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ABSTRACT

Code data has been shown to enhance the reasoning capabilities of large language
models (LLMs), but it remains unclear which aspects of code are most responsi-
ble. We investigate this question with a systematic, data-centric framework. We
construct parallel instruction datasets in ten programming languages and apply
controlled perturbations that selectively disrupt structural or semantic properties
of code. We then finetune LLMs from five model families and eight scales on
each variant and evaluate their performance on natural language, math, and code
tasks. Across 3,331 experiments, our results show that LLMs are more vulnera-
ble to structural perturbations than semantic ones, particularly on math and code
tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective
as code, while encoding the same information with fewer tokens without adher-
ing to original syntax can often retain or even improve performance. Remarkably,
even corrupted code with misleading signals remains competitive when surface-
level regularities persist. Finally, syntactic styles also shape task-specific gains
with Python favoring natural language reasoning and lower-level languages such
as Java and Rust favoring math. Through our systematic framework, we aim to
provide insight into how different properties of code influence reasoning and in-
form the design of training data for enhancing LLM reasoning capabilities.

1 INTRODUCTION

There has been substantial interest in the last several years in engineering language models that can
tackle challenging reasoning tasks (Huang & Changl[2023)). Language reasoning tasks, such as math
word problems or logic puzzles, tend to require multi-step, structured “thinking” in order to produce
the correct answer. Recent work has found that training the language model on code, either during
pre-training (Fu & Khot, 2022; Ma et al., [2023b) or during post-training (Zhang et al.| 2024b), can
improve its skill at reasoning tasks, even ones that are unrelated to programming. These prior works
have hypothesized that the properties of code data, such as its logical consistency, compositional
structure, and reduced ambiguity compared to natural language, provide effective signals that ben-
efit reasoning. Despite the broad effectiveness of code data in training, we still lack a systematic
understanding of which aspects of code drive these improvements: is it the its syntactic regularity,
structural abstractions, or linguistic styles?

In this work, we aim to provide such an account by systematically investigating which aspects of
code serve as effective training signals. To this end, we construct parallel instruction datasets in both
natural language and code, and further expand the code dataset into language-specific variants by
generating responses in ten widely used programming languages. This design allows us to examine
how structural differences across languages affect downstream reasoning. In addition, we intro-
duce controlled perturbations to the code data to isolate contributing factors: (1) rule-based trans-
formations such as whitespace removal or comment shuffling, and (2) generative transformations
where GPT-40-mini rewrites or reformats the code (e.g., with augmented comments, pseudocode,
or flowcharts). We then fine-tune language models on each dataset variant, and evaluate them across
natural language and general knowledge, math, as well as code understanding and generation tasks.
Our contributions are:

* We introduce a systematic framework to disentangle what aspects of code data improve
reasoning, combining parallel instruction data construction, controlled perturbations, and
large-scale evaluation across five model families and eight scales.
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* We design a comprehensive and controlled suite of perturbations spanning rule-based edits
and generative rewritings.

* We provide new insights into the role of code in reasoning to inspire guidance on leveraging
its structural and linguistic properties in future training data design.

2 RELATED WORK

Code data for LLM reasoning Recent work has increasingly demonstrated that incorporating
code data can substantially improve the reasoning abilities of LLMs. Prior studies show that adding
code during pretraining or instruction tuning consistently improves model performance across rea-
soning tasks, domains, model scales and architectures (Ma et al., 2023a; Zhang et al.| 2024a; Yang
et al.| [2025b} [Aryabumi et al., [2024). Several works further explore the synergy between code and
reasoning and highlight how code’s structured and verifiable properties support logical decomposi-
tion and intermediate step generation (Bi et al.; |Yang et al., [2024). This effect has been observed
in multilingual contexts as well, where code-augmented training improves structured reasoning in
under-resourced languages (L1 et al.l |2024). Complementary research focuses on code’s impact
for alignment and reward modeling, where pretraining with code-preference pairs or code-based
intermediate steps can improve model calibration for reasoning-intensive tasks (Yu et al., [2024).
The closest line of research to our work explores stress-testing LLMs with structural and semantic
code perturbations (Lam et al., 2025), which shows that small corruptions can significantly reduce
reasoning performance.

Data impact on LLM performance The performance of LLMs are tied to the vast amounts of
training data, but the quality, composition, and characteristics of this data greatly shape their abili-
ties (Wang et al., 2024 L1 et al.l 2023 |Lee et al.L[2022). For example, extensive analyses by Longpre
et al.| (2024) have shown that pretraining data curation decisions for dataset age, composition, and
content filtering have systematic impact on downstream performance, and that these effects per-
sist even after fine-tuning steps. [Zhang et al.| (2024c) demonstrate that poisoning as little as 0.1%
(and even 0.001%) can produce persistent behavioral changes that survive instruction tuning and
alignment. In addition, Havrilla & Iyer| (2024) showed that LLMs are sensitive to global, accumula-
tive errors in chain-of-thought-structured training data, and that it is critical to filter out documents
containing large amounts of dynamic, global noise during both pretraining and fine-tuning.

3 METHODOLOGY

We design a controlled experimental framework to understand what aspects of code improve rea-
soning in language models. Our methodology consists of three stages: constructing parallel natural
language and code instruction datasets (Section [3.I); applying systematic modifications to code in-
struction data (Section [3.2)); and fine-tuning various language models on each dataset variant and
then conducting evaluation (Section[3.3). An overview of this framework is shown in Figure[l]

3.1 INSTRUCTION DATA GENERATION

We construct two parallel instruction datasets: one in natural language and the other in code,
each containing 120,000 instruction-response pairs. We collect instructions from publicly available
datasets, carefully process and filter them through deduplication and language-agnostic filtering, and
augment the code data in a controlled way. This construction enables a more controlled comparison
of natural- and code-based instruction following under a unified training framework.

Code instructions We aggregate code instructions from Codeforces-CoT (Penedo et al., [2025)),
Code-Instruction-122K (TokenBender, [2024), Evol-Instruct-Code-80k-v1 (nickrosh, 2024), Code-
Instruction (redlxe| 2023), Code-Instruct-Sets (AtlasUnified, 2023, and Code-Instruct-Alpaca-
Vicuna-WizardLM (rombodawg, [2024). We aim to construct instruction data that is high-quality,
diverse, and language-agnostic.

To ensure generality and eliminate redundancy, we first remove all exact-match duplicates across
the datasets. We then filter out instructions that are explicitly programming-language-specific (e.g.,
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Figure 1: We construct parallel code and natural language instruction datasets, apply targeted mod-
ifications (rule-based and generative-based perturbations, single programming language ablations),
and fine-tune a separate LLM on each modified dataset. We then evaluate the resulting models across
general natural language, code, and math reasoning tasks.

“Translate this code from Python to java”) or whose solutions are inherently tied to particular do-
mains, such as web development or databases (e.g., “webpage”, “website”, “SQL”, “HTML”).

For each instruction, we prompt GPT-40-minﬂ to generate answers in ten widely used programming
languages: Java, JavaScript, PHP, Python, C#, TypeScript, C, C++, Go, and Rust. To create these
variants, we design 20 language specification templates that explicitly request a solution in a given
programming language (Table [d). For every instruction, we randomly select a template, instantiate
it with one of the target languages, and combine it with the general generation instructions to form
a complete prompt (Figure[8). From these generations, we sample 120K instruction—response pairs
with valid outputs, evenly distributed across all ten languages.

Natural language instructions We sample 120K examples from the OpenHermes 2.5 cor-
pus (Teknium| [2023). We exclude instruction-response pairs associated with categories unrelated
to general-purpose instruction following, such as “agent” and “summarization”, as well as those la-
beled “coding” to ensure the dataset is entirely natural language. To maintain linguistic consistency,
we further filter out non-English examples. This filtered natural language subset complements our
code instruction data, enabling a fair comparison between code and natural language instructions.

3.2 SYSTEMATIC PERTURBATION DESIGN

To understand which specific structural and semantic properties are responsible for changes in rea-
soning task performances, we systematically perturb different aspects of the code dataset. We de-
sign the perturbations through two ways: rule-based (deterministic transformations) and generative
(model-generated augmentations). Notably, our perturbation strategies do not alter the number of
examples in the dataset. We illustrate an examples of these perturbations in Table

3.2.1 RULE-BASED PERTURBATIONS

Rule-based perturbations apply deterministic transformations to the code. They are designed to
disrupt superficial patterns or semantic signals that may influence model predictions without altering
the core logic of the code. We describe five such perturbations below:

Whitespace removal All whitespace characters are removed from the code. This tests whether
models rely on formatting heuristics, such as indentation or visual grouping of blocks, as implicit
structural cues, particularly in languages like Python where whitespace is semantically meaningful.

Variable renaming We replace user-defined variables, function names, and class names with canon-
ical placeholders of the form var_i, where ¢ € [0,n) and n is the total number of unique identifiers

'Responses are generated with temperature 0.6 and API-default decoding parameters.
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Table 1: An example of perturbations (Section applied to the same original snippet.

Full Original Snippet Type Strategy Original Excerpt Perturbed Excerpt
itespac a . - . oy )
def process string (input_string) : Whitespace Removal ziz\;liois};@;?;ﬁ( result.append ( char.lower())
vowels = "aoyeuiAOYEUI" .
result = [] Variable Renaming for char in for var4 in var_l: if var 4
Rule-based not in var.2:

for char in input_string:

if char not in vowels:

result.append(’.’” +
char.lower())

return .join(result)

# Read input

input_string = input () .strip(

# Process and print the result
print (process_string (input_string))

input_string:

if char not in
vowels:

Keyword
(Nonsense)

Replacement

garply i not in baz

for char in
input_string:

Keyword
(Non-English)

Replacement

para ch en entrada

Comment Swapping (Lo-
cal)

# Read input

# Walking

Comment
(Global)

Swapping # Process and print

the result

// Queue for processing
nodes

Comment Removal # Read input

/+ all comments removed x/

Generative

Pseudocode for char in
input_string: if

char not in vowels

FOR EACH character IF not vowel THEN
append .’ +lowercase

result.append(’.’ +
char.lower())

Step-by-Step

Append . before consonants and convert
to lowercase

Flowchart if char not in

vowels:

[Read char] =+ {Vowel?} =
[Append ' .’ +lower]

Code in Imaginary Lan-
guage

result.append(’.’ +
char.lower())

glorfadd . & lower(chr)

Comment Enhancement # Process and print

the result

# Removes vowels and prefixes consonants
with *.

Comment Obfuscation # Read input

# WARNING: Code may summon aliens; #

TODO: handle quantum vowels

in the code snippet. This removes semantic cues conveyed by meaningful identifier names (e.g.,
counter, isSorted).

Programming language keyword replacement For each of the ten programming languages in
our dataset, we identify its reserved keywords (e.g., 1f, return, def in Python) and substitute
all occurrences of them using two strategies. The first replaces keywords with nonsense tokens
(e.g., foo, quux), which have no semantic meaning in any language. In the second strategy, we
use non-English but valid words (e.g., amigo, fleur), which are real words in various languages but
semantically unrelated to the programming context. These perturbations aim to challenge models’
reliance on syntactic and semantic cues from familiar language constructs.

Comment removal We remove all inline and block comments from each code snippet. Code com-
ments often provide useful semantic signals for program comprehension (Buse & Weimer, 2009
De Souza et al., 2005). This perturbation tests whether models largely leverage such auxiliary
natural-language cues.

Comment swapping We introduce local and global swapping that misplace code comments to dis-
rupt the semantic alignment between code and documentation. In local swapping, comments within
a snippet are randomly reordered, preserving their content but misaligning them with the relevant
code segments. In global swapping, we first collect a global pool of comments from the entire
dataset. Then, for each comment in a snippet, we replace it with a randomly sampled comment from
this pool. This results in documentation that is entirely mismatched to the surrounding code.

3.2.2 GENERATIVE PERTURBATIONS

We create generative perturbations by prompting GPT—40—minﬂ to produce alternative versions of
code responses generated according to Section[3.1] These rewrites preserve the original intent of the
code while introducing more diverse variations beyond what rule-based edits can achieve, allowing
us to test model sensitivity and robustness to semantically equivalent inputs expressed in different
forms. The full set of prompts used is available in Appendix

Comment enhancement We prompt GPT-40-mini to regenerate the code with high-quality docu-
mentation and inline comments (Figure [9). The prompt emphasizes two forms of annotation: (1)
comprehensive documentation comments for all functions, classes, and key code blocks to describe
their purpose, parameters, return values, and assumptions; and (2) informative inline comments

>We use temperature of 0.6 and default settings.
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that clarify complex or non-obvious logic. These annotations follow the conventions of the target
programming language (e.g., Python docstrings, JavaDoc). Unlike the often sparse comments in un-
perturbed data, the enhanced versions provide consistent, high-quality annotations, which enables
us to test the effect of documentation quality on model performance.

Comment obfuscation Here, we generate deliberately misleading, irrelevant, or nonsensical com-
ments, while preserving the code’s functionality (Figure[I0). These include (1) inaccurate, off-topic,
or absurd documentation (e.g., references to astrology, cooking, or fictitious technologies) and (2)
chaotic inline comments that contradict the code’s functionality, reference imaginary bugs or fea-
tures, and use distracting styles such as ALL-CAPS, emojis, and fabricated jargon. This perturbation
tests model robustness to extreme noise and deceptive annotations.

Pseudocode We convert code into high-level pseudocode while preserving its logical structure (Fig-
ure [[I). The model is instructed to replace language-specific syntax with pseudocode constructs
(e.g., IF...THEN...ENDIF, FOR EACH, etc.), remove low-level implementation details (e.g.,
type declarations or library calls), and maintain the original control flow and indentation. This per-
turbation evaluates whether models can reason over algorithmic intent without relying on concrete
syntax, which offers insight into generalization across abstraction layers in code representation.

Flowchart in Markdown We generate a control flow diagram using Mermaid syntax in Markdown
for a given code snippet (Figure [[2). The diagram captures all major control structures, such as
loops, branches, function calls, and return points, using minimal but descriptive labels. This trans-
formation renders executable code as a graphical abstraction, allowing us to understand whether
models can reason over symbolic control flow and align it with underlying program semantics.

Step-by-step solution We rewrite code as a numbered list of natural language steps (Figure [13).
Each step preserves the program’s logic and execution order but uses declarative, language-agnostic
phrasing (e.g., “Define a function named...”, “Check if the input is valid”). Unlike pseudocode or
flowchart formats, this version entirely removes code or symbolic notation and instead emphasizes
procedural understanding in purely narrative form.

Code in imaginary language We translate real code into a fictional language that preserves structure
and control flow but replaces all syntax and identifiers with invented tokens (Figure [I4). The result
is semantically consistent yet entirely ungrounded in real languages. This perturbation allows us to
examine whether models rely on surface-form familiarity (e.g., recognizing logical patterns.

3.3 MODEL TRAINING AND EVALUATION

We train a suite of decoder-only LLMs using supervised fine-tuning (SFT) on our instruc-
tion-response datasets detailed in Section [3.1] along with their perturbed variants described in Sec-
tion 3.2] To assess the effect of language-specific patterns, we additionally finetune models on
subsets of the code data restricted to a single programming language. This allows us to examine
how the syntactical diversity of programming languages influences reasoning performance. Each
instruction—response pair is treated as a single input—output sequence, and models are trained to
autoregressively predict the response tokens conditioned on the instruction and prior context. All
models are fine-tuned from the same pre-trained backbone under supervised fine-tuning (SFT) ob-

jective to ensure comparability across experimental conditions. Let z = (x1,a,...,Z;,) be the

instruction tokens and y = (y1,y2, . - ., Yn) be the response tokens. The SFT objective is defined as:
n

Lser = — ) log Po(y: | #,y<t) (1)

t=1

where Py denotes the model’s conditional probability distribution parameterized by 6, and y; rep-
resents the prefix of the response up to position ¢ — 1.

Models We choose a diverse set of pre- and post-trained language models ranging from 0.6B to
8B parameters. Specifically, we experiment with models from five major families: Qwen3 (Yang
et al., [2025a), LLaMA-3 (Grattafiori et al., 2024), Gemma3 (Team et al., 2025), OLMo2 (OLMo
et al.| [2024), and SmolLM2 (Allal et al.| 2025)). For each model family, we select representative
sizes (e.g., <1B, ~1B, ~3-4B, ~7—8Bto evaluate performance across different scales.

3Due to resource constraint, the larges model we could finetune is 8B.
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Training data configurations Our base training set consists of 120K instruction-response pairs
spanning both code and natural language formats detailed in Section From this, we construct
several configurations: (1) 100% code-only, (2) 100% natural language-only, and (3) mixed data
with varying code-to-language ratios. In addition, we train models on each perturbed variant intro-
duced in Section[3.2] Finally, we include programming-language-specific subsets, training separate
models on data from each of the ten languages (~12K examples per language) to assess the effect
of language specialization. The implementation details are in Section[A.3]

Evaluation tasks We evaluate model performance across three categories: natural language and
general knowledge, math, and code (Table .

For natural language and general knowledge, we evaluate across commonsense reasoning, science
and textbook-style QA, logical reasoning, and instruction-following. All tasks are evaluated us-
ing accuracy. For math, we include both elementary and advanced problem-solving datasets (e.g.,
GSMB8K, HRMS8K), as well as arithmetic and math-related subsets of MMLU. Open-ended tasks
(GSMB8K, HRMB8K) use exact match, while arithmetic and MMLU (math) are scored with accuracy.

For code, we evaluate both code understanding and generation. Based on preliminary experi-
ments, we adopt the LLM-as-Judge paradigm (Gu et al.| 2025) instead of execution-based evalu-
ation (Huang et al.| [2022). Our relatively small, perturbed models often fail to produce fully exe-
cutable code, making execution-based metrics unreliable. More importantly, our goal is to assess
code quality and reasoning under perturbations, not just execution success.

Thus, we prompt GPT-4o-mini to first generate an instance-specific rubric on a 1-10 Likert scale
given the original instruction, which is expected to capture nuanced quality variation across outputs.
The same model is then prompted as a judge to provide a brief reasoning step (“thought”) and
assign a score based on that rubric. Examples of the rubric-generation prompt and judging prompt
are shown in Appendix [A.4] (Figures[I5]and [16).

4 RESULTS AND DISCUSSION

RQ1: Does incorporating code in finetuning improve task performance? First, we validate
prior findings that finetuning on code data can enhance downstream reasoning. Following the train-
ing setup in Section[3.3] we compare performance across four settings: zero-shot, full code finetun-
ing (“code-ft”), full natural language finetuning (“nl-ft”), and mixed data finetuning with equal pro-
portions of code and natural language instructions (“mixed-ft”). Across model families and scales,
code-ft and mixed-ft generally achieve leading or competitive performance across tasks (Figure [2]
and Figures|[l7H21), with the trend particularly consistent on code generation. Overall, across the 14
model bases, either code-ft or mixed-ft achieves the best performance on 64% of natural language
tasks, 86% of math and code understanding tasks, and all code generation tasks. Motivated by this,
we further examine the effect of varying the proportion of code in mixed finetuning (Figure 22)). We
find that higher fractions of code data generally improve performance across most tasks, with math
tasks most sensitive to mixture ratios.
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Figure 2: Performance (with stderr bars) of Qwen3-4B-Base across zero-shot, full code finetuning
(code-ft), full natural language finetuning (nl-ft), and 50-50 code to NL data ratio finetuning (mixed
ft). Incorporating code improves performance across tasks.

RQ2: How do our systematic perturbations affect performance?
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Figure 3: Aggregated performance (with stderr bars) under structural perturbations (e.g. removing
whitespace) vs. semantics perturbations (e.g. modifying the comments) of Qwen3-4B-Base. Se-
mantic perturbations tend to be more harmful to performance than semantic ones.
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Figure 4: Aggregated performance (with stderr bars) under levels of explicitness of code structure
(less explicit going from runnable code to NL procedure) of Qwen3-8B-Base. Certain algorithmic
and graphical abstractions benefit reasoning.

Section Findings

* Structural perturbations hurt more than semantic ones, especially for math and code.

* Appropriate abstractions such as pseudocode and flowcharts can substitute for explicit code
structure in reasoning.

* Models don’t need verbose code: reduced-token variants perform well as long as core
information is preserved.

* LLMs can reason effectively from corrupted code by exploiting surface-level regularities.

Next, we analyze task performance under the perturbations introduced in Section[3.2] Based on the
properties of each perturbation, we group them into distinct analysis axes that allow us to systemati-
cally probe their effects. The grouping details are in Table[3] We illustrate performance of individual
perturbations in Appendix [A.5.6

Structural vs. Semantics Perturbations. We define structural perturbations as edits that alter
the syntactic scaffolding or formatting of code (e.g., whitespace removal, pseudocode, flowcharts),
while semantic perturbations modify meaning-bearing tokens such as identifiers, keywords, or com-
ments without disrupting the underlying structure. Across model families and scales (Figures [23]—
[27), nearly all perturbations reduce performance compared to the unperturbed code-fineturned base-

- duced-density  mmm Moderate-reduced-d B Nearbaseline-density B Inci d-densit ode

NL & General

0.550
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0.406  0.405 401 0500
0.475
0.450
0.425
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Figure 5: Aggregated performance (with stderr bars) of Qwen3-0.6B-Base with various of token
counts wrt to unperturbed code. Reductions can perform comparable or even better than the baseline.
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Figure 6: Aggregated performance of Qwen3-8B-Base (with stderr bars), depending on how much
the perturbed code data is readable to humans. Low-interpretability with misleading signals can
match or perform better than other configurations.

line. More importantly, structural perturbations consistently degrade performance more severely
than semantic ones, especially for math and code tasks (e.g., Figure[3)). The discrepancy is more ev-
ident as models scale up (e.g., Figure 23). This resembles prior work that reasoning structure rather
than content is more critical to the learning process (Li et al., [2025). We hypothesize that tasks such
as math and code rely more heavily on formatting and layout cues to shape reasoning.

Explicitness of Code Structure. Building on the importance of structure, we examine perturba-
tions along a spectrum of how explicitly they preserve code structure: from runnable or code-like
forms, through intermediate abstractions such as pseudocode and flowcharts, to natural language
step-by-step procedures. For code generation, where executable outputs are required, it is natural
that perturbations that preserve explicit code structure, whether runnable or not, lead to the best
performance. For other tasks, however, certain abstractions such as pseudocode or flowcharts often
match or even surpass unperturbed code, as they highlight algorithmic structure while removing
superficial syntax. By contrast, the most implicit form, natural language procedures, provides little
advantage and generally performs worst across tasks (e.g. Figure ] Figures 28H32).

Relative Information Density. Because our constructed instruction datasets are parallel, the amount
of information they convey about the code is comparable across perturbations. We define relative
information density as (number of tokens in perturbed dataset) + (number of tokens in the original
code-ft dataset), which reflects how compactly the same content is represented. Perturbations differ
in how they adjust density: some produce highly compact forms that strip away most tokens but
preserve the algorithmic skeleton (e.g., flowcharts, pseudocode), others moderately reduce density
by removing comments or using imaginary languages, while others preserve or even increase density
through verbose variable renamings or enriched documentation. We find that strong or moderate
reductions in density often perform close to, and sometimes better than, the baseline (e.g. Figure[5]
Figures|33H37). However, this advantage doesn’t extend to code generation, where preserving richer
surface detail is important. In addition, smaller models are more sensitive to density differences,
whereas larger models remain robust. Overall, this suggests that the benefit of code for reasoning
doesn’t lie in its verbosity but but in the efficiency with which essential information is preserved.

Human Interpretability. We also examine perturbations through the lens of human readability:
high-interpretability (enriched explanations and visual scaffolds), medium (local edits leaving most
code intact), and low (obscured readability or misleading signals). Interestingly, low-iterpretability
variants, despite adding noise or distortion, often do not degrade performance too much from the
unperturbed baseline, and often match or even surpass medium-interpretability ones (e.g. Figure|[6]
Figures 38H42). This counterintuitive trend suggests that the models could exploit surface-level
regularities and recurring structural cues that persist even in noisy or opaque forms.

RQ3: How does performance vary across programming languages?

| Section Findings

* Lower-level languages benefit math tasks.
* Python aligns best with NL tasks, while Java and Rust often rank among the top for math.
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Figure 7: Performance (with stderr bars) of Qwen3-1.7B. Top.: grouped by abstraction level (low-
system, intermediate, high-scripting). Low-system and intermediate languages outperform on math.
Bottom: individual programming languages. Python aligns best with NL, Rust leads on math.

The strong impact of structure in RQ2 motivates the question of whether syntactic regularities in
programming languages also influence model performance. To explore this, we group the ten pro-
gramming languages into high-scripting (Python, PHP, JavaScript, TypeScript), intermediate (Java,
C#), and low-system (C, C++, Rust, Go) according to their abstraction level. Overall, differences
across groups are small. On NL and code tasks, the impact of language groups is largely model-
dependent. However, on math tasks, high-scripting languages consistently underperform relative to
intermediate and low-system ones (e.g. top Figure[7] Figures @8H{5Ta). We hypothesize that richer
structural detail in lower-level languages provides beneficial signals for mathematical reasoning. For
code generation, finetuning on any single language improves over zeroshot but lags behind full code
finetuning, which suggests the benefit of multi-language diversity for code generation.

At the individual language level (e.g. bottom Figure [7} Figures @9H5TD)), across models, Python
often leads on NL tasks, probably due to its surface form being closer to natural language. Aligning
with the group-level results, lower-level languages such as Java and Rust often rank among the top
for math. For code tasks that span multiple languages, results are more mixed, with no clear leaders,
and performance gaps remain relatively small.

5 CONCLUSION

In this work, we aim to understand what aspects of code enhance reasoning in LLMs and which
aspects matter most. Through 3,331 finetuning experiments spanning five model families, eight
scales, ten programming languages, and a suite of systematic perturbations, we arrive at four central
conclusions. First, structural properties of code are critical: disrupting them leads to consistent per-
formance drops, especially on math and code tasks. Second, appropriate abstractions and efficient
encodings can be just as effective as raw code. Moreover, models remain surprisingly robust even to
corrupted or low-interpretability code, exploiting statistical regularities that persist despite surface
distortions. Finally, lower-level programming languages provide more benefits for math tasks. To-
gether, we want to provide a more precise account of how code supports reasoning and point toward
practical design principles for constructing effective training data beyond executable programs.
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6 LIMITATIONS

Our study focuses on small- to mid-scale base models due to resource constraints. Future work
could extend our framework to larger models. Our perturbations, although diverse, may still not
cover enough and leave out other factors like code complexity and data diversity. Finally, although
we evaluate across a broad suite of reasoning tasks, our benchmarks still capture only part of the
reasoning spectrum, and future work could extend the analysis to additional domains.

7 REPRODUCIBILITY STATEMENT

We provide extensive details throughout the paper and supplementary materials. Section de-
scribes the construction and processing of both the code and natural language datasets. Section[A.J]
outlines model training and implementation details. Appendix [A.4] includes all prompts used for
data generation, perturbations, and LLM-as-Judge evaluation.
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A APPENDIX

A.1 EVALUATION SUITE DETAILS
See Table[2

Table 2: Evaluation suite spanning natural language and general knowledge, math, and code tasks.

Task Type Topic Benchmarks Metric
Commonsense PIQA (Bisk et al.|[2019)
Natural Language ARC-Easy (Clark et al.|[2018)
; . ARC-Challenge (Clark et al.|[2018) Accuracy
ﬁ Ge‘;eg” Science / Textbook 0 BookQA (Mihaylov et al.| 2018)
nowledge MMLU (non-math) (Hendrycks et al.| 2021)
Logic-Heavy LogiQA (Liu et al.|[2020)
Instruction Following  IFEval (Zhou et al.|[2023) Prompt-level Ac-
curacy
GSMB8K (Cobbe et al.,|2021)
- HRMSK (Ko et al.|[2025) Exact Match
Math
B Arithmetic (Brown et al.}[2020) Aceurac
MMLU (math) (Hendrycks et al.| 2021) y
Code Code Understanding ~ CodeMMLU (Manh et al.|[2024) Accuracy
Code Generation HumanEvalX (Zheng et al.|[2023) LLM-as-Judge
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Table 3: Categorization of perturbations across four analysis axes: structural vs. semantic (S/S)
perturbations, explicitness of code structure (ECS), relative information density (RID), and human
interpretability (HI).

Perturbation S/S Perturbations ECS RID HI
Whitespace removal Broken syntax ~ Moderate-reduced = Medium
Pseudocode Algorithmic Strong-reduced High
Imaginary Structural Broken syntax ~ Moderate-reduced Low
Step-by-step NL procedure =~ Moderate-reduced  High
Flowchart Graphical Strong-reduced High
Comment removal Runnable Moderate-reduced  Medium
Variable renaming Runnable Increased Medium
Keyword repl. (nonsense) Broken syntax  Increased Low
Keyword repl. (non-Eng.) Semantic Broken syntax  Increased Low
Comment swap (global) Runnable Near-baseline Low
Comment swap (local) Runnable Near-baseline Low
Comment enhancement Runnable Increased High
Comment obfuscation Runnable Increased Low

Table 4: Language specification templates with placeholders that can be instantiated with different
programming languages.

Generate the code in {language}. Provide code in {language}. Write the code in {language}.
Build the code using {language}. Create the code using {language}. Draft the code in {language}.
Produce a code snippet in {language}. Develop the code using {language}.  Generate a solution in {language}.
Create a script in {language}. Implement the code in {language}. Design the code in {language}.
Construct the code using {language}. Format the code in {language}. Write a program in {language}.
Prepare a code snippet in {language}. Write a function in {language}. Deliver the code in {language}.

A.2 CATEGORIZATION OF PERTURBATIONS FOR RQ2 ANALYSIS

See Table[3

A.3 IMPLEMENTATION DETAILS

We train all models under identical hyperparameter settings to ensure a fair comparison across model
sizes and data configurations. All experiments are conducted using full finetuning in BF 16 precision
with a maximum sequence length of 2048 tokens. We run all experiments on 4xA100 80G node.
Models are trained for 2 epochs with a cumulative batch size of 64 for most experiments, except for
language-specific settings, where the batch size is reduced to 32. The learning rate is fixed at 1le—5
and follows a cosine decay schedule with a warmup ratio of 0.1. For memory-efficient parallelism
and distributed training, we use DeepSpeed ZeRO Stage 3 (Ren et al.|[2021)). All models are trained
using the LLaMA-Factory framework (Zheng et al.,|2024). All other parameters and configurations
follow the default setting unless otherwise specified.

A.4 PROMPTS
Standard generation prompt We provide the standard prompt to generate code for a given in-

struction in a specific language in Figure[§] , where the instruction can be instantiated using one of
the templates in Table[d]

Comment enhancement prompt The prompt to enhance the quality and readability of a given
code snippet by adding detailed documentation is shown in Figure[9]
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Code Instruction Data Generation Prompt

You are tasked with generating code based on a specified programming language and instruction. Your goal is to generate code that follows
the syntax and semantics of the specified language. If the instruction is invalid (e.g., contradicts the language’s rules or references functions or
constructs from a different language), you must strictly respond with “invalid.””

Guidelines: - Valid Code: - The generated code must be syntactically and semantically correct according to the specified language. - The code should
follow standard conventions and best practices for the given language. - Do not provide any explanation for valid code — only output the code itself.

- Invalid Instruction: - If the instruction references constructs, functions, or syntax not supported by the specified language, respond with “’invalid”*.
- Do not attempt to correct the invalid instruction — just respond with “’invalid”*. - Do not provide a reason or explanation for why the instruction is
invalid.

Examples:

Example 1:

Instruction: ”Write a function to convert a list to a set.”

Language: Python

Response:

def list_to_set (input_list):
return set (input_list)

Example 2:

Instruction: “Create a class with a method that prints "Hello” using console.log().
Language: Python

Response: invalid

Example 3:

Instruction: “’List all files, including hidden ones, in the current directory.”
Language: Shell

Response: Is -a

Example 4:

Instruction: “Define a function using *def” that returns the length of a string.”
Language: JavaScript

Response: invalid

Instruction:
If the instruction is valid, output the code directly (no explanations).
If the instruction is invalid, respond with “invalid” (no explanation).

Input: Instruction: {instruction}
Language: {language}

Output:

{{response} }
N /

Figure 8: Code instruction data generation prompt. The task is to generate valid code or respond
with “invalid” for unsupported instructions.

Comment Enhancement Prompt

You are tasked with enhancing the response to the given code instruction by adding ingful and d i The goal is to
improve the code’s readability, maintainability, and clarity across any programming language, without altering its original logic or structure.

Your modifications must include:

1. Documentation Comments: - Add clear, technically accurate, and concise documentation for every function, method, class, and major code block.
- Describe the purpose, all parameters (with correct types and usage), return values, and any assumptions or notes relevant to correct usage. - Use the
standard documentation format appropriate for the programming language (e.g., Python docstrings, JavaDoc for Java, Doxygen for C/C++).

2. Inline Comments: - Insert informative and contextually helpful inline comments near complex, unintuitive, or important operations. - Focus on
explaining logic, control flow, edge-case handling, design decisions, or dependencies. - Avoid redundant, obvious, or overly literal comments (e.g., avoid
"i=0//setito0”).

Guidelines:

- Do not change the logic, structure, or behavior of the original code. - Do not introduce new functionality, abstractions, or formatting changes. - Keep
comments strictly technical, relevant, and useful—avoid verbosity or informal tone. - Do not include any meta-comments or explanatory notes about what
was changed (e.g., no "This version adds comments™ or similar). - Apply these modifications only to the code portion of the original response. Leave any
non-code parts completely unmodified. - Ensure all comments follow the style conventions of the language in use.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response}

Output: {{updated response} }

\_ J

Figure 9: Comment enhancement prompt. The task is to improve code clarity through meaningful
comments while preserving original functionality.

Comment obfuscation prompt The prompt used to generate obfuscated versions of code from a
given instruction is presented in Figure[T0]

Pseudo generation prompt We illustrate the prompt designed to produce pseudocode for a given
instruction in Figure[TT]
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Comment Obfuscation Prompt

You are tasked with modifying the response to the given code instruction in a way that significantly degrades its quality and clarity. Your goal is to
make the code as confusing, unhelpful, and misleading as possible through the use of deliberately bad, distracting, and nonsensical comments—without
altering the actual logic or functionality of the code.

Your modifications must include:

1. Severely Misleading or Irrelevant Documentation Comments: - Add documentation to every function, class, and major code block that includes
wildly inaccurate descriptions, unrelated facts, inside jokes, cryptic advice, or philosophical ramblings. - Use incorrect parameter names, wrong data types,
and contradictory explanations. - Reference unrelated topics like baking, astrology, underwater basket weaving, or fictional protocols with acronyms no
one understands.

2. Chaotic Inline Comments: - Insert inline comments that blatantly contradict the actual functionality of the code. - Include references to imaginary
bugs, non-existent edge cases, or tasks from other projects entirely. - Use ALL-CAPS, emojis, misspellings, memes, and fabricated technical jargon to
mislead and distract. - Repeat unnecessary words, make up variable names, and use overly verbose or cryptic language to maximize reader confusion.
Guidelines:

- Do not modify the actual logic, syntax, or structure of the code — only the comments must be altered. - All comments must remain syntactically
valid for the language (e.g., use # for Python, // for JavaScript, etc.) so the code can still execute normally. - Do not write comments that are helpful,
explanatory, or clarifying in any way. Remove any useful comments that were originally present. - Do not include any reflective or meta statements about
the task (e.g., no “'this version degrades the comments™). - Only modify the code portion of the original response—Ileave non-code text unchanged.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response }

Output: {{updated response} }

J

Figure 10: Comment obfuscation prompt. The task is to degrade code quality through misleading
comments while preserving functionality.

Pseudocode Conversion Pr:

pt

You are tasked with converting a given code response into pseudocode that mirrors the structure and semantics of the original code, while
preserving the idiomatic style of the original programming language.

Your modifications must include:

1. Pseudocode Style: - Replace exact syntax with I pecific pseudocode constructs (e.g., use IF ... THEN ... ENDIF for condi-
tionals, FOR EACH or WHILE for loops). - Remove implementation details such as variable declarations with types, precise syntax, or specific library
calls—replace them with clear, high-level descriptions.

2. Structure Preservation: - Maintain the overall control flow and indentation of the original code. - Use meaningful, readable names that reflect
their purpose in the code. - Ensure each function, class, or logical block is represented clearly in pseudocode format.

3. Fidelity to Language Idioms: - Adapt the pseudocode to reflect the spirit and conventions of the original language (e.g., Python’s indentation style,
Java’s block structure, C++-like modularity).

Guidelines:

- Do not alter the logic, structure, or order of operations. - Do not include actual code syntax (e.g., semicolons, colons, type annotations, brackets). -

Do not add ts, ex or headings outside the code block. - Output only the converted pseudocode. - Preserve formatting and indentation
faithfully.

Input: Instruction: {instruction} Original Response: {response }

Output:

{ {pseudocode}}

N /

Figure 11: Pseudocode conversion prompt. The task is to translate real code into structured pseu-
docode while preserving logic and idiomatic style.

Flowchart generation prompt The prompt for generating a flowchart-style representation of an
instruction is provided in Figure [I2}

Step-by-step implementation guide generation prompt The prompt used to create a sequential
step-by-step implementation guide for an instruction is shown in Figure[[3]

Imaginary language code generation We paragraph the prompt for generating code in an imagi-
nary programming language in Figure

LLM-as-Judge Evaluation We use the prompt shown in Figure [T3]to generate instance-specific
rubrics for LLM-as-judge evaluation on the code generation task. The prompt to evaluate model
response is shown in the Figure[T6]

A.5 EXTENDED RESULTS

A.5.1 TASK PERFORMANCE SHOWCASING CODE DATA IMPACT IN FINETUNING (RQ1)

Qwen3 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure

16
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Flowchart Generation Prompt

You are tasked with generating a flow diagram in Markdown format that visualizes the control flow of the given code response. Your output must
be a Mermaid flowchart embedded in a single fenced code block.

Your diagram must:

1. Translate code logic into control flow: - Include major steps, function calls, loops, branches, and return points. - Use concise, descriptive node labels
that accurately reflect the code behavior.

2. Follow valid Mermaid syntax: - Begin with Start and end with End. - Use [ ] for actions/processes. - Use { } for decision/branch points. - Use
——> to connect nodes. - Wrap everything in triple backticks with me rmaid specified.

3.R 1 [c - Match naming and idioms to the language used in the original code. - Do not reinterpret or alter the code logic.
Guldelmes

- Do not change the structure or logic of the original response. - Do not generate new code, only a flowchart of the existing response. - Keep node
labels technical and minimal. - Do not include explanations, comments, or narrative outside the flowchart. - Follow the same formatting and structural
conventions as the original prompt.

Input: Instruction: {instruction} Original Response: {response }

Output:

‘Y'‘mermaid

{{flowchart}}

Vo

N )

Figure 12: Flowchart generation prompt. The task is to convert real code into a Mermaid flow
diagram without changing logic or structure.

Step-by-Step Generation Prompt

You are tasked with converting a given code response into a step-by-step implementation guide that describes how to manually implement the
code in clear, concise, and technically accurate language.

Your implementation guide must:

1. Preserve Original Logic: - Follow the same structure, logic, and sequence as the original code. - Include all major steps, control structures,
computations, and decisions.

2. Describe, Don’t Translate: - Do not include code or pseudocode. - Write in declarative, instructional sentences that explain what to do and how to do
it. - Use neutral, language-agnostic terminology (e.g., “Define a function named...”, “Check if...”, “Return the result...”).

3. Be Clear and Concise: - Number each step in the order it occurs. - Use precise and unambiguous language. - Each step should focus on a single
coherent action.

Guidelines:

- Do not add extra les, or i - Do not change the original logic or execution order. - Do not output anything other
than the numbered steps. - Outpul the guide as a plamlexl numbered list only—no code blocks, no explanations outside the list.

Input: Instruction: {instruction} Original Response: {response }

Output:

1. {{Step one}}
2. {{Step two}}
3. {{Step three}}

N J

Figure 13: Step-by-step implementation guide prompt. The task is to describe how to implement
the code in a precise, ordered, and language-agnostic way.

Llama-3.2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T8]

Gemma-3 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T9]

OLMo-2 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure[20]

SmolLM?2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 21]

Code data mixture ratio in finetuning data ablations We show results for mixing different ratios
of code data in finetuing for Qwen3-0.6B-Base and Qwen3-1.7B-Base in Figure[22a)and Figure 22b]
respectively.
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Imaginary Language Translation Prompt

You are tasked with converting a given code resp into an i inary progr i that mimics the syntax and semantics of the
original real-world language while appearing fictional and made-up.

Your modifications must include:

1. Imaginary Language Design: - Rename keywords, function names, types, and operators using plausible yet fictional terms. - Preserve the structure,
indentation, and logical flow of the original code. - Ensure the resulting code remains readable and clearly maps to the original logic.

2. Consistency and Fidelity: - Maintain 1-to-1 correspondence between the original code constructs and their fictional equivalents. - The imaginary
language should resemble the style and design patterns of the original language (e.g., Pythonic indentation, Java-style braces and semicolons, C++ class
structure, etc.).

3. Creativity within Constraint: - Make the language feel internally consistent and syntactically plausible. - Avoid random noise—each fictional token
should appear intentional and reusable.

Guidelines:
- Do not change the underlying logic of the original code. - Do not translate or docstrings—leave them unchanged. - Do not add
expl i i or headings outside the code block. - Output only the converted code. - Ensure formatting matches the original exactly (e.g.,

spacing, newlines).
Input: Instruction: {instruction} Original Response: {response }
Output:

‘“‘imaginary
{{code_in_imaginary_language}}

N /

Figure 14: Imaginary language translation prompt. The task is to render real code in a fictional but
consistent language without changing its logic.

Rubric Generation Prompt

You are tasked with generating an instance-specific evaluation rubric based on a given coding prompt, canonical solution, and test
case(s) to evaluate the model-generated response.

Guidelines:

- The rubric must be example-specific: every score level must directly reference the details of the given prompt, canonical solution,
and test case(s).

- Use a fixed 1-10 scale (1 = lowest quality attempt, 10 = fully correct).

- Structure the rubric so that:

- Scores 1-3 describe model responses that are irrelevant, nonsensical, or do not implement the required functionality.

- Scores 4-7 describe model responses that attempt the task but are incomplete, flawed, or only partially correct on test case(s).

- Scores 8-10 describe model responses that are mostly or fully correct, aligning with the canonical solution and passing most or
all test case(s).

- Each score level (1-10) must have a clear, measurable description unique to this problem.

- Output only the rubric.

Input:

Code Prompt:
{code_prompt}
Canonical Solution:
{canonical_solution}
Test Case(s):

{test_case}

Output:
{{rubric}}

& J

Figure 15: LLM-as-judge prompt for generating an instance-specific rubric to evaluate model-
generated code responses.

A.5.2 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY STRUCTURE VS
SEMANTICS (RQ?2)

Qwen3 model family results (structure vs semantics perturbations) See performance of aggre-
gated task performance under structure vs semantics perturbations in Figure [23]

Llama-3.2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

18
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LILM-as-Judge Evaluation Prompt

You are tasked with evaluating a model-generated response to a coding prompt using the provided rubric.

You are given:

1. The coding prompt.

2. The rubric (instance-specific, with 1-10 levels).
3. The model response.

Instructions:

- Carefully read the rubric.

- Compare the model response against the rubric criteria.

- Assign the most appropriate score (1-10).

- Provide a concise justification inside jreasoningy/reasoning, explicitly referencing how the model response aligns or fails to
align with specific rubric levels.

- Provide only the numeric score inside jscore;j/score;.

- Do not include any text outside the required tags.

Input:

Coding Prompt:
{code_prompt }
Rubric:

{rubric}

Model Response:

{model_response}

Output:

<reasoning>{{concise justification}}</reasoning>
<score>{{integer from 1 to 10}}</score>

- J

Figure 16: LLM-as-judge prompt for rubric-based evaluation of model-generated code responses.

Gemma-3 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

OIMo-2 model family results (structure vs semantics perturbations) See performance of ag-
gregated task performance under structure vs semantics perturbations in Figure

SmolLM2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

A.5.3 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY EXPLICITNESS OF
CODE STRUCTURE (RQ2)

Qwen3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

Llama-3.2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-
ure29

Gemma-3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

OIMo-2 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

SmolLM2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-

ure 321
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Figure 17: Task performance of Qwen-3 family under zero-shot, full code finetuning (code-ft), full
natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.5.4 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY RELATIVE
INFORMATION DENSITY (RQ2)

Qwen3 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure [33]

Llama-3.2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [34]

Gemma-3 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [33]
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Figure 18: Task performance of Llama-3.2 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.
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Figure 19: Task performance of Gemma-3 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

OIMo-2 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure [36]

SmolL.M2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [37}

A.5.5 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY HUMAN
INTERPRETABILITY (RQ2)

Qwen3 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure 38]

Llama-3.2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure 39}

21



Under review as a conference paper at ICLR 2026

1 1 34 NL & General Math Code Understanding Code Generation

1135
1136
1137
1138

1139 PR RT o et o et o et oot oo™ ettt gt
1140
1141 (a) OLMo-2-0425-1B

NL & General Math Code Understanding Code Generation

1142
1143
1144
1145
1146

1147 cove™ 1e1© 5“°‘m\¢e°’“ A 4e1© oot goe m\fed'“ A 4e1© oot et et m'\v»ed'ﬁ cove™ m‘wﬁ"'“ o 4e1® i

1148 (b) OLMo-2-1124-7B
1149

1150 Figure 20: Task performance of OLMo-2 family under zero-shot, full code finetuning (code-ft), full
1151 natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.
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1169 Figure 21: Task performance of SmolLM?2 family under zero-shot, full code finetuning (code-ft),

1170  full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.
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1172
1172 Gemma-3 model family results (human interpretability perturbations) See performance of

aggregated task performance under human interpretability perturbations in Figure
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1174
1175
1176 OlMo-2 model family results (human interpretability perturbations) See performance of ag-
1177  gregated task performance under human interpretability perturbations in Figure [#T]

1178
1179 SmolLM2 model family results (human interpretability perturbations) See performance of
1180  aggregated task performance under human interpretability perturbations in Figure

1181

1182 A.5.6 TASK PERFORMANCE FOR ALL INDIVIDUAL PERTURBATIONS (RQ2)

1183
1122 Qwen3 model family results (individual perturbations) See performance of all perturbation

1155 configurations in Figure @3]

1186
1157 Llama-3.2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 4]

22



Under review as a conference paper at ICLR 2026

NL & General Math
code mix 80% ! H | 0407 code mix 97.5% 0.459,
code mix 40% 1402+ code mix 80% 0.461
code mix 95% 1402+ code mix 90% 0.455
code mix 90% 402 code mix 95%
code mix 5% 0+ code mix 60%
code mix 97.5% c code mix 20%
code mix 2.5% > code mix 10% 0.359
code mix 10% - code-t code mix 5% 0.355 == code-ft
code mix 20% zero-shot code mix 40% 0.352 zero-shot
code mix 60% S o397 code mix 50% | code mix 2.5% 0.351 code mix 50%
038 039 0.40 041 042 0350 0375 0400 0425 0450 0475 0.500

code mix 90%
code mix 20%
code mix 95%
code mix 2.5%
code mix 97.5%
code mix 5%
code mix 80%

code mix 10%

Code Understanding

=== code-ft

code mix 97.5%
code mix 95%
code mix 90%
code mix 60%
code mix 80%
code mix 20%
code mix 10%
code mix 40%

Code Generation

~ 595

code mix 40% i zero-shot code mix 5% hot
code mix 60% i code mix 50% code mix 2.5% Ix50%
041 042 043 044 045 046 047 048 625 650
(a) Qwen3-0.6B-Base
NL & General
code mix 95% code mix 20%
code mix 60% code mix 97.5%
code mix 97.5% code mix 90%
code mix 40% code mix 10%
code mix 20% code mix 40%
code mix 80% code mix 5%
code mix 10% code mix 95%
code mix 90% doo code-ft code mix 2.5% o= code-ft
code mix 5% zero-shot code mix 60% zero-shot
code mix 2.5% code mix 503% code mix 80% code nix 50%

045 046 047 048 049 050 051 0450 0475 0500 0525 0550 0575 0.600 0.625 0.650
Code Understanding Code Generation
code mix 90% code mix 97.5% ©7870
code mix 97.5% code mix 95% 7.138
code mix 95% code mix 90%
code mix 80% code mix 80%
code mix 5% code mix 60%
code mix 20% code mix 10%
code mix 2.5% code mix 20%
code mix 10% ode-ft code mix 40% o= codelft
code mix 60% ero-shot code mix 5% zero-shot
code mix 40% ode mix 50% | coge mix 2.5% codejmix 50%
056 058 750 775

(b) Qwen3-1.7B-Base

Figure 22: Task performance of Qwen3-0.6, 1.7B-Base when mixing different ratio of code data dur-
ing finetuning. In general higher code percentages improves performance, with math tasks showing
large variation.

Gemma-3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure [43]

OIMo-2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure

SmolLLM2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure {7

A.5.7 TASK PERFORMANCE WITH DIFFERENT PROGRAMMING LANGUAGES (RQ3)

Qwen3 model family results See performance of grouped performance and individual program-
ming languages in Figure 8 and Figure [d9] respectively.

Llama-3 model family results
ming languages in Figure 50}

See performance of grouped performance and individual program-
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Figure 23: Task performance under perturbations aggregated by structure vs semantics across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 24: Task performance under perturbations aggregated by structure vs semantics across
Llama-3.2 models (1B (top), 3B (bottom)).

SmolLM2 model family results See performance of grouped performance and individual pro-
gramming languages in Figure[51]
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Figure 25: Task performance under perturbations aggregated by structure vs semantics across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 26: Additional performance of OLMo-2-0425-1B aggregated by structure vs semantics
across tasks.
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Figure 27: Task performance under perturbations aggregated by structure vs semantics across
SmolLM2 models (360M (top), 1.7B (bottom)).
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1377 Figure 28: Task performance under perturbations aggregated by explicitness of code structure across
1378 Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 29: Task performance under perturbations aggregated by explicitness of code structure across
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Figure 30: Task performance under perturbations aggregated by explicitness of code structure across

Gemma-3 models (1B (top), 4B (bottom)).
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Figure 33: Task performance under perturbations aggregated by relative information density across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 34: Task performance under perturbations aggregated by relative information density across
Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 35: Task performance under perturbations aggregated by relative information density across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 36: Additional performance of OLMo-2-0425-1B aggregated by relative information density
across tasks.
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Figure 37: Task performance under perturbations aggregated by relative information density across
SmolLM2 models (360M (top), 1.7B (bottom)).
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Figure 38: Task performance under perturbations aggregated by human interpretability across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 39: Task performance under perturbations aggregated by human interpretability across

Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 40: Task performance under perturbations aggregated by human interpretability across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 41: Additional performance of OLMo-2-0425-1B aggregated by human interpretability
across tasks.
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Figure 42: Task performance under perturbations aggregated by human interpretability across
SmolLM?2 models (360M (top), 1.7B (bottom)).
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Figure 43: All perturbations across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 44: All perturbations across Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 45: All perturbations across Gemma-3 models (1B (top), 4B (bottom)).
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Figure 46: OLMo-2-0425-1B with all perturbations.
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Figure 47: All perturbations across SmolLM?2 models (360M (top), 1.7B (bottom)).
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Figure 48: Grouped performance of Qwen-3 family under low-system, intermediate, and high-
scripting programming languages.
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Figure 49: All programming language specific performance of Qwen-3 family.
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Figure 50: Performance for Llama-3.2-1B. (a) Programming language groups, (b) individual lan-

guages.
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Figure 51: Performance for SmolLM2-1.7B. (a) Programming language groups, (b) individual lan-

guages.
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