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ABSTRACT

Code data has been shown to enhance the reasoning capabilities of large language mod-
els (LLMs), but it remains unclear which aspects of code are most responsible. We
investigate this question with a systematic, data-centric framework. We construct par-
allel instruction datasets in ten programming languages and apply controlled perturba-
tions that selectively disrupt structural or semantic properties of code. We then finetune
LLMs from five model families and eight scales on each variant and evaluate their per-
formance on natural language, math, and code tasks. Across 3,331 experiments, our
results show that LLMs are more vulnerable to structural perturbations than semantic
ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and
flowcharts can be as effective as code, while encoding the same information with fewer
tokens without adhering to original syntax can often retain or even improve perfor-
mance. Remarkably, even corrupted code with misleading signals remains competitive
when surface-level regularities persist. Finally, syntactic styles also shape task-specific
gains with Python favoring natural language reasoning and lower-level languages such
as Java and Rust favoring math. Through our systematic framework, we aim to provide
insight into how different properties of code influence reasoning and inform the design
of training data for enhancing LLM reasoning capabilities.

1 INTRODUCTION

There has been substantial interest in the last several years in engineering language models that can
tackle challenging reasoning tasks (Huang & Changl|[2023)). Language reasoning tasks, such as math
word problems or logic puzzles, tend to require multi-step, structured “thinking” in order to produce
the correct answer. Recent work has found that training the language model on code, either during
pre-training (Fu & Khot, |2022; Ma et al.} |2023b)) or during post-training (Zhang et al.,[2024b)), can
improve its skill at reasoning tasks, even ones that are unrelated to programming. These prior works
have hypothesized that the properties of code data, such as its logical consistency, compositional
structure, and reduced ambiguity compared to natural language, provide effective signals that ben-
efit reasoning. Despite the broad effectiveness of code data in training, we still lack a systematic
understanding of which aspects of code drive these improvements: is it the its syntactic regularity,
structural abstractions, or linguistic styles?

In this work, we aim to provide such an account by systematically investigating which aspects of
code serve as effective training signals. To this end, we construct parallel instruction datasets in both
natural language and code, and further expand the code dataset into language-specific variants by
generating responses in ten widely used programming languages. This design allows us to examine
how structural differences across languages affect downstream reasoning. In addition, we intro-
duce controlled perturbations to the code data to isolate contributing factors: (1) rule-based trans-
formations such as whitespace removal or comment shuffling, and (2) generative transformations
where GPT-40-mini rewrites or reformats the code (e.g., with augmented comments, pseudocode,
or flowcharts). We then fine-tune language models on each dataset variant, and evaluate them across
natural language and general knowledge, math, as well as code understanding and generation tasks.
Our contributions are:

* We introduce a systematic framework to disentangle what aspects of code data improve rea-
soning, combining parallel instruction data construction, controlled perturbations, and large-
scale evaluation across five model families and eight scales.

* We design a comprehensive and controlled suite of perturbations spanning rule-based edits
and generative rewritings.
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* We provide new insights into the role of code in reasoning to inspire guidance on leveraging
its structural and linguistic properties in future training data design.

2 RELATED WORK

Code data for LLM reasoning Recent work has increasingly demonstrated that incorporating
code data can substantially improve the reasoning abilities of LLMs. Prior studies show that adding
code during pretraining or instruction tuning consistently improves model performance across rea-
soning tasks, domains, model scales and architectures (Ma et al., 2023a; Zhang et al.| 2024a; Yang
et al.| [2025b} [Aryabumi et al., [2024). Several works further explore the synergy between code and
reasoning and highlight how code’s structured and verifiable properties support logical decomposi-
tion and intermediate step generation (B1 et al.; |Yang et al., 2024). This effect has been observed
in multilingual contexts as well, where code-augmented training improves structured reasoning in
under-resourced languages (Li et al., 2024). Complementary research focuses on code’s impact
for alignment and reward modeling, where pretraining with code-preference pairs or code-based
intermediate steps can improve model calibration for reasoning-intensive tasks (Yu et al., [2024).
The closest line of research to our work explores stress-testing LLMs with structural and semantic
code perturbations (Lam et al., 2025)), which shows that small corruptions can significantly reduce
reasoning performance.

Data impact on LLM performance The performance of LLMs are tied to the vast amounts of
training data, but the quality, composition, and characteristics of this data greatly shape their abili-
ties (Wang et al., 2024} Li et al | 2023 [Lee et al.L[2022). For example, extensive analyses by Longpre
et al.| (2024) have shown that pretraining data curation decisions for dataset age, composition, and
content filtering have systematic impact on downstream performance, and that these effects per-
sist even after fine-tuning steps. Zhang et al.|(2024c) demonstrate that poisoning as little as 0.1%
(and even 0.001%) can produce persistent behavioral changes that survive instruction tuning and
alignment. In addition, Havrilla & Iyer (2024) showed that LLMs are sensitive to global, accumula-
tive errors in chain-of-thought-structured training data, and that it is critical to filter out documents
containing large amounts of dynamic, global noise during both pretraining and fine-tuning.

3 METHODOLOGY

We design a controlled experimental framework to understand what aspects of code improve rea-
soning in language models. Our methodology consists of three stages: constructing parallel natural
language and code instruction datasets (Section [3.1); applying systematic modifications to code in-
struction data (Section [3.2)); and fine-tuning various language models on each dataset variant and
then conducting evaluation (Section[3.3). An overview of this framework is shown in Figure[l]

3.1 INSTRUCTION DATA GENERATION

We construct two parallel instruction datasets: one in natural language and the other in code,
each containing 120,000 instruction-response pairs. We collect instructions from publicly available
datasets, carefully process and filter them through deduplication and language-agnostic filtering, and
augment the code data in a controlled way. This construction enables a more controlled comparison
of natural- and code-based instruction following under a unified training framework.

Code instructions We aggregate code instructions from Codeforces-CoT (Penedo et al., 2025),
Code-Instruction-122K (TokenBender, [2024), Evol-Instruct-Code-80k-v1 (nickroshl 2024), Code-
Instruction (redlxe, 2023), Code-Instruct-Sets (AtlasUnified, 2023), and Code-Instruct-Alpaca-
Vicuna-WizardLM (rombodawg, [2024). We aim to construct instruction data that is high-quality,
diverse, and language-agnostic.

To ensure generality and eliminate redundancy, we first remove all exact-match duplicates across
the datasets. We then filter out instructions that are explicitly programming-language-specific (e.g.,
“Translate this code from Python to java”) or whose solutions are inherently tied to particular do-
mains, such as web development or databases (e.g., “webpage”, “website”, “SQL”, “HTML”).
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Figure 1: We construct parallel code and natural language instruction datasets, apply targeted mod-
ifications (rule-based and generative-based perturbations, single programming language ablations),
and fine-tune a separate LLM on each modified dataset. We then evaluate the resulting models across
general natural language, code, and math reasoning tasks.

For each instruction, we prompt GPT-40-min{|to generate answers in ten widely used programming
languages: Java, JavaScript, PHP, Python, C#, TypeScript, C, C++, Go, and Rust. To create these
variants, we design 20 language specification templates that explicitly request a solution in a given
programming language (Table [6). For every instruction, we randomly select a template, instantiate
it with one of the target languages, and combine it with the general generation instructions to form
a complete prompt (Figure[8)). From these generations, we sample 120K instruction—response pairs
with valid outputs, evenly distributed across all ten languages.

To assess the quality of our synthesized code instruction—response pairs, we perform a comprehen-
sive syntax and compilation check across all ten programming languages. For each instance, we
extract the generated code block and apply standard syntax or compilation tools (e.g., ast .parse
for Python, gcc —-fsyntax-only for C, javac for Java). As shown in Appendix Table [3] the
majority of samples compile or execute successfully, with pass rates ranging from 64.08% (Type-
Script) to 99.25% (Python) and an average pass rate of 82.59% across all languages. These results
indicate that most generated instructions correspond to syntactically valid and executable code.

Natural language instructions We sample 120K examples from the OpenHermes 2.5 cor-
pus (Teknium, 2023). We exclude instruction-response pairs associated with categories unrelated
to general-purpose instruction following, such as “agent” and “summarization”, as well as those la-
beled “coding” to ensure the dataset is entirely natural language. To maintain linguistic consistency,
we further filter out non-English examples. This filtered natural language subset complements our
code instruction data, enabling a fair comparison between code and natural language instructions.

3.2 SYSTEMATIC PERTURBATION DESIGN

To understand which specific structural and semantic properties are responsible for changes in rea-
soning task performances, we systematically perturb different aspects of the code dataset. We de-
sign the perturbations through two ways: rule-based (deterministic transformations) and generative
(model-generated augmentations). Notably, our perturbation strategies do not alter the number of
examples in the dataset. We illustrate an examples of these perturbations in Table[I] with extended
examples and token statistics in Appendix Table 2]

3.2.1 RULE-BASED PERTURBATIONS

Rule-based perturbations apply deterministic transformations to the code. They are designed to
disrupt superficial patterns or semantic signals that may influence model predictions without altering
the core logic of the code. We describe five such perturbations below:

“Responses are generated with temperature 0.6 and API-default decoding parameters.
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Table 1: An example of perturbations (Section applied to the same original snippet.

Full Original Snippet Type Strategy Original Excerpt Perturbed Excerpt
itespac a . - . oy )
def process string (input_string) : Whitespace Removal ziz\;liois};@;?;ﬁ( result.append ( char.lower())
vowels = "aoyeuiAOYEUI" .
result = [] Variable Renaming for char in for var4 in var_l: if var 4
Rule-based not in var.2:

for char in input_string:

if char not in vowels:

result.append(’.’” +
char.lower())

return .join(result)

# Read input

input_string = input () .strip(

# Process and print the result
print (process_string (input_string))

input_string:

Keyword
(Nonsense)

Replacement

if char not in
vowels:

garply i not in baz

Keyword
(Non-English)

Replacement

for char in
input_string:

para ch en entrada

Comment Swapping (Lo-
cal)

# Read input

# Walking

Comment
(Global)

Swapping

# Process and print
the result

// Queue for processing
nodes

Comment Removal

# Read input

/+ all comments removed x/

Generative

Pseudocode

for char in
input_string: if
char not in vowels

FOR EACH character IF not vowel THEN
append .’ +lowercase

Step-by-Step

result.append(’.’ +
char.lower())

Append . before consonants and convert
to lowercase

Flowchart

if char not in
vowels:

[Read char] =+ {Vowel?} =
[Append ' .’ +lower]

Code in Imaginary Lan-
guage

result.append(’.’ +
char.lower())

glorfadd . & lower(chr)

Comment Enhancement

# Process and print
the result

# Removes vowels and prefixes consonants
with *.

Comment Obfuscation

# Read input

# WARNING: Code may summon aliens; #

TODO: handle quantum vowels

Whitespace removal All whitespace characters are removed from the code. This tests whether
models rely on formatting heuristics, such as indentation or visual grouping of blocks, as implicit
structural cues, particularly in languages like Python where whitespace is semantically meaningful.

Variable renaming We replace user-defined variables, function names, and class names with canon-
ical placeholders of the form var_i, where ¢ € [0,n) and n is the total number of unique identifiers
in the code snippet. This removes semantic cues conveyed by meaningful identifier names (e.g.,
counter, isSorted).

Programming language keyword replacement For each of the ten programming languages in
our dataset, we identify its reserved keywords (e.g., 1 f, return, def in Python) and substitute
all occurrences of them using two strategies. The first replaces keywords with nonsense tokens
(e.g., foo, quux), which have no semantic meaning in any language. In the second strategy, we
use non-English but valid words (e.g., amigo, fleur), which are real words in various languages but
semantically unrelated to the programming context. These perturbations aim to challenge models’
reliance on syntactic and semantic cues from familiar language constructs.

Comment removal We remove all inline and block comments from each code snippet. Code com-
ments often provide useful semantic signals for program comprehension (Buse & Weimer, [2009
De Souza et al., 2005). This perturbation tests whether models largely leverage such auxiliary
natural-language cues.

Comment swapping We introduce local and global swapping that misplace code comments to dis-
rupt the semantic alignment between code and documentation. In local swapping, comments within
a snippet are randomly reordered, preserving their content but misaligning them with the relevant
code segments. In global swapping, we first collect a global pool of comments from the entire
dataset. Then, for each comment in a snippet, we replace it with a randomly sampled comment from
this pool. This results in documentation that is entirely mismatched to the surrounding code.

3.2.2 GENERATIVE PERTURBATIONS

We create generative perturbations by prompting GPT—40—minﬂ to produce alternative versions of
code responses generated according to Section[3.1] These rewrites preserve the original intent of the
code while introducing more diverse variations beyond what rule-based edits can achieve, allowing

"We use temperature of 0.6 and default settings.
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us to test model sensitivity and robustness to semantically equivalent inputs expressed in different
forms. The full set of prompts used is available in Appendix

Comment enhancement We prompt GPT-40-mini to regenerate the code with high-quality docu-
mentation and inline comments (Figure 0). The prompt emphasizes two forms of annotation: (1)
comprehensive documentation comments for all functions, classes, and key code blocks to describe
their purpose, parameters, return values, and assumptions; and (2) informative inline comments
that clarify complex or non-obvious logic. These annotations follow the conventions of the target
programming language (e.g., Python docstrings, JavaDoc). Unlike the often sparse comments in un-
perturbed data, the enhanced versions provide consistent, high-quality annotations, which enables
us to test the effect of documentation quality on model performance.

Comment obfuscation Here, we generate deliberately misleading, irrelevant, or nonsensical com-
ments, while preserving the code’s functionality (Figure[I0). These include (1) inaccurate, off-topic,
or absurd documentation (e.g., references to astrology, cooking, or fictitious technologies) and (2)
chaotic inline comments that contradict the code’s functionality, reference imaginary bugs or fea-
tures, and use distracting styles such as ALL-CAPS, emojis, and fabricated jargon. This perturbation
tests model robustness to extreme noise and deceptive annotations.

Pseudocode We convert code into high-level pseudocode while preserving its logical structure (Fig-
ure [TI). The model is instructed to replace language-specific syntax with pseudocode constructs
(e.g., IF...THEN. . .ENDIF, FOR EACH, etc.), remove low-level implementation details (e.g.,
type declarations or library calls), and maintain the original control flow and indentation. This per-
turbation evaluates whether models can reason over algorithmic intent without relying on concrete
syntax, which offers insight into generalization across abstraction layers in code representation.

Flowchart in Markdown We generate a control flow diagram using Mermaid syntax in Markdown
for a given code snippet (Figure [[2). The diagram captures all major control structures, such as
loops, branches, function calls, and return points, using minimal but descriptive labels. This trans-
formation renders executable code as a graphical abstraction, allowing us to understand whether
models can reason over symbolic control flow and align it with underlying program semantics.

Step-by-step solution We rewrite code as a numbered list of natural language steps (Figure [T3).
Each step preserves the program’s logic and execution order but uses declarative, language-agnostic
phrasing (e.g., “Define a function named...”, “Check if the input is valid”). Unlike pseudocode or
flowchart formats, this version entirely removes code or symbolic notation and instead emphasizes
procedural understanding in purely narrative form.

Code in imaginary language We translate real code into a fictional language that preserves structure
and control flow but replaces all syntax and identifiers with invented tokens (Figure [I4). The result
is semantically consistent yet entirely ungrounded in real languages. This perturbation allows us to
examine whether models rely on surface-form familiarity (e.g., recognizing logical patterns.

To assess the correctness of the perturbed data, we conduct a human evaluation with two annota-
tors, randomly sampling 30 examples per perturbation type (13 total: 7 rule-based and 6 generative).
For the rule-based perturbations and comment enhancement/obfuscation, annotators verify that each
transformation strictly follows the intended perturbation rule while leaving all unrelated content un-
changed. For the generative perturbations (pseudocode, step-by-step instructions, flowchart, imag-
inary language), which express the original code in alternative forms, annotators verify that the
conveyed semantics remain faithful to the original program. Across all 390 sampled instances, 351
were judged correct (90% overall). Rule-based perturbations achieved 176/210 ~ 84% correctness,
while generative perturbations achieved 175/180 ~ 97% correctness.

3.3 MODEL TRAINING AND EVALUATION

We train a suite of decoder-only LLMs using supervised fine-tuning (SFT) on our instruc-
tion—response datasets detailed in Section [3.1] along with their perturbed variants described in Sec-
tion 3.2] To assess the effect of language-specific patterns, we additionally finetune models on
subsets of the code data restricted to a single programming language. This allows us to examine
how the syntactical diversity of programming languages influences reasoning performance. Each
instruction—response pair is treated as a single input—output sequence, and models are trained to
autoregressively predict the response tokens conditioned on the instruction and prior context. All
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models are fine-tuned from the same pre-trained backbone under supervised fine-tuning (SFT) ob-

jective to ensure comparability across experimental conditions. Let x = (z1,Z2,..., ) be the

instruction tokens and y = (y1, Y2, - - - , Yn ) be the response tokens. The SFT objective is defined as:
n

Lorr = — Y log Py(ys | z,y<t) (D

t=1

where Py denotes the model’s conditional probability distribution parameterized by 6, and y; rep-
resents the prefix of the response up to position ¢t — 1.

Models We choose a diverse set of pre- and post-trained language models ranging from 0.6B to
8B parameters. Specifically, we experiment with models from five major families: Qwen3 (Yang
et al., 2025a), LLaMA-3 (Grattafior1 et al., 2024)), Gemma3 (Team et al., [2025), OLMo2 (OLMo
et al.| [2024), and SmolLM2 (Allal et al.| 2025)). For each model family, we select representative
sizes (e.g., <1B, ~1B, ~3-4B, ~7—8Bto evaluate performance across different scales.

Training data configurations Our base training set consists of 120K instruction—response pairs
spanning both code and natural language formats detailed in Section [3.1] From this, we construct
several configurations: (1) 100% code-only, (2) 100% natural language-only, and (3) mixed data
with varying code-to-language ratios. In addition, we train models on each perturbed variant intro-
duced in Section[3.2] Finally, we include programming-language-specific subsets, training separate
models on data from each of the ten languages (~12K examples per language) to assess the effect
of language specialization. The implementation details are in Section[A.5]

Evaluation tasks We evaluate model performance across three categories: natural language and
general knowledge, math, and code (Table [).

For natural language and general knowledge, we evaluate across commonsense reasoning, science
and textbook-style QA, logical reasoning, and instruction-following. All tasks are evaluated us-
ing accuracy. For math, we include both elementary and advanced problem-solving datasets (e.g.,
GSMB8K, HRMS8K), as well as arithmetic and math-related subsets of MMLU. Open-ended tasks
(GSMB8K, HRMB8K) use exact match, while arithmetic and MMLU (math) are scored with accuracy.

For code, we evaluate both code understanding and generation. Based on preliminary experi-
ments, we adopt the LLM-as-Judge paradigm (Gu et al., [2025)) instead of execution-based evalu-
ation (Huang et al.l [2022). Our relatively small, perturbed models often fail to produce fully exe-
cutable code, making execution-based metrics unreliable. More importantly, our goal is to assess
code quality and reasoning under perturbations, not just execution success.

Thus, we prompt GPT-4o0-mini to first generate an instance-specific rubric on a 1-10 Likert scale
given the original instruction, which is expected to capture nuanced quality variation across outputs.
The same model is then prompted as a judge to provide a brief reasoning step (“thought”) and assign
a score based on that rubric. Examples of the rubric-generation prompt and judging prompt are
shown in Appendix [A.6|(Figures[I5]and [I6). For the main results, we use GPT-40-mini as the judge
due to its strong judging quality and favorable cost—performance tradeoff. To assess the reliability of
our LL.M-as-judge setup, we additionally conduct an extensive cross-judge analysis using multiple
models. The results in Appendix Table [7]]demonstrate that our evaluation is stable across judges.

4 RESULTS AND DISCUSSION

RQ1: Does incorporating code in finetuning improve task performance? First, we validate
prior findings that finetuning on code data can enhance downstream reasoning. Following the train-
ing setup in Section [3.3] we compare performance across four settings: zero-shot, full code finetun-
ing (“code-ft”), full natural language finetuning (“nl-ft”), and mixed data finetuning with equal pro-
portions of code and natural language instructions (“mixed-ft”). Across model families and scales,
code-ft and mixed-ft generally achieve leading or competitive performance across tasks (Figure [2}
and Figures [[7HZ21)), with the trend particularly consistent on code generation.

“Due to resource constraint, the larges model we could finetune is 8B.
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Figure 2: Performance (with stderr bars) of Qwen3-4B-Base across zero-shot, full code finetuning
(code-ft), full natural language finetuning (nl-ft), and 50-50 code to NL data ratio finetuning (mixed
ft). Incorporating code improves performance across tasks.
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Figure 3: Aggregated performance (with stderr bars) under structural perturbations (e.g. removing
whitespace) vs. semantics perturbations (e.g. modifying the comments) of Qwen3-4B-Base. Se-
mantic perturbations tend to be more harmful to performance than semantic ones.

Overall, across the 14 model bases, either code-ft or mixed-ft achieves the best performance on
64% of natural language tasks, 86% of math and code understanding tasks, and all code generation
tasks. Motivated by this, we further examine the effect of varying the proportion of code in mixed
finetuning (Figure 22). We find that higher fractions of code data generally improve performance
across most tasks, with math tasks most sensitive to mixture ratios.

RQ2: How do our systematic perturbations affect performance?

Section Findings

* Structural perturbations hurt more than semantic ones, especially for math and code.

* Appropriate abstractions such as pseudocode and flowcharts can substitute for explicit code
structure in reasoning.

* Models don’t need verbose code: reduced-token variants perform well as long as core infor-
mation is preserved.

* LLMs can reason effectively from corrupted code by exploiting surface-level regularities.

. J

Next, we analyze task performance under the perturbations introduced in Section[3.2] Based on the
properties of each perturbation, we group them into distinct analysis axes that allow us to systemati-

Code i Code Generation

0.652 0-659

0579 0.579 0.577 o )

0.573 0.642

8.343 3-448 8.393
8140

Figure 4: Aggregated performance (with stderr bars) under levels of explicitness of code structure
(less explicit going from runnable code to NL procedure) of Qwen3-8B-Base. Certain algorithmic
and graphical abstractions benefit reasoning.
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Figure 6: Aggregated performance of Qwen3-8B-Base (with stderr bars), depending on how much
the perturbed code data is readable to humans. Low-interpretability with misleading signals can
match or perform better than other configurations.

cally probe their effects. The grouping details are in Table[5] We illustrate performance of individual
perturbations in Appendix [A77.6

Structural vs. Semantics Perturbations. We define structural perturbations as edits that alter
the syntactic scaffolding or formatting of code (e.g., whitespace removal, pseudocode, flowcharts),
while semantic perturbations modify meaning-bearing tokens such as identifiers, keywords, or com-
ments without disrupting the underlying structure. Across model families and scales (Figures 23] -
[27), nearly all perturbations reduce performance compared to the unperturbed code-fineturned base-
line. More importantly, structural perturbations consistently degrade performance more severely
than semantic ones, especially for math and code tasks (e.g., Figure3). The discrepancy is more ev-
ident as models scale up (e.g., Figure[23)). This resembles prior work that reasoning structure rather
than content is more critical to the learning process 2025)). We hypothesize that tasks such
as math and code rely more heavily on formatting and layout cues to shape reasoning.

Explicitness of Code Structure. Building on the importance of structure, we examine perturba-
tions along a spectrum of how explicitly they preserve code structure: from runnable or code-like
forms, through intermediate abstractions such as pseudocode and flowcharts, to natural language
step-by-step procedures. For code generation, where executable outputs are required, it is natural
that perturbations that preserve explicit code structure, whether runnable or not, lead to the best
performance. For other tasks, however, certain abstractions such as pseudocode or flowcharts often
match or even surpass unperturbed code, as they highlight algorithmic structure while removing
superficial syntax. By contrast, the most implicit form, natural language procedures, provides little
advantage and generally performs worst across tasks (e.g. Figure @] Figures 28H32).

Relative Information Density. Because our constructed instruction datasets are parallel, the amount
of information they convey about the code is comparable across perturbations. We define relative
information density as (number of tokens in perturbed dataset) + (number of tokens in the original
code-ft dataset), which reflects how compactly the same content is represented. Perturbations differ
in how they adjust density: some produce highly compact forms that strip away most tokens but
preserve the algorithmic skeleton (e.g., flowcharts, pseudocode), others moderately reduce density
by removing comments or using imaginary languages, while others preserve or even increase density
through verbose variable renamings or enriched documentation. We find that strong or moderate
reductions in density often perform close to, and sometimes better than, the baseline (e.g. Figure[3]
Figures[33H37). However, this advantage doesn’t extend to code generation, where preserving richer
surface detail is important. In addition, smaller models are more sensitive to density differences,
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whereas larger models remain robust. Overall, this suggests that the benefit of code for reasoning
doesn’t lie in its verbosity but but in the efficiency with which essential information is preserved.

Human Interpretability. We also examine perturbations through the lens of human readability:
high-interpretability (enriched explanations and visual scaffolds), medium (local edits leaving most
code intact), and low (obscured readability or misleading signals). Interestingly, low-iterpretability
variants, despite adding noise or distortion, often do not degrade performance too much from the
unperturbed baseline, and often match or even surpass medium-interpretability ones (e.g. Figure[6]
Figures 38H42). This counterintuitive trend suggests that the models could exploit surface-level
regularities and recurring structural cues that persist even in noisy or opaque forms.

RQ3: How does performance vary across programming languages?

[ Section Findings ]

» Lower-level languages benefit math tasks.
* Python aligns best with NL tasks, while Java and Rust often rank among the top for math.

The strong impact of structure in RQ2 motivates the question of whether syntactic regularities in
programming languages also influence model performance. To explore this, we group the ten pro-
gramming languages into high-scripting (Python, PHP, JavaScript, TypeScript), intermediate (Java,
C#), and low-system (C, C++, Rust, Go) according to their abstraction level. Overall, differences
across groups are small. On NL and code tasks, the impact of language groups is largely model-
dependent. However, on math tasks, most high-scripting languages consistently underperform rel-
ative to intermediate and low-system ones (e.g. top Figure [7] Figures @8H5Ta). We hypothesize
that richer structural detail in lower-level languages provides beneficial signals for mathematical
reasoning.
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Figure 7: Performance (with stderr bars) of Qwen3-1.7B. Top: grouped by abstraction level (low-
system, intermediate, high-scripting). Low-system and intermediate languages outperform on math.
Bottom: individual programming languages. Python aligns best with NL, Rust leads on math.

For code generation, finetuning on any single language improves over zeroshot but lags behind full
code finetuning, which suggests the benefit of multi-language diversity for code generation. At the
individual language level (e.g. bottom Figure[7] Figures[@9H51b)), across models, Python often leads
on NL tasks, probably due to its surface form being closer to natural language. Aligning with the
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group-level results, lower-level languages such as Java and Rust often rank among the top for math.
For code tasks that span multiple languages, results are more mixed, with no clear leaders, and
performance gaps remain relatively small.

5 CONCLUSION

In this work, we aim to understand what aspects of code enhance reasoning in LLMs and which
aspects matter most. Through 3,331 finetuning experiments spanning five model families, eight
scales, ten programming languages, and a suite of systematic perturbations, we arrive at four central
conclusions. First, structural properties of code are critical: disrupting them leads to consistent per-
formance drops, especially on math and code tasks. Second, appropriate abstractions and efficient
encodings can be just as effective as raw code. Moreover, models remain surprisingly robust even to
corrupted or low-interpretability code, exploiting statistical regularities that persist despite surface
distortions. Finally, lower-level programming languages provide more benefits for math tasks. To-
gether, we want to provide a more precise account of how code supports reasoning and point toward
practical design principles for constructing effective training data beyond executable programs.

6 LIMITATIONS

Our study focuses on small- to mid-scale base models due to resource constraints. Future work
could extend our framework to larger models. Our perturbations, although diverse, may still not
cover enough and leave out other factors like code complexity and data diversity. Finally, although
we evaluate across a broad suite of reasoning tasks, our benchmarks still capture only part of the
reasoning spectrum, and future work could extend the analysis to additional domains.

7 REPRODUCIBILITY STATEMENT

We provide extensive details throughout the paper and supplementary materials. Section [3.1] de-
scribes the construction and processing of both the code and natural language datasets. Section[A.5]
outlines model training and implementation details. Appendix includes all prompts used for
data generation, perturbations, and LLM-as-Judge evaluation.
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A APPENDIX

A.1 EXTENDED DETAILS OF PERTURBATION DATA

See Table[2
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Table 2: Extended examples of the perturbation dataset and token statistics for each perturbation

category.
Perturbation Original Excerpt Perturbed Excerpt Total Tokens Avg Tokens per Instruction
whitespace removal for char in input_string: forcharininput_string: 78,553,430 654.61
variable renaming for char in input_string: for var_4 in var_l: 87,619,500 730.16
keyword replaced with non-sense if ¢ not in vowels: garply c not in vowels: 87,123,587 726.03
keyword replaced with non-English if ¢ not in vowels: pére c not in vowels: 88,078,906 733.99
comment removal # Read input - 80,238,050 668.65
local comment swapping # Read input # Process and print the 85,324,436 711.04
result
global comment swapping # Process and print the // Queue for processing 85,329,862 711.08
result nodes
flowchart (Markdown) if char not in vowels: [Read char] — {Vowel?} 67,553,461 562.95
— [Append .’ + lower]
step-by-step explanation result.append(’ .’ + Append ’.’ before 84,250,378 702.09
char.lower()) consonants ...
pseudocode for char in input_string: FOR EACH character IF 73,722,933 614.36
not vowel THEN
imaginary language result.append(’.’ + gloff add '.” @ 81,011,032 675.09
char.lower ()) lower (chr)
comment enhancement # Process the result # Removes vowels and 119,399,621 994.99
prefixes consonants ...
comment obfuscation # Read input # WARNING: Code may 111,771,640 931.43

summon aliens ...

A.2 VERIFICATION OF QUALITY OF SYNTHETIC CODE DATA

See Table[3

Table 3: Syntax and compilation check results across all ten programming languages. The majority
of samples successfully compiled or executed, with a mean pass rate of §2.59%

Language Total % Passed
C 11,998 81.49
PHP 12,009 94.81
JavaScript 11,996 91.57
Python 11,993 99.25
C++ 11,997 83.20
TypeScript 12,001 64.08
Rust 11,995 66.71
C# 11,996 81.06
Go 12,012 77.77
Java 12,003 88.94

A.3 EVALUATION SUITE DETAILS

See Table[d]

A.4 CATEGORIZATION OF PERTURBATIONS FOR RQ2 ANALYSIS

See Table[3
A.5 IMPLEMENTATION DETAILS

We train all models under identical hyperparameter settings to ensure a fair comparison across model
sizes and data configurations. All experiments are conducted using full finetuning in BF 16 precision
with a maximum sequence length of 2048 tokens. We run all experiments on 4xA100 80G node.
Models are trained for 2 epochs with a cumulative batch size of 64 for most experiments, except for
language-specific settings, where the batch size is reduced to 32. The learning rate is fixed at le—5
and follows a cosine decay schedule with a warmup ratio of 0.1. For memory-efficient parallelism
and distributed training, we use DeepSpeed ZeRO Stage 3 (Ren et al.l[2021). All models are trained
using the LLaMA-Factory framework (Zheng et al.,|2024). All other parameters and configurations
follow the default setting unless otherwise specified.
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Table 4: Evaluation suite spanning natural language and general knowledge, math, and code tasks.

Task Type Topic Benchmarks Metric
Commonsense PIQA (Bisk et al.|[2019)
Natural Language ARC-Easy (Clark et al.|[2018)
. ARC-Challenge (Clark et al.||2018) Accuracy
ﬁ Geliegal Science / Textbook 0 BookQA (Mihaylov et al.| 018)
nowledge MMLU (non-math) (Hendrycks et al.|[2021)
Logic-Heavy LogiQA (Liu et al.|[2020)
Instruction Following  IFEval (Zhou et al.|[2023) Prompt-level Ac-
curacy
GSMBK (Cobbe et al.||2021)
- HRMSK (Ko et al.| 2023) Exact Match
Math
B Arithmetic (Brown et al.}[2020) Accurac
MMLU (math) (Hendrycks et al.| 2021) y
Code Understanding ~ CodeMMLU (Manh et al.|[2024) Accuracy
Code
Code Generation HumanEvalX (Zheng et al.|[2023) LLM-as-Judge

Table 5: Categorization of perturbations across four analysis axes: structural vs. semantic (S/S)
perturbations, explicitness of code structure (ECS), relative information density (RID), and human
interpretability (HI).

Perturbation S/S Perturbations ECS RID HI
Whitespace removal Broken syntax ~ Moderate-reduced ~Medium
Pseudocode Algorithmic Strong-reduced High
Imaginary Structural Broken syntax ~ Moderate-reduced  Low
Step-by-step NL procedure =~ Moderate-reduced High
Flowchart Graphical Strong-reduced High
Comment removal Runnable Moderate-reduced  Medium
Variable renaming Runnable Increased Medium
Keyword repl. (nonsense) Broken syntax  Increased Low
Keyword repl. (non-Eng.) Semantic Broken syntax  Increased Low
Comment swap (global) Runnable Near-baseline Low
Comment swap (local) Runnable Near-baseline Low
Comment enhancement Runnable Increased High
Comment obfuscation Runnable Increased Low

A.6 PROMPTS
Standard generation prompt We provide the standard prompt to generate code for a given in-

struction in a specific language in Figure[§] , where the instruction can be instantiated using one of
the templates in Table[6]

Comment enhancement prompt The prompt to enhance the quality and readability of a given
code snippet by adding detailed documentation is shown in Figure 0]

Comment obfuscation prompt The prompt used to generate obfuscated versions of code from a
given instruction is presented in Figure

Pseudo generation prompt We illustrate the prompt designed to produce pseudocode for a given
instruction in Figure[T1]

Flowchart generation prompt The prompt for generating a flowchart-style representation of an
instruction is provided in Figure
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Table 6: Language specification templates with placeholders that can be instantiated with different
programming languages.

Generate the code in {language}. Provide code in {language}. Write the code in {language}.
Build the code using {language}. Create the code using {language}. Draft the code in {language}.
Produce a code snippet in {language}. Develop the code using {language}.  Generate a solution in {language}.
Create a script in {language}. Implement the code in {language}. Design the code in {language}.
Construct the code using {language}. Format the code in {language}. Write a program in {language}.
Prepare a code snippet in {language}. Write a function in {language}. Deliver the code in {language}.

Code Instruction Data Generation Prompt

You are tasked with generating code based on a specified programming language and instruction. Your goal is to generate code that follows
the syntax and semantics of the specified language. If the instruction is invalid (e.g., contradicts the language’s rules or references functions or
constructs from a different language), you must strictly respond with “invalid.”

Guidelines: - Valid Code: - The generated code must be syntactically and semantically correct according to the specified language. - The code should
follow standard conventions and best practices for the given language. - Do net provide any explanation for valid code — only output the code itself.

- Invalid Instruction: - If the instruction references constructs, functions, or syntax not supported by the specified language, respond with “’invalid™‘.
- Do not attempt to correct the invalid instruction — just respond with “’invalid”‘. - Do not provide a reason or explanation for why the instruction is
invalid.

Examples:

Example 1:

Instruction: “Write a function to convert a list to a set.”

Language: Python

Response:

def list_to_set (input_list):
return set (input_list)

Example 2:

Instruction: “Create a class with a method that prints "Hello’ using console.log().”
Language: Python

Response: invalid

Example 3:

Instruction: “List all files, including hidden ones, in the current directory.”
Language: Shell

Response: Is -a

Example 4:

Instruction: “Define a function using "def’ that returns the length of a string.”
Language: JavaScript

Response: invalid

Instruction:
If the instruction is valid, output the code directly (no explanations).
If the instruction is invalid, respond with "invalid” (no explanation).

Input: Instruction: {instruction}
Language: {language}

Output:
{{response} }

o J

Figure 8: Code instruction data generation prompt. The task is to generate valid code or respond
with “invalid” for unsupported instructions.

Step-by-step implementation guide generation prompt The prompt used to create a sequential
step-by-step implementation guide for an instruction is shown in Figure [[3]

Imaginary language code generation We paragraph the prompt for generating code in an imagi-
nary programming language in Figure [T4]

LLM-as-Judge Evaluation We use the prompt shown in Figure [T3]to generate instance-specific

rubrics for LLM-as-judge evaluation on the code generation task. The prompt to evaluate model
response is shown in the Figure[T6]

A.7 EXTENDED RESULTS

A.7.1 TASK PERFORMANCE SHOWCASING CODE DATA IMPACT IN FINETUNING (RQ1)

Qwen3 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure
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Comment Enhancement Prompt

You are tasked with enhancing the response to the given code instruction by adding ingful ts and d i The goal is to
improve the code’s readability, maintainability, and clarity across any programming language, without altering its original logic or structure.

Your modifications must include:

1. Documentation Comments: - Add clear, technically accurate, and concise documentation for every function, method, class, and major code block.
- Describe the purpose, all parameters (with correct types and usage), return values, and any assumptions or notes relevant to correct usage. - Use the
standard documentation format appropriate for the programming language (e.g., Python docstrings, JavaDoc for Java, Doxygen for C/C++).

2. Inline Comments: - Insert informative and contextually helpful inline comments near complex, unintuitive, or important operations. - Focus on
explaining logic, control flow, edge-case handling, design decisions, or dependencies. - Avoid redundant, obvious, or overly literal comments (e.g., avoid
"i=0//setito0”).

Guidelines:

- Do not change the logic, structure, or behavior of the original code. - Do not introduce new functionality, abstractions, or formatting changes. - Keep
comments strictly technical, relevant, and useful—avoid verbosity or informal tone. - Do not include any meta-comments or explanatory notes about what
was changed (e.g., no "This version adds comments™ or similar). - Apply these modifications only to the code portion of the original response. Leave any
non-code parts completely unmodified. - Ensure all comments follow the style conventions of the language in use.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response }

Output: {{updated response} }

- J

Figure 9: Comment enhancement prompt. The task is to improve code clarity through meaningful
comments while preserving original functionality.

Comment Obfuscation Prompt

You are tasked with modifying the response to the given code instruction in a way that significantly degrades its quality and clarity. Your goal is to
make the code as confusing, unhelpful, and misleading as possible through the use of deliberately bad, distracting, and nonsensical comments—without
altering the actual logic or functionality of the code.

Your modifications must include:

1. Severely Misleading or Irrelevant Documentation Comments: - Add documentation to every function, class, and major code block that includes
wildly inaccurate descriptions, unrelated facts, inside jokes, cryptic advice, or philosophical ramblings. - Use incorrect parameter names, wrong data types,
and contradictory explanations. - Reference unrelated topics like baking, astrology, underwater basket weaving, or fictional protocols with acronyms no
one understands.

2. Chaotic Inline Comments: - Insert inline comments that blatantly contradict the actual functionality of the code. - Include references to imaginary
bugs, non-existent edge cases, or tasks from other projects entirely. - Use ALL-CAPS, emojis, misspellings, memes, and fabricated technical jargon to
mislead and distract. - Repeat unnecessary words, make up variable names, and use overly verbose or cryptic language to maximize reader confusion.
Guidelines:

- Do not modify the actual logic, syntax, or structure of the code — only the comments must be altered. - All comments must remain syntactically
valid for the language (e.g., use # for Python, // for JavaScript, etc.) so the code can still execute normally. - Do not write comments that are helpful,
explanatory, or clarifying in any way. Remove any useful comments that were originally present. - Do not include any reflective or meta statements about
the task (e.g., no "this version degrades the comments”). - Only modify the code portion of the original response—Ileave non-code text unchanged.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response }

Output: {{updated response} }

N J

Figure 10: Comment obfuscation prompt. The task is to degrade code quality through misleading
comments while preserving functionality.

Llama-3.2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T8]

Gemma-3 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T9]

OLMo-2 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure[20]

SmolLM2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 21]

Code data mixture ratio in finetuning data ablations We show results for mixing different ratios
of code data in finetuing for Qwen3-0.6B-Base and Qwen3-1.7B-Base in Figure[22a]and Figure 22b]
respectively.
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Pseudocode Conversion Prompt

|

You are tasked with converting a given code response into pseudocode that mirrors the structure and semantics of the original code, while
preserving the idiomatic style of the original programming language.

Your modifications must include:

1. Pseudocode Style: - Replace exact syntax with I pecific pseudocode constructs (e.g., use IF ... THEN ... ENDIF for condi-
tionals, FOR EACH or WHILE for loops). - Remove implementation details such as variable declarations with types, precise syntax, or specific library
calls—replace them with clear, high-level descriptions.

2. Structure Preservation: - Maintain the overall control flow and indentation of the original code. - Use meaningful, readable names that reflect
their purpose in the code. - Ensure each function, class, or logical block is represented clearly in pseudocode format.

3. Fidelity to Language Idioms: - Adapt the pseudocode to reflect the spirit and conventions of the original language (e.g., Python’s indentation style,
Java’s block structure, C++-like modularity).

Guidelines:

- Do not alter the logic, structure, or order of operations. - Do not include actual code syntax (e.g., semicolons, colons, type annotations, brackets). -
Do not add ex or headings outside the code block. - Output only the converted pseudocode. - Preserve formatting and indentation
faithfully.

Input: Instruction: {instruction} Original Response: {response }

Output:

{{pseudocode}}

N /

Figure 11: Pseudocode conversion prompt. The task is to translate real code into structured pseu-
docode while preserving logic and idiomatic style.

Flowchart Generation Prompt

You are tasked with generating a flow diagram in Markdown format that visualizes the control flow of the given code response. Your output must
be a Mermaid flowchart embedded in a single fenced code block.

Your diagram must:

1. Translate code logic into control flow: - Include major steps, function calls, loops, branches, and return points. - Use concise, descriptive node labels
that accurately reflect the code behavior.

2. Follow valid Mermaid syntax: - Begin with Start and end with End. - Use [ ] for actions/processes. - Use { } for decision/branch points. - Use
——> to connect nodes. - Wrap everything in triple backticks with mermaid specified.

3. Respect 1 [ - Match naming and idioms to the language used in the original code. - Do not reinterpret or alter the code logic.
Guidelines:

- Do not change the structure or logic of the original response. - Do not generate new code, only a flowchart of the existing response. - Keep node
labels technical and minimal. - Do not include explanations, comments, or narrative outside the flowchart. - Follow the same formatting and structural
conventions as the original prompt.

Input: Instruction: {instruction} Original Response: {response }

Output:

‘Y '‘mermaid

{{flowchart}}

N /

Figure 12: Flowchart generation prompt. The task is to convert real code into a Mermaid flow
diagram without changing logic or structure.

A.7.2 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY STRUCTURE VS
SEMANTICS (RQ2)

Qwen3 model family results (structure vs semantics perturbations) See performance of aggre-
gated task performance under structure vs semantics perturbations in Figure 23]

Llama-3.2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure 24]

Gemma-3 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure 23]

OIMo-2 model family results (structure vs semantics perturbations) See performance of ag-
gregated task performance under structure vs semantics perturbations in Figure 26

SmolLLM2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

18
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Step-by-Step Generation Prompt

You are tasked with converting a given code response into a step-by-step implementation guide that describes how to manually implement the
code in clear, concise, and technically accurate language.

Your implementation guide must:

1. Preserve Original Logic: - Follow the same structure, logic, and sequence as the original code. - Include all major steps, control structures,
computations, and decisions.

2. Describe, Don’t Translate: - Do not include code or pseudocode. - Write in declarative, instructional sentences that explain what to do and how to do
it. - Use neutral, language-agnostic terminology (e.g., “Define a function named...”, “Check if...”, “Return the result...”).

3. Be Clear and Concise: - Number each step in the order it occurs. - Use precise and unambiguous language. - Each step should focus on a single
coherent action.

Guidelines:

- Do not add extra les, or i - Do not change the original logic or execution order. - Do not output anything other
than the numbered steps. - Oulpul the gulde asa plamtext numbered list only—no code blocks, no explanations outside the list.

Input: Instruction: {instruction} Original Response: {response }

Output:

1. {{Step one}}
2. {{Step two}}
3. {{Step three}}

_ Y,

Figure 13: Step-by-step implementation guide prompt. The task is to describe how to implement
the code in a precise, ordered, and language-agnostic way.

Imaginary Language Translation Prompt

You are tasked with converting a given code resp into an i inary progr i that mimics the syntax and semantics of the
original real-world language while appearing fictional and made-up.

Your modifications must include:

1. Imaginary Language Design: - Rename keywords, function names, types, and operators using plausible yet fictional terms. - Preserve the structure,
indentation, and logical flow of the original code. - Ensure the resulting code remains readable and clearly maps to the original logic.

2. Consistency and Fidelity: - Maintain 1-to-1 correspondence between the original code constructs and their fictional equivalents. - The imaginary
language should resemble the style and design patterns of the original language (e.g., Pythonic indentation, Java-style braces and semicolons, C++ class
structure, etc.).

3. Creativity within Constraint: - Make the language feel internally consistent and syntactically plausible. - Avoid random noise—each fictional token
should appear intentional and reusable.

Guidelines:

- Do not change the underlymg logic of the original code. - Do not translate comments or docstrings—leave them unchanged. - Do not add
exy or headings outside the code block. - Output only the converted code. - Ensure formatting matches the original exactly (e.g.,
spacmg, newlines).

Input: Instruction: {instruction} Original Response: {response }

Output:

T

imaginary
{{code_in_imaginary_language}}

T

\_ J

Figure 14: Imaginary language translation prompt. The task is to render real code in a fictional but
consistent language without changing its logic.

A.7.3 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY EXPLICITNESS OF
CODE STRUCTURE (RQ2)

Qwen3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure 28]

Llama-3.2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-
ure 291

Gemma-3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure[30]

OIMo-2 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure[31]

19



Under review as a conference paper at ICLR 2026

Rubric Generation Prompt

You are tasked with generating an instance-specific evaluation rubric based on a given coding prompt, canonical solution, and test
case(s) to evaluate the model-generated response.

Guidelines:

- The rubric must be example-specific: every score level must directly reference the details of the given prompt, canonical solution,
and test case(s).

- Use a fixed 1-10 scale (1 = lowest quality attempt, 10 = fully correct).

- Structure the rubric so that:

- Scores 1-3 describe model responses that are irrelevant, nonsensical, or do not implement the required functionality.

- Scores 4-7 describe model responses that attempt the task but are incomplete, flawed, or only partially correct on test case(s).

- Scores 8-10 describe model responses that are mostly or fully correct, aligning with the canonical solution and passing most or
all test case(s).

- Each score level (1-10) must have a clear, measurable description unique to this problem.

- Output only the rubric.

Input:

Code Prompt:
{code_prompt }
Canonical Solution:
{canonical_solution}
Test Case(s):

{test_case}

Output:
{{rubric}}

- _/

Figure 15: LLM-as-judge prompt for generating an instance-specific rubric to evaluate model-
generated code responses.

SmolLM2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-

ure

A.7.4 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY RELATIVE
INFORMATION DENSITY (RQ2)

Qwen3 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure [33]

Llama-3.2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure

Gemma-3 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [35]

OIMo-2 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure 36

SmolLLM2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure

A.7.5 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY HUMAN
INTERPRETABILITY (RQ2)

Qwen3 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure

20
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LILM-as-Judge Evaluation Prompt

You are tasked with evaluating a model-generated response to a coding prompt using the provided rubric.

You are given:

1. The coding prompt.

2. The rubric (instance-specific, with 1-10 levels).
3. The model response.

Instructions:

- Carefully read the rubric.

- Compare the model response against the rubric criteria.

- Assign the most appropriate score (1-10).

- Provide a concise justification inside jreasoningy/reasoning, explicitly referencing how the model response aligns or fails to
align with specific rubric levels.

- Provide only the numeric score inside jscore;j/score;.

- Do not include any text outside the required tags.

Input:

Coding Prompt:
{code_prompt }
Rubric:

{rubric}

Model Response:

{model_response}

Output:

<reasoning>{{concise justification}}</reasoning>
<score>{{integer from 1 to 10}}</score>

- J

Figure 16: LLM-as-judge prompt for rubric-based evaluation of model-generated code responses.

Llama-3.2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure

Gemma-3 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure

OIMo-2 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure

SmolLM2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure

A.7.6 TASK PERFORMANCE FOR ALL INDIVIDUAL PERTURBATIONS (RQ?2)

Qwen3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 3]

Llama-3.2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure

Gemma-3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 43]

OIMo-2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 46

SmolLLM2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure

21
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Figure 17: Task performance of Qwen-3 family under zero-shot, full code finetuning (code-ft), full
natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

Qwen3 model family results See performance of grouped performance and individual program-
ming languages in Figure 8 and Figure [d9] respectively.

1184
1195 SmolLM2 model family results See performance of grouped performance and individual pro-
: :23 gramming languages in Figure[51]
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Figure 18: Task performance of Llama-3.2 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.
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Figure 19: Task performance of Gemma-3 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.7.8 LLM-AS-JUDGE RESULTS

We report the results across multiple judge models in Table [7}
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1278
1279 . . . . .
1260 Table 7: Cross-judge evaluation of Qwen3-4B base variant on Python code generation task using
five LLM judges — all under identical evaluation settings. Model rankings remain consistent across
1eet judges, with only moderate score variability (std 0.63-0.99), demonstrating that LLM-as-judge eval-
1282 yations are stable and reliable across different judging models.
1283
1284 Target Model / Perturbation claude-3-haiku claude-haiku-4.5 gpt-40-mini gpt-5-mini llama3-90b Mean Std
zeroshot 841 £2.42 734 +299 7.09+327 684+300 8.17£259 757 0.69
1285 swap_comments_global 9.01 + 1.41 776£243  791+£255 6854294 913+£142 813 095
1286 swap_comments_local 9.24 + 1.24 7.94 +2.69 8.54+237 7264306 9.15+158 843 0.84
1287 replace_keywords_nonsense 9.10 £ 1.16 7.88 +2.46 8.74+231 7.16+3.04 920+£139 842 087
replace_keywords_nonEn 9.21 + 1.16 7.68 +2.70 8734222 735+289 925+120 844 0.88
1288 flowchart 8.88 + 1.67 7.44 +2.86 8.07+2.58 7324301 9.13+150 817 0.82
1289 imaginary 8.94 + 1.68 7.67 +2.87 8.06+271 7.17+294 9.00+18 817 0.80
pseudocode 8.89 + 1.62 715+2.72 734+£300 7224290 9.02+148 792 094
1290 step_by_step 8.66 + 1.92 7.50 + 2.83 776 +275 7574290 881+190 806 0.63
1291 comment obfuscation 8.79 + 2.03 7.41 +2.80 7.86+2.88 7.02+3.07 893+£178 8.00 084
comment_enhancement 9.22 +1.35 777 +2.74 836+265 793+248 9.09+1.71 847 0.66
1292 remove_comments 9.09 + 1.61 7.86 +2.54 827+254 723+3.05 9.19+142 832 0383
1293 remove_whitespace 9.10 + 1.43 7.87 +2.58 8.69+228 7.77+285 933+133 855 071
replace_variables 9.20 + 0.95 747 +2.74 8.09+2.66 692+3.09 9.07+153 815 099
1294 code-ft 9.14 + 1.46 7.98 +2.32 8.65+2.36 7.61+£298 9.17+141 851 0.70
1295 mixed-ft 8.68 + 1.94 7.46 +2.94 7.94+279 7314+3.08 875+210 803 067
nl-ft 8.19 +2.43 6.58 +2.99 675+3.11 660+3.15 7.84+263 7.19 0.76
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Figure 22: Task performance of Qwen3-0.6, 1.7B-Base when mixing different ratio of code data dur-
ing finetuning. In general higher code percentages improves performance, with math tasks showing

large variation.
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Figure 23: Task performance under perturbations aggregated by structure vs semantics across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 24: Task performance under perturbations aggregated by structure vs semantics across
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Figure 25: Task performance under perturbations aggregated by structure vs semantics across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 26: Additional performance of OLMo-2-0425-1B aggregated by structure vs semantics
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Figure 27: Task performance under perturbations aggregated by structure vs semantics across
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Figure 29: Task performance under perturbations aggregated by explicitness of code structure across

:2?2 Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 30: Task performance under perturbations aggregated by explicitness of code structure across
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Figure 33: Task performance under perturbations aggregated by relative information density across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 34: Task performance under perturbations aggregated by relative information density across
Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 35: Task performance under perturbations aggregated by relative information density across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 36: Additional performance of OLMo-2-0425-1B aggregated by relative information density
across tasks.
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Figure 37: Task performance under perturbations aggregated by relative information density across
SmolLM2 models (360M (top), 1.7B (bottom)).
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Figure 38: Task performance under perturbations aggregated by human interpretability across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).
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Figure 39: Task performance under perturbations aggregated by human interpretability across

Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 40: Task performance under perturbations aggregated by human interpretability across
Gemma-3 models (1B (top), 4B (bottom)).
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Figure 41: Additional performance of OLMo-2-0425-1B aggregated by human interpretability
across tasks.
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Figure 42: Task performance under perturbations aggregated by human interpretability across
SmolLM?2 models (360M (top), 1.7B (bottom)).
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Figure 43: All perturbations across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

34

6,040
. 5.954
e 5.951
. 5.887,
- 5.774
5763
5732
5329
5234
5.043
5.000
5.0 512 514 516 518 610 612 614
Math
i
H
;
0.217
i 0.214 :
S 0.210 |
5 0.205 '
5 0.201 i
0.188 |
0.186 :
0.168 :
0.2 03 0.4 0.5 0.6 0.7
Code Generation
7634
©7.549
7532
©17.500
7407
7350
7278
6.922
6.89
o 6.891
6.622
6.6 6.8 7.0 72 7.4 7.6 7.8
Math
0771
0.770
0.766
0.764
0.763
0.761
0.759
0.745
0.690
o 0.682
Dv‘GEI D.‘7U D.‘72 0.‘74 0.‘76 D.‘7E 0.‘80

Code Generation




Under review as a conference paper at ICLR 2026

---- unperturbed-code

NL & General Math
flowchart 0.384 step by step 0.209
replace variables 0.382 flowchart 0.207
imaginary 0380 comment obfuscation 0.204
remove comments 0.380 replace variables 0.202
replace keywords nonsense - 0380 replace keywords nonen 0.202
swap comments local 0377 imaginary 0.202
replace comments global 0:376 remove comments 0.202
pseudocode 0.376 remove whitespace 0.201
replace keywords nonen 0374 replace comments global 0.201
comment enhancement 0.372 pseudocode 0.198
remove whitespace 0.370 replace keywords nonsense 0.196
comment obfuscation 0.365 comment enhancement 0.194
step by step{i 0361 swap comments local{ +0.189
0.36 0.1’37 0.‘38 0. ‘39 0.‘40 0.iB 0. iQ 0}20 O.‘Zl 0.‘22

Code Understanding Code Generation

comment obfuscation 0.27p swap comments local 4 5.110
replace varlalbIeS* 3 85771 replace variables ~ i 5.017
swap comments local { i 273 R ) -
! 0.273 imaginary ;1.990325

remove whitespace §
remove comments

ot cormmants o —— | 071
replace comments global 0.271) replace keywords nonen ~ 4.678
- — 4.613

5 10.270 remove whitespace

replace keywords nonen -
replace keywords nonsense 1 £10.270 replace comments global 4.089
remove comments A ©0.264 pseudocode =3-‘370
pseudocode . 0.250
step by step 1 +0.248 step by step - 3.619
imaginary 1 5 0.247, flowchart ~ - 3.491
flowchart{ ¢+ 0.159 replace keywords nonsense{ =~ 3.285
016 018 020 022 024 026 028 030 35 40 a5 50 55
----- unperturbed-code
NL & General Math
remove comments © 1046l swap comments local ~ 0197
imaginary 0.460 flowchart ~ 0180
replace keywords nonen 0458 replace keywords nonsense 0177
remove whitespace 0457 replace keywords nonen Fo0.163
replace variables 0:454 replace variables ~+0.160
replace comments global 0.454 step by step 0.156
replace keywords nonsense 0453 comment obfuscation 0.155
swap comments local 0.453 remove comments 152
pseudocode 0.452 replace comments global 0,151
flowchart S 0452 imaginary 0.3147
comment enhancement 0.448 pseudocode 0.132
comment obfuscation 0.443 remove whitespace{ +0.131
0435 comment enhancement 0.128

step by step
0.14 0.16 0.18 0.20 0.22

0.43 0.44 0.45 0.46 0.47 0.12

Code Understanding Code Generation

replace keywords nonsense +0.407 imaginary T 6.944
replace keywords nonen . (?'4(?5’ swap comments local i 6.868
remove comments d 4 replace variables ~16.676
remove whitespace - 0.400
flowchart 0.392 replace keywords nonen o 6521
comment enhancement 0.391 remove comments ~— 6.467
replace variables 0.390 remove whitespace o 6411
swap comments local 0.389 replace keywords nonsense . 5.837
replace comments global 0.382 flowchart - 5.589
comment obfuscation
imaginary replace comments global 5.257
step by stepy -+ 0.295 step by step - 5133
pseudocode 4.477

pseudocode 0.291

030 032 034 036 038 040 042 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Figure 44: All perturbations across Llama-3.2 models (1B (top), 3B (bottom)).
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Figure 45: All perturbations across Gemma-3 models (1B (top), 4B (bottom)).
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Figure 46: OLMo-2-0425-1B with all perturbations.
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Figure 47: All perturbations across SmolLM?2 models (360M (top), 1.7B (bottom)).
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Figure 48: Grouped performance of Qwen-3 family under low-system, intermediate, and high-
scripting programming languages.
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Figure 49: All programming language specific performance of Qwen-3 family.
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Figure 50: Performance for Llama-3.2-1B. (a) Programming language groups, (b) individual lan-

guages.
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