

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ON CODE-INDUCED REASONING IN LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Code data has been shown to enhance the reasoning capabilities of large language models (LLMs), but it remains unclear which aspects of code are most responsible. We investigate this question with a systematic, data-centric framework. We construct parallel instruction datasets in ten programming languages and apply controlled perturbations that selectively disrupt structural or semantic properties of code. We then finetune LLMs from five model families and eight scales on each variant and evaluate their performance on natural language, math, and code tasks. Across 3,331 experiments, our results show that LLMs are more vulnerable to structural perturbations than semantic ones, particularly on math and code tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective as code, while encoding the same information with fewer tokens without adhering to original syntax can often retain or even improve performance. Remarkably, even corrupted code with misleading signals remains competitive when surface-level regularities persist. Finally, syntactic styles also shape task-specific gains with Python favoring natural language reasoning and lower-level languages such as Java and Rust favoring math. Through our systematic framework, we aim to provide insight into how different properties of code influence reasoning and inform the design of training data for enhancing LLM reasoning capabilities.

1 INTRODUCTION

There has been substantial interest in the last several years in engineering language models that can tackle challenging reasoning tasks (Huang & Chang, 2023). Language reasoning tasks, such as math word problems or logic puzzles, tend to require multi-step, structured “thinking” in order to produce the correct answer. Recent work has found that training the language model on code, either during pre-training (Fu & Khot, 2022; Ma et al., 2023b) or during post-training (Zhang et al., 2024b), can improve its skill at reasoning tasks, even ones that are unrelated to programming. These prior works have hypothesized that the properties of code data, such as its logical consistency, compositional structure, and reduced ambiguity compared to natural language, provide effective signals that benefit reasoning. Despite the broad effectiveness of code data in training, we still lack a systematic understanding of which aspects of code drive these improvements: is it the its syntactic regularity, structural abstractions, or linguistic styles?

In this work, we aim to provide such an account by systematically investigating which aspects of code serve as effective training signals. To this end, we construct parallel instruction datasets in both natural language and code, and further expand the code dataset into language-specific variants by generating responses in ten widely used programming languages. This design allows us to examine how structural differences across languages affect downstream reasoning. In addition, we introduce controlled perturbations to the code data to isolate contributing factors: (1) *rule-based* transformations such as whitespace removal or comment shuffling, and (2) *generative* transformations where GPT-4o-mini rewrites or reformats the code (e.g., with augmented comments, pseudocode, or flowcharts). We then fine-tune language models on each dataset variant, and evaluate them across natural language and general knowledge, math, as well as code understanding and generation tasks. Our contributions are:

- We introduce a systematic framework to disentangle what aspects of code data improve reasoning, combining parallel instruction data construction, controlled perturbations, and large-scale evaluation across five model families and eight scales.
- We design a comprehensive and controlled suite of perturbations spanning rule-based edits and generative rewritings.

054 • We provide new insights into the role of code in reasoning to inspire guidance on leveraging
 055 its structural and linguistic properties in future training data design.
 056

057 **2 RELATED WORK**

059 **Code data for LLM reasoning** Recent work has increasingly demonstrated that incorporating
 060 code data can substantially improve the reasoning abilities of LLMs. Prior studies show that adding
 061 code during pretraining or instruction tuning consistently improves model performance across rea-
 062 soning tasks, domains, model scales and architectures (Ma et al., 2023a; Zhang et al., 2024a; Yang
 063 et al., 2025b; Aryabumi et al., 2024). Several works further explore the synergy between code and
 064 reasoning and highlight how code’s structured and verifiable properties support logical decomposi-
 065 tion and intermediate step generation (Bi et al.; Yang et al., 2024). This effect has been observed
 066 in multilingual contexts as well, where code-augmented training improves structured reasoning in
 067 under-resourced languages (Li et al., 2024). Complementary research focuses on code’s impact
 068 for alignment and reward modeling, where pretraining with code-preference pairs or code-based
 069 intermediate steps can improve model calibration for reasoning-intensive tasks (Yu et al., 2024).
 070 The closest line of research to our work explores stress-testing LLMs with structural and semantic
 071 code perturbations (Lam et al., 2025), which shows that small corruptions can significantly reduce
 072 reasoning performance.

073 **Data impact on LLM performance** The performance of LLMs are tied to the vast amounts of
 074 training data, but the quality, composition, and characteristics of this data greatly shape their abili-
 075 ties (Wang et al., 2024; Li et al., 2023; Lee et al., 2022). For example, extensive analyses by Longpre
 076 et al. (2024) have shown that pretraining data curation decisions for dataset age, composition, and
 077 content filtering have systematic impact on downstream performance, and that these effects per-
 078 sist even after fine-tuning steps. Zhang et al. (2024c) demonstrate that poisoning as little as 0.1%
 079 (and even 0.001%) can produce persistent behavioral changes that survive instruction tuning and
 080 alignment. In addition, Havrilla & Iyer (2024) showed that LLMs are sensitive to global, accumula-
 081 tive errors in chain-of-thought-structured training data, and that it is critical to filter out documents
 082 containing large amounts of dynamic, global noise during both pretraining and fine-tuning.

083 **3 METHODOLOGY**

084 We design a controlled experimental framework to understand what aspects of code improve rea-
 085 soning in language models. Our methodology consists of three stages: constructing parallel natural
 086 language and code instruction datasets (Section 3.1); applying systematic modifications to code in-
 087 struction data (Section 3.2); and fine-tuning various language models on each dataset variant and
 088 then conducting evaluation (Section 3.3). An overview of this framework is shown in Figure 1.

089 **3.1 INSTRUCTION DATA GENERATION**

090 We construct two parallel instruction datasets: one in natural language and the other in code,
 091 each containing 120,000 instruction-response pairs. We collect instructions from publicly available
 092 datasets, carefully process and filter them through deduplication and language-agnostic filtering, and
 093 augment the code data in a controlled way. This construction enables a more controlled comparison
 094 of natural- and code-based instruction following under a unified training framework.

095 **Code instructions** We aggregate code instructions from Codeforces-CoT (Penedo et al., 2025),
 096 Code-Instruction-122K (TokenBender, 2024), Evol-Instruct-Code-80k-v1 (nickrosh, 2024), Code-
 097 Instruction (red1xe, 2023), Code-Instruct-Sets (AtlasUnified, 2023), and Code-Instruct-Alpaca-
 098 Vicuna-WizardLM (rombodawg, 2024). We aim to construct instruction data that is high-quality,
 099 diverse, and language-agnostic.

100 To ensure generality and eliminate redundancy, we first remove all exact-match duplicates across
 101 the datasets. We then filter out instructions that are explicitly programming-language-specific (e.g.,
 102 “Translate this code from Python to java”) or whose solutions are inherently tied to particular do-
 103 mains, such as web development or databases (e.g., “webpage”, “website”, “SQL”, “HTML”).

Figure 1: We construct parallel code and natural language instruction datasets, apply targeted modifications (rule-based and generative-based perturbations, single programming language ablations), and fine-tune a separate LLM on each modified dataset. We then evaluate the resulting models across general natural language, code, and math reasoning tasks.

For each instruction, we prompt GPT-4o-mini* to generate answers in ten widely used programming languages: Java, JavaScript, PHP, Python, C#, TypeScript, C, C++, Go, and Rust. To create these variants, we design 20 language specification templates that explicitly request a solution in a given programming language (Table 6). For every instruction, we randomly select a template, instantiate it with one of the target languages, and combine it with the general generation instructions to form a complete prompt (Figure 8). From these generations, we sample 120K instruction–response pairs with valid outputs, evenly distributed across all ten languages.

To assess the quality of our synthesized code instruction–response pairs, we perform a comprehensive syntax and compilation check across all ten programming languages. For each instance, we extract the generated code block and apply standard syntax or compilation tools (e.g., `ast.parse` for Python, `gcc -fsyntax-only` for C, `javac` for Java). As shown in Appendix Table 3, the majority of samples compile or execute successfully, with pass rates ranging from 64.08% (TypeScript) to 99.25% (Python) and an average pass rate of 82.59% across all languages. These results indicate that most generated instructions correspond to syntactically valid and executable code.

Natural language instructions We sample 120K examples from the OpenHermes 2.5 corpus (Teknium, 2023). We exclude instruction-response pairs associated with categories unrelated to general-purpose instruction following, such as “agent” and “summarization”, as well as those labeled “coding” to ensure the dataset is entirely natural language. To maintain linguistic consistency, we further filter out non-English examples. This filtered natural language subset complements our code instruction data, enabling a fair comparison between code and natural language instructions.

3.2 SYSTEMATIC PERTURBATION DESIGN

To understand which specific structural and semantic properties are responsible for changes in reasoning task performances, we systematically perturb different aspects of the code dataset. We design the perturbations through two ways: *rule-based* (deterministic transformations) and *generative* (model-generated augmentations). Notably, our perturbation strategies do not alter the number of examples in the dataset. We illustrate examples of these perturbations in Table 1, with extended examples and token statistics in Appendix Table 2.

3.2.1 RULE-BASED PERTURBATIONS

Rule-based perturbations apply deterministic transformations to the code. They are designed to disrupt superficial patterns or semantic signals that may influence model predictions without altering the core logic of the code. We describe five such perturbations below:

*Responses are generated with temperature 0.6 and API-default decoding parameters.

162 Table 1: An example of perturbations (Section 3.2) applied to the same original snippet.
163

164 Full Original Snippet	165 Type	166 Strategy	167 Original Excerpt	168 Perturbed Excerpt
169 <pre>170 def process_string(input_string): 171 vowels = "aoeuiAOYEUI" 172 result = [] 173 174 for char in input_string: 175 if char not in vowels: 176 result.append('.\' + char.lower()) 177 178 return ''.join(result) 179 180 # Read input 181 input_string = input().strip() 182 # Process and print the result 183 print(process_string(input_string))</pre>	184 Rule-based	185 Whitespace Removal	186 result.append('.\' + result.append('.\' +char.lower())	187
		188 Variable Renaming	189 for char in input_string: ...	190 for var_4 in var_1: if var_4 not in var_2: ...
		191 Keyword Replacement (Nonsense)	192 if char not in vowels:	193 garply i not in baz
		194 Keyword Replacement (Non-English)	195 for char in input_string:	196 para ch en entrada
		197 Comment Swapping (Local)	198 # Read input	199 # Walking
		200 Comment (Global)	201 Swapping # Process and print the result	202 // Queue for processing nodes
		203 Comment Removal	204 # Read input	205 /* all comments removed */
		206 Pseudocode	207 for char in input_string: if char not in vowels	208 FOR EACH character IF not vowel THEN append '.\' +lowercase
		209 Step-by-Step	210 result.append('.\' + char.lower())	211 Append '.\' before consonants and convert to lowercase
		212 Flowchart	213 if char not in vowels:	214 [Read char] → {Vowel?} → [Append '.\' +lower]
215 <pre>216 # Read input 217 input_string = input().strip() 218 # Process and print the result 219 print(process_string(input_string))</pre>	220 Generative	221 Code in Imaginary Language	222 result.append('.\' + glofadd'.\' ⊕ lower(chr))	223
		224 Comment Enhancement	225 # Process and print the result	226 # Removes vowels and prefixes consonants with '.'
		227 Comment Obfuscation	228 # Read input	229 # WARNING: Code may summon aliens; # TODO: handle quantum vowels

185 **Whitespace removal** All whitespace characters are removed from the code. This tests whether
186 models rely on formatting heuristics, such as indentation or visual grouping of blocks, as implicit
187 structural cues, particularly in languages like Python where whitespace is semantically meaningful.

188 **Variable renaming** We replace user-defined variables, function names, and class names with canonical
189 placeholders of the form `var_i`, where $i \in [0, n]$ and n is the total number of unique identifiers
190 in the code snippet. This removes semantic cues conveyed by meaningful identifier names (e.g.,
191 `counter`, `isSorted`).

192 **Programming language keyword replacement** For each of the ten programming languages in
193 our dataset, we identify its reserved keywords (e.g., `if`, `return`, `def` in Python) and substitute
194 all occurrences of them using two strategies. The first replaces keywords with nonsense tokens
195 (e.g., `foo`, `quux`), which have no semantic meaning in any language. In the second strategy, we
196 use non-English but valid words (e.g., `amigo`, `fleur`), which are real words in various languages but
197 semantically unrelated to the programming context. These perturbations aim to challenge models'
198 reliance on syntactic and semantic cues from familiar language constructs.

199 **Comment removal** We remove all inline and block comments from each code snippet. Code comments
200 often provide useful semantic signals for program comprehension (Buse & Weimer, 2009;
201 De Souza et al., 2005). This perturbation tests whether models largely leverage such auxiliary
202 natural-language cues.

203 **Comment swapping** We introduce local and global swapping that misplace code comments to disrupt
204 the semantic alignment between code and documentation. In local swapping, comments within
205 a snippet are randomly reordered, preserving their content but misaligning them with the relevant
206 code segments. In global swapping, we first collect a global pool of comments from the entire
207 dataset. Then, for each comment in a snippet, we replace it with a randomly sampled comment from
208 this pool. This results in documentation that is entirely mismatched to the surrounding code.

210 3.2.2 GENERATIVE PERTURBATIONS

211 We create generative perturbations by prompting GPT-4o-mini[†] to produce alternative versions of
212 code responses generated according to Section 3.1. These rewrites preserve the original intent of the
213 code while introducing more diverse variations beyond what rule-based edits can achieve, allowing

214
215 [†]We use temperature of 0.6 and default settings.

216 us to test model sensitivity and robustness to semantically equivalent inputs expressed in different
 217 forms. The full set of prompts used is available in Appendix A.6.
 218

219 **Comment enhancement** We prompt GPT-4o-mini to regenerate the code with high-quality doc-
 220 mentation and inline comments (Figure 9). The prompt emphasizes two forms of annotation: (1)
 221 comprehensive documentation comments for all functions, classes, and key code blocks to describe
 222 their purpose, parameters, return values, and assumptions; and (2) informative inline comments
 223 that clarify complex or non-obvious logic. These annotations follow the conventions of the target
 224 programming language (e.g., Python docstrings, JavaDoc). Unlike the often sparse comments in un-
 225 perturbed data, the enhanced versions provide consistent, high-quality annotations, which enables
 226 us to test the effect of documentation quality on model performance.
 227

228 **Comment obfuscation** Here, we generate deliberately misleading, irrelevant, or nonsensical com-
 229 ments, while preserving the code’s functionality (Figure 10). These include (1) inaccurate, off-topic,
 230 or absurd documentation (e.g., references to astrology, cooking, or fictitious technologies) and (2)
 231 chaotic inline comments that contradict the code’s functionality, reference imaginary bugs or fea-
 232 tures, and use distracting styles such as ALL-CAPS, emojis, and fabricated jargon. This perturbation
 233 tests model robustness to extreme noise and deceptive annotations.
 234

235 **Pseudocode** We convert code into high-level pseudocode while preserving its logical structure (Fig-
 236 ure 11). The model is instructed to replace language-specific syntax with pseudocode constructs
 237 (e.g., IF . . . THEN . . . ENDIF, FOR EACH, etc.), remove low-level implementation details (e.g.,
 238 type declarations or library calls), and maintain the original control flow and indentation. This per-
 239 turbation evaluates whether models can reason over algorithmic intent without relying on concrete
 240 syntax, which offers insight into generalization across abstraction layers in code representation.
 241

242 **Flowchart in Markdown** We generate a control flow diagram using Mermaid syntax in Markdown
 243 for a given code snippet (Figure 12). The diagram captures all major control structures, such as
 244 loops, branches, function calls, and return points, using minimal but descriptive labels. This trans-
 245 formation renders executable code as a graphical abstraction, allowing us to understand whether
 246 models can reason over symbolic control flow and align it with underlying program semantics.
 247

248 **Step-by-step solution** We rewrite code as a numbered list of natural language steps (Figure 13).
 249 Each step preserves the program’s logic and execution order but uses declarative, language-agnostic
 250 phrasing (e.g., “Define a function named...”, “Check if the input is valid”). Unlike pseudocode or
 251 flowchart formats, this version entirely removes code or symbolic notation and instead emphasizes
 252 procedural understanding in purely narrative form.
 253

254 **Code in imaginary language** We translate real code into a fictional language that preserves structure
 255 and control flow but replaces all syntax and identifiers with invented tokens (Figure 14). The result
 256 is semantically consistent yet entirely ungrounded in real languages. This perturbation allows us to
 257 examine whether models rely on surface-form familiarity (e.g., recognizing logical patterns).
 258

259 **To assess the correctness of the perturbed data, we conduct a human evaluation with two annota-
 260 tors, randomly sampling 30 examples per perturbation type (13 total: 7 rule-based and 6 generative).**
 261 For the rule-based perturbations and comment enhancement/obfuscation, annotators verify that each
 262 transformation strictly follows the intended perturbation rule while leaving all unrelated content un-
 263 changed. For the generative perturbations (pseudocode, step-by-step instructions, flowchart, im-
 264 aginary language), which express the original code in alternative forms, annotators verify that the
 265 conveyed semantics remain faithful to the original program. Across all 390 sampled instances, 351
 266 were judged correct (90% overall). Rule-based perturbations achieved $176/210 \approx 84\%$ correctness,
 267 while generative perturbations achieved $175/180 \approx 97\%$ correctness.
 268

269 3.3 MODEL TRAINING AND EVALUATION

270 We train a suite of decoder-only LLMs using supervised fine-tuning (SFT) on our instruc-
 271 tion-response datasets detailed in Section 3.1, along with their perturbed variants described in Sec-
 272 tion 3.2. To assess the effect of language-specific patterns, we additionally finetune models on
 273 subsets of the code data restricted to a single programming language. This allows us to examine
 274 how the syntactical diversity of programming languages influences reasoning performance. Each
 275 instruction-response pair is treated as a single input-output sequence, and models are trained to
 276 autoregressively predict the response tokens conditioned on the instruction and prior context. All
 277

270 models are fine-tuned from the same pre-trained backbone under supervised fine-tuning (SFT) ob-
 271 jective to ensure comparability across experimental conditions. Let $x = (x_1, x_2, \dots, x_m)$ be the
 272 instruction tokens and $y = (y_1, y_2, \dots, y_n)$ be the response tokens. The SFT objective is defined as:
 273

$$274 \quad \mathcal{L}_{\text{SFT}} = - \sum_{t=1}^n \log P_{\theta}(y_t | x, y_{<t}) \quad (1)$$

275

277 where P_{θ} denotes the model’s conditional probability distribution parameterized by θ , and $y_{<t}$ rep-
 278 resents the prefix of the response up to position $t - 1$.
 279

280 **Models** We choose a diverse set of pre- and post-trained language models ranging from 0.6B to
 281 8B parameters. Specifically, we experiment with models from five major families: Qwen3 (Yang
 282 et al., 2025a), LLaMA-3 (Grattafiori et al., 2024), Gemma3 (Team et al., 2025), OLMo2 (OLMo
 283 et al., 2024), and SmolLM2 (Allal et al., 2025). For each model family, we select representative
 284 sizes (e.g., <1B, ~1B, ~3-4B, ~7-8B)[‡] to evaluate performance across different scales.
 285

286 **Training data configurations** Our base training set consists of 120K instruction–response pairs
 287 spanning both code and natural language formats detailed in Section 3.1. From this, we construct
 288 several configurations: (1) 100% code-only, (2) 100% natural language-only, and (3) mixed data
 289 with varying code-to-language ratios. In addition, we train models on each perturbed variant intro-
 290 duced in Section 3.2. Finally, we include programming-language-specific subsets, training separate
 291 models on data from each of the ten languages (~12K examples per language) to assess the effect
 292 of language specialization. The implementation details are in Section A.5.
 293

294 **Evaluation tasks** We evaluate model performance across three categories: natural language and
 295 general knowledge, math, and code (Table 4).
 296

297 For natural language and general knowledge, we evaluate across commonsense reasoning, science
 298 and textbook-style QA, logical reasoning, and instruction-following. All tasks are evaluated us-
 299 ing accuracy. For math, we include both elementary and advanced problem-solving datasets (e.g.,
 300 GSM8K, HRM8K), as well as arithmetic and math-related subsets of MMLU. Open-ended tasks
 301 (GSM8K, HRM8K) use exact match, while arithmetic and MMLU (math) are scored with accuracy.
 302

303 For code, we evaluate both code understanding and generation. Based on preliminary experi-
 304 ments, we adopt the LLM-as-Judge paradigm (Gu et al., 2025) instead of execution-based evalua-
 305 tion (Huang et al., 2022). Our relatively small, perturbed models often fail to produce fully exe-
 306 cutable code, making execution-based metrics unreliable. More importantly, our goal is to assess
 307 code quality and reasoning under perturbations, not just execution success.
 308

309 Thus, we prompt *GPT-4o-mini* to first generate an instance-specific rubric on a 1–10 Likert scale
 310 given the original instruction, which is expected to capture nuanced quality variation across outputs.
 311 The same model is then prompted as a judge to provide a brief reasoning step (“thought”) and assign
 312 a score based on that rubric. Examples of the rubric-generation prompt and judging prompt are
 313 shown in Appendix A.6 (Figures 15 and 16). For the main results, we use *GPT-4o-mini* as the judge
 314 due to its strong judging quality and favorable cost–performance tradeoff. To assess the reliability of
 315 our LLM-as-judge setup, we additionally conduct an extensive cross-judge analysis using multiple
 316 models. The results in Appendix Table 7 demonstrate that our evaluation is stable across judges.
 317

318 4 RESULTS AND DISCUSSION

319 **RQ1: Does incorporating code in finetuning improve task performance?** First, we validate
 320 prior findings that finetuning on code data can enhance downstream reasoning. Following the train-
 321 ing setup in Section 3.3, we compare performance across four settings: zero-shot, full code finetun-
 322 ing (“code-ft”), full natural language finetuning (“nl-ft”), and mixed data finetuning with equal pro-
 323 portions of code and natural language instructions (“mixed-ft”). Across model families and scales,
 324 code-ft and mixed-ft generally achieve leading or competitive performance across tasks (Figure 2,
 325 and Figures 17–21), with the trend particularly consistent on code generation.
 326

327 [‡]Due to resource constraint, the larges model we could finetune is 8B.

Figure 2: Performance (with stderr bars) of Qwen3-4B-Base across zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and 50-50 code to NL data ratio finetuning (mixed ft). Incorporating code improves performance across tasks.

Figure 3: Aggregated performance (with stderr bars) under structural perturbations (e.g. removing whitespace) vs. semantics perturbations (e.g. modifying the comments) of Qwen3-4B-Base. Semantic perturbations tend to be more harmful to performance than semantic ones.

Overall, across the 14 model bases, either code-ft or mixed-ft achieves the best performance on 64% of natural language tasks, 86% of math and code understanding tasks, and all code generation tasks. Motivated by this, we further examine the effect of varying the proportion of code in mixed finetuning (Figure 22). We find that higher fractions of code data generally improve performance across most tasks, with math tasks most sensitive to mixture ratios.

RQ2: How do our systematic perturbations affect performance?

Section Findings

- Structural perturbations hurt more than semantic ones, especially for math and code.
- Appropriate abstractions such as pseudocode and flowcharts can substitute for explicit code structure in reasoning.
- Models don't need verbose code: reduced-token variants perform well as long as core information is preserved.
- LLMs can reason effectively from corrupted code by exploiting surface-level regularities.

Next, we analyze task performance under the perturbations introduced in Section 3.2. Based on the properties of each perturbation, we group them into distinct analysis axes that allow us to systemati-

Figure 4: Aggregated performance (with stderr bars) under levels of explicitness of code structure (less explicit going from runnable code to NL procedure) of Qwen3-8B-Base. Certain algorithmic and graphical abstractions benefit reasoning.

Figure 5: Aggregated performance (with stderr bars) of Qwen3-0.6B-Base with various of token counts wrt to unperturbed code. Reductions can perform comparable or even better than the baseline.

Figure 6: Aggregated performance of Qwen3-8B-Base (with stderr bars), depending on how much the perturbed code data is readable to humans. Low-interpretability with misleading signals can match or perform better than other configurations.

cally probe their effects. The grouping details are in Table 5. We illustrate performance of individual perturbations in Appendix A.7.6.

Structural vs. Semantics Perturbations. We define structural perturbations as edits that alter the syntactic scaffolding or formatting of code (e.g., whitespace removal, pseudocode, flowcharts), while semantic perturbations modify meaning-bearing tokens such as identifiers, keywords, or comments without disrupting the underlying structure. Across model families and scales (Figures 23 – 27), nearly all perturbations reduce performance compared to the unperturbed code-finetuned baseline. More importantly, structural perturbations consistently degrade performance more severely than semantic ones, especially for math and code tasks (e.g., Figure 3). The discrepancy is more evident as models scale up (e.g., Figure 23). This resembles prior work that reasoning structure rather than content is more critical to the learning process (Li et al., 2025). We hypothesize that tasks such as math and code rely more heavily on formatting and layout cues to shape reasoning.

Explicitness of Code Structure. Building on the importance of structure, we examine perturbations along a spectrum of how explicitly they preserve code structure: from runnable or code-like forms, through intermediate abstractions such as pseudocode and flowcharts, to natural language step-by-step procedures. For code generation, where executable outputs are required, it is natural that perturbations that preserve explicit code structure, whether runnable or not, lead to the best performance. For other tasks, however, certain abstractions such as pseudocode or flowcharts often match or even surpass unperturbed code, as they highlight algorithmic structure while removing superficial syntax. By contrast, the most implicit form, natural language procedures, provides little advantage and generally performs worst across tasks (e.g. Figure 4, Figures 28–32).

Relative Information Density. Because our constructed instruction datasets are parallel, the amount of information they convey about the code is comparable across perturbations. We define relative information density as $(\text{number of tokens in perturbed dataset}) \div (\text{number of tokens in the original code-ft dataset})$, which reflects how compactly the same content is represented. Perturbations differ in how they adjust density: some produce highly compact forms that strip away most tokens but preserve the algorithmic skeleton (e.g., flowcharts, pseudocode), others moderately reduce density by removing comments or using imaginary languages, while others preserve or even increase density through verbose variable renamings or enriched documentation. We find that strong or moderate reductions in density often perform close to, and sometimes better than, the baseline (e.g. Figure 5, Figures 33–37). However, this advantage doesn't extend to code generation, where preserving richer surface detail is important. In addition, smaller models are more sensitive to density differences,

432 whereas larger models remain robust. Overall, this suggests that the benefit of code for reasoning
 433 doesn't lie in its verbosity but in the efficiency with which essential information is preserved.
 434

435 **Human Interpretability.** We also examine perturbations through the lens of human readability:
 436 high-interpretability (enriched explanations and visual scaffolds), medium (local edits leaving most
 437 code intact), and low (obscured readability or misleading signals). Interestingly, low-interpretability
 438 variants, despite adding noise or distortion, often do not degrade performance too much from the
 439 unperturbed baseline, and often match or even surpass medium-interpretability ones (e.g. Figure 6,
 440 Figures 38–42). This counterintuitive trend suggests that the models could exploit surface-level
 441 regularities and recurring structural cues that persist even in noisy or opaque forms.
 442

442 RQ3: How does performance vary across programming languages?

444 Section Findings

- 445 • Lower-level languages benefit math tasks.
- 446 • Python aligns best with NL tasks, while Java and Rust often rank among the top for math.

448 The strong impact of structure in RQ2 motivates the question of whether syntactic regularities in
 449 programming languages also influence model performance. To explore this, we group the ten pro-
 450 gramming languages into high-scripting (Python, PHP, JavaScript, TypeScript), intermediate (Java,
 451 C#), and low-system (C, C++, Rust, Go) according to their abstraction level. Overall, differences
 452 across groups are small. On NL and code tasks, the impact of language groups is largely model-
 453 dependent. However, on math tasks, most high-scripting languages consistently underperform rel-
 454 ative to intermediate and low-system ones (e.g. top Figure 7, Figures 48–51a). We hypothesize
 455 that richer structural detail in lower-level languages provides beneficial signals for mathematical
 456 reasoning.

479 Figure 7: Performance (with stderr bars) of Qwen3-1.7B. Top: grouped by abstraction level (low-
 480 system, intermediate, high-scripting). Low-system and intermediate languages outperform on math.
 481 Bottom: individual programming languages. Python aligns best with NL, Rust leads on math.

482 For code generation, finetuning on any single language improves over zeroshot but lags behind full
 483 code finetuning, which suggests the benefit of multi-language diversity for code generation. At the
 484 individual language level (e.g. bottom Figure 7, Figures 49–51b), across models, Python often leads
 485 on NL tasks, probably due to its surface form being closer to natural language. Aligning with the

486 group-level results, lower-level languages such as Java and Rust often rank among the top for math.
 487 For code tasks that span multiple languages, results are more mixed, with no clear leaders, and
 488 performance gaps remain relatively small.
 489

490 5 CONCLUSION

492 In this work, we aim to understand what aspects of code enhance reasoning in LLMs and which
 493 aspects matter most. Through 3,331 finetuning experiments spanning five model families, eight
 494 scales, ten programming languages, and a suite of systematic perturbations, we arrive at four central
 495 conclusions. First, structural properties of code are critical: disrupting them leads to consistent per-
 496 formance drops, especially on math and code tasks. Second, appropriate abstractions and efficient
 497 encodings can be just as effective as raw code. Moreover, models remain surprisingly robust even to
 498 corrupted or low-interpretability code, exploiting statistical regularities that persist despite surface
 499 distortions. Finally, lower-level programming languages provide more benefits for math tasks. To-
 500 gether, we want to provide a more precise account of how code supports reasoning and point toward
 501 practical design principles for constructing effective training data beyond executable programs.
 502

503 6 LIMITATIONS

505 Our study focuses on small- to mid-scale base models due to resource constraints. Future work
 506 could extend our framework to larger models. Our perturbations, although diverse, may still not
 507 cover enough and leave out other factors like code complexity and data diversity. Finally, although
 508 we evaluate across a broad suite of reasoning tasks, our benchmarks still capture only part of the
 509 reasoning spectrum, and future work could extend the analysis to additional domains.
 510

511 7 REPRODUCIBILITY STATEMENT

513 We provide extensive details throughout the paper and supplementary materials. Section 3.1 de-
 514 scribes the construction and processing of both the code and natural language datasets. Section A.5
 515 outlines model training and implementation details. Appendix A.6 includes all prompts used for
 516 data generation, perturbations, and LLM-as-Judge evaluation.
 517

518 REFERENCES

520 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
 521 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,
 522 et al. Smollm2: When smol goes big–data-centric training of a small language model. *arXiv*
 523 preprint *arXiv:2502.02737*, 2025.

524 Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr F. Locatelli, Marzieh
 525 Fadaee, A. Ustun, and Sara Hooker. To code, or not to code? exploring impact of code in pre-
 526 training. *ArXiv*, abs/2408.10914, 2024. URL <https://api.semanticscholar.org/CorpusID:271909530>.
 527

528 AtlasUnified. Code-instruct-sets. <https://huggingface.co/datasets/AtlasUnified/Code-Instruct-Sets>, 2023.
 529

531 Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When do
 532 program-of-thought works for reasoning? *AAAI* 2025.

533 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
 534 physical commonsense in natural language, 2019. URL <https://arxiv.org/abs/1911.11641>.
 535

537 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 538 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 539 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

540 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 541 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

542

543 Raymond PL Buse and Westley R Weimer. Learning a metric for code readability. *IEEE Transactions on software engineering*, 36(4):546–558, 2009.

544

545 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 546 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
 547 2018. URL <https://arxiv.org/abs/1803.05457>.

548

549 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 550 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 551 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

552

553 Sergio Cozzetti B De Souza, Nicolas Anquetil, and Káthia M De Oliveira. A study of the docu-
 554 mentation essential to software maintenance. In *Proceedings of the 23rd annual international*
 555 *conference on Design of communication: documenting & designing for pervasive information*,
 556 pp. 68–75, 2005.

557

558 Hao Fu, Yao; Peng and Tushar Khot. How does gpt obtain its ability? tracing emergent abilities of
 559 language models to their sources. *Yao Fu's Notion*, Dec 2022.

560

561 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 562 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 563 of models. *arXiv preprint arXiv:2407.21783*, 2024.

564

565 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
 566 Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
 567 Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL <https://arxiv.org/abs/2411.15594>.

568

569 Alex Havrilla and Maia Iyer. Understanding the effect of noise in llm training data with algorithmic
 570 chains of thought, 2024. URL <https://arxiv.org/abs/2402.04004>.

571

572 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 573 cob Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

574

575 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
 576 vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the As-
 577 sociation for Computational Linguistics: ACL 2023*, pp. 1049–1065, Toronto, Canada, July
 578 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
 579 <https://aclanthology.org/2023.findings-acl.67/>.

580

581 Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jeevana Priya Inala, Colin
 582 Clement, Nan Duan, and Jianfeng Gao. Execution-based evaluation for data science code gener-
 583 ation models. *arXiv preprint arXiv:2211.09374*, 2022.

584

585 Hyunwoo Ko, Guijin Son, and Dasol Choi. Understand, solve and translate: Bridging the multilin-
 586 gual mathematical reasoning gap, 2025. URL <https://arxiv.org/abs/2501.02448>.

587

588 Man Ho Lam, Chaozheng Wang, Jen-Tse Huang, and Michael R Lyu. CodeCrash: Stress testing
 589 LLM reasoning under structural and semantic perturbations. *arXiv [cs.AI]*, April 2025.

590

591 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyan Zhang, Douglas Eck, Chris Callison-
 592 Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
 593 URL <https://arxiv.org/abs/2107.06499>.

594

595 Bryan Li, Tamer Alkhouri, Daniele Bonadiman, Nikolaos Pappas, and Saab Mansour. Eliciting
 596 better multilingual structured reasoning from LLMs through code. In Lun-Wei Ku, Andre Martins,
 597 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 598 Computational Linguistics (Volume 1: Long Papers)*, pp. 5154–5169, Bangkok, Thailand, August
 599 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.281. URL
 600 <https://aclanthology.org/2024.acl-long.281/>.

594 Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
 595 Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demon-
 596 strations structure, not content, is what matters! *arXiv preprint arXiv:2502.07374*, 2025.
 597

598 Ming Li, Yong Zhang, Zhitao Li, Juhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
 599 Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
 600 selection for instruction tuning. *arXiv preprint arXiv:2308.12032*, 2023.

601 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa:
 602 A challenge dataset for machine reading comprehension with logical reasoning, 2020. URL
 603 <https://arxiv.org/abs/2007.08124>.

604 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
 605 Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
 606 to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
 607 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of*
 608 *the North American Chapter of the Association for Computational Linguistics: Human Lan-*
 609 *guage Technologies (Volume 1: Long Papers)*, pp. 3245–3276, Mexico City, Mexico, June
 610 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.nacl-long.179. URL
 611 <https://aclanthology.org/2024.nacl-long.179/>.

612 Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. At
 613 which training stage does code data help LLMs reasoning? *arXiv [cs.CL]*, September 2023a.

614 Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li.
 615 At which training stage does code data help llms reasoning? *arXiv preprint arXiv:2309.16298*,
 616 2023b.

617 Dung Nguyen Manh, Thang Phan Chau, Nam Le Hai, Thong T Doan, Nam V Nguyen, Quang
 618 Pham, and Nghi DQ Bui. Codemmlu: A multi-task benchmark for assessing code understanding
 619 capabilities of codellms. *arXiv preprint arXiv:2410.01999v1*, 2024.

620 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 621 electricity? a new dataset for open book question answering, 2018. URL <https://arxiv.org/abs/1809.02789>.

622 nickrosh. Evol-instruct-code-80k-v1. <https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1>, 2024.

623 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 624 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 625 *arXiv:2501.00656*, 2024.

626 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 627 Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Lean-
 628 dro von Werra. Codeforces cots. <https://huggingface.co/datasets/open-r1/codeforces-cots>, 2025.

629 red1xe. code_instructions. https://huggingface.co/datasets/red1xe/code_instructions, 2023.

630 Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
 631 jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
 632 training. In *2021 USENIX Annual Technical Conference (USENIX ATC 21)*, pp. 551–564, 2021.

633 rombodawg. code_instruct_alpaca_vicuna_wizardlm_56k_backup. https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup, 2024.

634 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 635 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 636 report. *arXiv preprint arXiv:2503.19786*, 2025.

648 Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants. <https://huggingface.co/datasets/tekniu/OpenHermes-2.5>, 2023. Accessed via
 649 Hugging Face Datasets.
 650

651 TokenBender. `code_instructions_122k_alpaca_style`. https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style, 2024.
 652

653 Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey on data selection
 654 for llm instruction tuning. *arXiv preprint arXiv:2402.05123*, 2024.
 655

656 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 657 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 658 arXiv:2505.09388*, 2025a.
 659

660 Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng,
 661 Xin Qian, Grey Yang, Jiebo Luo, and Julian McAuley. Code to think, think to code: A survey
 662 on code-enhanced reasoning and reasoning-driven code intelligence in LLMs. *arXiv [cs.CL]*,
 663 February 2025b.
 664

664 Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
 665 Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If LLM is the wizard, then code is the
 666 wand: A survey on how code empowers large language models to serve as intelligent agents.
 667 *arXiv [cs.CL]*, January 2024.
 668

668 Huimu Yu, Xing Wu, Haotian Xu, Debing Zhang, and Songlin Hu. CodePMP: Scalable preference
 669 model pretraining for large language model reasoning. *arXiv [cs.AI]*, October 2024.
 670

671 Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
 672 Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
 673 models reasoning. *arXiv [cs.AI]*, May 2024a.
 674

674 Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
 675 Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
 676 models reasoning, 2024b. URL <https://arxiv.org/abs/2405.20535>.
 677

677 Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini,
 678 Florian Tramèr, and Daphne Ippolito. Persistent pre-training poisoning of llms, 2024c. URL
 679 <https://arxiv.org/abs/2410.13722>.
 680

681 Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
 682 Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
 683 code generation with multilingual benchmarking on humaneval-x. In *Proceedings of the 29th
 684 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5673–5684, 2023.
 685

685 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 686 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 687 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 688 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 689 tics. URL <http://arxiv.org/abs/2403.13372>.
 690

690 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 691 and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.
 692

693

694 **A APPENDIX**
 695

696

697

698 **A.1 EXTENDED DETAILS OF PERTURBATION DATA**
 699

700 See Table 2.
 701

702
703
704
Table 2: Extended examples of the perturbation dataset and token statistics for each perturbation
category.

Perturbation	Original Excerpt	Perturbed Excerpt	Total Tokens	Avg Tokens per Instruction
whitespace removal	for char in input_string:	forcharininput_string:	78,553,430	654.61
variable renaming	for char in input_string:	for var_4 in var_1:	87,619,500	730.16
keyword replaced with non-sense	if c not in vowels:	garply c not in vowels:	87,123,587	726.03
keyword replaced with non-English	if c not in vowels:	père c not in vowels:	88,078,906	733.99
comment removal	# Read input	-	80,238,050	668.65
local comment swapping	# Read input	# Process and print the result	85,324,436	711.04
global comment swapping	# Process and print the result	// Queue for processing nodes	85,329,862	711.08
flowchart (Markdown)	if char not in vowels:	[Read char] → {Vowel?} → [Append '.', + lower]	67,553,461	562.95
step-by-step explanation	result.append('. ' + char.lower())	Append '.' before consonants ...	84,250,378	702.09
pseudocode	for char in input_string:	FOR EACH character IF not vowel THEN	73,722,933	614.36
imaginary language	result.append('. ' + char.lower())	gloff add '.' ⊕ lower(chr)	81,011,032	675.09
comment enhancement	# Process the result	# Removes vowels and prefixes consonants ...	119,399,621	994.99
comment obfuscation	# Read input	# WARNING: Code may summon aliens ...	111,771,640	931.43

717
718
719 A.2 VERIFICATION OF QUALITY OF SYNTHETIC CODE DATA
720
721

See Table 3.

722
723 Table 3: Syntax and compilation check results across all ten programming languages. The majority
724 of samples successfully compiled or executed, with a mean pass rate of 82.59%

Language	Total	% Passed
C	11,998	81.49
PHP	12,009	94.81
JavaScript	11,996	91.57
Python	11,993	99.25
C++	11,997	83.20
TypeScript	12,001	64.08
Rust	11,995	66.71
C#	11,996	81.06
Go	12,012	77.77
Java	12,003	88.94

736
737
738 A.3 EVALUATION SUITE DETAILS
739

See Table 4.

740
741
742 A.4 CATEGORIZATION OF PERTURBATIONS FOR RQ2 ANALYSIS
743

See Table 5.

744
745
746 A.5 IMPLEMENTATION DETAILS
747

748 We train all models under identical hyperparameter settings to ensure a fair comparison across model
 749 sizes and data configurations. All experiments are conducted using full finetuning in *BF16* precision
 750 with a maximum sequence length of 2048 tokens. We run all experiments on $4 \times$ A100 80G node.
 751 Models are trained for 2 epochs with a cumulative batch size of 64 for most experiments, except for
 752 language-specific settings, where the batch size is reduced to 32. The learning rate is fixed at $1e-5$
 753 and follows a cosine decay schedule with a warmup ratio of 0.1. For memory-efficient parallelism
 754 and distributed training, we use *DeepSpeed ZeRO Stage 3* (Ren et al., 2021). All models are trained
 755 using the LLaMA-Factory framework (Zheng et al., 2024). All other parameters and configurations
 follow the default setting unless otherwise specified.

756 Table 4: Evaluation suite spanning natural language and general knowledge, math, and code tasks.
757

758 Task Type	759 Topic	760 Benchmarks	761 Metric
760 Natural Language 761 & General 762 Knowledge	763 Commonsense 764 Science / Textbook	765 PIQA (Bisk et al., 2019)	
		766 ARC-Easy (Clark et al., 2018)	
		767 ARC-Challenge (Clark et al., 2018)	768 Accuracy
		769 OpenBookQA (Mihaylov et al., 2018)	
	770 Logic-Heavy 771	772 MMLU (non-math) (Hendrycks et al., 2021)	
		773 LogiQA (Liu et al., 2020)	
		774 Instruction Following IFEval (Zhou et al., 2023)	775 Prompt-level Accuracy
	776 Math	777 GSM8K (Cobbe et al., 2021)	
		778 HRM8K (Ko et al., 2025)	779 Exact Match
		780 Arithmetic (Brown et al., 2020)	
	781 Code	782 MMLU (math) (Hendrycks et al., 2021)	783 Accuracy
		784 Code Understanding CodeMMLU (Manh et al., 2024)	
		785 Code Generation HumanEvalX (Zheng et al., 2023)	786 LLM-as-Judge

773 Table 5: Categorization of perturbations across four analysis axes: structural vs. semantic (S/S)
774 perturbations, explicitness of code structure (ECS), relative information density (RID), and human
775 interpretability (HI).
776

777 Perturbation	778 S/S Perturbations	779 ECS	780 RID	781 HI
780 Whitespace removal	781 Structural	782 Broken syntax	783 Moderate-reduced	784 Medium
781 Pseudocode		785 Algorithmic	786 Strong-reduced	787 High
782 Imaginary		788 Broken syntax	789 Moderate-reduced	790 Low
783 Step-by-step		791 NL procedure	792 Moderate-reduced	793 High
784 Flowchart		794 Graphical	795 Strong-reduced	796 High
795 Comment removal	796 Semantic	797 Runnable	798 Moderate-reduced	799 Medium
796 Variable renaming		800 Runnable	801 Increased	802 Medium
797 Keyword repl. (nonsense)		803 Broken syntax	804 Increased	805 Low
798 Keyword repl. (non-Eng.)		806 Broken syntax	807 Increased	808 Low
799 Comment swap (global)		809 Runnable	810 Near-baseline	811 Low
800 Comment swap (local)		812 Runnable	813 Near-baseline	814 Low
801 Comment enhancement		815 Runnable	816 Increased	817 High
802 Comment obfuscation		818 Runnable	819 Increased	820 Low

793 A.6 PROMPTS

794 **Standard generation prompt** We provide the standard prompt to generate code for a given
795 instruction in a specific language in Figure 8. , where the *instruction* can be instantiated using one of
796 the templates in Table 6.
797800 **Comment enhancement prompt** The prompt to enhance the quality and readability of a given
801 code snippet by adding detailed documentation is shown in Figure 9.
802803 **Comment obfuscation prompt** The prompt used to generate obfuscated versions of code from a
804 given instruction is presented in Figure 10.
805806 **Pseudo generation prompt** We illustrate the prompt designed to produce pseudocode for a given
807 instruction in Figure 11.
808809 **Flowchart generation prompt** The prompt for generating a flowchart-style representation of an
810 instruction is provided in Figure 12.
811

810 Table 6: Language specification templates with placeholders that can be instantiated with different
 811 programming languages.
 812

813 Generate the code in {language}.	Provide code in {language}.	Write the code in {language}.
814 Build the code using {language}.	Create the code using {language}.	Draft the code in {language}.
815 Produce a code snippet in {language}.	Develop the code using {language}.	Generate a solution in {language}.
816 Create a script in {language}.	Implement the code in {language}.	Design the code in {language}.
817 Construct the code using {language}.	Format the code in {language}.	Write a program in {language}.
818 Prepare a code snippet in {language}.	Write a function in {language}.	Deliver the code in {language}.

820 Code Instruction Data Generation Prompt

821
 822 You are tasked with generating code based on a specified programming language and instruction. Your goal is to generate code that follows
 823 the syntax and semantics of the specified language. If the instruction is invalid (e.g., contradicts the language's rules or references functions or
 824 constructs from a different language), you must strictly respond with "invalid".

825 **Guidelines:** - Valid Code: - The generated code must be syntactically and semantically correct according to the specified language. - The code should
 826 follow standard conventions and best practices for the given language. - Do **not** provide any explanation for valid code — only output the code itself.
 827 - **Invalid Instruction:** - If the instruction references constructs, functions, or syntax not supported by the specified language, respond with "invalid".
 828 - Do not attempt to correct the invalid instruction — just respond with "invalid". - Do **not** provide a reason or explanation for why the instruction is
 829 invalid.

830 **Examples:**

831 Example 1:

832 Instruction: "Write a function to convert a list to a set."

833 Language: Python

834 Response:

```
835     def list_to_set(input_list):  
836         return set(input_list)
```

837 Example 2:

838 Instruction: "Create a class with a method that prints 'Hello' using console.log()."

839 Language: Python

840 Response: invalid

841 Example 3:

842 Instruction: "List all files, including hidden ones, in the current directory."

843 Language: Shell

844 Response: ls -a

845 Example 4:

846 Instruction: "Define a function using 'def' that returns the length of a string."

847 Language: JavaScript

848 Response: invalid

849 Instruction:

850 If the instruction is valid, output the code directly (no explanations).

851 If the instruction is invalid, respond with "invalid" (no explanation).

852 **Input:** Instruction: {instruction}

853 Language: {language}

854 **Output:**

855 {{response}}

846 Figure 8: Code instruction data generation prompt. The task is to generate valid code or respond
 847 with "invalid" for unsupported instructions.
 848

849
 850 **Step-by-step implementation guide generation prompt** The prompt used to create a sequential
 851 step-by-step implementation guide for an instruction is shown in Figure 13.

852 **Imaginary language code generation** We paragraph the prompt for generating code in an imagi-
 853 nary programming language in Figure 14.

854
 855 **LLM-as-Judge Evaluation** We use the prompt shown in Figure 15 to generate instance-specific
 856 rubrics for LLM-as-judge evaluation on the code generation task. The prompt to evaluate model
 857 response is shown in the Figure 16.

858 A.7 EXTENDED RESULTS

859 A.7.1 TASK PERFORMANCE SHOWCASING CODE DATA IMPACT IN FINETUNING (RQ1)

860 **Qwen3 model family results** See task performance of zero-shot, full code finetuned, full natural
 861 language finetuned, and code-NL mixed finetuned models in Figure 17.

864
865**Comment Enhancement Prompt**866
867

You are tasked with enhancing the response to the given code instruction by adding meaningful comments and documentation. The goal is to improve the code's readability, maintainability, and clarity across any programming language, without altering its original logic or structure.

Your modifications must include:

1. **Documentation Comments:** - Add clear, technically accurate, and concise documentation for every function, method, class, and major code block.

- Describe the purpose, all parameters (with correct types and usage), return values, and any assumptions or notes relevant to correct usage. - Use the standard documentation format appropriate for the programming language (e.g., Python docstrings, JavaDoc for Java, Doxygen for C/C++).

2. **Inline Comments:** - Insert informative and contextually helpful inline comments near complex, unintuitive, or important operations. - Focus on explaining logic, control flow, edge-case handling, design decisions, or dependencies. - Avoid redundant, obvious, or overly literal comments (e.g., avoid "i = 0 // set i to 0").

Guidelines:

- Do not change the logic, structure, or behavior of the original code. - Do not introduce new functionality, abstractions, or formatting changes. - Keep comments strictly technical, relevant, and useful—avoid verbosity or informal tone. - Do not include any meta-comments or explanatory notes about what was changed (e.g., no "This version adds comments" or similar). - Apply these modifications **only** to the code portion of the original response. Leave any non-code parts completely unmodified. - Ensure all comments follow the style conventions of the language in use.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin, Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response}

Output: { {updated response} }

871

872
873
874
875

Figure 9: Comment enhancement prompt. The task is to improve code clarity through meaningful comments while preserving original functionality.

876
877
878**Comment Obfuscation Prompt**879
880

You are tasked with modifying the response to the given code instruction in a way that significantly degrades its quality and clarity. Your goal is to make the code as confusing, unhelpful, and misleading as possible through the use of deliberately bad, distracting, and nonsensical comments—without altering the actual logic or functionality of the code.

Your modifications must include:

1. **Severely Misleading or Irrelevant Documentation Comments:** - Add documentation to every function, class, and major code block that includes wildly inaccurate descriptions, unrelated facts, inside jokes, cryptic advice, or philosophical ramblings. - Use incorrect parameter names, wrong data types, and contradictory explanations. - Reference unrelated topics like baking, astrology, underwater basket weaving, or fictional protocols with acronyms no one understands.

2. **Chaotic Inline Comments:** - Insert inline comments that blatantly contradict the actual functionality of the code. - Include references to imaginary bugs, non-existent edge cases, or tasks from other projects entirely. - Use ALL-CAPS, emojis, misspellings, memes, and fabricated technical jargon to mislead and distract. - Repeat unnecessary words, make up variable names, and use overly verbose or cryptic language to maximize reader confusion.

Guidelines:

- Do not modify the actual logic, syntax, or structure of the code — only the comments must be altered. - All comments must remain syntactically valid for the language (e.g., use # for Python, // for JavaScript, etc.) so the code can still execute normally. - Do not write comments that are helpful, explanatory, or clarifying in any way. Remove any useful comments that were originally present. - Do not include any reflective or meta statements about the task (e.g., no "this version degrades the comments"). - Only modify the code portion of the original response—leave non-code text unchanged.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin, Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response}

Output: { {updated response} }

881
882
883

Figure 10: Comment obfuscation prompt. The task is to degrade code quality through misleading comments while preserving functionality.

887

888

Llama-3.2 model family results See task performance of zero-shot, full code finetuned, full natural language finetuned, and code-NL mixed finetuned models in Figure 18.

889

890

Gemma-3 model family results See task performance of zero-shot, full code finetuned, full natural language finetuned, and code-NL mixed finetuned models in Figure 19.

891

892

OLMo-2 model family results See task performance of zero-shot, full code finetuned, full natural language finetuned, and code-NL mixed finetuned models in Figure 20.

893

894

SmolLM2 model family results See task performance of zero-shot, full code finetuned, full natural language finetuned, and code-NL mixed finetuned models in Figure 21.

895

896

Code data mixture ratio in finetuning data ablations We show results for mixing different ratios of code data in finetuning for Qwen3-0.6B-Base and Qwen3-1.7B-Base in Figure 22a and Figure 22b, respectively.

918
919**Pseudocode Conversion Prompt**920
921

You are tasked with converting a given code response into pseudocode that mirrors the structure and semantics of the original code, while preserving the idiomatic style of the original programming language.

Your modifications must include:

1. **Pseudocode Style:** - Replace exact syntax with language-specific pseudocode constructs (e.g., use IF ... THEN ... ENDIF for conditionals, FOR EACH or WHILE for loops). - Remove implementation details such as variable declarations with types, precise syntax, or specific library calls—replace them with clear, high-level descriptions.

2. **Structure Preservation:** - Maintain the **overall control flow and indentation** of the original code. - Use **meaningful, readable names** that reflect their purpose in the code. - Ensure each function, class, or logical block is represented clearly in pseudocode format.

3. **Fidelity to Language Idioms:** - Adapt the pseudocode to **reflect the spirit and conventions** of the original language (e.g., Python's indentation style, Java's block structure, C++-like modularity).

Guidelines:

- Do not alter the logic, structure, or order of operations. - **Do not include actual code syntax** (e.g., semicolons, colons, type annotations, brackets). - Do not add comments, explanations, or headings outside the code block. - Output only the converted pseudocode. - Preserve formatting and indentation faithfully.

Input: Instruction: {instruction} Original Response: {response}

Output:

```
{ {pseudocode} }
```

931

932

Figure 11: Pseudocode conversion prompt. The task is to translate real code into structured pseudocode while preserving logic and idiomatic style.

935

936

Flowchart Generation Prompt

937

You are tasked with generating a flow diagram in Markdown format that visualizes the control flow of the given code response. Your output must be a Mermaid flowchart embedded in a single fenced code block.

Your diagram must:

1. **Translate code logic into control flow:** - Include major steps, function calls, loops, branches, and return points. - Use concise, descriptive node labels that accurately reflect the code behavior.

2. **Follow valid Mermaid syntax:** - Begin with Start and end with End. - Use [] for actions/processes. - Use { } for decision/branch points. - Use --> to connect nodes. - Wrap everything in triple backticks with mermaid specified.

3. **Respect language conventions:** - Match naming and idioms to the language used in the original code. - Do not reinterpret or alter the code logic.

Guidelines:

- Do not change the structure or logic of the original response. - **Do not generate new code**, only a flowchart of the existing response. - Keep node labels technical and minimal. - Do not include explanations, comments, or narrative outside the flowchart. - Follow the same formatting and structural conventions as the original prompt.

Input: Instruction: {instruction} Original Response: {response}

Output:

```
```mermaid
{{flowchart}}
```

```

949

950

Figure 12: Flowchart generation prompt. The task is to convert real code into a Mermaid flow diagram without changing logic or structure.

953

954

A.7.2 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY STRUCTURE VS SEMANTICS (RQ2)

957

Qwen3 model family results (structure vs semantics perturbations) See performance of aggregated task performance under structure vs semantics perturbations in Figure 23.

960

961

Llama-3.2 model family results (structure vs semantics perturbations) See performance of aggregated task performance under structure vs semantics perturbations in Figure 24.

963

964

Gemma-3 model family results (structure vs semantics perturbations) See performance of aggregated task performance under structure vs semantics perturbations in Figure 25.

966

967

OlMo-2 model family results (structure vs semantics perturbations) See performance of aggregated task performance under structure vs semantics perturbations in Figure 26.

970

971

SmolLM2 model family results (structure vs semantics perturbations) See performance of aggregated task performance under structure vs semantics perturbations in Figure 27.

972
973**Step-by-Step Generation Prompt**974
975

You are tasked with converting a given code response into a step-by-step implementation guide that describes how to manually implement the code in clear, concise, and technically accurate language.

Your implementation guide must:

1. **Preserve Original Logic:** - Follow the same structure, logic, and sequence as the original code. - Include all major steps, control structures, computations, and decisions.
2. **Describe, Don't Translate:** - Do not include code or pseudocode. - Write in declarative, instructional sentences that explain what to do and how to do it. - Use neutral, language-agnostic terminology (e.g., "Define a function named...", "Check if...", "Return the result...").
3. **Be Clear and Concise:** - Number each step in the order it occurs. - Use precise and unambiguous language. - Each step should focus on a single coherent action.

Guidelines:

- Do not add extra commentary, examples, or assumptions.
- Do not change the original logic or execution order.
- Do not output anything other than the numbered steps.

Input: Instruction: {instruction} Original Response: {response}

Output:

```

1. {{Step one}}
2. {{Step two}}
3. {{Step three}}
...

```

985
986

Figure 13: Step-by-step implementation guide prompt. The task is to describe how to implement the code in a precise, ordered, and language-agnostic way.

987

Imaginary Language Translation Prompt

988

You are tasked with converting a given code response into an imaginary programming language that mimics the syntax and semantics of the original real-world language while appearing fictional and made-up.

Your modifications must include:

1. **Imaginary Language Design:** - Rename keywords, function names, types, and operators using plausible yet fictional terms. - Preserve the **structure, indentation, and logical flow** of the original code. - Ensure the resulting code remains readable and clearly maps to the original logic.
2. **Consistency and Fidelity:** - Maintain **1-to-1 correspondence** between the original code constructs and their fictional equivalents. - The imaginary language should resemble the **style and design patterns** of the original language (e.g., Pythonic indentation, Java-style braces and semicolons, C++ class structure, etc.).
3. **Creativity within Constraint:** - Make the language feel internally consistent and syntactically plausible. - Avoid random noise—each fictional token should appear intentional and reusable.

Guidelines:

- Do not change the underlying logic of the original code.
- Do not translate comments or docstrings—leave them unchanged.
- Do not add explanations, annotations, or headings outside the code block.
- Output only the converted code.
- Ensure formatting matches the original exactly (e.g., spacing, newlines).

Input: Instruction: {instruction} Original Response: {response}

Output:

```

```imagine
{{code_in_imagine_language}}
```

```

1001
1002
1003
1004
1005
1006

Figure 14: Imaginary language translation prompt. The task is to render real code in a fictional but consistent language without changing its logic.

1007

A.7.3 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY EXPLICITNESS OF CODE STRUCTURE (RQ2)

1013

Qwen3 model family results (explicitness of code structure perturbations) See performance of aggregated task performance under explicitness of code structure perturbations in Figure 28.

1014

Llama-3.2 model family results (explicitness of code structure perturbations) See performance of aggregated task performance under explicitness of code structure perturbations in Figure 29.

1015

Gemma-3 model family results (explicitness of code structure perturbations) See performance of aggregated task performance under explicitness of code structure perturbations in Figure 30.

1016

QIMo-2 model family results (explicitness of code structure perturbations) See performance of aggregated task performance under explicitness of code structure perturbations in Figure 31.

1080
1081 LLM-as-Judge Evaluation Prompt
1082 You are tasked with evaluating a model-generated response to a coding prompt using the provided rubric.
1083
1084 You are given:
1085 1. The coding prompt.
1086 2. The rubric (instance-specific, with 1–10 levels).
1087 3. The model response.
1088
Instructions:
1089 - Carefully read the rubric.
1090 - Compare the model response against the rubric criteria.
1091 - Assign the most appropriate score (1–10).
1092 - Provide a concise justification inside `{reasoning}`, explicitly referencing how the model response aligns or fails to align with specific rubric levels.
1093 - Provide only the numeric score inside `{score}`.
1094 - Do not include any text outside the required tags.
1095
Input:
1096 Coding Prompt:
1097 `{code_prompt}`
1098 Rubric:
1099 `{rubric}`
1100 Model Response:
1101 `{model_response}`
1102
Output:
1103
`<reasoning>{{concise justification}}</reasoning>`
`<score>{{integer from 1 to 10}}</score>`
1104

Figure 16: LLM-as-judge prompt for rubric-based evaluation of model-generated code responses.

Llama-3.2 model family results (human interpretability perturbations) See performance of aggregated task performance under human interpretability perturbations in Figure 39.

Gemma-3 model family results (human interpretability perturbations) See performance of aggregated task performance under human interpretability perturbations in Figure 40.

OlMo-2 model family results (human interpretability perturbations) See performance of aggregated task performance under human interpretability perturbations in Figure 41.

OlMo-2 model family results (human interpretability perturbations) See performance of aggregated task performance under human interpretability perturbations in Figure 41.

OlMo-2 model family results (human interpretability perturbations) See performance of aggregated task performance under human interpretability perturbations in Figure 41.

SmolLM2 model family results (human interpretability perturbations) See performance of generated tools on human model interpretability evaluations in Figure 42.

SmolM2 model family results (human interpretability perturbations) See performance of model to the performance under the human interpretability perturbations in Figure 42.

A.7.6 TASK PERFORMANCE FOR ALL INDIVIDUAL PERTURBATIONS (R02)

Qwen3 model family results (individual perturbations) See performance of all perturbation configurations in Figure 43.

Llama-3.2 model family results (individual perturbations) See performance of all perturbation configurations in Figure 44.

Gemma-3 model family results (individual perturbations) See performance of all perturbation configurations in Figure 15.

OlMo-2 model family results (individual perturbations) See performance of all perturbation

SmolLM2 model family results (individual perturbations) See performance of all perturbation

configurations in Figure 47.

Figure 17: Task performance of Qwen-3 family under zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.7.7 TASK PERFORMANCE WITH DIFFERENT PROGRAMMING LANGUAGES (RQ3)

Qwen3 model family results See performance of grouped performance and individual programming languages in Figure 48 and Figure 49, respectively.

Llama-3 model family results See performance of grouped performance and individual programming languages in Figure 50.

SmolM2 model family results See performance of grouped performance and individual programming languages in Figure 51.

Figure 18: Task performance of Llama-3.2 family under zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

Figure 19: Task performance of Gemma-3 family under zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.7.8 LLM-AS-JUDGE RESULTS

We report the results across multiple judge models in Table 7.

Figure 20: Task performance of OLMo-2 family under zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

Figure 21: Task performance of SmoLM2 family under zero-shot, full code finetuning (code-ft), full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

Table 7: Cross-judge evaluation of Qwen3-4B base variant on Python code generation task using five LLM judges — all under identical evaluation settings. Model rankings remain consistent across judges, with only moderate score variability (std 0.63–0.99), demonstrating that LLM-as-judge evaluations are stable and reliable across different judging models.

| Target Model / Perturbation | claude-3-haiku | claude-haiku-4.5 | gpt-4o-mini | gpt-5-mini | llama3-90b | Mean | Std |
|-----------------------------|-----------------|------------------|-----------------|-----------------|-----------------|------|------|
| zeroshot | 8.41 \pm 2.42 | 7.34 \pm 2.99 | 7.09 \pm 3.27 | 6.84 \pm 3.00 | 8.17 \pm 2.59 | 7.57 | 0.69 |
| swap_comments_global | 9.01 \pm 1.41 | 7.76 \pm 2.43 | 7.91 \pm 2.55 | 6.85 \pm 2.94 | 9.13 \pm 1.42 | 8.13 | 0.95 |
| swap_comments_local | 9.24 \pm 1.24 | 7.94 \pm 2.69 | 8.54 \pm 2.37 | 7.26 \pm 3.06 | 9.15 \pm 1.58 | 8.43 | 0.84 |
| replace_keywords_nonsense | 9.10 \pm 1.16 | 7.88 \pm 2.46 | 8.74 \pm 2.31 | 7.16 \pm 3.04 | 9.20 \pm 1.39 | 8.42 | 0.87 |
| replace_keywords_nonEn | 9.21 \pm 1.16 | 7.68 \pm 2.70 | 8.73 \pm 2.22 | 7.35 \pm 2.89 | 9.25 \pm 1.20 | 8.44 | 0.88 |
| flowchart | 8.88 \pm 1.67 | 7.44 \pm 2.86 | 8.07 \pm 2.58 | 7.32 \pm 3.01 | 9.13 \pm 1.50 | 8.17 | 0.82 |
| imaginary | 8.94 \pm 1.68 | 7.67 \pm 2.87 | 8.06 \pm 2.71 | 7.17 \pm 2.94 | 9.00 \pm 1.82 | 8.17 | 0.80 |
| pseudocode | 8.89 \pm 1.62 | 7.15 \pm 2.72 | 7.34 \pm 3.00 | 7.22 \pm 2.90 | 9.02 \pm 1.48 | 7.92 | 0.94 |
| step_by_step | 8.66 \pm 1.92 | 7.50 \pm 2.83 | 7.76 \pm 2.75 | 7.57 \pm 2.90 | 8.81 \pm 1.90 | 8.06 | 0.63 |
| comment_obfuscation | 8.79 \pm 2.03 | 7.41 \pm 2.80 | 7.86 \pm 2.88 | 7.02 \pm 3.07 | 8.93 \pm 1.78 | 8.00 | 0.84 |
| comment_enhancement | 9.22 \pm 1.35 | 7.77 \pm 2.74 | 8.36 \pm 2.65 | 7.93 \pm 2.48 | 9.09 \pm 1.71 | 8.47 | 0.66 |
| remove_comments | 9.09 \pm 1.61 | 7.86 \pm 2.54 | 8.27 \pm 2.54 | 7.23 \pm 3.05 | 9.19 \pm 1.42 | 8.32 | 0.83 |
| remove_whitespace | 9.10 \pm 1.43 | 7.87 \pm 2.58 | 8.69 \pm 2.28 | 7.77 \pm 2.85 | 9.33 \pm 1.33 | 8.55 | 0.71 |
| replace_variables | 9.20 \pm 0.95 | 7.47 \pm 2.74 | 8.09 \pm 2.66 | 6.92 \pm 3.09 | 9.07 \pm 1.53 | 8.15 | 0.99 |
| code-ft | 9.14 \pm 1.46 | 7.98 \pm 2.32 | 8.65 \pm 2.36 | 7.61 \pm 2.98 | 9.17 \pm 1.41 | 8.51 | 0.70 |
| mixed-ft | 8.68 \pm 1.94 | 7.46 \pm 2.94 | 7.94 \pm 2.79 | 7.31 \pm 3.08 | 8.75 \pm 2.10 | 8.03 | 0.67 |
| nl-ft | 8.19 \pm 2.43 | 6.58 \pm 2.99 | 6.75 \pm 3.11 | 6.60 \pm 3.15 | 7.84 \pm 2.63 | 7.19 | 0.76 |

Figure 22: Task performance of Qwen3-0.6, 1.7B-Base when mixing different ratio of code data during finetuning. In general higher code percentages improves performance, with math tasks showing large variation.

Figure 23: Task performance under perturbations aggregated by structure vs semantics across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

Figure 24: Task performance under perturbations aggregated by structure vs semantics across Llama-3.2 models (1B (top), 3B (bottom)).

Figure 25: Task performance under perturbations aggregated by structure vs semantics across Gemma-3 models (1B (top), 4B (bottom)).

Figure 26: Additional performance of OLMo-2-0425-1B aggregated by structure vs semantics across tasks.

Figure 27: Task performance under perturbations aggregated by structure vs semantics across SmoLLM2 models (360M (top), 1.7B (bottom)).

1485 Figure 28: Task performance under perturbations aggregated by explicitness of code structure across
1486 Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

1509 Figure 29: Task performance under perturbations aggregated by explicitness of code structure across
1510 Llama-3.2 models (1B (top), 3B (bottom)).

Figure 30: Task performance under perturbations aggregated by explicitness of code structure across Gemma-3 models (1B (top), 4B (bottom)).

Figure 31: Additional performance of OLMo-2-0425-1B aggregated by explicitness of code structure across tasks.

Figure 32: Task performance under perturbations aggregated by explicitness of code structure across SmoILM2 models (360M (top), 1.7B (bottom)).

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 33: Task performance under perturbations aggregated by relative information density across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

Figure 34: Task performance under perturbations aggregated by relative information density across Llama-3.2 models (1B (top), 3B (bottom)).

Figure 35: Task performance under perturbations aggregated by relative information density across Gemma-3 models (1B (top), 4B (bottom)).

Figure 36: Additional performance of OLMo-2-0425-1B aggregated by relative information density across tasks.

Figure 37: Task performance under perturbations aggregated by relative information density across SmoLLM2 models (360M (top), 1.7B (bottom)).

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 40: Task performance under perturbations aggregated by human interpretability across Gemma-3 models (1B (top), 4B (bottom)).

Figure 41: Additional performance of OLMo-2-0425-1B aggregated by human interpretability across tasks.

Figure 42: Task performance under perturbations aggregated by human interpretability across SmolLM2 models (360M (top), 1.7B (bottom)).

Figure 43: All perturbations across Owen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

Figure 44: All perturbations across Llama-3.2 models (1B (top), 3B (bottom)).

Figure 45: All perturbations across Gemma-3 models (1B (top), 4B (bottom)).

Figure 46: OLMo-2-0425-1B with all perturbations.

Figure 47: All perturbations across SmoILM2 models (360M top, 1.7B bottom).

Figure 48: Grouped performance of Qwen-3 family under low-system, intermediate, and high-scripting programming languages.

Figure 49: All programming language specific performance of Qwen-3 family.

Figure 50: Performance for Llama-3.2-1B. (a) Programming language groups, (b) individual languages.

Figure 51: Performance for SmollM2-1.7B. (a) Programming language groups, (b) individual languages.