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Abstract

Kernel density estimation (KDE) is integral to a range of generative and discrimi-
native tasks in machine learning. Drawing upon tools from the multidimensional
calculus of variations, we derive an optimal weight function that reduces bias in
standard kernel density estimates for density ratios, leading to improved estimates
of prediction posteriors and information-theoretic measures. In the process, we
shed light on some fundamental aspects of density estimation, particularly from
the perspective of algorithms that employ KDEs as their main building blocks.

1 Introduction

One fundamental component for building many applications in machine learning is a correctly
estimated density for prediction and estimation tasks, with examples ranging from classification
[1, 2], anomaly detection [3], and clustering [4] to the generalization of value functions [5], policy
evaluation [6], and estimation of various information-theoretic measures [7, 8, 9]. Nonparametric
density estimators, such as the nearest neighbor density estimator or kernel density estimators
(KDEs), have been used as substitutes for the probability density component within the equation of
the posterior probability, or the density-ratio equation, with theoretical guarantees derived in part
from the properties of the density estimators used [10, 11].

Given a specific task which uses the ratio between two densities, p1(x) and p2(x) at a point x ∈ RD,
we consider the ratio handled by the ratio of their corresponding two KDEs, p̂1(x) and p̂2(x):

p̂1(x)

p̂2(x)
−−−−−→
Estimate

p1(x)

p2(x)
. (1)

Each estimator is a KDE which counts the effective number of data within a small neighborhood of
x by averaging the kernels. The biases produced by the KDEs in the nominator and denominator
[12, Theorem 6.28] are combined to produce a single bias of the ratio, as demonstrated in Fig. 1.
For example, the ratio p1(x)

p2(x)
at x0 in Fig. 1(a) is clearly expected to be underestimated because of

the dual effects in Fig. 1(b): the underestimation of the nominator p1(x0) and the overestimation
of the denominator p2(x0). The underestimation is attributed to the concavity of p1(x) around
x0 which leads to a reduced number of data being generated compared to a uniform density. The
underestimation of p2(x) can be explained similarly. The second derivative—Laplacian—that creates
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Figure 1: Estimation of the density ratio p1(x0)

p2(x0)
and bias correction using the weight function α(x).

(a) Two density functions, p1(x) and p2(x), and the point of interest x0 for ratio estimation. Two
regions delineated by dashed lines are magnified in (b). (b) The concavity and convexity of the
density functions around x0 and their KDEs. Concave density p1(x) generates less data than the
uniform density of p1(x0) around x0 resulting in an underestimation. For a similar reason, convex
density p2(x) results in an overestimation. The two biases are combined into an underestimation of
the ratio. (c) KDE augmented with a nonsymmetric weight function α(x) can alleviate this bias by
transforming the bias of p̂2(x) to an appropriate underestimation from an overestimation.

the concavity or convexity of the underlying density is a dominant factor that causes the bias in this
example.

The Laplacian of density has been used to produce equations in various bias reduction methods, such
as bias correction [13, 14, 15] and smoothing of the data space [16, 17]. However, the example in
Fig. 1 motivates a novel, position-dependent weight function α(x) to be multiplied with kernels in
order to alleviate the bias. For example, to alleviate the overestimation of p2(x0), we can consider the
α(x) shown in Fig. 1(c) that assigns more weight on the kernels associated with data located to the left
of x0, which is a low-density region. When the weighted kernels are averaged, the overestimation of
p̂2(x0) can be mitigated or potentially even underestimated. Meanwhile, the bias of p̂1(x0) remains
unchanged after applying the weights since p1(x) is symmetric around x0. This allows the reversed
underestimation of p2(x0) from the initial overestimation to effectively offset or counterbalance the
underestimation of p1(x0) within the ratio.

We derive the α(x) function that performs this alleviation over the entire data space. The appropriate
information for α(x) comes from the geometry of the underlying densities. The aforementioned
principle of bias correction leads to novel, model-based and model-free approaches. Based on the
assumption of the underlying densities, we learn the parameters for the densities’ first and second
derivatives and then variationally adjust α(x) for the estimator to create the variationally weighted
KDE (VWKDE). We note that the model for those densities and their derivatives need not be exact
because the goal is not to achieve precise density estimation but rather to accurately capture the
well-behaved α(x) for the KDE ratios.

Applications include classification with posterior information and information-theoretic measure
estimates using density-ratio estimation. Calibration of posteriors [18] has been of interest to
many researchers, in part, to provide a ratio of correctness of the prediction. Plug-in estimators
of information-theoretic measures, such as the Kullback-Leibler (K-L) divergence, can also be
advantageous. For K-L divergence estimation, similar previous formulations for the variational
approach have included optimizing a functional bound with respect to the function constrained
within the reproducing kernel Hilber space (RKHS) [19, 20, 21]. These and other methods that use
weighted kernels (e.g., [22, 23, 24]) take advantage of the flexibility offered by universal approximator
functions in the form of linear combinations of kernels. These methods, however, do not adequately
explain why the weight optimization leads to an improved performance. Based on a derivation of how
bias is produced, we provide an explicit modification of weight for standard kernel density estimates,
with details of how the estimation is improved.

The remainder of the paper is organized as follows. In Section 2, we introduce the variational
formulation for the posterior estimator and explain how to minimize the bias. Section 3 shows how a
weight function can be derived using the calculus of variations, which is then extended to general
density-ratio and K-L divergence estimation in Section 4. Experimental results are presented in
Section 5. Finally, we conclude with discussion in Section 6.
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2 Variationally Weighted KDE for Ratio Estimation

KDE p̂(x) = 1
N

∑N
j=1 kh(x,xj) is conventionally the average of kernels. The average roughly

represents the count of data within a small region around x, the size of which is determined by a
bandwidth parameter h. The amount of convexity and concavity inside the region determines the bias
of estimation, as depicted in Fig. 1(a),(b).

2.1 Plug-in estimator of posterior with weight

We consider a weighted KDE as a plug-in component adjusted for reliable ratio estimation using
a positive and twice differentiable weight function: α(x) ∈ A with A = {α : RD → R+ | α ∈
C2(RD)}. For two given sets of i.i.d. samples, D1 = {xi}N1

i=1 ∼ p1(x) for class y = 1 and
D2 = {xi}N1+N2

i=N1+1 ∼ p2(x) for class y = 2, we use the following weighted KDE formulation:

p̂1(x) =
1

N1

N1∑
j=1

α(xj)kh(x,xj), p̂2(x) =
1

N2

N1+N2∑
j=N1+1

α(xj)kh(x,xj). (2)

Here, the two estimators use a single α(x). The kernel function kh(x,x
′) is a positive, symmetric,

normalized, isotropic, and translation invariant function with bandwidth h. The weight function α(x)
informs the region that should be emphasized, and a constant function α(x) = c reproduces the ratios
from the conventional KDE. We let their plug-in posterior estimator be f(x), and the function can be
calculated using

f(x) = P̂ (y = 1|x) = p̂1(x)

p̂1(x) + γp̂2(x)
. (3)

with a constant γ ∈ R determined by the class-priors.

2.2 Bias of the posterior estimator

We are interested in reducing the expectation of the bias square:

E[Bias(x)2] =
∫ (

f(x)− ED1,D2
[f(x)]

)2
p(x)dx. (4)

The problem of finding the optimal weight function can be reformulated as the following equation in
Proposition 1.

Proposition 1. With small h, the expectation of the bias square in Eq. (4) is minimized by any α(x)
that eliminates the following function

Bα;p1,p2
(x) = (∇ logα|x)⊤ h(x) + g(x), (5)

at every point x. Here, h(x) =
(

∇p1

p1
− ∇p2

p2

)
and g(x) = 1

2

(
∇2p1

p1
− ∇2p2

p2

)
with gradient and

Laplacian operators, ∇ and ∇2, respectively. All derivatives are with respect to x. ■

The derivation of Eq. (5) begins with the expectation of the weighted KDE:

ED1
[p̂1(x)] = Ex′∼p1(x)[α(x

′)kh(x,x
′)] =

∫
α(x′)p1(x

′)kh(x,x
′)dx′ (6)

= α(x)p1(x) +
h2

2
∇2[α(x)p1(x)] +O(h3). (7)

Along with the similar expansion for ED2 [p̂2(x)], the following plug-in posterior can be perturbed
with small h:

ED1,D2
[f(x)] → ED1 [p̂1(x)]

ED1
[p̂1(x)] + γED2

[p̂2(x)]
(8)

= f(x) +
h2

2

γp1(x)p2(x)

(p1(x) + γp2(x))2

(
∇2[α(x)p1(x)]

α(x)p1(x)
− ∇2[α(x)p2(x)]

α(x)p2(x)

)
+O(h3)

= f(x) +
h2

2
P (y = 1|x)P (y = 2|x)Bα;p1,p2

(x) + O(h3), (9)
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(a) (b) (c)
Figure 2: Posterior estimates with KDEs and VEKDEs for two 20-dimensional homoscedastic
Gaussian densities. (a) Bias corrected by VWKDE. (b) Bias and variance of posterior estimates
depending on the bandwidth for standard KDE and for (c) VWKDE.

with the substitution

Bα;p1,p2
(x) ≡ ∇2[α(x)p1(x)]

α(x)p1(x)
− ∇2[α(x)p2(x)]

α(x)p2(x)
. (10)

The point-wise leading-order bias can be written as

Bias(x) =
h2

2
P (y = 1|x)P (y = 2|x)Bα;p1,p2

(x). (11)

Here, the Bα;p1,p2
(x) includes the second derivative of α(x)p1(x) and α(x)p2(x). Because two

classes share the weight function α(x), Eq. (10) can be simplified into two terms without the second
derivative of α(x) as

Bα;p1,p2
(x) =

∇⊤α
∣∣
x

α(x)

(
∇p1|x
p1(x)

−
∇p2|x
p2(x)

)
+

1

2

(
∇2p1

∣∣
x

p1(x)
−

∇2p2
∣∣
x

p2(x)

)
, (12)

which leads to Eq. (5) in the Proposition. The detailed derivation in this section can be found in
Appendix A.

2.3 Plug-in estimator of K-L divergence with weight

In order to estimate KL(p1||p2) = Ex∼p1

[
log p1(x)

p2(x)

]
, we consider the following plug-in estimator:

K̂L(p1||p2) =
1

N1

N1∑
i=1

log
p̂1(xi)

p̂2(xi)
, (13)

using xi in xi ∈ D1 for Monte Carlo averaging. When we calculate p̂1 at xi, we exclude xi from
the KDE samples. We use p̂1(xi) =

1
N1−1

∑N1

j=1 α(xj)kh(xi,xj)1I(i ̸=j) with the indicator function
1I(I), which is 1 if I is true and 0 otherwise.

Proposition 2. With small h, the expectation of the bias square is minimized by finding any α(x)
that eliminates the same function as Bα;p1,p2(x) in Eq. (5) in Proposition 1 at each point x. ■

In the task of estimating the K-L divergence, Proposition 2 claims that we obtain the equivalent
Bα;p1,p2(x) to Eq. (5) during the derivation of bias. The pointwise bias in the K-L divergence
estimator can be written as

Bias(x) =
h2

2

p1(x)

p2(x)
Bα;p1,p2(x), (14)

with Bα;p1,p2
(x) equivalent to Eq. (5).

3 Variational Formulation and Implementation

Now we consider the α(x) that minimizes the mean square error for the estimation:

min
α(x)∈A

∫ (
(∇ logα|x)⊤ h(x) + g(x)

)2
r(x)dx, (15)
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with h(x) =
(

∇p1

p1
− ∇p2

p2

)
, g(x) = 1

2

(
∇2p1

p1
− ∇2p2

p2

)
. The r(x) function depends on the problem:

r(x) = P (y = 1|x)2P (y = 2|x)2p(x) for posterior estimation and r(x) =
(

p1(x)
p2(x)

)2
p(x) for K-L

divergence estimation, with the total density, p(x) = (p1(x) + γp2(x))P (y = 1). The calculus of
variation for optimizing the functional in Eq. (15) provides an equation that the optimal α(x) should
satisfy:

∇ ·
[
r((∇ logα)⊤h+ g)h

]
= 0. (16)

The detailed derivation of this equation can be found in Appendix B.

3.1 Gaussian density and closed-form solution for α(x)

A simple analytic solution for this optimal condition can be obtained for two homoscedastic Gaussian
density functions. The density functions have two different means, µ1 ∈ RD and µ2 ∈ RD, but share
a single covariance matrix Σ ∈ RD×D:

p1(x) = N (x;µ1,Σ), p2(x) = N (x;µ2,Σ). (17)
One solution for this homoscedastic setting can be obtained as

α(x) = exp

(
−1

2
(x− µ′)⊤A(x− µ′)

)
, (18)

with µ′ = µ1+µ2

2 and A = b
(
I − Σ−1(µ1−µ2)(µ1−µ2)

⊤Σ−1

||Σ−1(µ1−µ2)||2

)
− Σ−1 using an arbitrary constant b.

Due to the choice of b, the solution is not unique. All the solutions produce a zero bias. Its detailed
derivation can be found in the Appendix C. The reduction of the bias using Eq. (18) with estimated
parameters is shown in Fig. 2.

3.2 Implementation

In this work, we propose a model-free method and a mode-based method. The model-free approach
uses the information of ∇̂ log p1(x) and ∇̂ log p2(x) estimated by a score matching neural network
[25]. We obtain the second derivative, ∇̂2 log p, by the automatic differentiation of the neural network

for the scores. We then obtain ∇̂2p
p using ∇̂2p

p = ∇̂2 log p − ∇̂⊤log p∇̂ log p. With the outputs of

the neural networks for ∇̂ log p and ∇̂2p
p , we train a new network for the function α(x; θ) with neural

network parameters θ.

On the other hand, the model-based approach uses a coarse Gaussian model for class-conditional
densities. The Gaussian functions for each class have their estimated parameters µ̂1, µ̂2 ∈ RD and
Σ̂1, Σ̂2 ∈ RD×D. We use the score information from these parameters: ∇̂ log p1(x) = Σ̂−1

1 (x− µ̂1)

and ∇̂ log p2(x) = Σ̂−1
2 (x − µ̂2). In the model-based approach, we let the log of α(x) be a

function within the RKHS with basis kernels κσ(·, ·) with kernel parameter σ. We let logα(x; θ) =∑N1+N2

i=1 θiκσ(x,xi) with parameters θ = {θ1, . . . , θN1+N2
} for optimization.

The weight function α(x) is obtained by optimizing the following objective function with N1 number
of data from p1(x) and N2 number of data from p2(x):

L(θ) =

N1+N2∑
i=1

1

2

(
∇⊤ logα(xi; θ)ĥ(xi)

)2
+∇⊤ logα(xi; θ)ĥ(xi)ĝ(xi), (19)

with the substitutions ĥ(x) = ∇̂ log p1(x)− ∇̂ log p2(x) and ĝ(x) = 1
2

(
∇̂2p1(x)
p1(x)

− ∇̂2p2(x)
p2(x)

)
.

In the model-based method, an addition of ℓ2−regularizer, λ
∑N1+N2

i=1 θ2i , with a small positive
constant λ makes the optimization (19) quadratic. When there are fewer than 3,000 samples, we use
all of them as basis points. Otherwise, we randomly sample 3,000 points from {xi}N1+N2

i=1 .

A brief summary of the implementation process is shown in Algorithms 1 and 2.1

1Code is available at
https://github.com/swyoon/variationally-weighted-kernel-density-estimation

5
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Algorithm 1 Model-free

Input: x, {xi}N1
i=1∼p1, {xi}N1+N2

i=N1+1∼p2

Output: Ratio R̂(x) (= p̂1/p̂2(x))

Procedure:

1. Estimate ∇̂ log p1 using {xi}N1
i=1∼p1.

2. Estimate ∇̂ log p2 using {xi}N1+N2

i=N1+1∼p2.
3. Obtain α(x) that minimizes Eq. (19)

3. R̂(x) =
∑N1

i=1 α(xi)kh(x,xi)∑N1+N2
i=N1+1 α(xi)kh(x,xi)

Return R̂(x)

Algorithm 2 Model-based

Input: x, {xi}N1
i=1∼p1, {xi}N1+N2

i=N1+1∼p2

Output: Ratio R̂(x) (= p̂1/p̂2(x))
Procedure:
1. Estimate µ̂1, Σ̂1 using {xi}N1

i=1∼p1.
2. Estimate µ̂2, Σ̂2 using {xi}N1+N2

i=N1+1∼p2.
3. Use ∇̂ log pc|x = Σ̂−1

c (x − µ̂c) to obtain
α(x) that minimizes Eq. (19)

3. R̂(x) =
∑N1

i=1 α(xi)kh(x,xi)∑N1+N2
i=N1+1 α(xi)kh(x,xi)

Return R̂(x)

4 Interpretation of α(x) for Bias Reduction

The process of finding α(x) that minimizes the square of Bα;p1,p2
(x) in Eq. (5) can be understood

from various perspectives through reformulation.

4.1 Cancellation of the bias

The second term 1
2

(
∇2p1

p1
− ∇2p2

p2

)
in Eq. (5) repeatedly appears in the bias of nonparametric

processes using discrete labels [26]. In our derivation, the term is achieved with a constant α(x) or
with no weight function. The role of the weight function is to control the first term ∇⊤α

α

(
∇p1

p1
− ∇p2

p2

)
based on the gradient information in order to let the first term cancel the second.

4.2 Cancellation of flow in a mechanical system

The equation for each class can be compared with the mechanical convection-diffusion equation,
∂u
∂t = −v⊤∇u+D′∇2u, which is known as the equation for Brownian motion under gravity [27] or
the advective diffusion equation of the incompressible fluid [28]. In the equation, u is the mass of the
fluid, t is the time, v is the direction of convection, and D′ is the diffusion constant. The amount of
mass change is the sum of the convective movement of mass along the direction opposite to ∇u and
the diffusion from the neighborhood. We reorganize Eq. (5) into the following equation establishing
the difference between the convection-diffusion equations of two fluids:

Bα;p1,p2(x) =

[
∇⊤
(
logα+

1

2
log p1

)
∇ log p1 +

1

2
∇2 log p1

]
−
[
∇⊤
(
logα+

1

2
log p2

)
∇ log p2 +

1

2
∇2 log p2

]
. (20)

According to the equation, we can consider the two different fluid mass functions, u1(x) = log p1(x)
and u2 = log p2(x), and the original convection movement along the directions v′

1 = − 1
2∇ log p1

and v′
2 = − 1

2∇ log p2. If we make an α(x) that modifies the convection directions v′
1 and v′

2 to
v1 = v′

1 −∇α and v2 = v′
2 −∇α, and a mass change in one fluid is compensated by the change

of the other, in other words, if ∂u1

∂t = ∂u2

∂t , then the α(x) is the weight function that minimizes the
leading term of the bias for ratio estimation.

4.3 Prototype modification in reproducing kernel Hilbert space (RKHS)

A positive definite kernel function has its associated RKHS. A classification using the ratio of KDEs
corresponds to a prototype classification in RKHS that determines which of the two classes has a
closer mean than the other [29, Section 1.2]. The application of a weight function corresponds to
finding a different prototype from the mean [30]. The relationship between the new-found prototype
and the KDEs has been previously discussed [31].
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Figure 3: Estimation results of the LPDR log(p1/p2) and the K-L divergence. (a) Estimation of LPDR
at each point. The estimation bias from the true LPDR is reduced by using VWKDE. (b) Squared
bias and variance of the estimation with respect to the bandwidth h. Bias has been significantly
reduced without increasing variance. (c) Mean and standard deviation of K-L divergence estimates
with respect to the bandwidth h.
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Figure 4: K-L divergence estimation results for synthetic distributions; (NN) Nearest-neighbor
estimator; (NNG) NN estimator with metric learning [32]; (KLIEP) Direct importance estimation
[21]; (NNGarcia) Risk-based f -divergence estimator [33]; (NNWang) Bias-reduced NN estimator
[34]; (MINE) Mutual Information Neural Estimation [35]; (Ensemble) Weighted ensemble KDE
estimator [36]; (vonMises) KDE estimator with von Mises expansion bias correction [37]; (KDE)
KDE estimator; (VWKDE-MB, VWKDE-MF) Model-based and model-free approach of the proposed
estimator in this paper.

5 Experiments

5.1 Estimation of log probability density ratio and K-L divergence in 1D

We first demonstrate in Fig. 3 how the use of VWKDE alters log probability density ratio (LPDR)
and K-L divergence toward a better estimation. We use two 1-dimensional Gaussians, p1(x) and
p2(x), with means 0 and 1 and variances 1.12 and 0.92, respectively. We draw 1,000 samples from
each density and construct KDEs and model-based VWKDEs for both LPDR and K-L divergence.
For LPDR evaluation, we draw a separate 1,000 samples from each density, and the average square of
biases and the variances at those points are calculated and presented in Fig. 3(b). The K-L divergence
estimation result is shown in Fig. 3(c), where the true K-L divergence can be calculated analytically
as KL(p1||p2) ≈ 0.664, and the estimated values are compared with this true K-L divergence.

KDE-based LPDR estimation exhibits a severe bias, but this is effectively reduced by using VWKDE
as an alternative plug-in. Although VWKDE slightly increases the variance of estimation, the
reduction of bias is substantial in comparison. Note that since the bias is small over a wide range of
h, VWKDE yields a K-L divergence estimate which is relatively insensitive to the choice of h.

5.2 Synthetic distributions

We perform the VWKDE-based K-L divergence estimator along with other state-of-the-art estimators
to estimate the K-L divergence KL(p1||p2) between two synthetic Gaussian distributions p1 and p2
having µ1 and µ2 as their mean vectors and Σ1 and Σ2 as their covariance matrices, respectively.
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model. The figure in the middle shows the estimation with 2-dimensional data, and the figure on
the right shows the estimation with 20-dimensional data. With 20-dimensional data, the remaining
18 dimensionalities have the same mean isotropic Gaussians without correlation to the first two
dimensionalities.
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Figure 6: Detection of an artificially injected defect (MNIST digit "3"). The first panel shows the
image with an injected defect. The remaining three panels show the detection scores of different
methods.

We use three different settings for p1 and p2: Isotropic (Iso), Non-isotropic Heteroscedastic (NH),
and Varying Mean Diff (VMD). In Iso, Σ1 = Σ2 = I for an identity matrix I . µ1 = 0 for a zero
vector 0. The first element of µ2 is

√
2, while the other elements are uniformly zero, resulting in

KL(p1||p2) = 1. In NH, µ1 = µ2 = 0, and Σ1 = I. Σ2 is a matrix having a pair of off-diagonal
element (Σ2)1,2 = (Σ2)2,1 = 0.1, and other off-diagonal elements are zero. The diagonal elements
have a constant value ω, which is determined to yield KL(p1||p2) ≈ 1.0 with ω = 0.7502 (10D)
and KL(p1||p2) ≈ 0.5 with ω = 0.8632 (20D). In VMD, the first element of µ2 has various values
between 0 and 2, while µ1 = 0 and the other elements in µ2 remain zero. Σ1 = Σ2 = I . In Iso and
NH, we vary the sample size, and in VMD, we use 2,000 samples per distribution. We repeat each
experiment 30 times and display the mean and the standard deviation in Figure 4.

In the upper left panel of Figure 4, we observe that almost all algorithms estimate the low-dimensional
K-L divergence reliably, but the results deteriorate dramatically as shown in the upper middle and
right panels with high-dimensionality. As shown in the lower left and lower middle panels, most of
the baseline methods fail to produce the estimates near the true value when data are correlated. The
model-based VWKDE-based estimator is the only estimator that recovers the true value in the 20D
NH case. Figure 5 shows the K-L divergence estimation for non-Gaussian densities. In this example,
the model for the score function in model-based VWKDE is different from the data-generating
density, in which the estimator still shows very reliable estimates.

5.3 Unsupervised optical surface inspection

We apply the proposed K-L divergence estimation using VWKDE for the inspection of the surface
integrity based on the optical images. Most of the previous works have formulated the inspection
using the supervised setting [38, 39, 40, 41]; however, often the defect patterns are diverse, and
training data do not include all possible defect patterns. In real applications, identification and
localization of unseen defect patterns are important. In this example, we apply the model-based
VWKDE.

Detection of defective surface Following the representations of previous works on image classifi-
cation [42, 43], we extract random small patches from each image I and assume that those patches are
the independently generated data. We use the probability density pI(x), for the patch x ∈ RD from I.
Given the N number of normal surface images D = {Ii}Ni=1 and a query image I∗, we determine
whether I∗ is a defective surface according to the following decision function f(I∗) and a predefined
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Table 1: Performances for defect surface detection (left) and defect localization (right). mAUC and
mAP are averaged over six surface types of DAGM. The DAGM dataset is provided with labels, and
only CNN used the labels for training. The unseen defect is the artificially injected MNIST digit "3."

mAUC DAGM Defect Unseen Defect

VWKDE 0.785 ± 0.002 0.967 ± 0.003
KDE 0.734 ± 0.005 0.926 ± 0.003
NN-1 0.628 ± 0.002 0.813 ± 0.001
NN-10 0.540 ± 0.003 0.614 ± 0.002
NNWang 0.605 ± 0.002 0.657 ± 0.004
MMD 0.618 ± 0.003 0.615 ± 0.008
OSVM 0.579 ± 0.001 0.538 ± 0.000

CNN 0.901 ± 0.011 0.809 ± 0.029

mAP DAGM Defect Unseen Defect

VWKDE 0.369 ± 0.005 0.903 ± 0.007
KDE 0.294 ± 0.004 0.849 ± 0.006
NN-1 0.095 ± 0.008 0.488 ± 0.002
NN-10 0.081 ± 0.004 0.254 ± 0.002
NNWang 0.029 ± 0.005 0.024 ± 0.000
MMD 0.151 ± 0.006 0.032 ± 0.001
OSVM 0.249 ± 0.012 0.444 ± 0.009

CNN 0.699 ± 0.037 0.564 ± 0.060

threshold:

f(I∗) = min
Ii∈D

K̂L(pI∗ ||pIi). (21)

Defect localization Once the defective surface is detected, the spot of the defect can be localized by
inspecting the LPDR log(pI∗(x)/pIm(x)) score between the query image I∗ and the Im with Im =

argminIi∈D K̂L(pI∗ ||pIi). The location of the patch x with the large LPDR score is considered
to be the defect location. Note that a similar approach has been used for the witness function in
statistical model criticism [44, 45].

For the evaluation of the algorithm, we use a publicly available dataset for surface inspection: DAGM2.
The dataset contains six distinct types of normal and defective surfaces. The defective samples are
not used in training, but they are used in searching the decision thresholds. We extract 900 patches
per image, and each patch is transformed into a four-dimensional feature vector. Then, the detection
is performed and compared with many well-known criteria: diverse K-L divergences estimators as
well as the maximum mean discrepancy (MMD) [46] and the one-class support vector machines
(OSVM) [47]. In addition, the Convolutional Neural Networks (CNNs) training result is presented
for comparison with a supervised method.

In DAGM, the testing data have defect patterns similar to those in the training data. To demonstrate
unseen defect patterns, we artificially generate defective images by superimposing a randomly
selected 15% of the normal testing images with a small image of the MNIST digit ’3’ at a random
location (see Figure 6). Table 1 presents the area under curve (AUC) of the receiver operating
characteristic curve for the detection as well as the mean average precision (mAP) for the localization.

CNNs which use labels for training show good performances only in detecting and localizing DAGM
defects. The K-L divergence estimation with VWKDE show the best performance over many
unsupervised methods, and it provides significantly better performances both at identifying unseen
defects and at localizing them. Figure 6 shows one example of how well the proposed method
localizes the position of the unseen defects.

6 Conclusion

In this paper, we have shown how a weighted kernel formulation for the plug-in densities could
be optimized to mitigate the bias in consideration of the geometry of densities. The underlying
mechanism uses the information from the first derivatives to alleviate the bias due to the second
derivatives.

In our experiments, a simple choice of Gaussian density model for obtaining the first and second
derivatives led to a reliable reduction of bias. This insensitivity to the exactness due to a coarse model
is nonintuitive considering the traditional dilemma prevalent in many conventional methods; a coarse
and inexact model enjoys a small variance but at the cost of large bias. In our work, the usage of the
coarse model had no effect on the flexibility of the plug-in estimator, while the high dimensional bias
was tackled precisely.

2Deutsche Arbeitsgemeinschaft für Mustererkennung (The German Association for Pattern Recognition).
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Limitations of this study include the computational overhead for score learning using parametric or
neural network methods and no benefit for the asymptotic convergence rate because it depends on the
convergence rate of KDE. Using a non-flexible parametric model rather than a flexible one provides a
consistent benefit to improve the KDE.
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Appendix

A Bias Derivation of the Posterior Estimator

The expectation of the weighted KDE is obtained from the following equation:

ED1 [p̂1(x)] = Ex′∼p1(x)[α(x
′)kh(x,x

′)] =

∫
α(x′)p1(x

′)kh(x,x
′)dx′ (22)

=

∫
α(x′)p1(x

′)
1

hD
K

(
x′ − x

h

)
dx′ =

∫
α(x+ hz)p1(x+ hz)K(z)dz, (23)

with the substitution z = x′−x
h

, or x′ = hz+x to produce dx′ = hDdz, and K
(

x′−x
h

)
= hDkh(x,x

′) with

normalized and isotropic K(z). We apply Taylor expansion on the term α(x+ hz)p1(x+ hz) around x, and
with the assumption that |hz| is small,

α(x+ hz)p1(x+ hz) = α(x)p1(x) + hz⊤∇[α(x)p1(x)] +
h2

2
z⊤∇∇[α(x)p1(x)]z+O(h3), (24)

using the Hessian operator ∇∇. Now the integration yields the expectation with respect to K(z) that satisfies∫
K(z)dz = 1,

∫
zK(z)dz = 0, and

∫
zz⊤K(z)dz = I:

ED1 [p̂1(x)] = α(x)p1(x) +
h2

2
∇2[α(x)p1(x)] +O(h3), (25)

with the Laplacian operator ∇2.

Along with the expansion for ED2 [p̂2(x)], the following plug-in posterior can be perturbed by h assuming a
small h:

ED1,D2 [f(x)] → ED1 [p̂1(x)]

ED1 [p̂1(x)] + γED2 [p̂2(x)]
(26)

= f(x) +
h2

2

γp1(x)p2(x)

(p1(x) + γp2(x))2

(
∇2[α(x)p1(x)]

α(x)p1(x)
− ∇2[α(x)p2(x)]

α(x)p2(x)

)
+O(h3)

= f(x) +
h2

2
P (y = 1|x)P (y = 2|x)Bα;p1,p2(x) + O(h3), (27)

giving the point-wise leading-order bias with respect to h:

Bias(x) =
h2

2
P (y = 1|x)P (y = 2|x)Bα;p1,p2(x). (28)

Here, the Bα;p1,p2(x) is as follows:

Bα;p1,p2(x) ≡
∇2[α(x)p1(x)]

α(x)p1(x)
− ∇2[α(x)p2(x)]

α(x)p2(x)
, (29)

which includes the second derivative of α(x)p1(x) and α(x)p2(x). Because two classes use the same weight
function α(x), Eq. (29) can be decomposed into two terms without the second derivative of α(x).

Bα;p1,p2(x) =
∇⊤α

∣∣
x

α(x)

(
∇p1|x
p1(x)

−
∇p2|x
p2(x)

)
+

1

2

(
∇2p1

∣∣
x

p1(x)
−

∇2p2
∣∣
x

p2(x)

)
. (30)

B Solution of the Calculus of Variation

For the optimization of Eq. (15) with respect to α(x), we first make a substitution β = logα and apply a
calculus of variation technique for optimal β(x). We express the objective functional with

∫
m(x;β,∇β) dx

using

m(x;β,∇β) =
(
∇⊤β|xh(x) + g(x)

)2
r(x). (31)

With the substitution β⃗′ = ∇β for notational abbreviation, we apply the Euler-Lagrange equation for the
m(x;β, β⃗′) containing both β and β⃗′:

∂m(x;β, β⃗′)

∂β
−∇x · ∇

β⃗′ m(x;β, β⃗′) = 0, (32)
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where the divergence is ∇x · ∇
β⃗′ =

∑D
i=1

∂
∂xi

∂
∂β′

i
with the i-th component of β⃗′, β′

i, and the dimensionality is
D.

The first term can be calculated as ∂m(x;β,β⃗′)
∂β

= 0. The first derivative of the second term is ∇
β⃗′ m(x;β, β⃗′) =

r
(
β⃗′⊤h+ g

)
h. After we substitute β(x) with logα(x) back, we obtain the equation for the optimal α(x)

function:

∇ ·
[
r((∇ logα)⊤ h+ g)h

]
= 0. (33)

which is Eq. (16).

C Analytic Solution for Two Homoscedastic Gaussians

We consider the following two homoscedastic Gaussians

p1(x) = N (x;µ1,Σ), p2(x) = N (x;µ2,Σ), (34)

with a common covariance matrix Σ.

In order to obtain the zero divergence in Eq. (16), the divergence-free vector field can be obtained using

∇ logα ≡ Σ−1x+ v⃗(x) (35)

because the inner product of ∇ logα with h = ∇ log p1 − ∇ log p2 = Σ−1(µ1 − µ2) should yield a neg-
ative value of g(x), which is −g(x) = −x⊤Σ−2(µ2 − µ1) − 1

2
(µ⊤

1 Σ
−2µ1 − µ⊤

2 Σ
−2µ2). The equation

(∇ logα)⊤h = −g(x) gives

v⃗(x) = −1

2
Σ−1(µ1 + µ2). (36)

Therefore, one possible solution for ∇ logα(x) is

∇ logα(x) = Σ−1(x− µ), (37)

with the mean of the two class-conditional means, µ = µ1+µ2
2

. Therefore, one particular solution for α(x) is

α(x) = exp

[
1

2
(x− µ)⊤Σ−1(x− µ)

]
. (38)

This solution is not unique, and any logα that has a form of

logα(x) =
1

2
(x− µ)⊤Σ−1(x− µ) + l(x), (39)

with l(x) satisfying ∇⊤l Σ−1(µ1 − µ2) = 0 is also the solution. One technique for finding such l(x) is that we
pick up any differentiable seed function l0(x) and consider its derivative ∇l0 with the a⃗ = Σ−1(µ1 − µ2) com-

ponent subtracted:
(
I − a⃗a⃗⊤

||⃗a||2

)
∇l0. The l(x) is a function that its derivative satisfies ∇l =

(
I − a⃗a⃗⊤

||⃗a||2

)
∇l0.

For example, if we choose l0(x) = x, then l(x) is a function that satisfies ∇l =
(
I − a⃗a⃗⊤

||⃗a||2

)
∇l0 = 1I− a⃗⊤1I

||⃗a||2a⃗ ,

and we can get l(x) =
(
1I− a⃗⊤1I

||⃗a||2

)⊤
x. If we choose l0(x) = 1

2
||x||2, we get l(x) = 1

2
x⊤
(
I − a⃗a⃗⊤

||⃗a||2

)
x

after similar calculations. Now the choice of

l0(x) = − b

2
(x− µ)2 , (40)

gives us l(x) = − b
2
(x− µ)⊤

(
I − a⃗a⃗⊤

||⃗a||2

)
(x− µ), which produces our analytic weight function in Eq. (18):

α(x) = exp

(
−1

2
(x− µ′)⊤A(x− µ′)

)
, (41)

with µ′ = µ1+µ2
2

and A = b
(
I − Σ−1(µ1−µ2)(µ1−µ2)

⊤Σ−1

||Σ−1(µ1−µ2)||2

)
− Σ−1, with an arbitrary constant b.

D Posterior Prediction for Various Algorithms

Fig. 7 shows the posterior prediction results of various algorithms. For the estimation with support vector
machines, [48] is used. For neural network estimation, 2-layer fully connected networks with 100 nodes for each
layer were used minimizing the mean square error of the sigmoid output. Both VWKDE-MB and VWKDE-MF
show superior results to other methods.
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Figure 7: Posterior predictions with various algorithms for 20-dimensional Gaussians.

D.1 Kernel density estimation in high dimensions

We also note the difficulty of density estimation with KDE in high dimensional space. Fig. 8 shows a one-
dimensional slice of two 20-dimensional Guassians. The maximum density in this slice is on the order of
10−8. Meanwhile, the KDE with 5,000 data points per class shows densities on the order of about 10−10 with a
bandwidth of h = 0.8.

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ue

 p

1e 8
True p1
True p2
KDE p1
KDE p2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KD
E

1e 10

Figure 8: Underlying density functions and their KDE predictions.

The bandwidth should be chosen to be sufficiently large because no pairs are nearby in a high-dimensional
space. Although the estimated density with h = 0.8 is reasonably smooth, the KDE differs from the true density
by several orders of magnitude with 5,000 data points. However, the patterns of relative overestimation and
underestimation depicted in Fig. 1 are evident, and the proposed method can be applied even with inexact KDEs.

E Fluid Flow Interpretation of Making Bias

The change of concentration u(t) at time t due to the convection and diffusion can be written as

∂u

∂t
= −v⊤∇u+D′∇2u, (42)
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with the direction of convection v and the diffusion constant D′. The first term represents the convection, and
the second term represents the diffusion.

The bias Eq. (30) can be reformulated as

Eq. (30) =
∇⊤α

α

(
∇p1
p1

− ∇p2
p2

)
+

1

2

(
∇2p1
p1

− ∇2p2
p2

)
. (43)

=

[
∇⊤
(
logα+

1

2
log p1

)
∇ log p1 +

1

2
∇2 log p1

]
(44)

−
[
∇⊤
(
logα+

1

2
log p2

)
∇ log p2 +

1

2
∇2 log p2

]
. (45)

=
∂u1

∂t
− ∂u2

∂t
(46)

Eq. (44) and Eq. (45) can be understood as the two flows with concentrations u1 = log p1 and u2 = log p2,
respectively, and the convection direction for u1 is v1 = ∇

(
logα+ 1

2
log p1

)
, and the direction for u2 is v2 =

∇
(
logα+ 1

2
log p2

)
. Without the weight, the convection directions are v1 = 1

2
∇ log p1 and v2 = 1

2
∇ log p2

but with weight, they change to v1 = ∇
(
logα+ 1

2
log p1

)
and v2 = ∇

(
logα+ 1

2
log p2

)
.

The role of α is to modify the directions of convection toward ∇ logα together, and in the example shown
in Fig. 1, the change of u1 and u2 due to diffusion are negative and positive, respectively. The direction of
convection can control the change of u1 and u2, and the α makes the difference between ∂u1

∂t
and ∂u2

∂t
as small

as possible.

F Prototype Classification Interpretation of the Weighted Kernel Methods in
Reproducing Kernel Hilbert Space (RKHS)

The kernel algorithm for classification can be viewed as prototype algorithms in the RKHS due to the decompo-
sition of positive definite kernel functions [31, 30, 29, Section 1.2]:

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, ϕ(x), ϕ(x′) ∈ RKHS, (47)

with the inner product operator ⟨., .⟩ defined in RKHS.

Given a dataset {xi, yi}Ni=1, xi ∈ RD , yi ∈ {0, 1}, the classification using two prototypes w1 =
1

N1

∑
{i;yi=1} αiϕ(xi) and w0 = 1

N0

∑
{i;yi=0} αiϕ(xi) in RKHS determines which of the prototypes has a

smaller distance to the ϕ(x) than the other. Here, N1, N0 are the numbers of data of classes 1 and 0, respectively.
The classification using KDEs with the pointwise weights can be compared with the prototype classification in
RKHS using the following derivation:

y = 1I

 1

N1

∑
{i;yi=1}

αik(xi,x)−
1

N0

∑
{i;yi=0}

αik(xi,x)

 > θ

 (48)

= 1I

 1

N1

∑
{i;yi=1}

αi⟨ϕ(xi), ϕ(x)⟩ −
1

N0

∑
{i;yi=0}

αi⟨ϕ(xi), ϕ(x)⟩

 > θ

 (49)

= 1I

〈 1

N1

∑
{i;yi=1}

αiϕ(xi), ϕ(x)

〉
−

〈
1

N0

∑
{i;yi=0}

αiϕ(xi), ϕ(x)

〉 > θ

 (50)

= 1I ([⟨w1, ϕ(x)⟩ − ⟨w0, ϕ(x)⟩] > θ) (51)

= 1I
([
||w1 − ϕ(x)||2 − ||w0, ϕ(x)||2

]
> θ′

)
(52)

with a predetermined threshold θ. In Eq. (52), θ′ = θ − (||w1||2 − ||w0||2).

With uniform weight αi = 1 for all i = 1, . . . , N , the classification is simply the comparison of two KDEs p̂1 =
1

N1

∑
{i;yi=1} k(xi,x) and p̂0 = 1

N0

∑
{i;yi=0} k(xi,x), which correspond to the prototype classification

using two empirical means w1 = 1
N1

∑
{i;yi=1} ϕ(xi) and w0 = 1

N0

∑
{i;yi=0} ϕ(xi) in RKHS. Originating

from this correspondence, one suggestion of the unification for the KDE and RKHS is presented in [30]. The
explanations about the prototypes for various kernelized algorithms can be found in [49]. The prototypes of
SVMs are known to be the closest two points within the convex hull of different classes [50].

Despite all these discussions, it is clear that the modification of the densities using a weight function will not
improve the density estimation performance from the perspective of KDE. Despite the poor density estimation
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performance, the modification improves the classification or information-theoretic measure estimation for the
KDE plug-in algorithms, but not necessarily the KDE itself. The improvement is partly supported by the
prototype models in RKHS.

G Least Square Approach for Binary Classification

Reducing the bias of the posterior equation in Eq. (3) corresponds to the least square of the prediction error. The
optimal square error is achieved with the Bayes classifier, which classifies a datum according to the posterior
probability. The posterior probability of x0 being generated from p1(x) can be written as:

P (y = 1|x0) =
p1(x0)p(y = 1)

p0(x0)p(y = 0) + p1(x0)p(y = 1)
(53)

=
p1(x0)

γp0(x0) + p1(x0)
, (54)

where γ = p(y = 0)/p(y = 1). The least square error with

L =

∫
(f(x)− y)2p(x, y)dydx, (55)

is achieved with the following prediction function

f(x) = E[y = 1|x] = P (y = 1|x). (56)

An accurate estimation of posterior is essential for successful classification. We construct a classifier based on
the KDE density estimates p̂0(x), p̂1(x).

f(x) =
p̂1(x)

γp̂0(x) + p̂1(x)
(57)

=
1

1 + γ(p̂0(x)/p̂1(x))
, (58)

and consider the deviation of f(x) from the true E[y = 1|x].

H Details on Optical Surface Inspection Experiments

We use a widely used public surface inspection dataset provided by DAGM3 for experiments. The dataset
contains six distinct textile surface types and associated defect types. There are 1,150 images per class, half of
which is for training and the remaining is for testing. Approximately 13% of total images are defective, and for
each defective image, a masking image which roughly encloses the defective region are provided. The dataset is
originally proposed for a supervised setting.

We extract 900 patches of size 32×32 from each image, using a sliding window with step size 16. In each patch,
we apply Gaussian smoothing and Scharr kernel to obtain a gradient distribution which can capture the texture
information. To encode the gradient distribution as a feature vector, we compute its mean, standard deviation,
skewness, and kurtosis. As a result, a surface image is transformed into a set of 900 four-dimensional vectors, or
a 900×4 matrix. Feature vectors are standardized and whitened by aggregating all the patches from the same
surface type.

VWKDE can be time-consuming as a large number of KL divergences need to be computed. Therefore, we take
a two-pass approach when applying VWKDE. Given a query image, we first apply KDE-based KL divergence
estimator to obtain rough estimates of KL divergences. Then, we take k images with the lowest KL divergences
and apply VWKDE-based KL divergence estimator to the k images to finally select the image with the lowest
KL divergence. This method enables us to have the best of both worlds, the speed of KDE and the accuracy of
VWKDE.

The optimal bandwidth for bias reduction methods such as Ensemble [36], vonMises [37], and VWKDE is
usually larger than other methods. We use the bandwidth with maximum leave-one-out log-likelihood of KDE for
other methods but in these three methods, we used the heuristic rule of bandwidth selection using the maximum
log-likelihood bandwidth for only 25% of randomly selected data.

A convolutional neural network (CNN) which takes a 32×32 patch as an input and predicts whether the patch is
defective is trained. For training, we label patches with 75% overlap to the defect mask as defective and patches

3Deutsche Arbeitsgemeinschaft für Mustererkennung (The German Association for Pattern Recognition).
Data access: https://hci.iwr.uni-heidelberg.de/node/3616
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without any overlap to the defect mask as normal. Patches do not belong to either class are discarded. Due to
class imbalance, normal patches are undersamples to yield defect to normal ratio of 1:4. CNN is trained for
each surface type separately. The structure of our CNN is Conv(20)-Conv(20)-MaxPool-Conv(20)-Conv(20)-
MaxPool-FC(20)-DropOut-FC(1), where Conv is a 3×3 convolution layer, MaxPool is a 2× max pooling layer,
FC is a fully connected layer, and DropOut is a drop out operation with probability 0.5. We use binary cross
entropy loss for objective function and ADAM for optimization.

In unsupervised defect localization, we threshold log probability density ratio (LPDR) estimate to obtain
detection results. We threshold LPDR estimates dynamically at 90% of maximum LPDR observed in the image.
Then, we use its KL divergence estimate as a confidence score for the detection. For a CNN, we use the output
probability for a patch as a detection score, and set a threshold to 0.9, and the maximum probability of defect
among the patches in an image is used as a confidence score. Note that, in this experiment, we generate one
detection per an image because DAGM dataset is constrained to have as most one defect per an image. However,
this condition can be relaxed in future work with other dataset.

Intersection-over-union (IOU) is computed between a detection and a true defect mask. A detection with IOU
larger than 0.1 considered as a correct detection. This threshold is lower than a typical threshold in object
detection (0.5), because the defect mask is weakly labelled and usually larger than a precise defect region. Using
a confidence score assigned for a detection, we compute average precision as in PASCAL VOC challenge, then
take average over surface types.
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