
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON CODE-INDUCED REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Code data has been shown to enhance the reasoning capabilities of large language mod-
els (LLMs), but it remains unclear which aspects of code are most responsible. We
investigate this question with a systematic, data-centric framework. We construct par-
allel instruction datasets in ten programming languages and apply controlled perturba-
tions that selectively disrupt structural or semantic properties of code. We then finetune
LLMs from five model families and eight scales on each variant and evaluate their per-
formance on natural language, math, and code tasks. Across 3,331 experiments, our
results show that LLMs are more vulnerable to structural perturbations than semantic
ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and
flowcharts can be as effective as code, while encoding the same information with fewer
tokens without adhering to original syntax can often retain or even improve perfor-
mance. Remarkably, even corrupted code with misleading signals remains competitive
when surface-level regularities persist. Finally, syntactic styles also shape task-specific
gains with Python favoring natural language reasoning and lower-level languages such
as Java and Rust favoring math. Through our systematic framework, we aim to provide
insight into how different properties of code influence reasoning and inform the design
of training data for enhancing LLM reasoning capabilities.

1 INTRODUCTION

There has been substantial interest in the last several years in engineering language models that can
tackle challenging reasoning tasks (Huang & Chang, 2023). Language reasoning tasks, such as math
word problems or logic puzzles, tend to require multi-step, structured “thinking” in order to produce
the correct answer. Recent work has found that training the language model on code, either during
pre-training (Fu & Khot, 2022; Ma et al., 2023b) or during post-training (Zhang et al., 2024b), can
improve its skill at reasoning tasks, even ones that are unrelated to programming. These prior works
have hypothesized that the properties of code data, such as its logical consistency, compositional
structure, and reduced ambiguity compared to natural language, provide effective signals that ben-
efit reasoning. Despite the broad effectiveness of code data in training, we still lack a systematic
understanding of which aspects of code drive these improvements: is it the its syntactic regularity,
structural abstractions, or linguistic styles?

In this work, we aim to provide such an account by systematically investigating which aspects of
code serve as effective training signals. To this end, we construct parallel instruction datasets in both
natural language and code, and further expand the code dataset into language-specific variants by
generating responses in ten widely used programming languages. This design allows us to examine
how structural differences across languages affect downstream reasoning. In addition, we intro-
duce controlled perturbations to the code data to isolate contributing factors: (1) rule-based trans-
formations such as whitespace removal or comment shuffling, and (2) generative transformations
where GPT-4o-mini rewrites or reformats the code (e.g., with augmented comments, pseudocode,
or flowcharts). We then fine-tune language models on each dataset variant, and evaluate them across
natural language and general knowledge, math, as well as code understanding and generation tasks.
Our contributions are:

• We introduce a systematic framework to disentangle what aspects of code data improve rea-
soning, combining parallel instruction data construction, controlled perturbations, and large-
scale evaluation across five model families and eight scales.

• We design a comprehensive and controlled suite of perturbations spanning rule-based edits
and generative rewritings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We provide new insights into the role of code in reasoning to inspire guidance on leveraging
its structural and linguistic properties in future training data design.

2 RELATED WORK

Code data for LLM reasoning Recent work has increasingly demonstrated that incorporating
code data can substantially improve the reasoning abilities of LLMs. Prior studies show that adding
code during pretraining or instruction tuning consistently improves model performance across rea-
soning tasks, domains, model scales and architectures (Ma et al., 2023a; Zhang et al., 2024a; Yang
et al., 2025b; Aryabumi et al., 2024). Several works further explore the synergy between code and
reasoning and highlight how code’s structured and verifiable properties support logical decomposi-
tion and intermediate step generation (Bi et al.; Yang et al., 2024). This effect has been observed
in multilingual contexts as well, where code-augmented training improves structured reasoning in
under-resourced languages (Li et al., 2024). Complementary research focuses on code’s impact
for alignment and reward modeling, where pretraining with code-preference pairs or code-based
intermediate steps can improve model calibration for reasoning-intensive tasks (Yu et al., 2024).
The closest line of research to our work explores stress-testing LLMs with structural and semantic
code perturbations (Lam et al., 2025), which shows that small corruptions can significantly reduce
reasoning performance.

Data impact on LLM performance The performance of LLMs are tied to the vast amounts of
training data, but the quality, composition, and characteristics of this data greatly shape their abili-
ties (Wang et al., 2024; Li et al., 2023; Lee et al., 2022). For example, extensive analyses by Longpre
et al. (2024) have shown that pretraining data curation decisions for dataset age, composition, and
content filtering have systematic impact on downstream performance, and that these effects per-
sist even after fine-tuning steps. Zhang et al. (2024c) demonstrate that poisoning as little as 0.1%
(and even 0.001%) can produce persistent behavioral changes that survive instruction tuning and
alignment. In addition, Havrilla & Iyer (2024) showed that LLMs are sensitive to global, accumula-
tive errors in chain-of-thought-structured training data, and that it is critical to filter out documents
containing large amounts of dynamic, global noise during both pretraining and fine-tuning.

3 METHODOLOGY

We design a controlled experimental framework to understand what aspects of code improve rea-
soning in language models. Our methodology consists of three stages: constructing parallel natural
language and code instruction datasets (Section 3.1); applying systematic modifications to code in-
struction data (Section 3.2); and fine-tuning various language models on each dataset variant and
then conducting evaluation (Section 3.3). An overview of this framework is shown in Figure 1.

3.1 INSTRUCTION DATA GENERATION

We construct two parallel instruction datasets: one in natural language and the other in code,
each containing 120,000 instruction-response pairs. We collect instructions from publicly available
datasets, carefully process and filter them through deduplication and language-agnostic filtering, and
augment the code data in a controlled way. This construction enables a more controlled comparison
of natural- and code-based instruction following under a unified training framework.

Code instructions We aggregate code instructions from Codeforces-CoT (Penedo et al., 2025),
Code-Instruction-122K (TokenBender, 2024), Evol-Instruct-Code-80k-v1 (nickrosh, 2024), Code-
Instruction (red1xe, 2023), Code-Instruct-Sets (AtlasUnified, 2023), and Code-Instruct-Alpaca-
Vicuna-WizardLM (rombodawg, 2024). We aim to construct instruction data that is high-quality,
diverse, and language-agnostic.

To ensure generality and eliminate redundancy, we first remove all exact-match duplicates across
the datasets. We then filter out instructions that are explicitly programming-language-specific (e.g.,
“Translate this code from Python to java”) or whose solutions are inherently tied to particular do-
mains, such as web development or databases (e.g., “webpage”, “website”, “SQL”, “HTML”).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Natural Language Instructions (120K)

Task suite

NL & general knowledge

mathcode

2. Finetune

rule-based perturbations

whitespace removal variable renaming

keyword replacement comment swapping

generative perturbations

code enhancement code obfuscation

step-wise solution

code in imaginary language

flowchart in markdown

pseudocode

...

Code Instructions
(120K)

 Java JavaScript C
 PHP Python C#
 TypeScript C++
 Go Rust

answer
synthesis with GPT4o-mini

modifications

single programming language ablations

1. Post-training Data Generation

3. Evaluation

Figure 1: We construct parallel code and natural language instruction datasets, apply targeted mod-
ifications (rule-based and generative-based perturbations, single programming language ablations),
and fine-tune a separate LLM on each modified dataset. We then evaluate the resulting models across
general natural language, code, and math reasoning tasks.

For each instruction, we prompt GPT-4o-mini* to generate answers in ten widely used programming
languages: Java, JavaScript, PHP, Python, C#, TypeScript, C, C++, Go, and Rust. To create these
variants, we design 20 language specification templates that explicitly request a solution in a given
programming language (Table 6). For every instruction, we randomly select a template, instantiate
it with one of the target languages, and combine it with the general generation instructions to form
a complete prompt (Figure 8). From these generations, we sample 120K instruction–response pairs
with valid outputs, evenly distributed across all ten languages.

To assess the quality of our synthesized code instruction–response pairs, we perform a comprehen-
sive syntax and compilation check across all ten programming languages. For each instance, we
extract the generated code block and apply standard syntax or compilation tools (e.g., ast.parse
for Python, gcc -fsyntax-only for C, javac for Java). As shown in Appendix Table 3, the
majority of samples compile or execute successfully, with pass rates ranging from 64.08% (Type-
Script) to 99.25% (Python) and an average pass rate of 82.59% across all languages. These results
indicate that most generated instructions correspond to syntactically valid and executable code.

Natural language instructions We sample 120K examples from the OpenHermes 2.5 cor-
pus (Teknium, 2023). We exclude instruction-response pairs associated with categories unrelated
to general-purpose instruction following, such as “agent” and “summarization”, as well as those la-
beled “coding” to ensure the dataset is entirely natural language. To maintain linguistic consistency,
we further filter out non-English examples. This filtered natural language subset complements our
code instruction data, enabling a fair comparison between code and natural language instructions.

3.2 SYSTEMATIC PERTURBATION DESIGN

To understand which specific structural and semantic properties are responsible for changes in rea-
soning task performances, we systematically perturb different aspects of the code dataset. We de-
sign the perturbations through two ways: rule-based (deterministic transformations) and generative
(model-generated augmentations). Notably, our perturbation strategies do not alter the number of
examples in the dataset. We illustrate an examples of these perturbations in Table 1, with extended
examples and token statistics in Appendix Table 2.

3.2.1 RULE-BASED PERTURBATIONS

Rule-based perturbations apply deterministic transformations to the code. They are designed to
disrupt superficial patterns or semantic signals that may influence model predictions without altering
the core logic of the code. We describe five such perturbations below:

*Responses are generated with temperature 0.6 and API-default decoding parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: An example of perturbations (Section 3.2) applied to the same original snippet.

Full Original Snippet Type Strategy Original Excerpt Perturbed Excerpt

def process string(input string):
vowels = "aoyeuiAOYEUI"
result = []

for char in input string:
if char not in vowels:
result.append(’.’ +

char.lower())

return ’’.join(result)

Read input
input string = input().strip()
Process and print the result
print(process string(input string))

Rule-based

Whitespace Removal result.append(’.’ +
char.lower())

result.append(’.’+char.lower())

Variable Renaming for char in
input string: ...

for var 4 in var 1: if var 4
not in var 2: ...

Keyword Replacement
(Nonsense)

if char not in
vowels:

garply i not in baz

Keyword Replacement
(Non-English)

for char in
input string:

para ch en entrada

Comment Swapping (Lo-
cal)

Read input # Walking

Comment Swapping
(Global)

Process and print
the result

// Queue for processing
nodes

Comment Removal # Read input /* all comments removed */

Generative

Pseudocode for char in
input string: if
char not in vowels

FOR EACH character IF not vowel THEN
append ’.’+lowercase

Step-by-Step result.append(’.’ +
char.lower())

Append ’.’ before consonants and convert
to lowercase

Flowchart if char not in
vowels:

[Read char] → {Vowel?} →
[Append ’.’+lower]

Code in Imaginary Lan-
guage

result.append(’.’ +
char.lower())

glorf add ’.’ ⊕ lower(chr)

Comment Enhancement # Process and print
the result

Removes vowels and prefixes consonants
with ’.’

Comment Obfuscation # Read input # WARNING: Code may summon aliens; #
TODO: handle quantum vowels

Whitespace removal All whitespace characters are removed from the code. This tests whether
models rely on formatting heuristics, such as indentation or visual grouping of blocks, as implicit
structural cues, particularly in languages like Python where whitespace is semantically meaningful.

Variable renaming We replace user-defined variables, function names, and class names with canon-
ical placeholders of the form var i, where i ∈ [0, n) and n is the total number of unique identifiers
in the code snippet. This removes semantic cues conveyed by meaningful identifier names (e.g.,
counter, isSorted).

Programming language keyword replacement For each of the ten programming languages in
our dataset, we identify its reserved keywords (e.g., if, return, def in Python) and substitute
all occurrences of them using two strategies. The first replaces keywords with nonsense tokens
(e.g., foo, quux), which have no semantic meaning in any language. In the second strategy, we
use non-English but valid words (e.g., amigo, fleur), which are real words in various languages but
semantically unrelated to the programming context. These perturbations aim to challenge models’
reliance on syntactic and semantic cues from familiar language constructs.

Comment removal We remove all inline and block comments from each code snippet. Code com-
ments often provide useful semantic signals for program comprehension (Buse & Weimer, 2009;
De Souza et al., 2005). This perturbation tests whether models largely leverage such auxiliary
natural-language cues.

Comment swapping We introduce local and global swapping that misplace code comments to dis-
rupt the semantic alignment between code and documentation. In local swapping, comments within
a snippet are randomly reordered, preserving their content but misaligning them with the relevant
code segments. In global swapping, we first collect a global pool of comments from the entire
dataset. Then, for each comment in a snippet, we replace it with a randomly sampled comment from
this pool. This results in documentation that is entirely mismatched to the surrounding code.

3.2.2 GENERATIVE PERTURBATIONS

We create generative perturbations by prompting GPT-4o-mini† to produce alternative versions of
code responses generated according to Section 3.1. These rewrites preserve the original intent of the
code while introducing more diverse variations beyond what rule-based edits can achieve, allowing

†We use temperature of 0.6 and default settings.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

us to test model sensitivity and robustness to semantically equivalent inputs expressed in different
forms. The full set of prompts used is available in Appendix A.6.

Comment enhancement We prompt GPT-4o-mini to regenerate the code with high-quality docu-
mentation and inline comments (Figure 9). The prompt emphasizes two forms of annotation: (1)
comprehensive documentation comments for all functions, classes, and key code blocks to describe
their purpose, parameters, return values, and assumptions; and (2) informative inline comments
that clarify complex or non-obvious logic. These annotations follow the conventions of the target
programming language (e.g., Python docstrings, JavaDoc). Unlike the often sparse comments in un-
perturbed data, the enhanced versions provide consistent, high-quality annotations, which enables
us to test the effect of documentation quality on model performance.

Comment obfuscation Here, we generate deliberately misleading, irrelevant, or nonsensical com-
ments, while preserving the code’s functionality (Figure 10). These include (1) inaccurate, off-topic,
or absurd documentation (e.g., references to astrology, cooking, or fictitious technologies) and (2)
chaotic inline comments that contradict the code’s functionality, reference imaginary bugs or fea-
tures, and use distracting styles such as ALL-CAPS, emojis, and fabricated jargon. This perturbation
tests model robustness to extreme noise and deceptive annotations.

Pseudocode We convert code into high-level pseudocode while preserving its logical structure (Fig-
ure 11). The model is instructed to replace language-specific syntax with pseudocode constructs
(e.g., IF...THEN...ENDIF, FOR EACH, etc.), remove low-level implementation details (e.g.,
type declarations or library calls), and maintain the original control flow and indentation. This per-
turbation evaluates whether models can reason over algorithmic intent without relying on concrete
syntax, which offers insight into generalization across abstraction layers in code representation.

Flowchart in Markdown We generate a control flow diagram using Mermaid syntax in Markdown
for a given code snippet (Figure 12). The diagram captures all major control structures, such as
loops, branches, function calls, and return points, using minimal but descriptive labels. This trans-
formation renders executable code as a graphical abstraction, allowing us to understand whether
models can reason over symbolic control flow and align it with underlying program semantics.

Step-by-step solution We rewrite code as a numbered list of natural language steps (Figure 13).
Each step preserves the program’s logic and execution order but uses declarative, language-agnostic
phrasing (e.g., “Define a function named...”, “Check if the input is valid”). Unlike pseudocode or
flowchart formats, this version entirely removes code or symbolic notation and instead emphasizes
procedural understanding in purely narrative form.

Code in imaginary language We translate real code into a fictional language that preserves structure
and control flow but replaces all syntax and identifiers with invented tokens (Figure 14). The result
is semantically consistent yet entirely ungrounded in real languages. This perturbation allows us to
examine whether models rely on surface-form familiarity (e.g., recognizing logical patterns.

To assess the correctness of the perturbed data, we conduct a human evaluation with two annota-
tors, randomly sampling 30 examples per perturbation type (13 total: 7 rule-based and 6 generative).
For the rule-based perturbations and comment enhancement/obfuscation, annotators verify that each
transformation strictly follows the intended perturbation rule while leaving all unrelated content un-
changed. For the generative perturbations (pseudocode, step-by-step instructions, flowchart, imag-
inary language), which express the original code in alternative forms, annotators verify that the
conveyed semantics remain faithful to the original program. Across all 390 sampled instances, 351
were judged correct (90% overall). Rule-based perturbations achieved 176/210 ≈ 84% correctness,
while generative perturbations achieved 175/180 ≈ 97% correctness.

3.3 MODEL TRAINING AND EVALUATION

We train a suite of decoder-only LLMs using supervised fine-tuning (SFT) on our instruc-
tion–response datasets detailed in Section 3.1, along with their perturbed variants described in Sec-
tion 3.2. To assess the effect of language-specific patterns, we additionally finetune models on
subsets of the code data restricted to a single programming language. This allows us to examine
how the syntactical diversity of programming languages influences reasoning performance. Each
instruction–response pair is treated as a single input–output sequence, and models are trained to
autoregressively predict the response tokens conditioned on the instruction and prior context. All

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

models are fine-tuned from the same pre-trained backbone under supervised fine-tuning (SFT) ob-
jective to ensure comparability across experimental conditions. Let x = (x1, x2, . . . , xm) be the
instruction tokens and y = (y1, y2, . . . , yn) be the response tokens. The SFT objective is defined as:

LSFT = −
n∑

t=1

logPθ(yt | x, y<t) (1)

where Pθ denotes the model’s conditional probability distribution parameterized by θ, and y<t rep-
resents the prefix of the response up to position t− 1.

Models We choose a diverse set of pre- and post-trained language models ranging from 0.6B to
8B parameters. Specifically, we experiment with models from five major families: Qwen3 (Yang
et al., 2025a), LLaMA-3 (Grattafiori et al., 2024), Gemma3 (Team et al., 2025), OLMo2 (OLMo
et al., 2024), and SmolLM2 (Allal et al., 2025). For each model family, we select representative
sizes (e.g., <1B, ∼1B, ∼3-4B, ∼7-8B)‡ to evaluate performance across different scales.

Training data configurations Our base training set consists of 120K instruction–response pairs
spanning both code and natural language formats detailed in Section 3.1. From this, we construct
several configurations: (1) 100% code-only, (2) 100% natural language-only, and (3) mixed data
with varying code-to-language ratios. In addition, we train models on each perturbed variant intro-
duced in Section 3.2. Finally, we include programming-language-specific subsets, training separate
models on data from each of the ten languages (∼12K examples per language) to assess the effect
of language specialization. The implementation details are in Section A.5.

Evaluation tasks We evaluate model performance across three categories: natural language and
general knowledge, math, and code (Table 4).

For natural language and general knowledge, we evaluate across commonsense reasoning, science
and textbook-style QA, logical reasoning, and instruction-following. All tasks are evaluated us-
ing accuracy. For math, we include both elementary and advanced problem-solving datasets (e.g.,
GSM8K, HRM8K), as well as arithmetic and math-related subsets of MMLU. Open-ended tasks
(GSM8K, HRM8K) use exact match, while arithmetic and MMLU (math) are scored with accuracy.

For code, we evaluate both code understanding and generation. Based on preliminary experi-
ments, we adopt the LLM-as-Judge paradigm (Gu et al., 2025) instead of execution-based evalu-
ation (Huang et al., 2022). Our relatively small, perturbed models often fail to produce fully exe-
cutable code, making execution-based metrics unreliable. More importantly, our goal is to assess
code quality and reasoning under perturbations, not just execution success.

Thus, we prompt GPT-4o-mini to first generate an instance-specific rubric on a 1–10 Likert scale
given the original instruction, which is expected to capture nuanced quality variation across outputs.
The same model is then prompted as a judge to provide a brief reasoning step (“thought”) and assign
a score based on that rubric. Examples of the rubric-generation prompt and judging prompt are
shown in Appendix A.6 (Figures 15 and 16). For the main results, we use GPT-4o-mini as the judge
due to its strong judging quality and favorable cost–performance tradeoff. To assess the reliability of
our LLM-as-judge setup, we additionally conduct an extensive cross-judge analysis using multiple
models. The results in Appendix Table 7 demonstrate that our evaluation is stable across judges.

4 RESULTS AND DISCUSSION

RQ1: Does incorporating code in finetuning improve task performance? First, we validate
prior findings that finetuning on code data can enhance downstream reasoning. Following the train-
ing setup in Section 3.3, we compare performance across four settings: zero-shot, full code finetun-
ing (“code-ft”), full natural language finetuning (“nl-ft”), and mixed data finetuning with equal pro-
portions of code and natural language instructions (“mixed-ft”). Across model families and scales,
code-ft and mixed-ft generally achieve leading or competitive performance across tasks (Figure 2,
and Figures 17–21), with the trend particularly consistent on code generation.

‡Due to resource constraint, the larges model we could finetune is 8B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

code-ft nl-ft
mixed-ft

zero shot

0.53

0.54

0.55

0.56

NL & General

0.552

0.536
0.531 0.531

code-ft nl-ft
mixed-ft

zero shot

0.55

0.60

0.65

0.70

0.75

Math

0.745

0.661

0.584
0.553

code-ft
zero shot

mixed-ft nl-ft

0.54

0.56

0.58

0.60

0.62

Code Understanding
0.621

0.570

0.545
0.529

code-ft
mixed-ft

zero shot nl-ft

7.0

7.5

8.0

8.5

Code Generation

8.454

7.576

7.033 6.943

Figure 2: Performance (with stderr bars) of Qwen3-4B-Base across zero-shot, full code finetuning
(code-ft), full natural language finetuning (nl-ft), and 50-50 code to NL data ratio finetuning (mixed
ft). Incorporating code improves performance across tasks.

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Ta
sk

 P
er

fo
rm

an
ce 0.545 0.544

NL & General

0.60

0.65

0.70

0.75

0.80

0.85

0.696
0.729

Math

0.50

0.55

0.60

0.65

0.70

0.570
0.592

Code Understanding

7.0

7.5

8.0

8.5

9.0

9.5

7.975
8.203

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 3: Aggregated performance (with stderr bars) under structural perturbations (e.g. removing
whitespace) vs. semantics perturbations (e.g. modifying the comments) of Qwen3-4B-Base. Se-
mantic perturbations tend to be more harmful to performance than semantic ones.

Overall, across the 14 model bases, either code-ft or mixed-ft achieves the best performance on
64% of natural language tasks, 86% of math and code understanding tasks, and all code generation
tasks. Motivated by this, we further examine the effect of varying the proportion of code in mixed
finetuning (Figure 22). We find that higher fractions of code data generally improve performance
across most tasks, with math tasks most sensitive to mixture ratios.

RQ2: How do our systematic perturbations affect performance?

Section Findings

• Structural perturbations hurt more than semantic ones, especially for math and code.
• Appropriate abstractions such as pseudocode and flowcharts can substitute for explicit code

structure in reasoning.
• Models don’t need verbose code: reduced-token variants perform well as long as core infor-

mation is preserved.
• LLMs can reason effectively from corrupted code by exploiting surface-level regularities.

Next, we analyze task performance under the perturbations introduced in Section 3.2. Based on the
properties of each perturbation, we group them into distinct analysis axes that allow us to systemati-

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

0.573 0.579 0.579 0.577 0.572

NL & General

0.60

0.65

0.70

0.75

0.80

0.85

0.746
0.760

0.742

0.690 0.682

Math

0.50

0.55

0.60

0.65

0.70

0.75

0.642 0.652 0.659

0.626

0.538

Code Understanding

7.0

7.5

8.0

8.5

9.0

9.5

8.343 8.448
8.140

8.393

7.972

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 4: Aggregated performance (with stderr bars) under levels of explicitness of code structure
(less explicit going from runnable code to NL procedure) of Qwen3-8B-Base. Certain algorithmic
and graphical abstractions benefit reasoning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Sc
or

e

0.423

0.406 0.405 0.401

NL & General

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.471
0.489

0.427

0.491

Math

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.461

0.434 0.429
0.420

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

5.186

5.701
5.520

5.831

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 5: Aggregated performance (with stderr bars) of Qwen3-0.6B-Base with various of token
counts wrt to unperturbed code. Reductions can perform comparable or even better than the baseline.

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

0.576
0.584

0.571

NL & General

0.60

0.65

0.70

0.75

0.80

0.85

0.704

0.769
0.751

Math

0.55

0.60

0.65

0.70

0.617

0.649 0.645

Code Understanding

7.5

8.0

8.5

9.0

9.5

8.304
8.422 8.312

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 6: Aggregated performance of Qwen3-8B-Base (with stderr bars), depending on how much
the perturbed code data is readable to humans. Low-interpretability with misleading signals can
match or perform better than other configurations.

cally probe their effects. The grouping details are in Table 5. We illustrate performance of individual
perturbations in Appendix A.7.6.

Structural vs. Semantics Perturbations. We define structural perturbations as edits that alter
the syntactic scaffolding or formatting of code (e.g., whitespace removal, pseudocode, flowcharts),
while semantic perturbations modify meaning-bearing tokens such as identifiers, keywords, or com-
ments without disrupting the underlying structure. Across model families and scales (Figures 23 –
27), nearly all perturbations reduce performance compared to the unperturbed code-fineturned base-
line. More importantly, structural perturbations consistently degrade performance more severely
than semantic ones, especially for math and code tasks (e.g., Figure 3). The discrepancy is more ev-
ident as models scale up (e.g., Figure 23). This resembles prior work that reasoning structure rather
than content is more critical to the learning process (Li et al., 2025). We hypothesize that tasks such
as math and code rely more heavily on formatting and layout cues to shape reasoning.

Explicitness of Code Structure. Building on the importance of structure, we examine perturba-
tions along a spectrum of how explicitly they preserve code structure: from runnable or code-like
forms, through intermediate abstractions such as pseudocode and flowcharts, to natural language
step-by-step procedures. For code generation, where executable outputs are required, it is natural
that perturbations that preserve explicit code structure, whether runnable or not, lead to the best
performance. For other tasks, however, certain abstractions such as pseudocode or flowcharts often
match or even surpass unperturbed code, as they highlight algorithmic structure while removing
superficial syntax. By contrast, the most implicit form, natural language procedures, provides little
advantage and generally performs worst across tasks (e.g. Figure 4, Figures 28–32).

Relative Information Density. Because our constructed instruction datasets are parallel, the amount
of information they convey about the code is comparable across perturbations. We define relative
information density as (number of tokens in perturbed dataset) ÷ (number of tokens in the original
code-ft dataset), which reflects how compactly the same content is represented. Perturbations differ
in how they adjust density: some produce highly compact forms that strip away most tokens but
preserve the algorithmic skeleton (e.g., flowcharts, pseudocode), others moderately reduce density
by removing comments or using imaginary languages, while others preserve or even increase density
through verbose variable renamings or enriched documentation. We find that strong or moderate
reductions in density often perform close to, and sometimes better than, the baseline (e.g. Figure 5,
Figures 33–37). However, this advantage doesn’t extend to code generation, where preserving richer
surface detail is important. In addition, smaller models are more sensitive to density differences,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

whereas larger models remain robust. Overall, this suggests that the benefit of code for reasoning
doesn’t lie in its verbosity but but in the efficiency with which essential information is preserved.

Human Interpretability. We also examine perturbations through the lens of human readability:
high-interpretability (enriched explanations and visual scaffolds), medium (local edits leaving most
code intact), and low (obscured readability or misleading signals). Interestingly, low-iterpretability
variants, despite adding noise or distortion, often do not degrade performance too much from the
unperturbed baseline, and often match or even surpass medium-interpretability ones (e.g. Figure 6,
Figures 38–42). This counterintuitive trend suggests that the models could exploit surface-level
regularities and recurring structural cues that persist even in noisy or opaque forms.

RQ3: How does performance vary across programming languages?

Section Findings
• Lower-level languages benefit math tasks.
• Python aligns best with NL tasks, while Java and Rust often rank among the top for math.

The strong impact of structure in RQ2 motivates the question of whether syntactic regularities in
programming languages also influence model performance. To explore this, we group the ten pro-
gramming languages into high-scripting (Python, PHP, JavaScript, TypeScript), intermediate (Java,
C#), and low-system (C, C++, Rust, Go) according to their abstraction level. Overall, differences
across groups are small. On NL and code tasks, the impact of language groups is largely model-
dependent. However, on math tasks, most high-scripting languages consistently underperform rel-
ative to intermediate and low-system ones (e.g. top Figure 7, Figures 48–51a). We hypothesize
that richer structural detail in lower-level languages provides beneficial signals for mathematical
reasoning.

intermediate
high scripting

low system

0.43

0.44

0.45

0.46

0.47

NL & General

0.463 0.461 0.460

low system
high scripting

intermediate

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Math
0.621 0.621 0.618

intermediate
high scripting

low system

0.510

0.515

0.520

0.525

0.530

0.535
Code Understanding

0.528

0.522
0.519

low system
high scripting

intermediate

7.0

7.5

8.0

8.5

Code Generation

8.349 8.314 8.271

full-code-ft zero-shot

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48
TypeScript

Go
CPP
PHP

JavaScript
C

Java
Rust

CSharp
Python

NL & General

0.458
0.458
0.459
0.460
0.461
0.462
0.462
0.462
0.463

0.465

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
Java

TypeScript
Go

CPP
CSharp

JavaScript
PHP

C
Python

Rust
Math

0.614
0.616
0.617
0.619
0.622
0.622
0.622
0.625
0.625
0.625

0.50 0.51 0.52 0.53 0.54
CPP
PHP
Rust

JavaScript
Go

Python
C

Java
CSharp

TypeScript
Code Understanding

0.511
0.515

0.519
0.519

0.522
0.524

0.525
0.527

0.528
0.529

6.5 7.0 7.5 8.0 8.5 9.0
JavaScript

Java
C

TypeScript
Rust

CSharp
CPP
PHP
Go

Python
Code Generation

8.168
8.201
8.244
8.249

8.328
8.340
8.392
8.401
8.434
8.437

full-code-ft zero-shot

Figure 7: Performance (with stderr bars) of Qwen3-1.7B. Top: grouped by abstraction level (low-
system, intermediate, high-scripting). Low-system and intermediate languages outperform on math.
Bottom: individual programming languages. Python aligns best with NL, Rust leads on math.

For code generation, finetuning on any single language improves over zeroshot but lags behind full
code finetuning, which suggests the benefit of multi-language diversity for code generation. At the
individual language level (e.g. bottom Figure 7, Figures 49–51b), across models, Python often leads
on NL tasks, probably due to its surface form being closer to natural language. Aligning with the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

group-level results, lower-level languages such as Java and Rust often rank among the top for math.
For code tasks that span multiple languages, results are more mixed, with no clear leaders, and
performance gaps remain relatively small.

5 CONCLUSION

In this work, we aim to understand what aspects of code enhance reasoning in LLMs and which
aspects matter most. Through 3,331 finetuning experiments spanning five model families, eight
scales, ten programming languages, and a suite of systematic perturbations, we arrive at four central
conclusions. First, structural properties of code are critical: disrupting them leads to consistent per-
formance drops, especially on math and code tasks. Second, appropriate abstractions and efficient
encodings can be just as effective as raw code. Moreover, models remain surprisingly robust even to
corrupted or low-interpretability code, exploiting statistical regularities that persist despite surface
distortions. Finally, lower-level programming languages provide more benefits for math tasks. To-
gether, we want to provide a more precise account of how code supports reasoning and point toward
practical design principles for constructing effective training data beyond executable programs.

6 LIMITATIONS

Our study focuses on small- to mid-scale base models due to resource constraints. Future work
could extend our framework to larger models. Our perturbations, although diverse, may still not
cover enough and leave out other factors like code complexity and data diversity. Finally, although
we evaluate across a broad suite of reasoning tasks, our benchmarks still capture only part of the
reasoning spectrum, and future work could extend the analysis to additional domains.

7 REPRODUCIBILITY STATEMENT

We provide extensive details throughout the paper and supplementary materials. Section 3.1 de-
scribes the construction and processing of both the code and natural language datasets. Section A.5
outlines model training and implementation details. Appendix A.6 includes all prompts used for
data generation, perturbations, and LLM-as-Judge evaluation.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
et al. Smollm2: When smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr F. Locatelli, Marzieh
Fadaee, A. Ustun, and Sara Hooker. To code, or not to code? exploring impact of code in pre-
training. ArXiv, abs/2408.10914, 2024. URL https://api.semanticscholar.org/
CorpusID:271909530.

AtlasUnified. Code-instruct-sets. https://huggingface.co/datasets/
AtlasUnified/Code-Instruct-Sets, 2023.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When do
program-of-thought works for reasoning? AAAI 2025.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

10

https://api.semanticscholar.org/CorpusID:271909530
https://api.semanticscholar.org/CorpusID:271909530
https://huggingface.co/datasets/AtlasUnified/Code-Instruct-Sets
https://huggingface.co/datasets/AtlasUnified/Code-Instruct-Sets
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Raymond PL Buse and Westley R Weimer. Learning a metric for code readability. IEEE Transac-
tions on software engineering, 36(4):546–558, 2009.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Sergio Cozzetti B De Souza, Nicolas Anquetil, and Káthia M De Oliveira. A study of the docu-
mentation essential to software maintenance. In Proceedings of the 23rd annual international
conference on Design of communication: documenting & designing for pervasive information,
pp. 68–75, 2005.

Hao Fu, Yao; Peng and Tushar Khot. How does gpt obtain its ability? tracing emergent abilities of
language models to their sources. Yao Fu’s Notion, Dec 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/
2411.15594.

Alex Havrilla and Maia Iyer. Understanding the effect of noise in llm training data with algorithmic
chains of thought, 2024. URL https://arxiv.org/abs/2402.04004.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings-acl.67/.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jeevana Priya Inala, Colin
Clement, Nan Duan, and Jianfeng Gao. Execution-based evaluation for data science code gener-
ation models. arXiv preprint arXiv:2211.09374, 2022.

Hyunwoo Ko, Guijin Son, and Dasol Choi. Understand, solve and translate: Bridging the multilin-
gual mathematical reasoning gap, 2025. URL https://arxiv.org/abs/2501.02448.

Man Ho Lam, Chaozheng Wang, Jen-Tse Huang, and Michael R Lyu. CodeCrash: Stress testing
LLM reasoning under structural and semantic perturbations. arXiv [cs.AI], April 2025.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
URL https://arxiv.org/abs/2107.06499.

Bryan Li, Tamer Alkhouli, Daniele Bonadiman, Nikolaos Pappas, and Saab Mansour. Eliciting
better multilingual structured reasoning from LLMs through code. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5154–5169, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.281. URL
https://aclanthology.org/2024.acl-long.281/.

11

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2023.findings-acl.67/
https://arxiv.org/abs/2501.02448
https://arxiv.org/abs/2107.06499
https://aclanthology.org/2024.acl-long.281/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demon-
strations structure, not content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa:
A challenge dataset for machine reading comprehension with logical reasoning, 2020. URL
https://arxiv.org/abs/2007.08124.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pp. 3245–3276, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.179. URL
https://aclanthology.org/2024.naacl-long.179/.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. At
which training stage does code data help LLMs reasoning? arXiv [cs.CL], September 2023a.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li.
At which training stage does code data help llms reasoning? arXiv preprint arXiv:2309.16298,
2023b.

Dung Nguyen Manh, Thang Phan Chau, Nam Le Hai, Thong T Doan, Nam V Nguyen, Quang
Pham, and Nghi DQ Bui. Codemmlu: A multi-task benchmark for assessing code understanding
capabilities of codellms. arXiv preprint arXiv:2410.01999v1, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

nickrosh. Evol-instruct-code-80k-v1. https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlı́ček, Loubna Ben Allal, Edward Beeching,
Agustı́n Piqueres Lajarı́n, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Lean-
dro von Werra. Codeforces cots. https://huggingface.co/datasets/open-r1/
codeforces-cots, 2025.

red1xe. code instructions. https://huggingface.co/datasets/red1xe/code_
instructions, 2023.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

rombodawg. code instruct alpaca vicuna wizardlm 56k backup. https://huggingface.
co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_
backup, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

12

https://arxiv.org/abs/2007.08124
https://aclanthology.org/2024.naacl-long.179/
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/red1xe/code_instructions
https://huggingface.co/datasets/red1xe/code_instructions
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants. https:
//huggingface.co/datasets/teknium/OpenHermes-2.5, 2023. Accessed via
Hugging Face Datasets.

TokenBender. code instructions 122k alpaca style. https://huggingface.co/
datasets/TokenBender/code_instructions_122k_alpaca_style, 2024.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey on data selection
for llm instruction tuning. arXiv preprint arXiv:2402.05123, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng,
Xin Qian, Grey Yang, Jiebo Luo, and Julian McAuley. Code to think, think to code: A survey
on code-enhanced reasoning and reasoning-driven code intelligence in LLMs. arXiv [cs.CL],
February 2025b.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If LLM is the wizard, then code is the
wand: A survey on how code empowers large language models to serve as intelligent agents.
arXiv [cs.CL], January 2024.

Huimu Yu, Xing Wu, Haotian Xu, Debing Zhang, and Songlin Hu. CodePMP: Scalable preference
model pretraining for large language model reasoning. arXiv [cs.AI], October 2024.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
models reasoning. arXiv [cs.AI], May 2024a.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
models reasoning, 2024b. URL https://arxiv.org/abs/2405.20535.

Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini,
Florian Tramèr, and Daphne Ippolito. Persistent pre-training poisoning of llms, 2024c. URL
https://arxiv.org/abs/2410.13722.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5673–5684, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

A APPENDIX

A.1 EXTENDED DETAILS OF PERTURBATION DATA

See Table 2.

13

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style
https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style
https://arxiv.org/abs/2405.20535
https://arxiv.org/abs/2410.13722
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Extended examples of the perturbation dataset and token statistics for each perturbation
category.

Perturbation Original Excerpt Perturbed Excerpt Total Tokens Avg Tokens per Instruction
whitespace removal for char in input string: forcharininput string: 78,553,430 654.61
variable renaming for char in input string: for var 4 in var 1: 87,619,500 730.16
keyword replaced with non-sense if c not in vowels: garply c not in vowels: 87,123,587 726.03
keyword replaced with non-English if c not in vowels: père c not in vowels: 88,078,906 733.99
comment removal # Read input - 80,238,050 668.65
local comment swapping # Read input # Process and print the

result
85,324,436 711.04

global comment swapping # Process and print the
result

// Queue for processing
nodes

85,329,862 711.08

flowchart (Markdown) if char not in vowels: [Read char] → {Vowel?}
→ [Append ’.’ + lower]

67,553,461 562.95

step-by-step explanation result.append(’.’ +
char.lower())

Append ’.’ before
consonants ...

84,250,378 702.09

pseudocode for char in input string: FOR EACH character IF
not vowel THEN

73,722,933 614.36

imaginary language result.append(’.’ +
char.lower())

gloff add ’.’ ⊕
lower(chr)

81,011,032 675.09

comment enhancement # Process the result # Removes vowels and
prefixes consonants ...

119,399,621 994.99

comment obfuscation # Read input # WARNING: Code may
summon aliens ...

111,771,640 931.43

A.2 VERIFICATION OF QUALITY OF SYNTHETIC CODE DATA

See Table 3.

Table 3: Syntax and compilation check results across all ten programming languages. The majority
of samples successfully compiled or executed, with a mean pass rate of 82.59%

Language Total % Passed
C 11,998 81.49
PHP 12,009 94.81
JavaScript 11,996 91.57
Python 11,993 99.25
C++ 11,997 83.20
TypeScript 12,001 64.08
Rust 11,995 66.71
C# 11,996 81.06
Go 12,012 77.77
Java 12,003 88.94

A.3 EVALUATION SUITE DETAILS

See Table 4.

A.4 CATEGORIZATION OF PERTURBATIONS FOR RQ2 ANALYSIS

See Table 5.

A.5 IMPLEMENTATION DETAILS

We train all models under identical hyperparameter settings to ensure a fair comparison across model
sizes and data configurations. All experiments are conducted using full finetuning in BF16 precision
with a maximum sequence length of 2048 tokens. We run all experiments on 4×A100 80G node.
Models are trained for 2 epochs with a cumulative batch size of 64 for most experiments, except for
language-specific settings, where the batch size is reduced to 32. The learning rate is fixed at 1e−5
and follows a cosine decay schedule with a warmup ratio of 0.1. For memory-efficient parallelism
and distributed training, we use DeepSpeed ZeRO Stage 3 (Ren et al., 2021). All models are trained
using the LLaMA-Factory framework (Zheng et al., 2024). All other parameters and configurations
follow the default setting unless otherwise specified.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Evaluation suite spanning natural language and general knowledge, math, and code tasks.

Task Type Topic Benchmarks Metric

Natural Language
& General
Knowledge

Commonsense PIQA (Bisk et al., 2019)

AccuracyScience / Textbook

ARC-Easy (Clark et al., 2018)
ARC-Challenge (Clark et al., 2018)
OpenBookQA (Mihaylov et al., 2018)
MMLU (non-math) (Hendrycks et al., 2021)

Logic-Heavy LogiQA (Liu et al., 2020)

Instruction Following IFEval (Zhou et al., 2023) Prompt-level Ac-
curacy

Math
– GSM8K (Cobbe et al., 2021) Exact MatchHRM8K (Ko et al., 2025)

– Arithmetic (Brown et al., 2020) AccuracyMMLU (math) (Hendrycks et al., 2021)

Code Code Understanding CodeMMLU (Manh et al., 2024) Accuracy

Code Generation HumanEvalX (Zheng et al., 2023) LLM-as-Judge

Table 5: Categorization of perturbations across four analysis axes: structural vs. semantic (S/S)
perturbations, explicitness of code structure (ECS), relative information density (RID), and human
interpretability (HI).

Perturbation S/S Perturbations ECS RID HI

Whitespace removal

Structural

Broken syntax Moderate-reduced Medium
Pseudocode Algorithmic Strong-reduced High
Imaginary Broken syntax Moderate-reduced Low
Step-by-step NL procedure Moderate-reduced High
Flowchart Graphical Strong-reduced High

Comment removal

Semantic

Runnable Moderate-reduced Medium
Variable renaming Runnable Increased Medium
Keyword repl. (nonsense) Broken syntax Increased Low
Keyword repl. (non-Eng.) Broken syntax Increased Low
Comment swap (global) Runnable Near-baseline Low
Comment swap (local) Runnable Near-baseline Low
Comment enhancement Runnable Increased High
Comment obfuscation Runnable Increased Low

A.6 PROMPTS

Standard generation prompt We provide the standard prompt to generate code for a given in-
struction in a specific language in Figure 8. , where the instruction can be instantiated using one of
the templates in Table 6.

Comment enhancement prompt The prompt to enhance the quality and readability of a given
code snippet by adding detailed documentation is shown in Figure 9.

Comment obfuscation prompt The prompt used to generate obfuscated versions of code from a
given instruction is presented in Figure 10.

Pseudo generation prompt We illustrate the prompt designed to produce pseudocode for a given
instruction in Figure 11.

Flowchart generation prompt The prompt for generating a flowchart-style representation of an
instruction is provided in Figure 12.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Language specification templates with placeholders that can be instantiated with different
programming languages.

Generate the code in {language}. Provide code in {language}. Write the code in {language}.
Build the code using {language}. Create the code using {language}. Draft the code in {language}.
Produce a code snippet in {language}. Develop the code using {language}. Generate a solution in {language}.
Create a script in {language}. Implement the code in {language}. Design the code in {language}.
Construct the code using {language}. Format the code in {language}. Write a program in {language}.
Prepare a code snippet in {language}. Write a function in {language}. Deliver the code in {language}.

Code Instruction Data Generation Prompt

You are tasked with generating code based on a specified programming language and instruction. Your goal is to generate code that follows
the syntax and semantics of the specified language. If the instruction is invalid (e.g., contradicts the language’s rules or references functions or
constructs from a different language), you must strictly respond with ”invalid.”
Guidelines: - Valid Code: - The generated code must be syntactically and semantically correct according to the specified language. - The code should
follow standard conventions and best practices for the given language. - Do not provide any explanation for valid code — only output the code itself.
- Invalid Instruction: - If the instruction references constructs, functions, or syntax not supported by the specified language, respond with ‘”invalid”‘.
- Do not attempt to correct the invalid instruction — just respond with ‘”invalid”‘. - Do not provide a reason or explanation for why the instruction is
invalid.
Examples:
Example 1:
Instruction: ”Write a function to convert a list to a set.”
Language: Python
Response:

def list_to_set(input_list):
return set(input_list)

Example 2:
Instruction: ”Create a class with a method that prints ’Hello’ using console.log().”
Language: Python
Response: invalid
Example 3:
Instruction: ”List all files, including hidden ones, in the current directory.”
Language: Shell
Response: ls -a
Example 4:
Instruction: ”Define a function using ’def’ that returns the length of a string.”
Language: JavaScript
Response: invalid

Instruction:
If the instruction is valid, output the code directly (no explanations).
If the instruction is invalid, respond with ”invalid” (no explanation).

Input: Instruction: {instruction}
Language: {language}

Output:
{{response}}

Figure 8: Code instruction data generation prompt. The task is to generate valid code or respond
with “invalid” for unsupported instructions.

Step-by-step implementation guide generation prompt The prompt used to create a sequential
step-by-step implementation guide for an instruction is shown in Figure 13.

Imaginary language code generation We paragraph the prompt for generating code in an imagi-
nary programming language in Figure 14.

LLM-as-Judge Evaluation We use the prompt shown in Figure 15 to generate instance-specific
rubrics for LLM-as-judge evaluation on the code generation task. The prompt to evaluate model
response is shown in the Figure 16.

A.7 EXTENDED RESULTS

A.7.1 TASK PERFORMANCE SHOWCASING CODE DATA IMPACT IN FINETUNING (RQ1)

Qwen3 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure 17.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Comment Enhancement Prompt

You are tasked with enhancing the response to the given code instruction by adding meaningful comments and documentation. The goal is to
improve the code’s readability, maintainability, and clarity across any programming language, without altering its original logic or structure.
Your modifications must include:
1. Documentation Comments: - Add clear, technically accurate, and concise documentation for every function, method, class, and major code block.
- Describe the purpose, all parameters (with correct types and usage), return values, and any assumptions or notes relevant to correct usage. - Use the
standard documentation format appropriate for the programming language (e.g., Python docstrings, JavaDoc for Java, Doxygen for C/C++).
2. Inline Comments: - Insert informative and contextually helpful inline comments near complex, unintuitive, or important operations. - Focus on
explaining logic, control flow, edge-case handling, design decisions, or dependencies. - Avoid redundant, obvious, or overly literal comments (e.g., avoid
”i = 0 // set i to 0”).
Guidelines:
- Do not change the logic, structure, or behavior of the original code. - Do not introduce new functionality, abstractions, or formatting changes. - Keep
comments strictly technical, relevant, and useful—avoid verbosity or informal tone. - Do not include any meta-comments or explanatory notes about what
was changed (e.g., no ”This version adds comments” or similar). - Apply these modifications only to the code portion of the original response. Leave any
non-code parts completely unmodified. - Ensure all comments follow the style conventions of the language in use.
This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.
Input: Instruction: {instruction} Original Response: {response}
Output: {{updated response}}

Figure 9: Comment enhancement prompt. The task is to improve code clarity through meaningful
comments while preserving original functionality.

Comment Obfuscation Prompt

You are tasked with modifying the response to the given code instruction in a way that significantly degrades its quality and clarity. Your goal is to
make the code as confusing, unhelpful, and misleading as possible through the use of deliberately bad, distracting, and nonsensical comments—without
altering the actual logic or functionality of the code.
Your modifications must include:
1. Severely Misleading or Irrelevant Documentation Comments: - Add documentation to every function, class, and major code block that includes
wildly inaccurate descriptions, unrelated facts, inside jokes, cryptic advice, or philosophical ramblings. - Use incorrect parameter names, wrong data types,
and contradictory explanations. - Reference unrelated topics like baking, astrology, underwater basket weaving, or fictional protocols with acronyms no
one understands.
2. Chaotic Inline Comments: - Insert inline comments that blatantly contradict the actual functionality of the code. - Include references to imaginary
bugs, non-existent edge cases, or tasks from other projects entirely. - Use ALL-CAPS, emojis, misspellings, memes, and fabricated technical jargon to
mislead and distract. - Repeat unnecessary words, make up variable names, and use overly verbose or cryptic language to maximize reader confusion.
Guidelines:
- Do not modify the actual logic, syntax, or structure of the code — only the comments must be altered. - All comments must remain syntactically
valid for the language (e.g., use # for Python, // for JavaScript, etc.) so the code can still execute normally. - Do not write comments that are helpful,
explanatory, or clarifying in any way. Remove any useful comments that were originally present. - Do not include any reflective or meta statements about
the task (e.g., no ”this version degrades the comments”). - Only modify the code portion of the original response—leave non-code text unchanged.
This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.
Input: Instruction: {instruction} Original Response: {response}
Output: {{updated response}}

Figure 10: Comment obfuscation prompt. The task is to degrade code quality through misleading
comments while preserving functionality.

Llama-3.2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 18.

Gemma-3 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 19.

OLMo-2 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure 20.

SmolLM2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 21.

Code data mixture ratio in finetuning data ablations We show results for mixing different ratios
of code data in finetuing for Qwen3-0.6B-Base and Qwen3-1.7B-Base in Figure 22a and Figure 22b,
respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Pseudocode Conversion Prompt

You are tasked with converting a given code response into pseudocode that mirrors the structure and semantics of the original code, while
preserving the idiomatic style of the original programming language.
Your modifications must include:
1. Pseudocode Style: - Replace exact syntax with language-specific pseudocode constructs (e.g., use IF ... THEN ... ENDIF for condi-
tionals, FOR EACH or WHILE for loops). - Remove implementation details such as variable declarations with types, precise syntax, or specific library
calls—replace them with clear, high-level descriptions.
2. Structure Preservation: - Maintain the overall control flow and indentation of the original code. - Use meaningful, readable names that reflect
their purpose in the code. - Ensure each function, class, or logical block is represented clearly in pseudocode format.
3. Fidelity to Language Idioms: - Adapt the pseudocode to reflect the spirit and conventions of the original language (e.g., Python’s indentation style,
Java’s block structure, C++-like modularity).
Guidelines:
- Do not alter the logic, structure, or order of operations. - Do not include actual code syntax (e.g., semicolons, colons, type annotations, brackets). -
Do not add comments, explanations, or headings outside the code block. - Output only the converted pseudocode. - Preserve formatting and indentation
faithfully.
Input: Instruction: {instruction} Original Response: {response}
Output:

{{pseudocode}}

Figure 11: Pseudocode conversion prompt. The task is to translate real code into structured pseu-
docode while preserving logic and idiomatic style.

Flowchart Generation Prompt

You are tasked with generating a flow diagram in Markdown format that visualizes the control flow of the given code response. Your output must
be a Mermaid flowchart embedded in a single fenced code block.
Your diagram must:
1. Translate code logic into control flow: - Include major steps, function calls, loops, branches, and return points. - Use concise, descriptive node labels
that accurately reflect the code behavior.
2. Follow valid Mermaid syntax: - Begin with Start and end with End. - Use [] for actions/processes. - Use { } for decision/branch points. - Use
--> to connect nodes. - Wrap everything in triple backticks with mermaid specified.
3. Respect language conventions: - Match naming and idioms to the language used in the original code. - Do not reinterpret or alter the code logic.
Guidelines:
- Do not change the structure or logic of the original response. - Do not generate new code, only a flowchart of the existing response. - Keep node
labels technical and minimal. - Do not include explanations, comments, or narrative outside the flowchart. - Follow the same formatting and structural
conventions as the original prompt.
Input: Instruction: {instruction} Original Response: {response}
Output:

‘‘‘mermaid
{{flowchart}}
‘‘‘

Figure 12: Flowchart generation prompt. The task is to convert real code into a Mermaid flow
diagram without changing logic or structure.

A.7.2 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY STRUCTURE VS
SEMANTICS (RQ2)

Qwen3 model family results (structure vs semantics perturbations) See performance of aggre-
gated task performance under structure vs semantics perturbations in Figure 23.

Llama-3.2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure 24.

Gemma-3 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure 25.

OlMo-2 model family results (structure vs semantics perturbations) See performance of ag-
gregated task performance under structure vs semantics perturbations in Figure 26.

SmolLM2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure 27.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step-by-Step Generation Prompt

You are tasked with converting a given code response into a step-by-step implementation guide that describes how to manually implement the
code in clear, concise, and technically accurate language.
Your implementation guide must:
1. Preserve Original Logic: - Follow the same structure, logic, and sequence as the original code. - Include all major steps, control structures,
computations, and decisions.
2. Describe, Don’t Translate: - Do not include code or pseudocode. - Write in declarative, instructional sentences that explain what to do and how to do
it. - Use neutral, language-agnostic terminology (e.g., “Define a function named...”, “Check if...”, “Return the result...”).
3. Be Clear and Concise: - Number each step in the order it occurs. - Use precise and unambiguous language. - Each step should focus on a single
coherent action.
Guidelines:
- Do not add extra commentary, examples, or assumptions. - Do not change the original logic or execution order. - Do not output anything other
than the numbered steps. - Output the guide as a plaintext numbered list only—no code blocks, no explanations outside the list.
Input: Instruction: {instruction} Original Response: {response}
Output:

1. {{Step one}}
2. {{Step two}}
3. {{Step three}}
...

Figure 13: Step-by-step implementation guide prompt. The task is to describe how to implement
the code in a precise, ordered, and language-agnostic way.

Imaginary Language Translation Prompt

You are tasked with converting a given code response into an imaginary programming language that mimics the syntax and semantics of the
original real-world language while appearing fictional and made-up.
Your modifications must include:
1. Imaginary Language Design: - Rename keywords, function names, types, and operators using plausible yet fictional terms. - Preserve the structure,
indentation, and logical flow of the original code. - Ensure the resulting code remains readable and clearly maps to the original logic.
2. Consistency and Fidelity: - Maintain 1-to-1 correspondence between the original code constructs and their fictional equivalents. - The imaginary
language should resemble the style and design patterns of the original language (e.g., Pythonic indentation, Java-style braces and semicolons, C++ class
structure, etc.).
3. Creativity within Constraint: - Make the language feel internally consistent and syntactically plausible. - Avoid random noise—each fictional token
should appear intentional and reusable.
Guidelines:
- Do not change the underlying logic of the original code. - Do not translate comments or docstrings—leave them unchanged. - Do not add
explanations, annotations, or headings outside the code block. - Output only the converted code. - Ensure formatting matches the original exactly (e.g.,
spacing, newlines).
Input: Instruction: {instruction} Original Response: {response}
Output:

‘‘‘imaginary
{{code_in_imaginary_language}}
‘‘‘

Figure 14: Imaginary language translation prompt. The task is to render real code in a fictional but
consistent language without changing its logic.

A.7.3 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY EXPLICITNESS OF
CODE STRUCTURE (RQ2)

Qwen3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure 28.

Llama-3.2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-
ure 29.

Gemma-3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure 30.

OlMo-2 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure 31.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Rubric Generation Prompt

You are tasked with generating an instance-specific evaluation rubric based on a given coding prompt, canonical solution, and test
case(s) to evaluate the model-generated response.

Guidelines:
- The rubric must be example-specific: every score level must directly reference the details of the given prompt, canonical solution,
and test case(s).
- Use a fixed 1–10 scale (1 = lowest quality attempt, 10 = fully correct).
- Structure the rubric so that:
- Scores 1–3 describe model responses that are irrelevant, nonsensical, or do not implement the required functionality.
- Scores 4–7 describe model responses that attempt the task but are incomplete, flawed, or only partially correct on test case(s).
- Scores 8–10 describe model responses that are mostly or fully correct, aligning with the canonical solution and passing most or
all test case(s).
- Each score level (1–10) must have a clear, measurable description unique to this problem.
- Output only the rubric.

Input:
Code Prompt:

{code_prompt}

Canonical Solution:

{canonical_solution}

Test Case(s):

{test_case}

Output:

{{rubric}}

Figure 15: LLM-as-judge prompt for generating an instance-specific rubric to evaluate model-
generated code responses.

SmolLM2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-
ure 32.

A.7.4 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY RELATIVE
INFORMATION DENSITY (RQ2)

Qwen3 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure 33.

Llama-3.2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure 34.

Gemma-3 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure 35.

OlMo-2 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure 36.

SmolLM2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure 37.

A.7.5 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY HUMAN
INTERPRETABILITY (RQ2)

Qwen3 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure 38.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

LLM-as-Judge Evaluation Prompt

You are tasked with evaluating a model-generated response to a coding prompt using the provided rubric.

You are given:
1. The coding prompt.
2. The rubric (instance-specific, with 1–10 levels).
3. The model response.

Instructions:
- Carefully read the rubric.
- Compare the model response against the rubric criteria.
- Assign the most appropriate score (1–10).
- Provide a concise justification inside ¡reasoning¿¡/reasoning¿, explicitly referencing how the model response aligns or fails to
align with specific rubric levels.
- Provide only the numeric score inside ¡score¿¡/score¿.
- Do not include any text outside the required tags.

Input:
Coding Prompt:

{code_prompt}

Rubric:

{rubric}

Model Response:

{model_response}

Output:

<reasoning>{{concise justification}}</reasoning>
<score>{{integer from 1 to 10}}</score>

Figure 16: LLM-as-judge prompt for rubric-based evaluation of model-generated code responses.

Llama-3.2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure 39.

Gemma-3 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure 40.

OlMo-2 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure 41.

SmolLM2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure 42.

A.7.6 TASK PERFORMANCE FOR ALL INDIVIDUAL PERTURBATIONS (RQ2)

Qwen3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 43.

Llama-3.2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 44.

Gemma-3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 45.

OlMo-2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 46.

SmolLM2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 47.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

code-ft
zero shot nl-ft

mixed-ft

0.385

0.390

0.395

0.400

0.405

0.410

0.415

NL & General

0.406

0.397 0.397

0.391

code-ft
zero shot nl-ft

mixed-ft

0.375

0.400

0.425

0.450

0.475

0.500

0.525
Math

0.500 0.492

0.398
0.376

code-ft
mixed-ft

zero shot nl-ft
0.430
0.432
0.434
0.436
0.438
0.440
0.442
0.444

Code Understanding

0.441
0.440

0.433 0.433

code-ft
mixed-ft nl-ft

zero shot
4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50
Code Generation

6.208

5.474

4.999
4.813

(a) Qwen3-0.6B-Base

code-ft
mixed-ft nl-ft

zero shot

0.36

0.37

0.38

0.39

0.40

NL & General

0.391

0.383 0.382

0.367

code-ft nl-ft
mixed-ft

zero shot
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46

Math

0.450
0.429 0.421

0.335

code-ft
zero shot nl-ft

mixed-ft

0.40

0.42

0.44

0.46

0.48
Code Understanding

0.468

0.426

0.391 0.391

code-ft
mixed-ft nl-ft

zero shot

5.0

5.5

6.0

6.5

7.0

7.5
Code Generation

7.233

6.029

5.089
4.855

(b) Qwen3-0.6B

code-ft
zero shot

mixed-ft nl-ft

0.46

0.47

0.48

0.49

0.50
NL & General

0.490

0.466 0.464 0.461

code-ft
zero shot nl-ft

mixed-ft
0.500

0.525

0.550

0.575

0.600

0.625

0.650

Math

0.637
0.618

0.550

0.515

code-ft
zero shot nl-ft

mixed-ft

0.50

0.51

0.52

0.53

0.54

0.55

0.56

Code Understanding
0.555

0.517

0.503
0.497

code-ft
mixed-ft nl-ft

zero shot
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75

Code Generation

7.548

6.931

6.282
6.085

(c) Qwen3-1.7B-Base

code-ft
mixed-ft nl-ft

zero shot
0.42

0.43

0.44

0.45

0.46

0.47

NL & General

0.461

0.436 0.436
0.429

code-ft
mixed-ft nl-ft

zero shot
0.475

0.500

0.525

0.550

0.575

0.600

0.625

Math

0.611

0.509 0.507
0.491

code-ft
zero shot nl-ft

mixed-ft

0.505

0.510

0.515

0.520

0.525
Code Understanding

0.520

0.516

0.510

0.505

code-ft
mixed-ft

zero shot nl-ft
6.5

7.0

7.5

8.0

8.5

9.0
Code Generation

8.816

7.968

6.818 6.673

(d) Qwen3-1.7B

code-ft
mixed-ft

zero shot nl-ft
0.54

0.55

0.56

0.57

0.58
NL & General

0.569

0.561

0.554
0.547

mixed-ft code-ft nl-ft
zero shot

0.55

0.60

0.65

0.70

0.75

Math

0.739
0.723 0.720

0.552

code-ft
zero shot

mixed-ft nl-ft

0.61

0.62

0.63

0.64

0.65

Code Understanding

0.652

0.636

0.620

0.610

code-ft
mixed-ft nl-ft

zero shot

7.25

7.50

7.75

8.00

8.25

8.50

8.75
Code Generation

8.522

7.599

7.212 7.202

(e) Qwen3-8B-Base

Figure 17: Task performance of Qwen-3 family under zero-shot, full code finetuning (code-ft), full
natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.7.7 TASK PERFORMANCE WITH DIFFERENT PROGRAMMING LANGUAGES (RQ3)

Qwen3 model family results See performance of grouped performance and individual program-
ming languages in Figure 48 and Figure 49, respectively.

Llama-3 model family results See performance of grouped performance and individual program-
ming languages in Figure 50.

SmolLM2 model family results See performance of grouped performance and individual pro-
gramming languages in Figure 51.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

nl-ft
mixed-ft code-ft

zero shot
0.36

0.38

0.40

0.42

0.44

NL & General

0.438
0.429

0.419

0.367

mixed-ft nl-ft code-ft
zero shot

0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27

Math

0.259

0.238

0.223

0.209

code-ft
zero shot

mixed-ft nl-ft

0.2675

0.2700

0.2725

0.2750

0.2775

0.2800

Code Understanding

0.278
0.276 0.276

0.269

code-ft
mixed-ft nl-ft

zero shot
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2

Code Generation

5.042
4.889

4.224

3.895

(a) Llama-3.2-1B

code-ft
mixed-ft nl-ft

zero shot

0.42

0.43

0.44

0.45

0.46

0.47

NL & General

0.463

0.445 0.443

0.425

mixed-ft nl-ft code-ft
zero shot

0.15

0.20

0.25

0.30

0.35

Math

0.342

0.254

0.163 0.158

code-ft
zero shot nl-ft

mixed-ft
0.32

0.34

0.36

0.38

0.40
Code Understanding

0.391

0.378

0.363

0.326

code-ft
mixed-ft nl-ft

zero shot

5.0

5.5

6.0

6.5

7.0

Code Generation

6.885

6.360

5.398
5.043

(b) Llama-3.2-3B

Figure 18: Task performance of Llama-3.2 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

code-ft
zero shot nl-ft

mixed-ft
0.33

0.34

0.35

0.36

0.37

NL & General

0.363

0.349
0.342

0.337

zero shot
code-ft

mixed-ft nl-ft

0.06

0.08

0.10

0.12

0.14
Math

0.123
0.115

0.064 0.062

zero shot
code-ft nl-ft

mixed-ft
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26
Code Understanding

0.250 0.243

0.161

0.127

code-ft
mixed-ft nl-ft

zero shot
2.4

2.6

2.8

3.0

3.2

3.4

Code Generation

3.389

3.150

2.667

2.473

(a) gemma-3-1b

code-ft
zero shot nl-ft

mixed-ft

0.44

0.45

0.46

0.47

NL & General

0.467

0.460
0.457

0.447

code-ft
zero shot

mixed-ft nl-ft

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Math

0.334 0.325

0.298

0.223

nl-ft
zero shot

code-ft
mixed-ft

0.25

0.30

0.35

0.40

0.45

0.50
Code Understanding

0.483
0.455

0.417

0.219

Code Generation (not available)

(b) gemma-3-4b

Figure 19: Task performance of Gemma-3 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.7.8 LLM-AS-JUDGE RESULTS

We report the results across multiple judge models in Table 7.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

code-ft
zero shot nl-ft

mixed-ft
0.380

0.385

0.390

0.395

0.400

0.405

0.410

0.415
NL & General

0.404

0.390 0.390 0.387

zero shot
mixed-ft nl-ft code-ft

0.15

0.16

0.17

0.18

0.19

0.20

Math

0.192

0.177
0.171

0.159

nl-ft
zero shot

code-ft
mixed-ft

0.290

0.295

0.300

0.305

0.310

0.315

0.320
Code Understanding

0.316

0.298 0.298

0.289

code-ft
mixed-ft nl-ft

zero shot

2.4

2.6

2.8

3.0

3.2

3.4
Code Generation

3.261

3.002

2.652

2.371

(a) OLMo-2-0425-1B

code-ft
zero shot

mixed-ft nl-ft

0.46

0.47

0.48

0.49

0.50

NL & General

0.493

0.479

0.467 0.465

zero shot
code-ft

mixed-ft nl-ft
0.250

0.275

0.300

0.325

0.350

0.375

0.400
Math

0.377
0.364

0.271
0.259

zero shot nl-ft code-ft
mixed-ft

0.36

0.38

0.40

0.42

Code Understanding
0.415

0.405

0.383

0.348

code-ft
mixed-ft nl-ft

zero shot
3.5

4.0

4.5

5.0

5.5

6.0

Code Generation
5.861

5.082

4.004
3.563

(b) OLMo-2-1124-7B

Figure 20: Task performance of OLMo-2 family under zero-shot, full code finetuning (code-ft), full
natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

zero shot
code-ft

mixed-ft nl-ft
0.330

0.335

0.340

0.345

0.350

0.355

0.360

0.365
NL & General

0.355 0.354

0.344

0.338

zero shot
mixed-ft code-ft nl-ft

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13
Math

0.119

0.094

0.082
0.072

code-ft
zero shot nl-ft

mixed-ft

0.255

0.260

0.265

0.270

0.275

Code Understanding

0.274
0.271

0.258
0.255

code-ft
mixed-ft nl-ft

zero shot
2.6

2.8

3.0

3.2

3.4
Code Generation

3.241

3.001

2.765
2.646

(a) SmolLM2-360M

code-ft nl-ft
mixed-ft

zero shot

0.435

0.440

0.445

0.450

NL & General

0.444 0.444
0.442 0.441

nl-ft
mixed-ft code-ft

zero shot
0.12

0.14

0.16

0.18

0.20

0.22

Math

0.208

0.184

0.137
0.128

zero shot
code-ft

mixed-ft nl-ft
0.30

0.32

0.34

0.36

0.38

0.40

0.42
Code Understanding

0.406
0.393

0.319
0.306

code-ft
mixed-ft nl-ft

zero shot

4.0

4.2

4.4

4.6

4.8

5.0

5.2
Code Generation

4.968

4.540

4.171
4.012

(b) SmolLM2-1.7B

Figure 21: Task performance of SmolLM2 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

Table 7: Cross-judge evaluation of Qwen3-4B base variant on Python code generation task using
five LLM judges — all under identical evaluation settings. Model rankings remain consistent across
judges, with only moderate score variability (std 0.63–0.99), demonstrating that LLM-as-judge eval-
uations are stable and reliable across different judging models.

Target Model / Perturbation claude-3-haiku claude-haiku-4.5 gpt-4o-mini gpt-5-mini llama3-90b Mean Std
zeroshot 8.41 ± 2.42 7.34 ± 2.99 7.09 ± 3.27 6.84 ± 3.00 8.17 ± 2.59 7.57 0.69
swap comments global 9.01 ± 1.41 7.76 ± 2.43 7.91 ± 2.55 6.85 ± 2.94 9.13 ± 1.42 8.13 0.95
swap comments local 9.24 ± 1.24 7.94 ± 2.69 8.54 ± 2.37 7.26 ± 3.06 9.15 ± 1.58 8.43 0.84
replace keywords nonsense 9.10 ± 1.16 7.88 ± 2.46 8.74 ± 2.31 7.16 ± 3.04 9.20 ± 1.39 8.42 0.87
replace keywords nonEn 9.21 ± 1.16 7.68 ± 2.70 8.73 ± 2.22 7.35 ± 2.89 9.25 ± 1.20 8.44 0.88
flowchart 8.88 ± 1.67 7.44 ± 2.86 8.07 ± 2.58 7.32 ± 3.01 9.13 ± 1.50 8.17 0.82
imaginary 8.94 ± 1.68 7.67 ± 2.87 8.06 ± 2.71 7.17 ± 2.94 9.00 ± 1.82 8.17 0.80
pseudocode 8.89 ± 1.62 7.15 ± 2.72 7.34 ± 3.00 7.22 ± 2.90 9.02 ± 1.48 7.92 0.94
step by step 8.66 ± 1.92 7.50 ± 2.83 7.76 ± 2.75 7.57 ± 2.90 8.81 ± 1.90 8.06 0.63
comment obfuscation 8.79 ± 2.03 7.41 ± 2.80 7.86 ± 2.88 7.02 ± 3.07 8.93 ± 1.78 8.00 0.84
comment enhancement 9.22 ± 1.35 7.77 ± 2.74 8.36 ± 2.65 7.93 ± 2.48 9.09 ± 1.71 8.47 0.66
remove comments 9.09 ± 1.61 7.86 ± 2.54 8.27 ± 2.54 7.23 ± 3.05 9.19 ± 1.42 8.32 0.83
remove whitespace 9.10 ± 1.43 7.87 ± 2.58 8.69 ± 2.28 7.77 ± 2.85 9.33 ± 1.33 8.55 0.71
replace variables 9.20 ± 0.95 7.47 ± 2.74 8.09 ± 2.66 6.92 ± 3.09 9.07 ± 1.53 8.15 0.99
code-ft 9.14 ± 1.46 7.98 ± 2.32 8.65 ± 2.36 7.61 ± 2.98 9.17 ± 1.41 8.51 0.70
mixed-ft 8.68 ± 1.94 7.46 ± 2.94 7.94 ± 2.79 7.31 ± 3.08 8.75 ± 2.10 8.03 0.67
nl-ft 8.19 ± 2.43 6.58 ± 2.99 6.75 ± 3.11 6.60 ± 3.15 7.84 ± 2.63 7.19 0.76

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.38 0.39 0.40 0.41 0.42

code mix 60%
code mix 20%
code mix 10%

code mix 2.5%
code mix 97.5%

code mix 5%
code mix 90%
code mix 95%
code mix 40%
code mix 80%

NL & General

0.397
0.397
0.398

0.399
0.399
0.400

0.402
0.402
0.402

0.407

code-ft
zero-shot
code mix 50%

0.350 0.375 0.400 0.425 0.450 0.475 0.500

code mix 2.5%
code mix 40%
code mix 5%

code mix 10%
code mix 20%
code mix 60%
code mix 95%
code mix 90%
code mix 80%

code mix 97.5%
Math

0.351
0.352
0.355

0.359
0.410

0.423
0.427

0.455
0.461

0.469

code-ft
zero-shot
code mix 50%

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48

code mix 60%
code mix 40%
code mix 10%
code mix 80%
code mix 5%

code mix 97.5%
code mix 2.5%
code mix 95%
code mix 20%
code mix 90%

Code Understanding

0.410
0.418

0.427
0.430

0.442
0.448

0.453
0.456

0.459
0.466

code-ft
zero-shot
code mix 50%

4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50

code mix 2.5%
code mix 5%

code mix 40%
code mix 10%
code mix 20%
code mix 80%
code mix 60%
code mix 90%
code mix 95%

code mix 97.5%
Code Generation

5.198
5.198

5.239
5.287
5.318

5.576
5.589

5.739
5.950
5.956

code-ft
zero-shot
code mix 50%

(a) Qwen3-0.6B-Base

0.45 0.46 0.47 0.48 0.49 0.50 0.51

code mix 2.5%
code mix 5%

code mix 90%
code mix 10%
code mix 80%
code mix 20%
code mix 40%

code mix 97.5%
code mix 60%
code mix 95%

NL & General

0.459
0.461

0.463
0.463
0.463
0.464
0.465
0.466

0.468
0.474

code-ft
zero-shot
code mix 50%

0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650

code mix 80%
code mix 60%

code mix 2.5%
code mix 95%
code mix 5%

code mix 40%
code mix 10%
code mix 90%

code mix 97.5%
code mix 20%

Math

0.461
0.480

0.490
0.494

0.500
0.505

0.511
0.521
0.521

0.527

code-ft
zero-shot
code mix 50%

0.48 0.50 0.52 0.54 0.56 0.58

code mix 40%
code mix 60%
code mix 10%

code mix 2.5%
code mix 20%
code mix 5%

code mix 80%
code mix 95%

code mix 97.5%
code mix 90%

Code Understanding

0.505
0.505
0.507
0.508
0.509

0.515
0.523

0.528
0.538
0.538

code-ft
zero-shot
code mix 50%

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75

code mix 2.5%
code mix 5%

code mix 40%
code mix 20%
code mix 10%
code mix 60%
code mix 80%
code mix 90%
code mix 95%

code mix 97.5%
Code Generation

6.374
6.435

6.573
6.596
6.610

6.961
6.983

7.038
7.138

7.370

code-ft
zero-shot
code mix 50%

(b) Qwen3-1.7B-Base

Figure 22: Task performance of Qwen3-0.6, 1.7B-Base when mixing different ratio of code data dur-
ing finetuning. In general higher code percentages improves performance, with math tasks showing
large variation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.36

0.38

0.40

0.42

0.44

0.46

Ta
sk

 P
er

fo
rm

an
ce 0.412

0.404

NL & General

0.425

0.450

0.475

0.500

0.525

0.550

0.475 0.477

Math

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.441
0.428

Code Understanding

5.0

5.5

6.0

6.5

7.0

5.458
5.736

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Ta
sk

 P
er

fo
rm

an
ce

0.481
0.493

NL & General

0.3

0.4

0.5

0.6

0.7

0.292

0.428

Math

0.45

0.50

0.55

0.60

0.495

0.532

Code Understanding

6.5

7.0

7.5

8.0

8.5

7.093
7.352

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Ta
sk

 P
er

fo
rm

an
ce 0.577 0.575

NL & General

0.65

0.70

0.75

0.80

0.85

0.726
0.750

Math

0.55

0.60

0.65

0.70

0.625
0.645

Code Understanding

7.5

8.0

8.5

9.0

9.5

8.294 8.361

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 23: Task performance under perturbations aggregated by structure vs semantics across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

0.325

0.350

0.375

0.400

0.425

0.450

0.475

Ta
sk

 P
er

fo
rm

an
ce

0.374 0.376

NL & General

0.18

0.20

0.22

0.24

0.203
0.199

Math

0.22

0.24

0.26

0.28

0.30

0.235

0.271

Code Understanding

3.5

4.0

4.5

5.0

5.5

4.066

4.514

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Ta
sk

 P
er

fo
rm

an
ce 0.451 0.453

NL & General

0.13

0.14

0.15

0.16

0.17

0.18

0.149

0.161

Math

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.346

0.391

Code Understanding

5.0

5.5

6.0

6.5

7.0

7.5

5.711

6.271

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 24: Task performance under perturbations aggregated by structure vs semantics across
Llama-3.2 models (1B (top), 3B (bottom)).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.32

0.34

0.36

0.38

0.40
Ta

sk
 P

er
fo

rm
an

ce 0.364 0.359

NL & General

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.109 0.111

Math

0.18

0.20

0.22

0.24

0.26

0.211

0.232

Code Understanding

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.546
2.691

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Ta
sk

 P
er

fo
rm

an
ce 0.485 0.488

NL & General

0.30

0.32

0.34

0.36

0.38

0.331 0.331

Math

0.25

0.30

0.35

0.40

0.45

0.269

0.358

Code Understanding
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 25: Task performance under perturbations aggregated by structure vs semantics across
Gemma-3 models (1B (top), 4B (bottom)).

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Ta
sk

 P
er

fo
rm

an
ce 0.396 0.397

NL & General

0.14

0.15

0.16

0.17

0.18

0.19

0.20 0.180
0.173

Math

0.24

0.26

0.28

0.30

0.32

0.34

0.273
0.286

Code Understanding

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.493

2.821

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 26: Additional performance of OLMo-2-0425-1B aggregated by structure vs semantics
across tasks.

0.30

0.32

0.34

0.36

0.38

0.40

Ta
sk

 P
er

fo
rm

an
ce 0.358

0.351

NL & General

0.070

0.075

0.080

0.085

0.090

0.095

0.100
0.089

0.086

Math

0.24

0.26

0.28

0.30

0.272 0.271

Code Understanding

2.6

2.8

3.0

3.2

3.4

3.6

2.834
2.961

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Ta
sk

 P
er

fo
rm

an
ce 0.442 0.440

NL & General

0.11

0.12

0.13

0.14

0.15

0.127

0.135

Math

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.371

0.396

Code Understanding

4.00

4.25

4.50

4.75

5.00

5.25

5.50

4.527
4.747

Code Generation
Structure-perturbations Semantics-perturbations unperturbed-code

Figure 27: Task performance under perturbations aggregated by structure vs semantics across
SmolLM2 models (360M (top), 1.7B (bottom)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50
Sc

or
e 0.403 0.408 0.410

0.435

0.391

NL & General

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.470

0.500

0.480
0.462 0.455

Math

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.428
0.440

0.462 0.460

0.374

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

5.720 5.805

5.043

5.329 5.234

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.497
0.485 0.481

0.489

0.466

NL & General

0.2

0.3

0.4

0.5

0.6

0.7

0.501

0.348

0.188 0.186 0.168

Math

0.35

0.40

0.45

0.50

0.55

0.60

0.532 0.538
0.522

0.553

0.356

Code Understanding

6.0

6.5

7.0

7.5

8.0

8.5

7.257
7.459

6.922 6.896 6.891

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

0.573 0.579 0.579 0.577 0.572

NL & General

0.60

0.65

0.70

0.75

0.80

0.85

0.746
0.760

0.742

0.690 0.682

Math

0.50

0.55

0.60

0.65

0.70

0.75

0.642 0.652 0.659

0.626

0.538

Code Understanding

7.0

7.5

8.0

8.5

9.0

9.5

8.343 8.448
8.140

8.393

7.972

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 28: Task performance under perturbations aggregated by explicitness of code structure across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Sc
or

e 0.375 0.376 0.376
0.384

0.361

NL & General

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.199 0.200 0.198
0.207 0.209

Math

0.150

0.175

0.200

0.225

0.250

0.275

0.300
0.272 0.265

0.250

0.159

0.248

Code Understanding

3.0

3.5

4.0

4.5

5.0

5.5

4.780

4.378

3.670
3.491

3.619

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Sc
or

e

0.452 0.457 0.452 0.452

0.435

NL & General

0.12

0.14

0.16

0.18

0.20

0.157 0.155

0.132

0.180

0.156

Math

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.386 0.391

0.291

0.392

0.295

Code Understanding

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

6.317 6.428

4.477

5.589

5.133

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 29: Task performance under perturbations aggregated by explicitness of code structure across
Llama-3.2 models (1B (top), 3B (bottom)).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Sc
or

e
0.359 0.363 0.367 0.368

0.352

NL & General

0.09

0.10

0.11

0.12

0.13

0.109 0.110

0.117 0.116

0.102

Math

0.18

0.20

0.22

0.24

0.26

0.234
0.225

0.205

0.189

0.210

Code Understanding

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.995

2.391
2.582

2.055 2.094

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.487 0.492 0.486
0.478

0.471

NL & General

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.328
0.337

0.347
0.338

0.305

Math

0.20

0.25

0.30

0.35

0.40

0.45

0.361

0.322

0.230
0.209

0.317

Code Understanding

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 30: Task performance under perturbations aggregated by explicitness of code structure across
Gemma-3 models (1B (top), 4B (bottom)).

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Sc
or

e

0.396 0.395
0.407 0.406

0.390

NL & General

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.169

0.179

0.188

0.177
0.184

Math

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.286 0.281 0.282
0.275

0.258

Code Understanding

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.937

2.645

2.351
2.255 2.223

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 31: Additional performance of OLMo-2-0425-1B aggregated by explicitness of code struc-
ture across tasks.

0.30

0.32

0.34

0.36

0.38

0.40

Sc
or

e

0.350
0.358

0.364
0.356

0.350

NL & General

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.087
0.081

0.096

0.114

0.080

Math

0.24

0.26

0.28

0.30

0.32

0.270 0.274
0.281

0.269
0.262

Code Understanding

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.010

2.862
2.776 2.780 2.790

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Sc
or

e

0.439 0.442 0.446 0.443
0.435

NL & General

0.11

0.12

0.13

0.14

0.15 0.132
0.136

0.122

0.129
0.127

Math

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.397 0.395

0.364 0.359

0.336

Code Understanding

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

4.819
4.647

4.492 4.429

4.193

Code Generation

Runnable-code Code-like-broken-syntax Linear-algorithmic-form Graphical-structural-abstraction Natural-language-procedure unperturbed-code

Figure 32: Task performance under perturbations aggregated by explicitness of code structure across
SmolLM2 models (360M (top), 1.7B (bottom)).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0.36

0.38

0.40

0.42

0.44

0.46

0.48
Sc

or
e

0.423

0.406 0.405 0.401

NL & General

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.471
0.489

0.427

0.491

Math

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.461

0.434 0.429
0.420

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

5.186

5.701
5.520

5.831

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.485 0.480 0.476

0.502

NL & General

0.2

0.3

0.4

0.5

0.6

0.7

0.187

0.479

0.214

0.471

Math

0.45

0.50

0.55

0.60

0.538

0.479

0.530 0.532

Code Understanding

6.0

6.5

7.0

7.5

8.0

8.5

6.909

7.230 7.128

7.527

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

0.578 0.579 0.572 0.573

NL & General

0.65

0.70

0.75

0.80

0.85

0.716
0.741

0.762
0.742

Math

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.643
0.622

0.644 0.644

Code Understanding

7.5

8.0

8.5

9.0

9.5

8.266 8.340 8.258
8.389

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 33: Task performance under perturbations aggregated by relative information density across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Sc
or

e 0.380
0.373 0.377 0.375

NL & General

0.18

0.20

0.22

0.24

0.203 0.203
0.195

0.200

Math

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.205

0.258
0.272 0.272

Code Understanding

3.5

4.0

4.5

5.0

5.5

3.580

4.518 4.599

4.327

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Sc
or

e

0.452 0.453 0.453 0.451

NL & General

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.156

0.147

0.174

0.157

Math

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.341

0.362

0.385 0.391

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

7.5

5.033

6.239
6.063

6.344

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 34: Task performance under perturbations aggregated by relative information density across
Llama-3.2 models (1B (top), 3B (bottom)).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0.32

0.34

0.36

0.38

0.40

0.42
Sc

or
e

0.367
0.362 0.361 0.357

NL & General

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130 0.117

0.107
0.111 0.110

Math

0.18

0.20

0.22

0.24

0.26

0.197

0.219

0.236 0.234

Code Understanding

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.318

2.832
2.938

2.484

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.482 0.487 0.492 0.486

NL & General

0.28

0.30

0.32

0.34

0.36

0.38

0.343

0.323

0.339
0.330

Math

0.20

0.25

0.30

0.35

0.40

0.45

0.219

0.315

0.379
0.350

Code Understanding

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 35: Task performance under perturbations aggregated by relative information density across
Gemma-3 models (1B (top), 4B (bottom)).

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Sc
or

e

0.407

0.393 0.397 0.396

NL & General

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.183

0.175

0.159

0.179

Math

0.24

0.26

0.28

0.30

0.32

0.34

0.278 0.277
0.287 0.284

Code Understanding

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

2.303

2.757
2.928

2.709

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 36: Additional performance of OLMo-2-0425-1B aggregated by relative information density
across tasks.

0.30

0.32

0.34

0.36

0.38

0.40

Sc
or

e

0.360 0.357
0.351 0.351

NL & General

0.07

0.08

0.09

0.10

0.11

0.12 0.105

0.079

0.085
0.088

Math

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.275 0.273
0.268 0.270

Code Understanding

2.4

2.6

2.8

3.0

3.2

3.4

3.6

2.778

2.952
3.069

2.871

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Sc
or

e

0.445 0.440 0.440 0.440

NL & General

0.11

0.12

0.13

0.14

0.15

0.16

0.125

0.132

0.140

0.131

Math

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.361

0.379
0.393

0.400

Code Understanding

4.00

4.25

4.50

4.75

5.00

5.25

5.50

4.460
4.646

4.775 4.712

Code Generation

Strong-reduced-density Moderate-reduced-density Near-baseline-density Increased-density unperturbed-code

Figure 37: Task performance under perturbations aggregated by relative information density across
SmolLM2 models (360M (top), 1.7B (bottom)).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.36

0.38

0.40

0.42

0.44

0.46
Sc

or
e

0.410 0.410
0.401

NL & General

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.470

0.505

0.464

Math

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.432

0.457

0.417

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

5.202

5.857
5.706

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.479
0.488

0.499

NL & General

0.3

0.4

0.5

0.6

0.7

0.300

0.631

0.299

Math

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.493

0.539
0.529

Code Understanding

6.0

6.5

7.0

7.5

8.0

8.5

6.903

7.374 7.349

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

0.500

0.525

0.550

0.575

0.600

0.625

0.650

Sc
or

e

0.576
0.584

0.571

NL & General

0.60

0.65

0.70

0.75

0.80

0.85

0.704

0.769
0.751

Math

0.55

0.60

0.65

0.70

0.617

0.649 0.645

Code Understanding

7.5

8.0

8.5

9.0

9.5

8.304
8.422 8.312

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 38: Task performance under perturbations aggregated by human interpretability across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Sc
or

e 0.373 0.377 0.375

NL & General

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.202 0.202 0.199

Math

0.20

0.22

0.24

0.26

0.28

0.30

0.233

0.270 0.268

Code Understanding

3.5

4.0

4.5

5.0

5.5

3.594

4.844

4.420

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Sc
or

e

0.447
0.457 0.453

NL & General

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.149 0.148

0.165

Math

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.342

0.398
0.383

Code Understanding

4.5

5.0

5.5

6.0

6.5

7.0

7.5

5.066

6.518
6.285

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 39: Task performance under perturbations aggregated by human interpretability across
Llama-3.2 models (1B (top), 3B (bottom)).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.32

0.34

0.36

0.38

0.40

0.42

Sc
or

e

0.360
0.366

0.359

NL & General

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

0.111 0.112
0.108

Math

0.18

0.20

0.22

0.24

0.26

0.209

0.230 0.231

Code Understanding

2.25

2.50

2.75

3.00

3.25

3.50

3.75

2.529

3.115

2.467

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Sc
or

e

0.481
0.494

0.487

NL & General

0.28

0.30

0.32

0.34

0.36

0.38

0.329
0.322

0.338

Math

0.25

0.30

0.35

0.40

0.45

0.275

0.353
0.342

Code Understanding

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 40: Task performance under perturbations aggregated by human interpretability across
Gemma-3 models (1B (top), 4B (bottom)).

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Sc
or

e

0.399 0.396 0.396

NL & General

0.14

0.15

0.16

0.17

0.18

0.19

0.20 0.180
0.174 0.173

Math

0.24

0.26

0.28

0.30

0.32

0.34

0.277
0.283 0.283

Code Understanding

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

2.499

3.022

2.662

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 41: Additional performance of OLMo-2-0425-1B aggregated by human interpretability
across tasks.

0.30

0.32

0.34

0.36

0.38

0.40

Sc
or

e

0.355 0.355 0.353

NL & General

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105
0.095

0.078

0.087

Math

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.270
0.276

0.270

Code Understanding

2.6

2.8

3.0

3.2

3.4

3.6

2.856
2.978

2.917

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

0.38

0.40

0.42

0.44

0.46

0.48

0.50

Sc
or

e

0.441 0.442 0.439

NL & General

0.11

0.12

0.13

0.14

0.15

0.122

0.138
0.135

Math

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.370

0.388
0.397

Code Understanding

4.00

4.25

4.50

4.75

5.00

5.25

5.50

4.557

4.868

4.630

Code Generation

High-interpretability Medium-interpretability Low-interpretability unperturbed-code

Figure 42: Task performance under perturbations aggregated by human interpretability across
SmolLM2 models (360M (top), 1.7B (bottom)).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
comment obfuscation

step by step
replace comments global

imaginary
comment enhancement

replace variables
replace keywords nonsense

replace keywords nonen
swap comments local

remove whitespace
pseudocode

remove comments
flowchart

NL & General

0.385
0.391

0.400
0.403
0.403
0.404
0.404

0.409
0.410
0.410
0.410

0.416
0.435

0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525 0.550
swap comments local

step by step
flowchart

comment obfuscation
pseudocode

comment enhancement
replace comments global

imaginary
replace keywords nonsense

replace keywords nonen
remove whitespace

replace variables
remove comments

Math

0.366
0.455

0.462
0.470

0.480
0.483
0.488
0.488

0.497
0.499
0.503
0.504
0.508

0.38 0.40 0.42 0.44 0.46 0.48
comment obfuscation

step by step
replace comments global
replace keywords nonen
comment enhancement

replace keywords nonsense
imaginary

swap comments local
replace variables

flowchart
pseudocode

remove comments
remove whitespace

Code Understanding

0.373
0.374

0.419
0.420

0.433
0.434
0.436
0.439
0.441

0.460
0.462
0.462

0.467

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4
replace comments global

pseudocode
step by step

flowchart
remove whitespace

replace keywords nonen
replace keywords nonsense

remove comments
imaginary

replace variables
swap comments local

Code Generation

5.000
5.043

5.234
5.329

5.732
5.763
5.774

5.887
5.951
5.954

6.040

unperturbed-code

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60
step by step

replace comments global
imaginary

comment enhancement
pseudocode

replace keywords nonen
swap comments local

replace keywords nonsense
remove comments

replace variables
flowchart

remove whitespace
comment obfuscation

NL & General

0.466
0.468
0.473

0.478
0.481
0.483
0.484
0.484
0.485
0.489
0.489
0.490

0.577

0.2 0.3 0.4 0.5 0.6 0.7
step by step

flowchart
pseudocode

imaginary
replace keywords nonen

swap comments local
replace keywords nonsense

replace comments global
remove whitespace

replace variables
remove comments

comment obfuscation
comment enhancement

Math

0.168
0.186
0.188
0.201
0.205
0.210
0.214
0.217

0.626
0.626
0.642
0.648
0.660

0.35 0.40 0.45 0.50 0.55
step by step

comment obfuscation
pseudocode

replace keywords nonsense
swap comments local

imaginary
replace comments global

remove comments
replace variables

comment enhancement
replace keywords nonen

remove whitespace
flowchart

Code Understanding

0.356
0.522
0.522
0.524
0.529
0.530
0.531
0.534
0.534
0.541
0.541
0.548
0.553

6.6 6.8 7.0 7.2 7.4 7.6 7.8
replace comments global

step by step
flowchart

pseudocode
remove comments

remove whitespace
imaginary

replace variables
replace keywords nonen

replace keywords nonsense
swap comments local

Code Generation

6.622
6.891
6.896
6.922

7.273
7.350

7.407
7.500
7.532
7.549

7.634

unperturbed-code

0.54 0.55 0.56 0.57 0.58 0.59 0.60
comment obfuscation

replace comments global
imaginary

step by step
replace keywords nonen

swap comments local
comment enhancement

flowchart
pseudocode

replace variables
remove whitespace

replace keywords nonsense
remove comments

NL & General

0.549
0.568

0.572
0.572

0.576
0.576
0.576
0.577

0.579
0.581
0.582
0.584

0.589

0.68 0.70 0.72 0.74 0.76 0.78 0.80
step by step

flowchart
comment enhancement

comment obfuscation
pseudocode

imaginary
swap comments local

replace keywords nonsense
replace keywords nonen

replace comments global
remove comments

replace variables
remove whitespace

Math

0.682
0.690

0.704
0.711

0.742
0.745

0.759
0.761
0.763
0.764
0.766

0.770
0.771

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
step by step

flowchart
comment obfuscation

replace comments global
comment enhancement

replace variables
replace keywords nonsense

swap comments local
remove comments

imaginary
remove whitespace

replace keywords nonen
pseudocode

Code Understanding

0.538
0.626

0.633
0.642
0.643
0.643
0.645
0.646
0.647
0.648

0.656
0.658
0.659

7.8 8.0 8.2 8.4 8.6 8.8 9.0
replace comments global

step by step
comment obfuscation

pseudocode
replace keywords nonsense

flowchart
replace variables

remove comments
remove whitespace

replace keywords nonen
imaginary

swap comments local
comment enhancement

Code Generation

7.857
7.972

8.015
8.140

8.356
8.393
8.393
8.422
8.452
8.472

8.512
8.659

8.711

unperturbed-code

Figure 43: All perturbations across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0.36 0.37 0.38 0.39 0.40
step by step

comment obfuscation
remove whitespace

comment enhancement
replace keywords nonen

pseudocode
replace comments global

swap comments local
replace keywords nonsense

remove comments
imaginary

replace variables
flowchart

NL & General

0.361
0.365

0.370
0.372

0.374
0.376
0.376
0.377

0.380
0.380
0.380

0.382
0.384

0.18 0.19 0.20 0.21 0.22
swap comments local

comment enhancement
replace keywords nonsense

pseudocode
replace comments global

remove whitespace
remove comments

imaginary
replace keywords nonen

replace variables
comment obfuscation

flowchart
step by step

Math

0.189
0.194
0.196

0.198
0.201
0.201
0.202
0.202
0.202
0.202
0.204

0.207
0.209

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
flowchart

imaginary
step by step
pseudocode

remove comments
replace keywords nonsense

replace keywords nonen
replace comments global

comment enhancement
remove whitespace

swap comments local
replace variables

comment obfuscation
Code Understanding

0.159
0.247
0.248
0.250

0.264
0.270
0.270
0.271
0.272
0.272
0.273
0.274
0.275

3.5 4.0 4.5 5.0 5.5
replace keywords nonsense

flowchart
step by step
pseudocode

replace comments global
remove whitespace

replace keywords nonen
remove comments

imaginary
replace variables

swap comments local
Code Generation

3.285
3.491

3.619
3.670

4.089
4.613
4.678

4.902
4.935

5.017
5.110

unperturbed-code

0.43 0.44 0.45 0.46 0.47
step by step

comment obfuscation
comment enhancement

flowchart
pseudocode

swap comments local
replace keywords nonsense

replace comments global
replace variables

remove whitespace
replace keywords nonen

imaginary
remove comments

NL & General

0.435
0.443

0.448
0.452
0.452
0.453
0.453
0.454
0.454

0.457
0.458

0.460
0.461

0.12 0.14 0.16 0.18 0.20 0.22
comment enhancement

remove whitespace
pseudocode

imaginary
replace comments global

remove comments
comment obfuscation

step by step
replace variables

replace keywords nonen
replace keywords nonsense

flowchart
swap comments local

Math

0.128
0.131
0.132

0.147
0.151
0.152
0.155
0.156

0.160
0.163

0.177
0.180

0.197

0.30 0.32 0.34 0.36 0.38 0.40 0.42
pseudocode
step by step

imaginary
comment obfuscation

replace comments global
swap comments local

replace variables
comment enhancement

flowchart
remove whitespace
remove comments

replace keywords nonen
replace keywords nonsense

Code Understanding

0.291
0.295

0.350
0.363

0.382
0.389
0.390
0.391
0.392

0.400
0.403
0.405
0.407

4.5 5.0 5.5 6.0 6.5 7.0 7.5
pseudocode
step by step

replace comments global
flowchart

replace keywords nonsense
remove whitespace
remove comments

replace keywords nonen
replace variables

swap comments local
imaginary

Code Generation

4.477
5.133

5.257
5.589

5.837
6.411
6.467
6.521

6.676
6.868
6.944

unperturbed-code

Figure 44: All perturbations across Llama-3.2 models (1B (top), 3B (bottom)).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0.34 0.35 0.36 0.37 0.38
comment obfuscation

step by step
comment enhancement

replace keywords nonsense
replace comments global
replace keywords nonen

swap comments local
remove comments

replace variables
imaginary

remove whitespace
pseudocode

flowchart
NL & General

0.346
0.352

0.355
0.357

0.359
0.360

0.363
0.365
0.366
0.366
0.367
0.367
0.368

0.09 0.10 0.11 0.12 0.13
comment obfuscation

step by step
imaginary

remove whitespace
comment enhancement

swap comments local
replace comments global

replace keywords nonsense
remove comments

replace variables
replace keywords nonen

flowchart
pseudocode

Math

0.098
0.102
0.102

0.110
0.110
0.110
0.111
0.112
0.113
0.113

0.116
0.116

0.117

0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26
flowchart

pseudocode
step by step

imaginary
remove comments

replace keywords nonsense
comment enhancement
replace keywords nonen

replace comments global
replace variables

swap comments local
remove whitespace

comment obfuscation
Code Understanding

0.189
0.205

0.210
0.210

0.215
0.218

0.230
0.233
0.235
0.236
0.237

0.240
0.252

2.0 2.5 3.0 3.5
replace keywords nonsense

replace keywords nonen
flowchart

step by step
comment obfuscation

pseudocode
replace comments global

remove whitespace
imaginary

swap comments local
replace variables

remove comments
comment enhancement

Code Generation

1.678
1.885

2.055
2.094

2.261
2.582

2.734
2.901

3.100
3.142

3.210
3.234

3.387

unperturbed-code

0.46 0.47 0.48 0.49 0.50 0.51
step by step

comment obfuscation
flowchart

pseudocode
imaginary

replace keywords nonen
replace comments global

comment enhancement
remove comments

replace variables
replace keywords nonsense

swap comments local
remove whitespace

NL & General

0.471
0.471

0.478
0.486
0.487
0.488
0.489
0.489
0.490
0.491
0.491

0.494
0.501

0.30 0.31 0.32 0.33 0.34 0.35 0.36
step by step

replace variables
remove comments

comment obfuscation
comment enhancement

remove whitespace
swap comments local

replace keywords nonsense
flowchart

imaginary
replace comments global
replace keywords nonen

pseudocode
Math

0.305
0.320
0.321

0.325
0.325
0.325

0.332
0.335

0.338
0.341

0.346
0.347
0.347

0.20 0.25 0.30 0.35 0.40
flowchart

pseudocode
imaginary

remove whitespace
comment obfuscation

step by step
replace keywords nonsense

comment enhancement
remove comments

replace keywords nonen
swap comments local

replace comments global
replace variables

Code Understanding

0.209
0.230

0.286
0.303

0.311
0.317

0.342
0.343

0.354
0.355

0.367
0.390

0.401
Code Generation (not available)

unperturbed-code

Figure 45: All perturbations across Gemma-3 models (1B (top), 4B (bottom)).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0.38 0.39 0.40 0.41 0.42
remove whitespace

comment obfuscation
step by step

imaginary
replace comments global

comment enhancement
replace variables

replace keywords nonen
replace keywords nonsense

swap comments local
remove comments

flowchart
pseudocode

NL & General

0.387
0.387

0.390
0.391

0.393
0.394

0.399
0.400
0.400

0.402
0.403

0.406
0.407

0.15 0.16 0.17 0.18 0.19 0.20
swap comments local

replace comments global
remove comments

comment enhancement
remove whitespace

comment obfuscation
flowchart

imaginary
replace keywords nonen

replace variables
step by step

replace keywords nonsense
pseudocode

Math

0.156
0.163

0.167
0.172
0.173
0.175

0.177
0.178

0.179
0.182
0.184

0.187
0.188

0.26 0.27 0.28 0.29 0.30
step by step

flowchart
remove whitespace

comment obfuscation
replace variables

imaginary
replace comments global

pseudocode
replace keywords nonen

replace keywords nonsense
comment enhancement

swap comments local
remove comments

Code Understanding

0.258
0.275
0.275
0.275

0.277
0.277

0.282
0.282

0.285
0.289

0.292
0.292

0.297

2.2 2.4 2.6 2.8 3.0 3.2 3.4
step by step

flowchart
comment obfuscation

replace keywords nonsense
pseudocode

replace keywords nonen
replace comments global

remove whitespace
imaginary

replace variables
comment enhancement

remove comments
swap comments local

Code Generation

2.223
2.255

2.301
2.318
2.351

2.627
2.682

2.767
2.869

3.129
3.168
3.168
3.174

unperturbed-code

Figure 46: OLMo-2-0425-1B with all perturbations.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0.33 0.34 0.35 0.36 0.37 0.38
comment obfuscation

replace comments global
step by step

comment enhancement
replace variables

replace keywords nonen
remove whitespace

swap comments local
flowchart

remove comments
replace keywords nonsense

imaginary
pseudocode

NL & General

0.338
0.346

0.350
0.351
0.351
0.353

0.356
0.356
0.356
0.357

0.360
0.363
0.364

0.07 0.08 0.09 0.10 0.11 0.12 0.13
replace variables

remove comments
imaginary

replace keywords nonen
remove whitespace

step by step
swap comments local

replace keywords nonsense
replace comments global

comment enhancement
pseudocode

comment obfuscation
flowchart

Math

0.076
0.077
0.078
0.079
0.080
0.080
0.081

0.086
0.089
0.090

0.096
0.106

0.114

0.260 0.265 0.270 0.275 0.280 0.285 0.290
step by step

replace comments global
comment obfuscation

comment enhancement
flowchart

replace variables
imaginary

replace keywords nonen
swap comments local

remove whitespace
replace keywords nonsense

pseudocode
remove comments

Code Understanding

0.262
0.262

0.264
0.268

0.269
0.271

0.273
0.273
0.274
0.274

0.275
0.281

0.284

2.6 2.8 3.0 3.2 3.4
comment obfuscation

remove whitespace
replace keywords nonen

pseudocode
flowchart

step by step
replace keywords nonsense

replace comments global
replace variables

comment enhancement
imaginary

remove comments
swap comments local

Code Generation

2.600
2.687

2.771
2.776
2.780
2.790

2.855
2.872

3.052
3.078

3.137
3.194

3.266

unperturbed-code

0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460
comment obfuscation

step by step
replace comments global

comment enhancement
replace keywords nonsense

remove comments
imaginary

replace variables
swap comments local

flowchart
replace keywords nonen

remove whitespace
pseudocode

NL & General

0.432
0.435

0.436
0.440
0.441
0.441
0.441
0.442
0.443
0.443
0.443
0.444

0.446

0.11 0.12 0.13 0.14 0.15 0.16
comment enhancement

imaginary
pseudocode

comment obfuscation
step by step

flowchart
replace variables

swap comments local
remove whitespace

replace keywords nonen
remove comments

replace keywords nonsense
replace comments global

Math

0.112
0.120

0.122
0.124

0.127
0.129

0.133
0.135

0.139
0.141

0.143
0.145
0.145

0.34 0.36 0.38 0.40 0.42 0.44
step by step

flowchart
pseudocode

remove comments
swap comments local

replace variables
replace keywords nonsense

remove whitespace
replace keywords nonen

replace comments global
comment obfuscation

imaginary
comment enhancement

Code Understanding

0.336
0.359

0.364
0.385
0.386
0.388
0.389
0.390

0.397
0.400

0.404
0.404

0.420

4.2 4.4 4.6 4.8 5.0 5.2 5.4
step by step

comment obfuscation
flowchart

replace comments global
replace keywords nonen

pseudocode
replace keywords nonsense

remove whitespace
imaginary

remove comments
replace variables

swap comments local
comment enhancement

Code Generation

4.193
4.368

4.429
4.467
4.489
4.492

4.576
4.726

4.798
4.867

5.011
5.083
5.115

unperturbed-code

Figure 47: All perturbations across SmolLM2 models (360M (top), 1.7B (bottom)).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

low system
high scripting

intermediate
0.390

0.395

0.400

0.405

0.410

0.415

0.420

NL & General

0.412
0.410 0.409

low system
intermediate

high scripting
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525

Math

0.511 0.510
0.504

intermediate
low system

high scripting

0.43

0.44

0.45

0.46

0.47

0.48

0.49
Code Understanding

0.481 0.477
0.468

high scripting
low system

intermediate
4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

Code Generation

5.642 5.629 5.617

full-code-ft zero-shot

(a) Qwen3-0.6B-Base

intermediate
high scripting

low system
0.360

0.365

0.370

0.375

0.380

0.385

0.390

0.395

NL & General

0.386 0.385 0.383

low system
intermediate

high scripting

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Math
0.462 0.462 0.458

low system
high scripting

intermediate
0.42

0.43

0.44

0.45

0.46

0.47

0.48
Code Understanding

0.471
0.462

0.456

high scripting
intermediate

low system

5.0

5.5

6.0

6.5

7.0

Code Generation

6.493 6.421 6.330

full-code-ft zero-shot

(b) Qwen3-0.6B

intermediate
high scripting

low system

0.43

0.44

0.45

0.46

0.47

NL & General

0.463 0.461 0.460

low system
high scripting

intermediate

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Math
0.621 0.621 0.618

intermediate
high scripting

low system

0.510

0.515

0.520

0.525

0.530

0.535
Code Understanding

0.528

0.522
0.519

low system
high scripting

intermediate

7.0

7.5

8.0

8.5

Code Generation

8.349 8.314 8.271

full-code-ft zero-shot

(c) Qwen3-1.7B

Figure 48: Grouped performance of Qwen-3 family under low-system, intermediate, and high-
scripting programming languages.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0.38 0.39 0.40 0.41 0.42 0.43
PHP

JavaScript
Java
CPP

CSharp
Go

TypeScript
C

Python
Rust

NL & General

0.406
0.408
0.409
0.410
0.410
0.410

0.413
0.414
0.414

0.416

0.47 0.48 0.49 0.50 0.51 0.52 0.53
PHP
CPP

Python
CSharp

C
JavaScript
TypeScript

Java
Rust

Go
Math

0.488
0.504

0.506
0.507
0.508

0.511
0.512
0.513

0.515
0.518

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49
PHP
Go

TypeScript
Python

JavaScript
Rust

CSharp
CPP
Java

C
Code Understanding

0.459
0.462
0.464

0.474
0.475

0.477
0.478

0.480
0.483

0.490

4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50
C

Python
CSharp

JavaScript
CPP

Java
Go

Rust
PHP

TypeScript
Code Generation

5.482
5.488

5.583
5.587
5.599

5.651
5.694

5.742
5.743
5.752

full-code-ft zero-shot

(a) Qwen3-0.6B-Base

0.35 0.36 0.37 0.38 0.39 0.40 0.41
CPP

JavaScript
Go

TypeScript
Rust
Java
PHP

CSharp
C

Python
NL & General

0.376
0.379
0.380

0.384
0.384
0.385
0.386
0.386

0.391
0.392

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48
JavaScript

PHP
CSharp

Go
TypeScript

CPP
Rust
Java

C
Python

Math

0.447
0.454
0.456
0.456
0.458
0.460
0.460

0.468
0.473
0.473

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49
CSharp

PHP
TypeScript

Python
Java
CPP
Go

C
Rust

JavaScript
Code Understanding

0.450
0.451

0.456
0.463
0.463
0.464

0.470
0.472

0.478
0.481

5.0 5.5 6.0 6.5 7.0 7.5
C

CSharp
Rust
CPP
PHP

JavaScript
Go

TypeScript
Python

Java
Code Generation

6.088
6.249

6.326
6.421
6.422
6.472
6.487
6.530
6.546
6.593

full-code-ft zero-shot

(b) Qwen3-0.6B

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48
TypeScript

Go
CPP
PHP

JavaScript
C

Java
Rust

CSharp
Python

NL & General

0.458
0.458
0.459
0.460
0.461
0.462
0.462
0.462
0.463

0.465

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
Java

TypeScript
Go

CPP
CSharp

JavaScript
PHP

C
Python

Rust
Math

0.614
0.616
0.617
0.619
0.622
0.622
0.622
0.625
0.625
0.625

0.50 0.51 0.52 0.53 0.54
CPP
PHP
Rust

JavaScript
Go

Python
C

Java
CSharp

TypeScript
Code Understanding

0.511
0.515

0.519
0.519

0.522
0.524

0.525
0.527

0.528
0.529

6.5 7.0 7.5 8.0 8.5 9.0
JavaScript

Java
C

TypeScript
Rust

CSharp
CPP
PHP
Go

Python
Code Generation

8.168
8.201
8.244
8.249

8.328
8.340
8.392
8.401
8.434
8.437

full-code-ft zero-shot

(c) Qwen3-1.7B

Figure 49: All programming language specific performance of Qwen-3 family.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

low system
high scripting

intermediate

0.37

0.38

0.39

0.40

0.41

0.42

NL & General

0.380 0.379 0.377

intermediate
low system

high scripting

0.200

0.205

0.210

0.215

0.220

0.225

Math

0.205 0.204 0.204

high scripting
intermediate

low system
0.268

0.270

0.272

0.274

0.276

0.278

0.280

0.282

0.284
Code Understanding

0.277

0.274

0.269

intermediate
low system

high scripting

4.0

4.2

4.4

4.6

4.8

5.0

Code Generation

4.273
4.171 4.146

full-code-ft zero-shot

(a) Grouped results (low-system, intermediate, high-scripting)

0.36 0.38 0.40 0.42 0.44
JavaScript

CPP
Java

Python
CSharp

Rust
TypeScript

C
PHP
Go

NL & General

0.374
0.375
0.376
0.378
0.378
0.378
0.379

0.382
0.383
0.385

0.19 0.20 0.21 0.22 0.23
C

CPP
JavaScript

Java
Python

TypeScript
PHP

CSharp
Rust

Go
Math

0.197
0.201
0.201
0.202

0.204
0.205
0.205

0.209
0.209
0.210

0.26 0.27 0.28 0.29 0.30
CPP
Java

Go
JavaScript

PHP
C

Rust
Python
CSharp

TypeScript
Code Understanding

0.260
0.261

0.267
0.268

0.270
0.274

0.276
0.276

0.286
0.295

3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
Rust

JavaScript
TypeScript

CSharp
PHP

C
CPP

Python
Go

Java
Code Generation

3.922
4.049
4.078

4.116
4.168
4.189
4.213

4.289
4.359

4.429

full-code-ft zero-shot

(b) Per-language results

Figure 50: Performance for Llama-3.2-1B. (a) Programming language groups, (b) individual lan-
guages.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

high scripting
low system

intermediate
0.4325

0.4350

0.4375

0.4400

0.4425

0.4450

0.4475

0.4500

0.4525
NL & General

0.441
0.440 0.440

intermediate
low system

high scripting
0.125

0.130

0.135

0.140

0.145

0.150

Math

0.136 0.135

0.131

high scripting
low system

intermediate

0.375

0.380

0.385

0.390

0.395

0.400

0.405

0.410

Code Understanding

0.397 0.394

0.375

low system
intermediate

high scripting
4.0

4.2

4.4

4.6

4.8

5.0
Code Generation

4.803 4.788 4.784

full-code-ft zero-shot

(a) Grouped results (low-system, intermediate, high-scripting)

0.42 0.43 0.44 0.45 0.46
PHP
Java

C
Rust

JavaScript
Go

CPP
CSharp
Python

TypeScript
NL & General

0.437
0.437

0.439
0.439
0.440
0.441
0.441

0.442
0.443

0.446

0.12 0.13 0.14 0.15
TypeScript

PHP
CSharp

Go
CPP

JavaScript
Python

Rust
C

Java
Math

0.123
0.127

0.130
0.132
0.132

0.136
0.137
0.138

0.139
0.142

0.37 0.38 0.39 0.40 0.41 0.42
CSharp

PHP
Java
CPP

C
Python

Rust
JavaScript

Go
TypeScript

Code Understanding

0.370
0.371

0.379
0.386
0.387

0.398
0.400

0.403
0.405

0.415

4.0 4.2 4.4 4.6 4.8 5.0 5.2
TypeScript

Rust
CSharp

PHP
C

CPP
Python

Go
Java

JavaScript
Code Generation

4.556
4.613

4.688
4.816

4.860
4.867
4.870
4.871
4.889
4.894

full-code-ft zero-shot

(b) Per-language results

Figure 51: Performance for SmolLM2-1.7B. (a) Programming language groups, (b) individual lan-
guages.

42

	Introduction
	Related Work
	Methodology
	Instruction Data Generation
	Systematic Perturbation Design
	Rule-Based Perturbations
	Generative Perturbations

	Model Training and Evaluation

	Results and Discussion
	Conclusion
	Limitations
	Reproducibility Statement
	Appendix
	Extended details of perturbation data
	Verification of quality of synthetic code data
	Evaluation suite details
	Categorization of perturbations for RQ2 analysis
	Implementation details
	Prompts
	Extended results
	Task performance showcasing code data impact in finetuning (RQ1)
	Task performance under perturbations aggregated by structure vs semantics (RQ2)
	Task performance under perturbations aggregated by explicitness of code structure (RQ2)
	Task performance under perturbations aggregated by relative information density (RQ2)
	Task performance under perturbations aggregated by human interpretability (RQ2)
	Task performance for all individual perturbations (RQ2)
	Task performance with different programming languages (RQ3)
	LLM-as-judge results

