity. Notice that hyperedges with pe = 1 do not contribute to the sampling
error, so we can assume τOL

e · ρ for all e ∈ E(H). Let Cj = {e ∈ E(H) | pe = 2−j}. Now,
we view the process of sampling in the following way. Let H0 = H , let l = O (log n), and for
i ∈ [l], Hi is obtained from Hi−1 by sampling each hyperedge e from the set

⋃
j∈{l−i+1,l−i,...,l} Cj

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

independently with probability 1/2 and doubling the weight of e if it is sampled. Thus, an edge
e ∈ Cj that survives in Hl is sampled with probability pe = 2−j and has weight Xe = 1/pe.

Now, for each i ∈ [l], we define

WHi
(z) =

l∑
j=0

∑
e∈Cj∩E(Hi)

max
(
1, 2i+j−l

)
We(z).

Since H0 = H and Hl = Ĥ , by triangle inequality we have

∣∣WĤ(z)−WH(z)
∣∣ ≤ l∑

i=1

∣∣WHi(z)−WHi−1(z)
∣∣ .

Taking the supremum over all z in B2 gives

sup
z∈B2

∣∣WĤ(z)−WH(z)
∣∣ ≤ l∑

i=1

sup
z∈B2

∣∣WHi(z)−WHi−1(z)
∣∣ .

From our definition of the iterative sampling procedure, we have

WHi
(z)−WHi−1

(z) =

l∑
j=ℓ−i+1

∑
e∈Cj∩E(Hi−1)

εe2
i+j−ℓ−1We(z),

where εe’s are independent Rademacher variables. Recall that we define We(z) =
maxu,v∈e z

⊤Yuvz. Then, for any e ∈
⋃

j∈{l−i+1,l−i,...,l} Cj , we have

∥Yuv∥ = re = max
u,v∈e

τuv ≤ τOL
e ≤ 2−j/ρ

where the first step follows from Fact D.2, the second step follows from the equivalence between
effective resistance and leverage score (see Lemma B.7), and the third step follows from the over-
sampling property of online leverage score (see Lemma B.9). So, ∥2i+j−1Yuv∥ ≤ 2i−l/ρ. Applying
Theorem D.3 with Vz = WHi

(z)−WHi−1
(z) and u =

√
log m

δ gives

Pr

[
sup
z∈B2

Vz ≥ O
(√

2i−l/ρ · log m

δ

)]
≤ δ

poly(m)
.

Recall that we set ρ = r4

ε2 log
m
δ . Taking a union bound over the l = O (log n) groups, we have

sup
z∈B2

|WĤ(z)−WH(z)| ≤ O

(
l∑

i=1

√
2i−l/ρ · log m

δ

)
= O

(ε

r2

)
,

with probability 1 − δ
poly(m) . Taking a union bound over m arrivals in the stream, the same bound

still holds with probability δ
poly(m) . Thus, we show the correctness of our algorithm.

The next statement bounds the sample complexity, which mainly follows by the upper bound on the
sum of online leverage scores.

Lemma D.5. With probability 1− 1
poly(m) , Algorithm 4 samples O

(
nr4

ε2 log n log m
δ

)
hyperedges.

In addition, it uses O
(
n log2 n logm

)
bits of working memory and poly(n) update time.

Proof. It suffices to upper bound the expected number of samples
∑

e∈E(H) pe. By our definition
of pe, it is upper bounded by∑

e∈E(H)

ρ · max
u,v∈e

τOL
uv ≤ ρ ·

∑
u,v∈E(G)

τOL(auv),

where A is the incidence matrix of the associated graph G. By Theorem B.10, the sum of the
online leverage score is bounded by O (n log κ), where κ = ∥A∥2 · maxi∈[n] ∥A−1

i ∥2 is the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

online condition number of A. Therefore, the expected number of samples is O (ρn log κ) =

O
(

nr4

ε2 log κ log m
δ

)
. Note that the inner randomness of sampling each hyperedge with probability

pe is independent, then by standard concentration inequalities, the number of sampled hyperedges
is O

(
nr4

ε2 log κ log m
δ

)
with probability 1 − 1

poly(m) . Suppose that the condition of Fact C.6 is
satisfied, then we have log κ = O (log n).

In addition, by the guarantee of online row sampling in Theorem B.11, it suffices to sample
O (n log n logm) rows in the incidence matrix A to construct the 2-approximation L̂G(t) to the
graph Laplacian LG(t) = A⊤A. Since we only need to store L̂G(t) to compute the sampling prob-
abilities, Algorithm 4 uses O

(
n log2 n logm

)
bits of working memory. Moreover, the calculation

of the sampling probabilities only requires poly(n) time.

With Lemma D.4 and Lemma D.5, we have the following result for the online hypergraph spectral
sparsifier.

Theorem D.6 (Online hypergraph spectral sparsifier). Given a hypergraph H = (V,E,w) with n
vertices and rank r, there exists an online algorithm that constructs a (1+ε)-spectral sparsifier with

probability 1− δ
poly(m) by samplingO

(
nr4

ε2 log n log m
δ

)
hyperedges, usingO

(
n log2 n logm

)
bits

of working memory and poly(n) update time.

Now, we specify the number of bits needed to store each sampled hyperedge.

Remark D.7 (Bits of precision). Suppose that all hyperedge weights are integers from [poly(n)],
we need O (r log n+ log logm) bits to store each sampled hyperedge.

Proof. First, we note that it requires r log n bits to store the nodes included in the hyperedge. Sec-
ond, for each reweighted hyperedge sampled by our algorithm, we round its weight w(e) to the near-
est power of (1+O (ε)). Recall that the energy of a vector x in hypergraph H is an additive function:
QH(x) =

∑
e∈E w(e) ·maxu,v(xu−xv)

2, therefore perturbing each w(e) by a (1+O (ε))-fraction
only has an additional (1+O (ε))-multiplicative error in our approximation guarantee. Note that we

sample each hyperedge with probability p proportional to w(et) · (χu−χv)
⊤ · L̂G(t)

−1
· (χu−χv),

where L̂G(t) is a 2-spectral sparsifier of the associated graph G of the hypergraph H , and we
rescale each sampled hyperedge by 1

p . Thus, assuming that all hyperedge weights are integers
from [poly(n)], all eigenvalues in LG(t) are at most poly(m), and so the sampling probability p is
at least 1

poly(m) for each hyperedge. The rescaling factor 1
p is then at most poly(m), so there are

O
(

logm
ε

)
choices of powers that we need to store. Therefore, we need O (log logm) bits to store

each sampled hyperedge, assuming that 1
ε ≤ polylog(m).

E STREAMING MODEL

In this section, we provide streaming algorithms for sparsification problems with nearly optimal
space. We start by introducing the well-known merge-and-reduce approach in achieving (1 + ε)-
coresets in a data stream. An online (1+ε)-coreset for graph sparsification for a graph G defined by
a stream of edges e1, . . . , em is a subset Ĝ of weighted edges of G such that for any x ∈ Rn and any
t ∈ [m], we have (1− ε)QGt

(x) ≤ Q
Ĝt

(x) ≤ (1+ ε)QGt
(x), where Gt is the set of hyperedges of

G that have arrived by time t.

Let S(·) → R>0 denote a mapping from input parameters to the sample complexity of an online
algorithm. The online coresets for graph sparsification sample S(n, logm, ε, δ) edges for an in-
put stream of length m on a graph with n nodes, accuracy ε ∈ (0, 1), and failure probability δ,
with high probability. The merge-and-reduce approach partitions the stream into blocks of size
S
(
n, logm, ε

2 log(mn) ,
δ

poly(mn)

)
and builds a

(
1 + ε

2 log(mn)

)
-coreset for each block, so that each

coreset can be interpreted as the leaves of a binary tree with height at most log(mn), as the binary
tree is balanced and has at most m leaves corresponding to the edges that arrive in the data stream.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For each node in the binary tree, a coreset of size S
(
n, logm, ε

2 log(mn) ,
δ

poly(mn)

)
is built from the

coresets representing the two children of the node. Assuming that the coreset construction admits a
merging procedure, i.e., by taking the graph consisting of the union of the weighted edges in each
of the coresets, then the root of the tree represents a coreset for the entire stream with distortion at

most
(
1 + ε

2 log(mn)

)log(mn)

≤ (1 + ε) and failure probability δ.

Cohen-Addad et al. (2023) improved the above framework by adding an online sampling procedure
ahead of the merge-and-reduce approach. Suppose that the online sampling procedure is nearly
optimal. Then the input stream of the merge-and-reduce approach is significantly shorter. In the
graph sparsification problem, there is an online algorithm that samples O

(
n
ε2 log n

)
edges, so the

coresets only have size S
(
n, log log n, ε

2 log log(n) ,
δ

polylog(n)

)
. This turns polylog(n) factors into

polylog log(n) factors, which is more space-efficient for huge graphs. We summarize this frame-
work in Algorithm 5. A figure illustrating the merge-and-reduce approach is shown in Figure 4.

Stream length m

Data stream:

Level 1:

Level 2:

Level 3:

Fig. 4: Merge and reduce framework on a stream of length m. The coresets at level 1 are precisely
the hyperedges in the block, while the coresets at level ℓ > 1 are

(
1 +O

(
ε

2 log(mn)

))
-coresets of

the hyperedges contained in the coresets of the children nodes in level ℓ− 1.

Algorithm 5 Streaming framework of (Cohen-Addad et al., 2023), using online sampling and
merge-and-reduce

1: Require: Stream S, online sampling procedure for S, merge-and-reduce procedure
2: Ensure: Coreset on S
3: for each update st in the stream S do
4: if st is sampled by online sampling then
5: Add the corresponding update to S ′
6: end if
7: Run merge-and-reduce on S ′
8: end for

E.1 GRAPH SPECTRAL SPARSIFIER

We show that the streaming framework produces space-optimal streaming algorithms for construct-
ing graph and hypergraph sparsifiers. First, in the offline setting, an efficient way to construct
(1 + ε)-coresets for graph sparsifier is given by (Batson et al., 2014), using only O

(
n
ε2

)
edges. We

provide the formal statement below.
Theorem E.1 (Offline algorithm for graph spectral sparsifier). (Batson et al., 2014) Given a graph
G = (V,E,w) with n vertices, there exists an algorithm that constructs a (1+ε)-spectral sparsifier
with probability 1− 1

poly(n) using O
(

n
ε2

)
edges in poly(n) time.

We then state the result for the online graph spectral sparsifier in (Cohen et al., 2020).
Theorem E.2 (Online algorithm for graph spectral sparsifier). (Cohen et al., 2020) Given a graph
G = (V,E,w) with n vertices and m edges defined by an insertion-only stream, there exists an
online algorithm that constructs a (1+ ε)-spectral sparsifier with probability 1− 1

poly(n) . The algo-

rithm samples O
(

n
ε2 log

2 n
)

edges and uses O
(
n log2 n

)
words of working memory and poly(n)

update time.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using the above subroutines, we show that our streaming algorithm has an optimal space up to a
poly(log log n) factor, assuming m = poly(n) in the graph.

Theorem E.3 (Streaming algorithm for graph spectral sparsifier). Given a graph G = (V,E,w)
with n vertices and m edges defined by an insertion-only stream, there exists an algorithm that
constructs a (1 + ε)-spectral sparsifier with probability 1 − 1

poly(n) . The algorithm stores n
ε2 ·

poly(log log n) edges, i.e., n
ε2 · log npoly(log log n) bits, and has poly(n) update time.

Proof. The proof relies on the decomposability of the coresets, i.e., if Ĝ1 is an ε-sparsifier of G1

and Ĝ2 is a ε′-sparsifier of G2, then Ĝ1 ∪ Ĝ2 is a ε′-sparsifier of G1 ∪ G2. This is simply because
the energy of a vector x on the graph G is the sum of the energy of all edges in G: QG(x) =∑

e∈G Qe(x). Then, the edges in the stream at level l + 1 in the merge-and-reduce binary tree
construct a ε′-sparsifier of the edges in the stream at level l. Thus, the accumulative error of the
coreset on the roof of a tree of height h is ε′h.

In our online framework Algorithm 5, the hyperedges at the bottom level is the output S ′ of the
online algorithm, which contains |S ′| = O

(
n
ε′2 log

2 n
)

edges by Theorem E.2. Thus, the height of

the merge-and-reduce data structure is h = O
(
log |S′|

|C|

)
, where |C| is the size of each coreset in

the merge-and-reduce structure. We define C by Theorem E.1, which selects Θ(n
ε′2) hyperedges.

Hence, h = O (log log n). Therefore, taking ε′ = O
(

ε
log logn

)
achieves an accumulative error of

at most O (ε′h = ε), which implies a (1 + ε)-sparsifier. Then, |C| = O
(

n
ε′2

)
= O

(
n
ε2 log log

2 n
)
.

So, we need at most O (|C| · h) = O
(

n
ε2 log log

3 n
)

words of memory in total. The update time of
our streaming algorithm directly follows from the results from Theorem E.2 and Theorem E.1.

Last, we remark that the online row sampling procedure in Theorem E.2 requires a sketch matrix
of O

(
n log2 n

)
rows to define the online sampling probabilities, which exceeds our desired space

complexity. Next, we introduce a method to optimize the size of the sketch matrix. In (Cohen
et al., 2020), when a row ai arrives, they define the sampling probability to be proportionally to the
leverage score of ai with respect to the matrix Ãi which consists of the edges sampled previously in
the online procedure. We replace the matrix Ãi with the matrix consisting of the edges in the roof
of the merge-and-reduce tree structure, which only has n

ε2 · poly(log log(n)) edges. Notice that the
analysis in (Cohen et al., 2020) works as long as the sampling probability is defined proportionally
to a 2-approximation of the online leverage score, with no assumption on independence, then since
our merge-and-reduce result is a (1 + ε)-spectral approximation at all times, our algorithm defines
a valid set of online sampling probabilities.

E.2 OPTIMIZING THE WORKING MEMORY OF THE ONLINE SUBROUTINE

In this section, we optimize the working memory required in our online subroutines, which is applied
as a black-box in our streaming algorithm for hypergraph sparsification in Algorithm 5. Recall that
both algorithms in Theorem C.7 and Theorem D.6 store a sketch matrix obtained by online row
sampling, which is used to define the sampling probabilities of the hyperedges. We show that the
sketch matrix can be replaced by the output of the streaming algorithm introduced in Appendix E.1
with fewer rows. The following is the improved statement of Theorem C.7.

Theorem E.4 (Online hypergraph spectral sparsifier). Given a hypergraph H = (V,E,w) with n
vertices, m hyperedges and rank r, there exists an online algorithm with n log n · poly(log logm)
bits of working memory that constructs a (1+ ε)-spectral sparsifier with probability 1− 1

poly(m) by
sampling O

(
n
ε2 log n logm log r

)
hyperedges.

Proof. Recall that we maintain a matrix M that is a 2-approximate spectral approximation of the
re-weighted incidence matrix Z

1/2
t At in Algorithm 2. We slightly change the procedure to define

M: when a hyperedge et+1 arrives, we run GETWEIGHTASSIGNMENT(M, e) to obtain the weight
assignment vector zt+1; Then, for each edge uv in the clique of et+1, we sample auv ·

√
zt+1,uv by

online row sampling and push it to the merge-and-reduce data structure if sampled (see Figure 4);
then we set M to be the weighted matrix obtained by the merge-and-reduce procedure.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

By the guarantee of Theorem E.3, sampling npoly(log logm) rows to M by the merge-and-reduce
process still gives a 2-approximation to Z

1/2
t At. Then, it suffices to show that the updated proce-

dure defines the online sampling probabilities for each hyperedge separately, independent of which
hyperedges are sampled previously. The analysis is the same as in Lemma C.3. The above pro-
cedure that determines M and sampling the hyperedges are separate procedures with independent
inner randomness. So, if we fix the inner randomness in the online row sampling process and the
merge-and-reduce tree in the construction of M, then the sampling probabilities are fix, and they do
not depend on which hyperedges are previously sampled.

We next show the improved statement of Theorem D.6.

Theorem E.5 (Online hypergraph spectral sparsifier). Given a hypergraph H = (V,E,w) with n
vertices and rank r, there exists an online algorithm that constructs a (1+ε)-spectral sparsifier with

probability 1− δ
poly(m) by samplingO

(
nr4

ε2 log n log m
δ

)
hyperedges, using n log n·poly(log logm)

bits of working memory and poly(n) update time.

Proof. We use the same construction in Theorem E.4. Recall that we do online row sampling on
the incidence matrix A and obtain a 2-approximation L̂G(t) to the Laplacian LG(t) = ATA of the
associated graph. Now, when an edge ai is sampled by the online row sampling procedure, we also
push it to the merge-and-reduce structure. By Theorem E.3, the output is still a 2-approximation to
A, and hence it suffices for our analysis in Appendix D.

E.3 HYPERGRAPH SPECTRAL SPARSIFIER

For the hypergraph sparsification problem, we apply the offline algorithms introduced by (Jambula-
pati et al., 2023; Lee, 2023) to merge the coresets in the two child nodes.

Theorem E.6 (Offline algorithm for hypergraph spectral sparsifier). Jambulapati et al. (2023); Lee
(2023) Given a hypergraph H = (V,E,w) with n vertices, m hyperedges and rank r, there ex-
ists an algorithm that constructs a (1 + ε)-spectral sparsifier with probability 1 − 1

poly(m) using

O
(

n
ε2 log n log r

)
hyperedges in Õ (mr) time.

Notice that there is no guarantee that we can find a (γ, e)-balanced weight assignment in Defini-
tion C.8 in polynomial time, so using the online algorithm given by Theorem E.4 as a subroutine
does not imply a fast update time. Therefore, we instead apply Theorem E.5 with poly(n) update
time as the online sampling subroutine. This will lose a poly(r) factor in the online sample com-
plexity; however, it is acceptable since the streaming framework reduces it to polylog(r). We also
include the result by applying Theorem E.4 in our statement, which has a better space bound.

Theorem E.7 (Streaming algorithm for hypergraph spectral sparsifier). Given a hypergraph H =
(V,E,w) with n vertices, m edges and rank r defined by an insertion-only stream, there exists an
algorithm that with probability 1− 1

poly(m) , constructs a (1+ε)-spectral sparsifier, storing n
ε2 log n ·

poly(log r, log logm) hyperedges, i.e., rn
ε2 log2 n · poly(log r, log logm) bits, and using poly(n)

update time. There is also an algorithm that stores n
ε2 log n log r · poly(log logm) hyperedges, i.e.

rn
ε2 log2 n log r · poly(log logm) bits, and uses exponential update time.

Proof. We have |S ′| = O
(

nr4

ε′2 log n logm
)

by Theorem E.5 and |C| = Θ
(

n
ε′2 log n log r

)
by

Theorem E.6. Thus, the height h = O
(
log |S′|

|C|

)
= O (log r + log logm). Taking ε′ = ε/h, our

total space usage is at most O (|C| · h) = O
(

n
ε′2 log n log r · (log r + log logm)3

)
words.

Each time a hyperedge arrives, the online algorithm needs poly(n) time to process by Theorem E.5.
In addition, we at most need to merge 2h coresets each with m′ = |C| edges, which takes Õ (m′r) ·
h = poly(n) update time by Theorem E.6. Thus, we need poly(n) update time in total.

If we use Theorem E.4 instead, then |S′| = O
(

n
ε2 log n logm log r

)
and h = O (log logm). Hence,

we need O (|C| · h) = O
(

n
ε2 log n log r · log log3 m

)
words of memory in total.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Notice that the failure probabilities of both the offline and the online subroutines are 1
poly(m) , thus,

the failure probability of our streaming algorithm follows by a union bound across all times.

E.4 HYPERGRAPH SPECTRAL SPARSIFIER - HIGH PROBABILITY

In this section, we provide a streaming algorithm that succeeds with probability at least 1− δ
poly(m) .

In our online algorithm in Theorem D.6, we lose a log 1
δ factor in the sample complexity to boost the

failure probability to δ, which may be prohibitively large if δ = 1
cn . With the streaming framework

of (Cohen-Addad et al., 2023), we reduce it to a log log 1
δ factor.

Theorem E.8 (Small failure probability). Given a hypergraph H = (V,E,w) with n vertices, m
hyperedges, and rank r defined by an insertion-only stream, there exists an algorithm that constructs
a (1 + ε)-spectral sparsifier with probability 1 − δ

poly(m) storing n
ε2 log n · poly(log r, log log

m
δ)

hyperedges, i.e., rn
ε2 log2 n · poly(log r, log log m

δ) bits.

Proof. First, we describe a deterministic offline algorithm that constructs a (1+ε)-hypergraph spec-
tral sparsifier. It loses more poly(n) factors at runtime while it does not fail. Since Theorem E.6
gives a randomized algorithm that finds the sparsifier with O

(
n
ε2 log n log r

)
hyperedges given any

hypergraph with non-zero probability, there must exist such a sparsifier. Let m denote the total num-
ber of hyperedges. We simply traverse through all possible groups ofO

(
n
ε2 log n log r

)
hyperedges,

where there are
(

m
O(n

ε2
logn log r)

)
of them. For each group, we test it on the net of points x ∈ Rn

given by the chaining argument in (Jambulapati et al., 2023) and report this group of hyperedges if
it successfully approximates the energy of the hypergraph QH(x).

Then, we use the online algorithm in Theorem E.5 with failure probability δ
poly(m) to construct the

stream S ′ and the offline deterministic algorithm mentioned above to construct the coresets. The
calculation of space complexity follows from the same argument in Theorem E.7. Here, we have
|S ′| = O

(
nr4

ε′2 log n log m
δ

)
by Theorem E.5 and |C| = Θ

(
n
ε′2 log n log r

)
by Theorem E.6. Thus,

the height h = O
(
log |S′|

|C|

)
= O

(
log r + log log m

δ

)
. Taking ε′ = ε/h, our total space usage is at

most O (|C| · h) = O
(

n
ε′2 log n log r · (log r + log log m

δ)
3
)

words. Unfortunately, we do not have
the poly(n) update time guarantee due to the offline deterministic algorithm.

Notice that the failure probability of the online subroutines is δ
poly(m) , and the offline subroutine

is deterministic, thus, the failure probability of our streaming algorithm follows by a union bound
across all times.

E.5 ADVERSARIALLY ROBUST HYPERGRAPH SPARSIFICATION

In this section, we apply the result in Appendix E.4 to achieve an adversarially robust streaming al-
gorithm. The adversarially robust model can be captured by the following two-player game between
a streaming algorithm P and an adversary A that produces adaptive inputs to P . Given a query
function Q, the game proceeds over m rounds, and in the t-th round:

(1) A determines an input st, which possibly depends on previous outputs from P .
(2) P processes st and outputs its answer Zt to the query function Q.
(3) A receives and records the response Zt.

The goal of P is to produce a correct answer Zt to the query function Q based on the previously
arrived data stream {s1, . . . , st} sent by the adaptive adversary A, at all times t ∈ [m]. We now
provide an adversarially robust streaming algorithm for hypergraph sparsification.

We begin with the definition of the ε-flip number, which upper bounds the number of multiplicative
increments of the output of a streaming algorithm.
Definition E.9 (ε-flip number). Let ε ≥ 0 and let y = (y0, y1, . . . , ym) be a sequence of real
numbers. Then, the ε-flip number λε,m(y) of the sequence y is the maximum k for which there exists
0 ≤ i1 < . . . < ik ≤ m so that yij−1 /∈ (1 ± ε)yij for every j = 2, 3, . . . , k. In particular, for a

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

function g : Rn → R and a class of data stream S ⊂ [n]m, the (ε,m)-flip number λε,m(g) of g over
S is the maximum ε-flip number of the sequence ȳ = (y0, y1, . . . , ym) defined by yt = g (s1, . . . , st),
over all choices of data streams S = (s1, . . . , sm) ∈ S.

Ben-Eliezer et al. (2020) introduced a framework for vector-based problems, i.e., one computes a
target function g on the frequency vector induced by the data stream, which transforms any non-
robust streaming algorithm to an adversarially robust streaming algorithm. The core idea is that we
only change the estimate ĝ when it increases by an ε-fraction, so if the ε-flip number is small, then
the total number of input streams that we need to handle is also relatively small, and we can union
bound across them by setting a sufficiently small failure probability δ for the non-robust streaming
algorithm. We adapt their framework to solve the sparsification problems.

Robust Graph and Hypergraph Sparsification. We start by introducing an adversarially robust
streaming algorithm for graph sparsification. A challenge in our problem is that our output is a
sparsified graph that preserves the energy of all vectors, which is not a real number, so we need to
define a proper way to change the output. Recall that the energy of a vector x on G is the quadratic
form xTLGx, where LG is the graph Laplacian. Thus, we use the eigenvalues of LG to decide
whether we change the output. We state the formal algorithm and its guarantees as follows.

Theorem E.10 (Robust graph sparsification). Given a (multi-)graph G = (V,E,w) with n vertices
and m edges defined by an insertion-only stream, there exists an adversarially robust algorithm that
constructs a (1+ε)-spectral sparsifier with probability 1− δ

poly(m) storing n
ε2 ·poly(log n, log log

m
δ)

edges, i.e., n
ε2 · poly(log n, log log

m
δ) bits.

Proof. First, we bound the ε-flip number in our problem, which is the number of times that LG′ ⪰
(1+ ε) ·LG, where G′ is a graph later in the data stream. Recall that our stream is insertion-only, so
all the eigenvalues of G are increasing. Note that the flip does not occur if none of the eigenvalues
of G increases by an ε-fraction. Here, without loss of generality, we assume that all eigenvalues are
non-zero, since we can consider it a flip when the eigenvalue first becomes non-zero, and there are at
most n such flips. Assuming that all edge weights are within poly(n), the eigenvalues at the end of
the stream are upper bounded by mpoly(n), and so each eigenvalue can increases by an ε-fraction
for at most logm

ε times. Thus, the ε-flip number is at most λε,m(G) = n logm
ε .

We next state the formal algorithm for robust graph sparsification. We run a non-robust streaming
algorithm with parameters ε′ = ε

8 and δ′ = δ

poly(m)·(mλ)Tλ
, where λ := λ ε

8 ,m
(G) and log T are the

bits of precision. For the sequence of outputs Ĝ1, . . . , Ĝm, let G1 = Ĝ1, we set Gt = Gt−1 when all
eigenvalues of LĜt

are within a (1 + ε
8)-fraction of that of LGt−1

, otherwise we set Gt = Ĝt. The
output to the adversary is the sequence G1, . . .Gm.

We prove the correctness of the algorithm as follows. Consider a fixed time t when we change the
output, and let t′ be any time after t before the next output change. Note that Ĝt′ is a ε

8 -sparsifier
of Gt′ and all eigenvalues of LĜt′

are within a (1 + ε
8)-fraction of that of LĜt

, so all eigenvalues
of LGt′ are within a (1 + ε

2)-fraction of that of LGt . This implies that LGt′ ⪯ (1 + ε
2) · LGt , and

so x⊤LGt′x ≤ (1 + ε
2) · x

⊤LGt
x for all vectors x ∈ Rn. Therefore, Gt′ = Ĝt is an ε-sparsifier

of Gt′ . Moreover, we can assume the adversary to be deterministic (see the proof of Lemma 3.5
in (Ben-Eliezer et al., 2020). Then, the number of output sequences is at most

(
m
λ

)
Tλ and they

at most determine
(
m
λ

)
Tλ choices of input streams. Since we set the failure probability as δ′ =

δ

poly(m)·(mλ)Tλ
, we can union bound across all choices of input streams, ensuring the correctness of

our algorithm.

By Theorem E.8, we have that the non-robust streaming algorithm with parameters ε, δ stores
n
ε2 log n · poly(log log

m
δ) edges. Therefore, since we require log T = O (log n+ log logm) bits

of precisions, the robust algorithm stores n
ε′2 log n · poly(log log

m
δ′) =

n
ε2 log

2 n · poly(log log m
δ)

edges.

Next, we apply the above result to construct a robust hypergraph sparsification algorithm. Note that
the energy of a vector x on a hyperedge e is defined as the maximum energy of x on each edge u, v in

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

the clique of e, so we cannot directly define the ε-flip number by the sparsified hypergraph. Instead,
we run a separated robust subroutine that constructs a sparsifier for the associated graph with higher
accuracy, then we decide whether to change the output by the eigenvalues of the sparsified associated
graph. We introduce the formal algorithm and analyze its guarantees as follows.

Theorem E.11 (Robust hypergraph sparsification). Given a graph H = (V,E,w) with n ver-
tices, m edges, and rank r defined by an insertion-only stream, there exists an adversarially ro-
bust algorithm that constructs a (1 + ε)-spectral sparsifier with probability 1 − δ

poly(m) storing
n
ε2 poly(log n, log r, log log

m
δ) hyperedges and nr2

ε2 ·poly(log n, log log
m
δ) edges in the associated

graph, i.e., nr3

ε2 · poly(log n, log r, log log
m
δ) bits in total.

Proof. We first state the formal algorithm for robust hypergraph sparsification. We run the robust
streaming graph sparsification algorithm in Theorem E.10 on the associated graph G of the hyper-
graph H defined by the stream with parameters ε̃ = ε

8r and δ̃ = δ
2r , and we have the outputs

G1, . . . ,Gm. We run a non-robust hypergraph sparsification algorithm separately with parameters
ε′ = ε

8 and δ′ = δ

poly(m)·(mλ)Tλ
, where λ := λ ε

8r ,m
(G) and log T are the bits of precision, and we

have the outputs Ĥ1, . . . , Ĥm. Let H1 = Ĥ1, we set Ht = Ht−1 if Gt = Gt−1, otherwise we set
Ht = Ĥt. The output to the adversary is the sequenceH1, . . .Hm.

We prove the correctness of the algorithm as follows. Consider a fixed time t when we change
the output, and let t′ be any time after t before the next output change. We note that t is also the
time when the robust graph sparsification algorithm changes its output. Then, from the analysis in
Theorem E.10, we have LGt′ ⪯ (1 + ε

2r) · LGt and x⊤LGt′x ≤ (1 + ε
2r) · x

⊤LGtx for all vectors
x ∈ Rn. Recall that the energy of x on the hypergraph H is QH(x) =

∑
e∈E maxu,v∈e x

⊤Luvx,
which is at least 1

r ·
∑

e∈E

∑
u,v∈e x

⊤Luvx = 1
r · x

⊤LGx, therefore we have

QH(x) ≤ QH′(x) +
ε

2r
· x⊤LGt

x ≤ (1 +
ε

2
) ·QH′(x).

Therefore, Ht′ = Ĥt is an ε-sparsifier of Ht′ . Since we set the failure probability as δ′ =
δ

poly(m)·(mλ)Tλ
, we can union bound across all

(
m
λ

)
Tλ choices of input streams, ensuring the cor-

rectness of our algorithm.

By Theorem E.8, we have that the non-robust streaming algorithm with parameters ε′, δ′

stores n
ε2 log n · poly(log r, log log

m
δ) edges. Note that the number of times that we change

the output hypergraph is λ = O
(

nr log(mr)
ε

)
. Therefore, since we require log T =

O (r log n+ log logm) bits of precisions, our algorithm stores n
ε′2 log n · poly(log r log log

m
δ′) =

n
ε2 · poly(log n, log r, log log

m
δ) hyperedges. In addition, by Theorem E.10 the robust graph sparsi-

fication algorithm for G with parameters ε̃, δ̃ stores nr2

ε2 · poly(log n, log log
m
δ) edges.

E.6 GRAPH MIN-CUT APPROXIMATION

In this section, we apply the streaming framework to solve the graph min-cut approximation prob-
lem, which asks for a (1 + ε)-approximation to the size of the min-cut. First, we introduce a relax-
ation to the graph spectral sparsifier called the graph for-each spectral sparsifier, which is a graph Ĝ
that satisfies, for any given vector x ∈ Rn, it preserves the energy of x in the original graph G with
probability δ.

Theorem E.12 (Offline algorithm for graph for-each sparsifier). (Ding et al., 2024) Given a graph
G = (V,E,w) with n vertices and m edges, there exists an algorithm that constructs a (1 + ε)-for-
each spectral sparsifier with probability 1− 1

poly(n) . It samples Õ
(
n
ε

)
edges and uses Õ

(
n
ε

)
words

of working memory and Õ (m) update time.

Ding et al. (2024) proposed an algorithm for min-cut approximation in the offline setting using the
above procedure and graph for-all sparsifiers: We first utilize the graph spectral sparsifier to give a
2-approximation to all cuts. Then, let c∗ denote the minimum cut in the sparsifier, we select a set S
that contains all cuts within a factor of 4 of c∗, so S contains the actual minimum cut. It is known

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

that there are at most nO(C) cuts that are within a C-factor to the min-cut (Karger, 2000) for any
C ≥ 1, which means that S has at most nO(1) items. Thus, we can obtain a (1 + ε)-graph for-each
sparsifier and select the cut in S that has the minimum energy on the for-each sparsifier. We can
union bound over the failure events of the graph for-each sparsifier across each cut query S, so we
obtain a (1 + ε)-estimation to the min-cut with high probability.
Theorem E.13 (Offline algorithm for min-cut approximation). (Ding et al., 2024) Given a graph
G = (V,E,w) with n vertices and m edges, there exists an algorithm that provides a (1 + ε)-
approximation to the min-cut with probability 1− 1

poly(n) . It samples Õ
(
n
ε

)
edges and uses Õ

(
n
ε

)
words of working memory and poly(n) update time.

Ding et al. (2024) applied merge-and-reduce directly to the input data stream to achieve a streaming
algorithm, which loses an extra log n factor. We show that using the aforementioned framework,
where we first obtain an online graph spectral sparsifier and then run the offline algorithm in each
coreset, we can improve this log n factor to a log 1

ε while maintaining a poly(n) update time, achiev-
ing more efficient space.
Theorem E.14 (Streaming algorithm for graph min-cut approximation). Given a graph G =
(V,E,w) with n vertices and m edges defined by an insertion-only stream, there exists a streaming
algorithm that provides a (1+ε)-approximation to the min-cut with probability 1− 1

poly(n) . It stores
n
ε · polylog(n,

1
ε) edges, i.e., n

ε · polylog(n,
1
ε) bits, and uses poly(n) update time.

Proof. We use the online algorithm in Theorem E.2 to generate the stream S ′. It produces an
online for-all sparsifier, which generalizes an online cut sparsifier for the graph. We use the offline
algorithm for for-each sparsifier in Theorem E.12 to construct the coresets. Then, the coreset on the
roof of the binary tree is a (1 + ε)-for-each sparsifier by setting ε′ = ε/h. Then, we can use the
same method in Theorem E.13 to select a set S that contains the min-cut and output the cut with the
minimum energy on the (1 + ε)-for-each sparsifier. The union bound argument in Theorem E.13
gives the correctness of our streaming algorithm.

The calculation of the space complexity and the update time is similar to that of Theorem E.7. From
Theorem E.12 and Theorem E.2, we have |S ′| = O

(
n
ε2 log

2 n
)

and |C| = Θ
(
n
ε polylog n

ε

)
, so

the height of the merge-and-reduce data structure is h = log |S′|
|C| = O

(
log 1

ε

)
. Thus, we require

O (|C| · h) = n
ε ·polylog(n,

1
ε) words of space in total. The update time of the streaming algorithm

is upper bounded by the bounds in Theorem E.2 and Theorem E.12.

F SLIDING WINDOW MODEL

In this section, we consider the sliding window model. Although the merge-and-reduce procedure
produces a coreset for an insertion-only stream in a straightforward way, it fails for the sliding win-
dow model due to the expiration of elements at the beginning of the data stream by the sliding win-
dow. Since coresets at earlier blocks of the streams are no longer valid, then the coreset at the root of
the stream would no longer be accurate. To resolve this issue, Woodruff et al. (2023b) observed that
we can once again partition the stream into blocks consisting of S

(
n, logm, ε

2 log(mn) ,
δ

poly(mn)

)
hyperedges. However, instead of creating an offline coreset for the hyperedges in each block of up-
dates, we create an online coreset for the elements in the reverse order of their arrival. Specifically,
as the hyperedges in each block and each coreset are explicitly stored, we can create a synthetic data
stream that consists of the hyperedges in the reverse order and then we can feed the synthetic stream
as input to the online coreset construction. In this way, this effectively reverses the stream, so that
the sliding window always corresponds to the beginning of the stream. Crucially, the online coreset
construction implies correctness over any prefix of the reversed stream, which translates to correct-
ness over any suffix of the input stream, including the sliding window. For the sake of completeness,
we present this approach in Algorithm 6.

The following proof shows the correctness of the framework in Algorithm 6. It uses induction and
is entirely standard, adapting the approach in (Woodruff et al., 2023b).
Theorem F.1. Let e1, . . . , em be a stream of hyperedges, let ε ∈ (0, 1) be an approximation param-
eter, and let H = {em−W+1, . . . , em} be a hypergraph defined by the W most recent hyperedges.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 6 Algorithm for hypergraph sparsification in the sliding window model via merge-and-
reduce and online coresets, adapted from (Woodruff et al., 2023b)

1: Require: Hyperedges e1, . . . , em on n vertices, accuracy parameter ε ∈ (0, 1), failure proba-
bility δ ∈ (0, 1), and window size W > 0

2: Ensure: Hypergraph sparsification of the W most recent hyperedges
3: Let CORESET(H, ε, δ) be an online coreset construction that samples S(n, log(mn), ε, δ)) hy-

peredges, where H has n vertices and m hyperedges
4: M ← O

(
S
(
n, log(mn), ε

2 log(mn) ,
δ

(mn)2

))
5: Initialize coresets C0, C1, . . . , Clog(mn) ← ∅
6: for each hyperedge et with t ∈ [m] do
7: if C0 does not contain M hyperedges then
8: Prepend et to C0, i.e., C0 ← {et} ∪ C0

9: else
10: Let i be the smallest index such that Ci = ∅
11: Ci ← CORESET

(
H̃, ε

2 log(mn) ,
δ

(mn)2

)
, where H̃ = C0 ∪ . . . ∪ Ci−1

12: {H̃ is an ordered set of weighted hyperedges}
13: For j = 0 to j = i− 1, reset Cj ← ∅
14: C0 ← {et}
15: end if
16: Return the ordered set C0 ∪ . . . ∪ Clog(mn), in reverse
17: end for

Suppose there exists a randomized algorithm that with probability at least 1 − δ, outputs an on-
line coreset algorithm for hypergraph sparsification using S(n, logm, ε, δ) hyperedges. Then there
exists a randomized algorithm that with probability at least 1 − δ, outputs a (1 + ε)-hypergraph

sparsification in the sliding window model, using O
(
S
(
n, logm, ε

2 log(mn) ,
δ

(mn)2

)
log(mn)

)
hy-

peredges.

Proof. Consider Algorithm 6, where CORESET(H, ε, δ) is a randomized algorithm that, with prob-
ability at least 1 − δ, computes a (1 + ε)-approximate online coreset for hypergraph sparsification
on an input hypergraph H that has n nodes and m hyperedges.

We first claim that for each index i, Ci is a
(
1 + ε

2 log(mn)

)i
online coreset for hypergraph spar-

sification for 2i−1M hyperedges. Indeed, note that Ci can only be non-empty if at some time,
the coreset C0 contains M hyperedges and the coresets C1, . . . , Ci−1 are all non-empty. Then by
the correctness of the subroutine CORESET, Ci is a

(
1 + ε

2 log(mn)

)
online coreset for the hyper-

edges in C0 ∪ . . . ∪ Ci−1 at some point during the stream. It follows that by induction, Ci is a(
1 + ε

2 log(mn)

)(
1 + ε

2 log(mn)

)i−1

=
(
1 + ε

2 log(mn)

)i
online coreset for M +

∑i−1
j=1 2

j−1M =

2i−1M hyperedges.

Observe that Algorithm 6 inserts the latter hyperedges to the beginning of C0. Hence, the stream
is fed in reverse to the merge-and-reduce procedure. In other words, for any W ∈ [2i−1, 2i), the
reverse of C0 ∪ . . .∪Ci provides a (1 + ε)-hypergraph sparsifier for the W most recent hyperedges
in the data stream.

Moreover, there are at most m hyperedges in the data stream. For each hyperedge, there are at most
log(mn) coresets constructed by the subroutine CORESET, corresponding to the height of the tree.
Because each subroutine has failure probability at most δ

(mn)2 , then the total failure probability is at
most δ by a union bound. This completes the argument for correctness.

It remains to justify the space complexity. To that end, observe that there are at most O (log(mn))
online coreset constructions C0, . . . , Clog(mn) simultaneously stored by the algorithm. Since each

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

online coreset construction samples S
(
n, logm, ε

2 log(mn) ,
δ

(mn)2

)
hyperedges, then the total num-

ber of stored hyperedges is O
(
S
(
n, logm, ε

2 log(mn) ,
δ

(mn)2

)
log(mn)

)
, as claimed.

We give the following result for hypergraph sparsification in the sliding window using the above
framework.
Theorem F.2. Given a hypergraph H = (V,E) with n vertices, m hyperedges, and rank r defined
by an insertion-only stream, there exists an algorithm that constructs a (1+ ε)-spectral sparsifier in
the sliding window model with probability 1 − 1

poly(n) . It stores n
ε2 polylog(m, r) hyperedges, i.e.,

rn
ε2 log npolylog(m, r) bits.

G ADDITIONAL EXPERIMENTAL SETUP

In this section, we provide the choices of the hyperparameters of our experiments described in Sec-
tion 4. We use Col, Cof, and Col str to denote the constant factors of the online algorithm, the offline
algorithm that constructs the coresets, and the prefix online substream in our streaming algorithm,
respectively. The values of them are shown in Table 1.

Synthetic Graph (n = 100, m = 50000)

Budget 500 1000 1500 2000 2500 3000

Col 0.001 0.01 0.15 0.35 0.55 0.75
Coff 1.1 2.2 3.3 4.4 5.5 6.6
Col str 2.0 2.5 5.5 8.0 11.5 15.0

Facebook Graph (n = 1034, m = 53498)

Budget 10000 15000 20000 25000

Col 0.145 0.35 0.8 1.3
Coff 1.333 2.333 3.333 4.5
Col str 1.0 1.8 4 5.5

Comparison under Different m, Synthetic Graph (n = 100, Budget=1500)

m 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Col 0.3 0.2 0.15 0.1 0.08 0.05 0.04 0.02 0.005 0.002
Coff 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Col str 15.0 7.0 5.5 4.8 4.3 4.05 3.75 3.75 3.7 3.2

Table 1: Constant factors (Col, Coff, Col str) for the three experiments.

We also include the (amortized) run-time of our algorithm in Table 2, showing that our algorithm is
time-efficient in practice.

Note n m Budget Batched online Merge-and-reduce Our algorithm
Synthetic graph 50 2500 750 2.0× 10−4 s 2.9× 10−4 s 4.9× 10−4 s
Synthetic graph 100 10000 2500 6.1× 10−4 s 3.0× 10−4 s 5.6× 10−4 s
Synthetic graph 200 40000 10000 7.6× 10−4 s 4.7× 10−4 s 6.1× 10−4 s
Facebook graph 1034 53498 15000 4.0× 10−2 s 2.3× 10−2 s 9.6× 10−2 s

Table 2: Comparison of running times in different experiments.

36

	Introduction
	Our Contributions
	Preliminaries

	Online Hypergraph Spectral Sparsifier
	Streaming Model
	Experiments
	Our Results
	Summarize of Our Results
	Concurrent and independent work

	Preliminaries
	Online Hypergraph Spectral Sparsifier
	Missing Proofs in Section 3
	Existence of Online Gamma Balanced Weight Assignment

	Fast Online Hypergraph Spectral Sparsifier
	Streaming Model
	Graph Spectral Sparsifier
	Optimizing the Working Memory of the Online Subroutine
	Hypergraph Spectral Sparsifier
	Hypergraph Spectral Sparsifier - High Probability
	Adversarially Robust Hypergraph Sparsification
	Graph Min-Cut Approximation

	Sliding Window Model
	Additional Experimental Setup

