Under review as a conference paper at ICLR 2026

ON CODE-INDUCED REASONING IN LIL.MS

Anonymous authors
Paper under double-blind review

ABSTRACT

Code data has been shown to enhance the reasoning capabilities of large language
models (LLMs), but it remains unclear which aspects of code are most responsi-
ble. We investigate this question with a systematic, data-centric framework. We
construct parallel instruction datasets in ten programming languages and apply
controlled perturbations that selectively disrupt structural or semantic properties
of code. We then finetune LLMs from five model families and eight scales on
each variant and evaluate their performance on natural language, math, and code
tasks. Across 3,331 experiments, our results show that LLMs are more vulnera-
ble to structural perturbations than semantic ones, particularly on math and code
tasks. Appropriate abstractions like pseudocode and flowcharts can be as effective
as code, while encoding the same information with fewer tokens without adher-
ing to original syntax can often retain or even improve performance. Remarkably,
even corrupted code with misleading signals remains competitive when surface-
level regularities persist. Finally, syntactic styles also shape task-specific gains
with Python favoring natural language reasoning and lower-level languages such
as Java and Rust favoring math. Through our systematic framework, we aim to
provide insight into how different properties of code influence reasoning and in-
form the design of training data for enhancing LLM reasoning capabilities.

1 INTRODUCTION

There has been substantial interest in the last several years in engineering language models that can
tackle challenging reasoning tasks (Huang & Changl[2023)). Language reasoning tasks, such as math
word problems or logic puzzles, tend to require multi-step, structured “thinking” in order to produce
the correct answer. Recent work has found that training the language model on code, either during
pre-training (Fu & Khot, 2022; Ma et al., [2023b) or during post-training (Zhang et al.| 2024b), can
improve its skill at reasoning tasks, even ones that are unrelated to programming. These prior works
have hypothesized that the properties of code data, such as its logical consistency, compositional
structure, and reduced ambiguity compared to natural language, provide effective signals that ben-
efit reasoning. Despite the broad effectiveness of code data in training, we still lack a systematic
understanding of which aspects of code drive these improvements: is it the its syntactic regularity,
structural abstractions, or linguistic styles?

In this work, we aim to provide such an account by systematically investigating which aspects of
code serve as effective training signals. To this end, we construct parallel instruction datasets in both
natural language and code, and further expand the code dataset into language-specific variants by
generating responses in ten widely used programming languages. This design allows us to examine
how structural differences across languages affect downstream reasoning. In addition, we intro-
duce controlled perturbations to the code data to isolate contributing factors: (1) rule-based trans-
formations such as whitespace removal or comment shuffling, and (2) generative transformations
where GPT-40-mini rewrites or reformats the code (e.g., with augmented comments, pseudocode,
or flowcharts). We then fine-tune language models on each dataset variant, and evaluate them across
natural language and general knowledge, math, as well as code understanding and generation tasks.
Our contributions are:

* We introduce a systematic framework to disentangle what aspects of code data improve
reasoning, combining parallel instruction data construction, controlled perturbations, and
large-scale evaluation across five model families and eight scales.

Under review as a conference paper at ICLR 2026

* We design a comprehensive and controlled suite of perturbations spanning rule-based edits
and generative rewritings.

* We provide new insights into the role of code in reasoning to inspire guidance on leveraging
its structural and linguistic properties in future training data design.

2 RELATED WORK

Code data for LLM reasoning Recent work has increasingly demonstrated that incorporating
code data can substantially improve the reasoning abilities of LLMs. Prior studies show that adding
code during pretraining or instruction tuning consistently improves model performance across rea-
soning tasks, domains, model scales and architectures (Ma et al., 2023a; Zhang et al.| 2024a; Yang
et al.| [2025b} [Aryabumi et al., [2024). Several works further explore the synergy between code and
reasoning and highlight how code’s structured and verifiable properties support logical decomposi-
tion and intermediate step generation (Bi et al.; |Yang et al., [2024). This effect has been observed
in multilingual contexts as well, where code-augmented training improves structured reasoning in
under-resourced languages (L1 et al.l |2024). Complementary research focuses on code’s impact
for alignment and reward modeling, where pretraining with code-preference pairs or code-based
intermediate steps can improve model calibration for reasoning-intensive tasks (Yu et al., [2024).
The closest line of research to our work explores stress-testing LLMs with structural and semantic
code perturbations (Lam et al., 2025), which shows that small corruptions can significantly reduce
reasoning performance.

Data impact on LLM performance The performance of LLMs are tied to the vast amounts of
training data, but the quality, composition, and characteristics of this data greatly shape their abili-
ties (Wang et al., 2024 L1 et al.l 2023 |Lee et al.L[2022). For example, extensive analyses by Longpre
et al.| (2024) have shown that pretraining data curation decisions for dataset age, composition, and
content filtering have systematic impact on downstream performance, and that these effects per-
sist even after fine-tuning steps. [Zhang et al.| (2024c) demonstrate that poisoning as little as 0.1%
(and even 0.001%) can produce persistent behavioral changes that survive instruction tuning and
alignment. In addition, Havrilla & Iyer| (2024) showed that LLMs are sensitive to global, accumula-
tive errors in chain-of-thought-structured training data, and that it is critical to filter out documents
containing large amounts of dynamic, global noise during both pretraining and fine-tuning.

3 METHODOLOGY

We design a controlled experimental framework to understand what aspects of code improve rea-
soning in language models. Our methodology consists of three stages: constructing parallel natural
language and code instruction datasets (Section [3.I); applying systematic modifications to code in-
struction data (Section [3.2)); and fine-tuning various language models on each dataset variant and
then conducting evaluation (Section[3.3). An overview of this framework is shown in Figure[l]

3.1 INSTRUCTION DATA GENERATION

We construct two parallel instruction datasets: one in natural language and the other in code,
each containing 120,000 instruction-response pairs. We collect instructions from publicly available
datasets, carefully process and filter them through deduplication and language-agnostic filtering, and
augment the code data in a controlled way. This construction enables a more controlled comparison
of natural- and code-based instruction following under a unified training framework.

Code instructions We aggregate code instructions from Codeforces-CoT (Penedo et al., [2025)),
Code-Instruction-122K (TokenBender, [2024), Evol-Instruct-Code-80k-v1 (nickrosh, 2024), Code-
Instruction (redlxe| 2023), Code-Instruct-Sets (AtlasUnified, 2023, and Code-Instruct-Alpaca-
Vicuna-WizardLM (rombodawg, [2024). We aim to construct instruction data that is high-quality,
diverse, and language-agnostic.

To ensure generality and eliminate redundancy, we first remove all exact-match duplicates across
the datasets. We then filter out instructions that are explicitly programming-language-specific (e.g.,

Under review as a conference paper at ICLR 2026

1. Post-training Data Generation 2. Finetune

Natural Language Instructions (120K) ~
%y} Qwen3 '@

rule-based perturbations 5
ﬁ whitespace removal variable renaming Gemma
keyword replacement = comment swapping u I m o ﬁ
Code Instructions G
(120K)

generative perturbations

modifications code enhancement code obfuscation *
answer seudocode code in imaginary language :
synthesis with GPT4o-mini i aginary languiag 3. Evaluation o=
step-wise solution flowchart in markdown o=
Task suite o=
Java JavaScript C
PHP Python C# NL & general knowledge
TypeScript = C++ single programming language ablations code math

Go Rust

Figure 1: We construct parallel code and natural language instruction datasets, apply targeted mod-
ifications (rule-based and generative-based perturbations, single programming language ablations),
and fine-tune a separate LLM on each modified dataset. We then evaluate the resulting models across
general natural language, code, and math reasoning tasks.

“Translate this code from Python to java”) or whose solutions are inherently tied to particular do-
mains, such as web development or databases (e.g., “webpage”, “website”, “SQL”, “HTML”).

For each instruction, we prompt GPT-40-minﬂ to generate answers in ten widely used programming
languages: Java, JavaScript, PHP, Python, C#, TypeScript, C, C++, Go, and Rust. To create these
variants, we design 20 language specification templates that explicitly request a solution in a given
programming language (Table [d). For every instruction, we randomly select a template, instantiate
it with one of the target languages, and combine it with the general generation instructions to form
a complete prompt (Figure[8). From these generations, we sample 120K instruction—response pairs
with valid outputs, evenly distributed across all ten languages.

Natural language instructions We sample 120K examples from the OpenHermes 2.5 cor-
pus (Teknium| [2023). We exclude instruction-response pairs associated with categories unrelated
to general-purpose instruction following, such as “agent” and “summarization”, as well as those la-
beled “coding” to ensure the dataset is entirely natural language. To maintain linguistic consistency,
we further filter out non-English examples. This filtered natural language subset complements our
code instruction data, enabling a fair comparison between code and natural language instructions.

3.2 SYSTEMATIC PERTURBATION DESIGN

To understand which specific structural and semantic properties are responsible for changes in rea-
soning task performances, we systematically perturb different aspects of the code dataset. We de-
sign the perturbations through two ways: rule-based (deterministic transformations) and generative
(model-generated augmentations). Notably, our perturbation strategies do not alter the number of
examples in the dataset. We illustrate an examples of these perturbations in Table

3.2.1 RULE-BASED PERTURBATIONS

Rule-based perturbations apply deterministic transformations to the code. They are designed to
disrupt superficial patterns or semantic signals that may influence model predictions without altering
the core logic of the code. We describe five such perturbations below:

Whitespace removal All whitespace characters are removed from the code. This tests whether
models rely on formatting heuristics, such as indentation or visual grouping of blocks, as implicit
structural cues, particularly in languages like Python where whitespace is semantically meaningful.

Variable renaming We replace user-defined variables, function names, and class names with canon-
ical placeholders of the form var_i, where ¢ € [0,n) and n is the total number of unique identifiers

'Responses are generated with temperature 0.6 and API-default decoding parameters.

Under review as a conference paper at ICLR 2026

Table 1: An example of perturbations (Section applied to the same original snippet.

Full Original Snippet Type Strategy Original Excerpt Perturbed Excerpt
itespac a . - . oy)
def process string (input_string) : Whitespace Removal ziz\;liois};@;?;ﬁ(result.append (char.lower())
vowels = "aoyeuiAOYEUI" .
result = [] Variable Renaming for char in for var4 in var_l: if var 4
Rule-based not in var.2:

for char in input_string:

if char not in vowels:

result.append(’.’” +
char.lower())

return .join(result)

Read input

input_string = input () .strip(

Process and print the result
print (process_string (input_string))

input_string:

if char not in
vowels:

Keyword
(Nonsense)

Replacement

garply i not in baz

for char in
input_string:

Keyword
(Non-English)

Replacement

para ch en entrada

Comment Swapping (Lo-
cal)

Read input

Walking

Comment
(Global)

Swapping # Process and print

the result

// Queue for processing
nodes

Comment Removal # Read input

/+ all comments removed x/

Generative

Pseudocode for char in
input_string: if

char not in vowels

FOR EACH character IF not vowel THEN
append .’ +lowercase

result.append(’.’ +
char.lower())

Step-by-Step

Append . before consonants and convert
to lowercase

Flowchart if char not in

vowels:

[Read char] =+ {Vowel?} =
[Append ' .’ +lower]

Code in Imaginary Lan-
guage

result.append(’.’ +
char.lower())

glorfadd . & lower(chr)

Comment Enhancement # Process and print

the result

Removes vowels and prefixes consonants
with *.

Comment Obfuscation # Read input

WARNING: Code may summon aliens;

TODO: handle quantum vowels

in the code snippet. This removes semantic cues conveyed by meaningful identifier names (e.g.,
counter, isSorted).

Programming language keyword replacement For each of the ten programming languages in
our dataset, we identify its reserved keywords (e.g., 1f, return, def in Python) and substitute
all occurrences of them using two strategies. The first replaces keywords with nonsense tokens
(e.g., foo, quux), which have no semantic meaning in any language. In the second strategy, we
use non-English but valid words (e.g., amigo, fleur), which are real words in various languages but
semantically unrelated to the programming context. These perturbations aim to challenge models’
reliance on syntactic and semantic cues from familiar language constructs.

Comment removal We remove all inline and block comments from each code snippet. Code com-
ments often provide useful semantic signals for program comprehension (Buse & Weimer, 2009
De Souza et al., 2005). This perturbation tests whether models largely leverage such auxiliary
natural-language cues.

Comment swapping We introduce local and global swapping that misplace code comments to dis-
rupt the semantic alignment between code and documentation. In local swapping, comments within
a snippet are randomly reordered, preserving their content but misaligning them with the relevant
code segments. In global swapping, we first collect a global pool of comments from the entire
dataset. Then, for each comment in a snippet, we replace it with a randomly sampled comment from
this pool. This results in documentation that is entirely mismatched to the surrounding code.

3.2.2 GENERATIVE PERTURBATIONS

We create generative perturbations by prompting GPT—40—minﬂ to produce alternative versions of
code responses generated according to Section[3.1] These rewrites preserve the original intent of the
code while introducing more diverse variations beyond what rule-based edits can achieve, allowing
us to test model sensitivity and robustness to semantically equivalent inputs expressed in different
forms. The full set of prompts used is available in Appendix

Comment enhancement We prompt GPT-40-mini to regenerate the code with high-quality docu-
mentation and inline comments (Figure [9). The prompt emphasizes two forms of annotation: (1)
comprehensive documentation comments for all functions, classes, and key code blocks to describe
their purpose, parameters, return values, and assumptions; and (2) informative inline comments

>We use temperature of 0.6 and default settings.

Under review as a conference paper at ICLR 2026

that clarify complex or non-obvious logic. These annotations follow the conventions of the target
programming language (e.g., Python docstrings, JavaDoc). Unlike the often sparse comments in un-
perturbed data, the enhanced versions provide consistent, high-quality annotations, which enables
us to test the effect of documentation quality on model performance.

Comment obfuscation Here, we generate deliberately misleading, irrelevant, or nonsensical com-
ments, while preserving the code’s functionality (Figure[I0). These include (1) inaccurate, off-topic,
or absurd documentation (e.g., references to astrology, cooking, or fictitious technologies) and (2)
chaotic inline comments that contradict the code’s functionality, reference imaginary bugs or fea-
tures, and use distracting styles such as ALL-CAPS, emojis, and fabricated jargon. This perturbation
tests model robustness to extreme noise and deceptive annotations.

Pseudocode We convert code into high-level pseudocode while preserving its logical structure (Fig-
ure [[I). The model is instructed to replace language-specific syntax with pseudocode constructs
(e.g., IF...THEN...ENDIF, FOR EACH, etc.), remove low-level implementation details (e.g.,
type declarations or library calls), and maintain the original control flow and indentation. This per-
turbation evaluates whether models can reason over algorithmic intent without relying on concrete
syntax, which offers insight into generalization across abstraction layers in code representation.

Flowchart in Markdown We generate a control flow diagram using Mermaid syntax in Markdown
for a given code snippet (Figure [[2). The diagram captures all major control structures, such as
loops, branches, function calls, and return points, using minimal but descriptive labels. This trans-
formation renders executable code as a graphical abstraction, allowing us to understand whether
models can reason over symbolic control flow and align it with underlying program semantics.

Step-by-step solution We rewrite code as a numbered list of natural language steps (Figure [13).
Each step preserves the program’s logic and execution order but uses declarative, language-agnostic
phrasing (e.g., “Define a function named...”, “Check if the input is valid”). Unlike pseudocode or
flowchart formats, this version entirely removes code or symbolic notation and instead emphasizes
procedural understanding in purely narrative form.

Code in imaginary language We translate real code into a fictional language that preserves structure
and control flow but replaces all syntax and identifiers with invented tokens (Figure [I4). The result
is semantically consistent yet entirely ungrounded in real languages. This perturbation allows us to
examine whether models rely on surface-form familiarity (e.g., recognizing logical patterns.

3.3 MODEL TRAINING AND EVALUATION

We train a suite of decoder-only LLMs using supervised fine-tuning (SFT) on our instruc-
tion-response datasets detailed in Section [3.1] along with their perturbed variants described in Sec-
tion 3.2] To assess the effect of language-specific patterns, we additionally finetune models on
subsets of the code data restricted to a single programming language. This allows us to examine
how the syntactical diversity of programming languages influences reasoning performance. Each
instruction—response pair is treated as a single input—output sequence, and models are trained to
autoregressively predict the response tokens conditioned on the instruction and prior context. All
models are fine-tuned from the same pre-trained backbone under supervised fine-tuning (SFT) ob-

jective to ensure comparability across experimental conditions. Let z = (x1,a,...,Z;,) be the

instruction tokens and y = (y1,y2, . - ., Yn) be the response tokens. The SFT objective is defined as:
n

Lser = —) log Po(y: | #,y<t) (1)

t=1

where Py denotes the model’s conditional probability distribution parameterized by 6, and y; rep-
resents the prefix of the response up to position ¢ — 1.

Models We choose a diverse set of pre- and post-trained language models ranging from 0.6B to
8B parameters. Specifically, we experiment with models from five major families: Qwen3 (Yang
et al., [2025a), LLaMA-3 (Grattafiori et al., 2024), Gemma3 (Team et al., 2025), OLMo2 (OLMo
et al.| [2024), and SmolLM2 (Allal et al.| 2025)). For each model family, we select representative
sizes (e.g., <1B, ~1B, ~3-4B, ~7—8Bto evaluate performance across different scales.

3Due to resource constraint, the larges model we could finetune is 8B.

Under review as a conference paper at ICLR 2026

Training data configurations Our base training set consists of 120K instruction-response pairs
spanning both code and natural language formats detailed in Section From this, we construct
several configurations: (1) 100% code-only, (2) 100% natural language-only, and (3) mixed data
with varying code-to-language ratios. In addition, we train models on each perturbed variant intro-
duced in Section[3.2] Finally, we include programming-language-specific subsets, training separate
models on data from each of the ten languages (~12K examples per language) to assess the effect
of language specialization. The implementation details are in Section[A.3]

Evaluation tasks We evaluate model performance across three categories: natural language and
general knowledge, math, and code (Table .

For natural language and general knowledge, we evaluate across commonsense reasoning, science
and textbook-style QA, logical reasoning, and instruction-following. All tasks are evaluated us-
ing accuracy. For math, we include both elementary and advanced problem-solving datasets (e.g.,
GSMB8K, HRMS8K), as well as arithmetic and math-related subsets of MMLU. Open-ended tasks
(GSMB8K, HRMB8K) use exact match, while arithmetic and MMLU (math) are scored with accuracy.

For code, we evaluate both code understanding and generation. Based on preliminary experi-
ments, we adopt the LLM-as-Judge paradigm (Gu et al.| 2025) instead of execution-based evalu-
ation (Huang et al.| [2022). Our relatively small, perturbed models often fail to produce fully exe-
cutable code, making execution-based metrics unreliable. More importantly, our goal is to assess
code quality and reasoning under perturbations, not just execution success.

Thus, we prompt GPT-4o-mini to first generate an instance-specific rubric on a 1-10 Likert scale
given the original instruction, which is expected to capture nuanced quality variation across outputs.
The same model is then prompted as a judge to provide a brief reasoning step (“thought”) and
assign a score based on that rubric. Examples of the rubric-generation prompt and judging prompt
are shown in Appendix [A.4] (Figures[I5]and [16).

4 RESULTS AND DISCUSSION

RQ1: Does incorporating code in finetuning improve task performance? First, we validate
prior findings that finetuning on code data can enhance downstream reasoning. Following the train-
ing setup in Section[3.3] we compare performance across four settings: zero-shot, full code finetun-
ing (“code-ft”), full natural language finetuning (“nl-ft”), and mixed data finetuning with equal pro-
portions of code and natural language instructions (“mixed-ft”). Across model families and scales,
code-ft and mixed-ft generally achieve leading or competitive performance across tasks (Figure [2]
and Figures|[l7H21), with the trend particularly consistent on code generation. Overall, across the 14
model bases, either code-ft or mixed-ft achieves the best performance on 64% of natural language
tasks, 86% of math and code understanding tasks, and all code generation tasks. Motivated by this,
we further examine the effect of varying the proportion of code in mixed finetuning (Figure 22)). We
find that higher fractions of code data generally improve performance across most tasks, with math
tasks most sensitive to mixture ratios.

NL & General

Math

Code Understanding

Code Generation

0.552

0.536

0.53 ‘

0.531 0.531

0.745
1

0.661
I

0.584

0.553

0.621

0.570

0.545
0.529

8.454
1

7.576
L

2033 6.943

(,odej‘ e

m'*edﬁiem Bl

R ek
3e o
0 e 2

o0 anot

coﬁe'“ 1ex0 S“O‘mmed'“ e

B

Figure 2: Performance (with stderr bars) of Qwen3-4B-Base across zero-shot, full code finetuning
(code-ft), full natural language finetuning (nl-ft), and 50-50 code to NL data ratio finetuning (mixed
ft). Incorporating code improves performance across tasks.

RQ2: How do our systematic perturbations affect performance?

Under review as a conference paper at ICLR 2026

BB Structure-perturbations MMl Semantics-perturbations unperturbed-code
NL & General Math Code Understanding Code Generation
95

9.0

85 8.203

0.592 7.975

0.570

Figure 3: Aggregated performance (with stderr bars) under structural perturbations (e.g. removing
whitespace) vs. semantics perturbations (e.g. modifying the comments) of Qwen3-4B-Base. Se-
mantic perturbations tend to be more harmful to performance than semantic ones.

- b e brok - W Graphical bstraction

NL & General Math Code L i Code Generation

0.652 0-659 2.0
5.343 5448 8.393
85 8:140

0.579 0.579 0.577 (. 0.642

0682 7.972]

Figure 4: Aggregated performance (with stderr bars) under levels of explicitness of code structure
(less explicit going from runnable code to NL procedure) of Qwen3-8B-Base. Certain algorithmic
and graphical abstractions benefit reasoning.

Section Findings

* Structural perturbations hurt more than semantic ones, especially for math and code.

* Appropriate abstractions such as pseudocode and flowcharts can substitute for explicit code
structure in reasoning.

* Models don’t need verbose code: reduced-token variants perform well as long as core
information is preserved.

* LLMs can reason effectively from corrupted code by exploiting surface-level regularities.

Next, we analyze task performance under the perturbations introduced in Section[3.2] Based on the
properties of each perturbation, we group them into distinct analysis axes that allow us to systemati-
cally probe their effects. The grouping details are in Table[3] We illustrate performance of individual
perturbations in Appendix [A.5.6

Structural vs. Semantics Perturbations. We define structural perturbations as edits that alter
the syntactic scaffolding or formatting of code (e.g., whitespace removal, pseudocode, flowcharts),
while semantic perturbations modify meaning-bearing tokens such as identifiers, keywords, or com-
ments without disrupting the underlying structure. Across model families and scales (Figures [23]—
[27), nearly all perturbations reduce performance compared to the unperturbed code-fineturned base-

- duced-density mmm Moderate-reduced-d B Nearbaseline-density B Inci d-densit ode

NL & General

0.550
0.525
0.406 0.405 401 0500
0.475
0.450
0.425

0.400

0375

Figure 5: Aggregated performance (with stderr bars) of Qwen3-0.6B-Base with various of token
counts wrt to unperturbed code. Reductions can perform comparable or even better than the baseline.

Under review as a conference paper at ICLR 2026

High-interpretability ~ S Medium-interpretability — BEE Low-interpretability unperturbed-code

NL & General Math Code L Code

0.650
0.625

0.600
o

0.649

S 0.575
a
0.550
0.525

0.500

Figure 6: Aggregated performance of Qwen3-8B-Base (with stderr bars), depending on how much
the perturbed code data is readable to humans. Low-interpretability with misleading signals can
match or perform better than other configurations.

line. More importantly, structural perturbations consistently degrade performance more severely
than semantic ones, especially for math and code tasks (e.g., Figure[3)). The discrepancy is more ev-
ident as models scale up (e.g., Figure 23). This resembles prior work that reasoning structure rather
than content is more critical to the learning process (Li et al., [2025). We hypothesize that tasks such
as math and code rely more heavily on formatting and layout cues to shape reasoning.

Explicitness of Code Structure. Building on the importance of structure, we examine perturba-
tions along a spectrum of how explicitly they preserve code structure: from runnable or code-like
forms, through intermediate abstractions such as pseudocode and flowcharts, to natural language
step-by-step procedures. For code generation, where executable outputs are required, it is natural
that perturbations that preserve explicit code structure, whether runnable or not, lead to the best
performance. For other tasks, however, certain abstractions such as pseudocode or flowcharts often
match or even surpass unperturbed code, as they highlight algorithmic structure while removing
superficial syntax. By contrast, the most implicit form, natural language procedures, provides little
advantage and generally performs worst across tasks (e.g. Figure] Figures 28H32).

Relative Information Density. Because our constructed instruction datasets are parallel, the amount
of information they convey about the code is comparable across perturbations. We define relative
information density as (number of tokens in perturbed dataset) + (number of tokens in the original
code-ft dataset), which reflects how compactly the same content is represented. Perturbations differ
in how they adjust density: some produce highly compact forms that strip away most tokens but
preserve the algorithmic skeleton (e.g., flowcharts, pseudocode), others moderately reduce density
by removing comments or using imaginary languages, while others preserve or even increase density
through verbose variable renamings or enriched documentation. We find that strong or moderate
reductions in density often perform close to, and sometimes better than, the baseline (e.g. Figure[5]
Figures|33H37). However, this advantage doesn’t extend to code generation, where preserving richer
surface detail is important. In addition, smaller models are more sensitive to density differences,
whereas larger models remain robust. Overall, this suggests that the benefit of code for reasoning
doesn’t lie in its verbosity but but in the efficiency with which essential information is preserved.

Human Interpretability. We also examine perturbations through the lens of human readability:
high-interpretability (enriched explanations and visual scaffolds), medium (local edits leaving most
code intact), and low (obscured readability or misleading signals). Interestingly, low-iterpretability
variants, despite adding noise or distortion, often do not degrade performance too much from the
unperturbed baseline, and often match or even surpass medium-interpretability ones (e.g. Figure|[6]
Figures 38H42). This counterintuitive trend suggests that the models could exploit surface-level
regularities and recurring structural cues that persist even in noisy or opaque forms.

RQ3: How does performance vary across programming languages?

| Section Findings

* Lower-level languages benefit math tasks.
* Python aligns best with NL tasks, while Java and Rust often rank among the top for math.

Under review as a conference paper at ICLR 2026

-+ full-code-ft zero-shot

NL & General Math Code Understanding Code Generation
p.621 0.621 0535
0.47 ‘{ 062 P8 § 0.615
D.463
0.461 0.46(0.60 0530.528 85B.349
0.46 " i A’I ‘I F] : 'l 8‘2[71
s 0.58 0.525 0.522 80
- 056 0520 L 0.5119
044 054 75
0515
0.52
0.43 050 0.510 7.0
qate A0 S\ 0 JIEAC) ke jake JURCLICY e e Lotn0 jiate
ediat Ao cxe e Apt edid edid Apt B B Apt e
e ™ s g oY Vo T gn 5 e e g s yow Y 1N 7 g s e ™

NL & General Math

1062
0.62
0.62

0.622

JavaScript 5% 0.622

0.622

cpp Jis-0-619

0.617

0.616

o614

0.41 0.42 043 0.44 0.45 0.46 0.47 0.48 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Code Generation

8.437

8.434

8.401

~ 8392

8.340
. 8.328
8.249
8.244

. 8.201

- 8.168

65 7.0 75 8.0 85 9.0

Figure 7: Performance (with stderr bars) of Qwen3-1.7B. Top.: grouped by abstraction level (low-
system, intermediate, high-scripting). Low-system and intermediate languages outperform on math.
Bottom: individual programming languages. Python aligns best with NL, Rust leads on math.

The strong impact of structure in RQ2 motivates the question of whether syntactic regularities in
programming languages also influence model performance. To explore this, we group the ten pro-
gramming languages into high-scripting (Python, PHP, JavaScript, TypeScript), intermediate (Java,
C#), and low-system (C, C++, Rust, Go) according to their abstraction level. Overall, differences
across groups are small. On NL and code tasks, the impact of language groups is largely model-
dependent. However, on math tasks, high-scripting languages consistently underperform relative to
intermediate and low-system ones (e.g. top Figure[7] Figures @8H{5Ta). We hypothesize that richer
structural detail in lower-level languages provides beneficial signals for mathematical reasoning. For
code generation, finetuning on any single language improves over zeroshot but lags behind full code
finetuning, which suggests the benefit of multi-language diversity for code generation.

At the individual language level (e.g. bottom Figure [7} Figures @9H5TD)), across models, Python
often leads on NL tasks, probably due to its surface form being closer to natural language. Aligning
with the group-level results, lower-level languages such as Java and Rust often rank among the top
for math. For code tasks that span multiple languages, results are more mixed, with no clear leaders,
and performance gaps remain relatively small.

5 CONCLUSION

In this work, we aim to understand what aspects of code enhance reasoning in LLMs and which
aspects matter most. Through 3,331 finetuning experiments spanning five model families, eight
scales, ten programming languages, and a suite of systematic perturbations, we arrive at four central
conclusions. First, structural properties of code are critical: disrupting them leads to consistent per-
formance drops, especially on math and code tasks. Second, appropriate abstractions and efficient
encodings can be just as effective as raw code. Moreover, models remain surprisingly robust even to
corrupted or low-interpretability code, exploiting statistical regularities that persist despite surface
distortions. Finally, lower-level programming languages provide more benefits for math tasks. To-
gether, we want to provide a more precise account of how code supports reasoning and point toward
practical design principles for constructing effective training data beyond executable programs.

Under review as a conference paper at ICLR 2026

6 LIMITATIONS

Our study focuses on small- to mid-scale base models due to resource constraints. Future work
could extend our framework to larger models. Our perturbations, although diverse, may still not
cover enough and leave out other factors like code complexity and data diversity. Finally, although
we evaluate across a broad suite of reasoning tasks, our benchmarks still capture only part of the
reasoning spectrum, and future work could extend the analysis to additional domains.

7 REPRODUCIBILITY STATEMENT

We provide extensive details throughout the paper and supplementary materials. Section de-
scribes the construction and processing of both the code and natural language datasets. Section[A.J]
outlines model training and implementation details. Appendix [A.4] includes all prompts used for
data generation, perturbations, and LLM-as-Judge evaluation.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek, Agustin Piqueres Lajarin, Vaibhav Srivastav,
et al. Smollm2: When smol goes big—data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, [van Zhang, Acyr F. Locatelli, Marzieh
Fadaee, A. Ustun, and Sara Hooker. To code, or not to code? exploring impact of code in pre-
training. ArXiv, abs/2408.10914, 2024. URL https://api.semanticscholar.org/
CorpusID:271909530.

AtlasUnified. Code-instruct-sets. https://huggingface.co/datasets/
AtlasUnified/Code—Instruct-Sets) 2023.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When do
program-of-thought works for reasoning? AAAI 2025.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Raymond PL Buse and Westley R Weimer. Learning a metric for code readability. /IEEE Transac-
tions on software engineering, 36(4):546-558, 2009.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Sergio Cozzetti B De Souza, Nicolas Anquetil, and Kithia M De Oliveira. A study of the docu-
mentation essential to software maintenance. In Proceedings of the 23rd annual international
conference on Design of communication: documenting & designing for pervasive information,
pp. 68-75, 2005.

10

https://api.semanticscholar.org/CorpusID:271909530
https://api.semanticscholar.org/CorpusID:271909530
https://huggingface.co/datasets/AtlasUnified/Code-Instruct-Sets
https://huggingface.co/datasets/AtlasUnified/Code-Instruct-Sets
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Hao Fu, Yao; Peng and Tushar Khot. How does gpt obtain its ability? tracing emergent abilities of
language models to their sources. Yao Fu’s Notion, Dec 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/
2411.15594.

Alex Havrilla and Maia Iyer. Understanding the effect of noise in llm training data with algorithmic
chains of thought, 2024. URL https://arxiv.org/abs/2402.04004,

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.orqg/abs/2009.03300.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049-1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings—acl.67/.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jeevana Priya Inala, Colin
Clement, Nan Duan, and Jianfeng Gao. Execution-based evaluation for data science code gener-
ation models. arXiv preprint arXiv:2211.09374, 2022.

Hyunwoo Ko, Guijin Son, and Dasol Choi. Understand, solve and translate: Bridging the multilin-
gual mathematical reasoning gap, 2025. URL https://arxiv.org/abs/2501.02448,

Man Ho Lam, Chaozheng Wang, Jen-Tse Huang, and Michael R Lyu. CodeCrash: Stress testing
LLM reasoning under structural and semantic perturbations. arXiv [cs.AI], April 2025.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
URLhttps://arxiv.org/abs/2107.06499.

Bryan Li, Tamer Alkhouli, Daniele Bonadiman, Nikolaos Pappas, and Saab Mansour. Eliciting
better multilingual structured reasoning from LLMs through code. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5154-5169, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.281. URL
https://aclanthology.org/2024.acl-1long.281/.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demon-
strations structure, not content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa:
A challenge dataset for machine reading comprehension with logical reasoning, 2020. URL
https://arxiv.org/abs/2007.08124.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of

11

https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2023.findings-acl.67/
https://arxiv.org/abs/2501.02448
https://arxiv.org/abs/2107.06499
https://aclanthology.org/2024.acl-long.281/
https://arxiv.org/abs/2007.08124

Under review as a conference paper at ICLR 2026

the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pp. 3245-3276, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.179. URL
https://aclanthology.org/2024.naacl-1long.179/.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. At
which training stage does code data help LLMs reasoning? arXiv [cs.CL], September 2023a.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li.
At which training stage does code data help llms reasoning? arXiv preprint arXiv:2309.16298,
2023b.

Dung Nguyen Manh, Thang Phan Chau, Nam Le Hai, Thong T Doan, Nam V Nguyen, Quang
Pham, and Nghi DQ Bui. Codemmlu: A multi-task benchmark for assessing code understanding
capabilities of codellms. arXiv preprint arXiv:2410.01999v1, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.027809.

nickrosh. Evol-instruct-code-80k-v1. https://huggingface.co/datasets/nickrosh/
Evol-Instruct-Code-80k-v1,2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Lean-
dro von Werra. Codeforces cots. https://huggingface.co/datasets/open—-rl/
codeforces—cots) 2025.

redlxe. code_instructions. https://huggingface.co/datasets/redlxe/code_
instructions, 2023.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551-564, 2021.

rombodawg. code_instruct_alpaca_vicuna_wizardlm_56k_backup. https://huggingface.
co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm 56k_
backup, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants. https:
//huggingface.co/datasets/teknium/OpenHermes—2.5, 2023. Accessed via
Hugging Face Datasets.

TokenBender. code_instructions_122k alpaca_style. https://huggingface.co/
datasets/TokenBender/code_instructions_122k_alpaca_style, 2024.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey on data selection
for 1lm instruction tuning. arXiv preprint arXiv:2402.05123, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng,
Xin Qian, Grey Yang, Jiebo Luo, and Julian McAuley. Code to think, think to code: A survey
on code-enhanced reasoning and reasoning-driven code intelligence in LLMs. arXiv [cs.CL],
February 2025b.

12

https://aclanthology.org/2024.naacl-long.179/
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/red1xe/code_instructions
https://huggingface.co/datasets/red1xe/code_instructions
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup
https://huggingface.co/datasets/rombodawg/code_instruct_alpaca_vicuna_wizardlm_56k_backup
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style
https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style

Under review as a conference paper at ICLR 2026

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If LLM is the wizard, then code is the
wand: A survey on how code empowers large language models to serve as intelligent agents.
arXiv [cs.CL], January 2024.

Huimu Yu, Xing Wu, Haotian Xu, Debing Zhang, and Songlin Hu. CodePMP: Scalable preference
model pretraining for large language model reasoning. arXiv [cs.AI], October 2024.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
models reasoning. arXiv [cs.Al], May 2024a.

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
models reasoning, 2024b. URL https://arxiv.org/abs/2405.20535,

Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini,
Florian Tramer, and Daphne Ippolito. Persistent pre-training poisoning of 1lms, 2024c. URL
https://arxiv.org/abs/2410.13722.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5673-5684, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372|

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911l

A APPENDIX

A.1 EVALUATION SUITE DETAILS
See Table[2

Table 2: Evaluation suite spanning natural language and general knowledge, math, and code tasks.

Task Type Topic Benchmarks Metric
Commonsense PIQA (Bisk et al.|[2019)
Natural Language ARC-Easy (Clark et al.|[2018)
; . ARC-Challenge (Clark et al.|[2018) Accuracy
ﬁ Ge‘;eg” Science / Textbook 0 BookQA (Mihaylov et al.| 2018)
nowledge MMLU (non-math) (Hendrycks et al.| 2021)
Logic-Heavy LogiQA (Liu et al.|[2020)
Instruction Following IFEval (Zhou et al.|[2023) Prompt-level Ac-
curacy
GSMB8K (Cobbe et al.,|2021)
- HRMSK (Ko et al.|[2025) Exact Match
Math
B Arithmetic (Brown et al.}[2020) Aceurac
MMLU (math) (Hendrycks et al.| 2021) y
Code Code Understanding ~ CodeMMLU (Manh et al.|[2024) Accuracy
Code Generation HumanEvalX (Zheng et al.|[2023) LLM-as-Judge

13

https://arxiv.org/abs/2405.20535
https://arxiv.org/abs/2410.13722
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Under review as a conference paper at ICLR 2026

Table 3: Categorization of perturbations across four analysis axes: structural vs. semantic (S/S)
perturbations, explicitness of code structure (ECS), relative information density (RID), and human
interpretability (HI).

Perturbation S/S Perturbations ECS RID HI
Whitespace removal Broken syntax ~ Moderate-reduced = Medium
Pseudocode Algorithmic Strong-reduced High
Imaginary Structural Broken syntax ~ Moderate-reduced Low
Step-by-step NL procedure =~ Moderate-reduced High
Flowchart Graphical Strong-reduced High
Comment removal Runnable Moderate-reduced Medium
Variable renaming Runnable Increased Medium
Keyword repl. (nonsense) Broken syntax Increased Low
Keyword repl. (non-Eng.) Semantic Broken syntax Increased Low
Comment swap (global) Runnable Near-baseline Low
Comment swap (local) Runnable Near-baseline Low
Comment enhancement Runnable Increased High
Comment obfuscation Runnable Increased Low

Table 4: Language specification templates with placeholders that can be instantiated with different
programming languages.

Generate the code in {language}. Provide code in {language}. Write the code in {language}.
Build the code using {language}. Create the code using {language}. Draft the code in {language}.
Produce a code snippet in {language}. Develop the code using {language}. Generate a solution in {language}.
Create a script in {language}. Implement the code in {language}. Design the code in {language}.
Construct the code using {language}. Format the code in {language}. Write a program in {language}.
Prepare a code snippet in {language}. Write a function in {language}. Deliver the code in {language}.

A.2 CATEGORIZATION OF PERTURBATIONS FOR RQ2 ANALYSIS

See Table[3

A.3 IMPLEMENTATION DETAILS

We train all models under identical hyperparameter settings to ensure a fair comparison across model
sizes and data configurations. All experiments are conducted using full finetuning in BF 16 precision
with a maximum sequence length of 2048 tokens. We run all experiments on 4xA100 80G node.
Models are trained for 2 epochs with a cumulative batch size of 64 for most experiments, except for
language-specific settings, where the batch size is reduced to 32. The learning rate is fixed at 1le—5
and follows a cosine decay schedule with a warmup ratio of 0.1. For memory-efficient parallelism
and distributed training, we use DeepSpeed ZeRO Stage 3 (Ren et al.|[2021)). All models are trained
using the LLaMA-Factory framework (Zheng et al.,|2024). All other parameters and configurations
follow the default setting unless otherwise specified.

A.4 PROMPTS
Standard generation prompt We provide the standard prompt to generate code for a given in-

struction in a specific language in Figure[§] , where the instruction can be instantiated using one of
the templates in Table[d]

Comment enhancement prompt The prompt to enhance the quality and readability of a given
code snippet by adding detailed documentation is shown in Figure[9]

14

Under review as a conference paper at ICLR 2026

Code Instruction Data Generation Prompt

You are tasked with generating code based on a specified programming language and instruction. Your goal is to generate code that follows
the syntax and semantics of the specified language. If the instruction is invalid (e.g., contradicts the language’s rules or references functions or
constructs from a different language), you must strictly respond with “invalid.””

Guidelines: - Valid Code: - The generated code must be syntactically and semantically correct according to the specified language. - The code should
follow standard conventions and best practices for the given language. - Do not provide any explanation for valid code — only output the code itself.

- Invalid Instruction: - If the instruction references constructs, functions, or syntax not supported by the specified language, respond with “’invalid”*.
- Do not attempt to correct the invalid instruction — just respond with “’invalid”*. - Do not provide a reason or explanation for why the instruction is
invalid.

Examples:

Example 1:

Instruction: ”Write a function to convert a list to a set.”

Language: Python

Response:

def list_to_set (input_list):
return set (input_list)

Example 2:

Instruction: “Create a class with a method that prints "Hello” using console.log().
Language: Python

Response: invalid

Example 3:

Instruction: “’List all files, including hidden ones, in the current directory.”
Language: Shell

Response: Is -a

Example 4:

Instruction: “Define a function using *def” that returns the length of a string.”
Language: JavaScript

Response: invalid

Instruction:
If the instruction is valid, output the code directly (no explanations).
If the instruction is invalid, respond with “invalid” (no explanation).

Input: Instruction: {instruction}
Language: {language}

Output:

{{response} }
N /

Figure 8: Code instruction data generation prompt. The task is to generate valid code or respond
with “invalid” for unsupported instructions.

Comment Enhancement Prompt

You are tasked with enhancing the response to the given code instruction by adding ingful and d i The goal is to
improve the code’s readability, maintainability, and clarity across any programming language, without altering its original logic or structure.

Your modifications must include:

1. Documentation Comments: - Add clear, technically accurate, and concise documentation for every function, method, class, and major code block.
- Describe the purpose, all parameters (with correct types and usage), return values, and any assumptions or notes relevant to correct usage. - Use the
standard documentation format appropriate for the programming language (e.g., Python docstrings, JavaDoc for Java, Doxygen for C/C++).

2. Inline Comments: - Insert informative and contextually helpful inline comments near complex, unintuitive, or important operations. - Focus on
explaining logic, control flow, edge-case handling, design decisions, or dependencies. - Avoid redundant, obvious, or overly literal comments (e.g., avoid
"i=0//setito0”).

Guidelines:

- Do not change the logic, structure, or behavior of the original code. - Do not introduce new functionality, abstractions, or formatting changes. - Keep
comments strictly technical, relevant, and useful—avoid verbosity or informal tone. - Do not include any meta-comments or explanatory notes about what
was changed (e.g., no "This version adds comments™ or similar). - Apply these modifications only to the code portion of the original response. Leave any
non-code parts completely unmodified. - Ensure all comments follow the style conventions of the language in use.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response}

Output: {{updated response} }

_ J

Figure 9: Comment enhancement prompt. The task is to improve code clarity through meaningful
comments while preserving original functionality.

Comment obfuscation prompt The prompt used to generate obfuscated versions of code from a
given instruction is presented in Figure[T0]

Pseudo generation prompt We illustrate the prompt designed to produce pseudocode for a given
instruction in Figure[TT]

15

Under review as a conference paper at ICLR 2026

Comment Obfuscation Prompt

You are tasked with modifying the response to the given code instruction in a way that significantly degrades its quality and clarity. Your goal is to
make the code as confusing, unhelpful, and misleading as possible through the use of deliberately bad, distracting, and nonsensical comments—without
altering the actual logic or functionality of the code.

Your modifications must include:

1. Severely Misleading or Irrelevant Documentation Comments: - Add documentation to every function, class, and major code block that includes
wildly inaccurate descriptions, unrelated facts, inside jokes, cryptic advice, or philosophical ramblings. - Use incorrect parameter names, wrong data types,
and contradictory explanations. - Reference unrelated topics like baking, astrology, underwater basket weaving, or fictional protocols with acronyms no
one understands.

2. Chaotic Inline Comments: - Insert inline comments that blatantly contradict the actual functionality of the code. - Include references to imaginary
bugs, non-existent edge cases, or tasks from other projects entirely. - Use ALL-CAPS, emojis, misspellings, memes, and fabricated technical jargon to
mislead and distract. - Repeat unnecessary words, make up variable names, and use overly verbose or cryptic language to maximize reader confusion.
Guidelines:

- Do not modify the actual logic, syntax, or structure of the code — only the comments must be altered. - All comments must remain syntactically
valid for the language (e.g., use # for Python, // for JavaScript, etc.) so the code can still execute normally. - Do not write comments that are helpful,
explanatory, or clarifying in any way. Remove any useful comments that were originally present. - Do not include any reflective or meta statements about
the task (e.g., no “'this version degrades the comments™). - Only modify the code portion of the original response—Ileave non-code text unchanged.

This task is language-agnostic and applies to any of the following: Python, Java, C++, JavaScript, PHP, TypeScript, Go, Rust, C#, Ruby, Swift, Kotlin,
Scala, and Shell.

Input: Instruction: {instruction} Original Response: {response }

Output: {{updated response} }

J

Figure 10: Comment obfuscation prompt. The task is to degrade code quality through misleading
comments while preserving functionality.

Pseudocode Conversion Pr:

pt

You are tasked with converting a given code response into pseudocode that mirrors the structure and semantics of the original code, while
preserving the idiomatic style of the original programming language.

Your modifications must include:

1. Pseudocode Style: - Replace exact syntax with I pecific pseudocode constructs (e.g., use IF ... THEN ... ENDIF for condi-
tionals, FOR EACH or WHILE for loops). - Remove implementation details such as variable declarations with types, precise syntax, or specific library
calls—replace them with clear, high-level descriptions.

2. Structure Preservation: - Maintain the overall control flow and indentation of the original code. - Use meaningful, readable names that reflect
their purpose in the code. - Ensure each function, class, or logical block is represented clearly in pseudocode format.

3. Fidelity to Language Idioms: - Adapt the pseudocode to reflect the spirit and conventions of the original language (e.g., Python’s indentation style,
Java’s block structure, C++-like modularity).

Guidelines:

- Do not alter the logic, structure, or order of operations. - Do not include actual code syntax (e.g., semicolons, colons, type annotations, brackets). -

Do not add ts, ex or headings outside the code block. - Output only the converted pseudocode. - Preserve formatting and indentation
faithfully.

Input: Instruction: {instruction} Original Response: {response }

Output:

{ {pseudocode}}

N /

Figure 11: Pseudocode conversion prompt. The task is to translate real code into structured pseu-
docode while preserving logic and idiomatic style.

Flowchart generation prompt The prompt for generating a flowchart-style representation of an
instruction is provided in Figure [I2}

Step-by-step implementation guide generation prompt The prompt used to create a sequential
step-by-step implementation guide for an instruction is shown in Figure[[3]

Imaginary language code generation We paragraph the prompt for generating code in an imagi-
nary programming language in Figure

LLM-as-Judge Evaluation We use the prompt shown in Figure [T3]to generate instance-specific
rubrics for LLM-as-judge evaluation on the code generation task. The prompt to evaluate model
response is shown in the Figure[T6]

A.5 EXTENDED RESULTS

A.5.1 TASK PERFORMANCE SHOWCASING CODE DATA IMPACT IN FINETUNING (RQ1)

Qwen3 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure

16

Under review as a conference paper at ICLR 2026

Flowchart Generation Prompt

You are tasked with generating a flow diagram in Markdown format that visualizes the control flow of the given code response. Your output must
be a Mermaid flowchart embedded in a single fenced code block.

Your diagram must:

1. Translate code logic into control flow: - Include major steps, function calls, loops, branches, and return points. - Use concise, descriptive node labels
that accurately reflect the code behavior.

2. Follow valid Mermaid syntax: - Begin with Start and end with End. - Use [] for actions/processes. - Use { } for decision/branch points. - Use
——> to connect nodes. - Wrap everything in triple backticks with me rmaid specified.

3.R 1 [c - Match naming and idioms to the language used in the original code. - Do not reinterpret or alter the code logic.
Guldelmes

- Do not change the structure or logic of the original response. - Do not generate new code, only a flowchart of the existing response. - Keep node
labels technical and minimal. - Do not include explanations, comments, or narrative outside the flowchart. - Follow the same formatting and structural
conventions as the original prompt.

Input: Instruction: {instruction} Original Response: {response }

Output:

‘Y'‘mermaid

{{flowchart}}

Vo

N)

Figure 12: Flowchart generation prompt. The task is to convert real code into a Mermaid flow
diagram without changing logic or structure.

Step-by-Step Generation Prompt

You are tasked with converting a given code response into a step-by-step implementation guide that describes how to manually implement the
code in clear, concise, and technically accurate language.

Your implementation guide must:

1. Preserve Original Logic: - Follow the same structure, logic, and sequence as the original code. - Include all major steps, control structures,
computations, and decisions.

2. Describe, Don’t Translate: - Do not include code or pseudocode. - Write in declarative, instructional sentences that explain what to do and how to do
it. - Use neutral, language-agnostic terminology (e.g., “Define a function named...”, “Check if...”, “Return the result...”).

3. Be Clear and Concise: - Number each step in the order it occurs. - Use precise and unambiguous language. - Each step should focus on a single
coherent action.

Guidelines:

- Do not add extra les, or i - Do not change the original logic or execution order. - Do not output anything other
than the numbered steps. - Outpul the guide as a plamlexl numbered list only—no code blocks, no explanations outside the list.

Input: Instruction: {instruction} Original Response: {response }

Output:

1. {{Step one}}
2. {{Step two}}
3. {{Step three}}

N J

Figure 13: Step-by-step implementation guide prompt. The task is to describe how to implement
the code in a precise, ordered, and language-agnostic way.

Llama-3.2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T8]

Gemma-3 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure[T9]

OLMo-2 model family results See task performance of zero-shot, full code finetuned, full natural
language finetuned, and code-NL mixed finetuned models in Figure[20]

SmolLM?2 model family results See task performance of zero-shot, full code finetuned, full nat-
ural language finetuned, and code-NL mixed finetuned models in Figure 21]

Code data mixture ratio in finetuning data ablations We show results for mixing different ratios
of code data in finetuing for Qwen3-0.6B-Base and Qwen3-1.7B-Base in Figure[22a)and Figure 22b]
respectively.

Under review as a conference paper at ICLR 2026

Imaginary Language Translation Prompt

You are tasked with converting a given code resp into an i inary progr i that mimics the syntax and semantics of the
original real-world language while appearing fictional and made-up.

Your modifications must include:

1. Imaginary Language Design: - Rename keywords, function names, types, and operators using plausible yet fictional terms. - Preserve the structure,
indentation, and logical flow of the original code. - Ensure the resulting code remains readable and clearly maps to the original logic.

2. Consistency and Fidelity: - Maintain 1-to-1 correspondence between the original code constructs and their fictional equivalents. - The imaginary
language should resemble the style and design patterns of the original language (e.g., Pythonic indentation, Java-style braces and semicolons, C++ class
structure, etc.).

3. Creativity within Constraint: - Make the language feel internally consistent and syntactically plausible. - Avoid random noise—each fictional token
should appear intentional and reusable.

Guidelines:
- Do not change the underlying logic of the original code. - Do not translate or docstrings—leave them unchanged. - Do not add
expl i i or headings outside the code block. - Output only the converted code. - Ensure formatting matches the original exactly (e.g.,

spacing, newlines).
Input: Instruction: {instruction} Original Response: {response }
Output:

‘“‘imaginary
{{code_in_imaginary_language}}

N /

Figure 14: Imaginary language translation prompt. The task is to render real code in a fictional but
consistent language without changing its logic.

Rubric Generation Prompt

You are tasked with generating an instance-specific evaluation rubric based on a given coding prompt, canonical solution, and test
case(s) to evaluate the model-generated response.

Guidelines:

- The rubric must be example-specific: every score level must directly reference the details of the given prompt, canonical solution,
and test case(s).

- Use a fixed 1-10 scale (1 = lowest quality attempt, 10 = fully correct).

- Structure the rubric so that:

- Scores 1-3 describe model responses that are irrelevant, nonsensical, or do not implement the required functionality.

- Scores 4-7 describe model responses that attempt the task but are incomplete, flawed, or only partially correct on test case(s).

- Scores 8-10 describe model responses that are mostly or fully correct, aligning with the canonical solution and passing most or
all test case(s).

- Each score level (1-10) must have a clear, measurable description unique to this problem.

- Output only the rubric.

Input:

Code Prompt:
{code_prompt}
Canonical Solution:
{canonical_solution}
Test Case(s):

{test_case}

Output:
{{rubric}}

& J

Figure 15: LLM-as-judge prompt for generating an instance-specific rubric to evaluate model-
generated code responses.

A.5.2 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY STRUCTURE VS
SEMANTICS (RQ?2)

Qwen3 model family results (structure vs semantics perturbations) See performance of aggre-
gated task performance under structure vs semantics perturbations in Figure [23]

Llama-3.2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

18

Under review as a conference paper at ICLR 2026

LILM-as-Judge Evaluation Prompt

You are tasked with evaluating a model-generated response to a coding prompt using the provided rubric.

You are given:

1. The coding prompt.

2. The rubric (instance-specific, with 1-10 levels).
3. The model response.

Instructions:

- Carefully read the rubric.

- Compare the model response against the rubric criteria.

- Assign the most appropriate score (1-10).

- Provide a concise justification inside jreasoningy/reasoning, explicitly referencing how the model response aligns or fails to
align with specific rubric levels.

- Provide only the numeric score inside jscore;j/score;.

- Do not include any text outside the required tags.

Input:

Coding Prompt:
{code_prompt }
Rubric:

{rubric}

Model Response:

{model_response}

Output:

<reasoning>{{concise justification}}</reasoning>
<score>{{integer from 1 to 10}}</score>

- J

Figure 16: LLM-as-judge prompt for rubric-based evaluation of model-generated code responses.

Gemma-3 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

OIMo-2 model family results (structure vs semantics perturbations) See performance of ag-
gregated task performance under structure vs semantics perturbations in Figure

SmolLM2 model family results (structure vs semantics perturbations) See performance of
aggregated task performance under structure vs semantics perturbations in Figure

A.5.3 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY EXPLICITNESS OF
CODE STRUCTURE (RQ2)

Qwen3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

Llama-3.2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-
ure29

Gemma-3 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

OIMo-2 model family results (explicitness of code structure perturbations) See performance
of aggregated task performance under explicitness of code structure perturbations in Figure

SmolLM2 model family results (explicitness of code structure perturbations) See perfor-
mance of aggregated task performance under explicitness of code structure perturbations in Fig-

ure 321

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

NL & General Code Understanding Code Generation

code'“lem oot ed C°“e'“1e‘° oot Qv ed cote ™ Wed-“le‘o g0t it o0 ped® At L0 g0t

(a) Qwen3-0.6B-Base

NL & General Math Code Understanding Code Generation

cote™ m‘\vﬁd'“ L 12{05“0‘ cote® “(*Aﬁd’ﬁlgxos“d code'ﬁle(os“"‘ e m‘\@“'“ cote™ m‘\v»ed'“ e 7_9(05“()‘

(b) Qwen3-0.6B

NL & General Math Code Understanding Code Generation

cote™ L 5“°‘“\\$¢d’“ e cote™ Le© B m‘\ied'“ cote™ 4 BN m‘\ied'“ cote™ “\'\ied'“ e 1e1© EXS

(c) Qwen3-1.7B-Base

NL & General Math 0525 Code Understanding Code Generation

0.520

0.515

0.510

0.505

ot et Aot oo™ et ook ot oot a et oo™ et oon®

(d) Qwen3-1.7B

NL & General Math Code Understanding Code Generation

0.723 0.720

[

cote™ ined”

_Lemsh‘)‘ ot aned® gee® -Le‘°5h°‘ cng'“_Le‘osN" qned ™ o cote™ et o -LeWSho‘

(e) Qwen3-8B-Base

Figure 17: Task performance of Qwen-3 family under zero-shot, full code finetuning (code-ft), full
natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

A.5.4 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY RELATIVE
INFORMATION DENSITY (RQ2)

Qwen3 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure [33]

Llama-3.2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [34]

Gemma-3 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [33]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

NL & General Math Code Understanding Code Generation

o et ™ code’“iexo B awes ™ o cod""“.,_ere ot cude'ﬁiero o red o cote™ res® o Le® anot

(a) Llama-3.2-1B

NL & General Math Code Understanding Code Generation

’ Y x £ A 5 X ’ o ' ’ P x
cote ™ s ke o0 &no aved ot et Lo &no cote ™ e ot Qe aved A cote ™ S e e &no
(b) Llama-3.2-3B

Figure 18: Task performance of Llama-3.2 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

NL & General Math Code Understanding Code Generation

coae-“le‘osm‘ A ed lews“"‘ cote®™ et 12“,5“0‘ cote® ot edt cote®™ et 12‘(,5“0‘

(a) gemma-3-1b
NL & General Math Code Understanding
0.483

code‘“ Lo gnot mv*ed‘“ e
(b) gemma-3-4b

Figure 19: Task performance of Gemma-3 family under zero-shot, full code finetuning (code-ft),
full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

OIMo-2 model family results (relative information density perturbations) See performance of
aggregated task performance under relative information density perturbations in Figure [36]

SmolL.M2 model family results (relative information density perturbations) See performance
of aggregated task performance under relative information density perturbations in Figure [37}

A.5.5 TASK PERFORMANCE UNDER PERTURBATIONS AGGREGATED BY HUMAN
INTERPRETABILITY (RQ2)

Qwen3 model family results (human interpretability perturbations) See performance of ag-
gregated task performance under human interpretability perturbations in Figure 38]

Llama-3.2 model family results (human interpretability perturbations) See performance of
aggregated task performance under human interpretability perturbations in Figure 39}

21

Under review as a conference paper at ICLR 2026

1 1 34 NL & General Math Code Understanding Code Generation

1135
1136
1137
1138

1139 PR RT o et o et o et oot oo™ ettt gt
1140
1141 (a) OLMo-2-0425-1B

NL & General Math Code Understanding Code Generation

1142
1143
1144
1145
1146

1147 cove™ 1e1© 5“°‘m\¢e°’“ A 4e1© oot goe m\fed'“ A 4e1© oot et et m'\v»ed'ﬁ cove™ m‘wﬁ"'“ o 4e1® i

1148 (b) OLMo-2-1124-7B
1149

1150 Figure 20: Task performance of OLMo-2 family under zero-shot, full code finetuning (code-ft), full
1151 natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

1152

1 1 53 NL & General Math Code Understanding " Code Generation

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167 (b) SmolLM2-1.7B

1168
1169 Figure 21: Task performance of SmolLM?2 family under zero-shot, full code finetuning (code-ft),

1170 full natural language finetuning (nl-ft), and code-NL mixed finetuning (mixed) configurations.

1171

1172
1172 Gemma-3 model family results (human interpretability perturbations) See performance of

aggregated task performance under human interpretability perturbations in Figure

0
2e1© S cote et o 20%© o et T ote cote™ 2e%© ot e cote™ pes® 2e1© st

(a) SmolLM2-360M

NL & General Math Code Understanding Code Generation
2

cote®™ o et et L P L U SLL VL o™ red T gendt

1174
1175
1176 OlMo-2 model family results (human interpretability perturbations) See performance of ag-
1177 gregated task performance under human interpretability perturbations in Figure [#T]

1178
1179 SmolLM2 model family results (human interpretability perturbations) See performance of
1180 aggregated task performance under human interpretability perturbations in Figure

1181

1182 A.5.6 TASK PERFORMANCE FOR ALL INDIVIDUAL PERTURBATIONS (RQ2)

1183
1122 Qwen3 model family results (individual perturbations) See performance of all perturbation

1155 configurations in Figure @3]

1186
1157 Llama-3.2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure 4]

22

Under review as a conference paper at ICLR 2026

NL & General Math
code mix 80% ! H | 0407 code mix 97.5% 0.459,
code mix 40% 1402+ code mix 80% 0.461
code mix 95% 1402+ code mix 90% 0.455
code mix 90% 402 code mix 95%
code mix 5% 0+ code mix 60%
code mix 97.5% c code mix 20%
code mix 2.5% > code mix 10% 0.359
code mix 10% - code-t code mix 5% 0.355 == code-ft
code mix 20% zero-shot code mix 40% 0.352 zero-shot
code mix 60% S o397 code mix 50% | code mix 2.5% 0.351 code mix 50%
038 039 0.40 041 042 0350 0375 0400 0425 0450 0475 0.500

code mix 90%
code mix 20%
code mix 95%
code mix 2.5%
code mix 97.5%
code mix 5%
code mix 80%

code mix 10%

Code Understanding

=== code-ft

code mix 97.5%
code mix 95%
code mix 90%
code mix 60%
code mix 80%
code mix 20%
code mix 10%
code mix 40%

Code Generation

~ 595

code mix 40% i zero-shot code mix 5% hot
code mix 60% i code mix 50% code mix 2.5% Ix50%
041 042 043 044 045 046 047 048 625 650
(a) Qwen3-0.6B-Base
NL & General
code mix 95% code mix 20%
code mix 60% code mix 97.5%
code mix 97.5% code mix 90%
code mix 40% code mix 10%
code mix 20% code mix 40%
code mix 80% code mix 5%
code mix 10% code mix 95%
code mix 90% doo code-ft code mix 2.5% o= code-ft
code mix 5% zero-shot code mix 60% zero-shot
code mix 2.5% code mix 503% code mix 80% code nix 50%

045 046 047 048 049 050 051 0450 0475 0500 0525 0550 0575 0.600 0.625 0.650
Code Understanding Code Generation
code mix 90% code mix 97.5% ©7870
code mix 97.5% code mix 95% 7.138
code mix 95% code mix 90%
code mix 80% code mix 80%
code mix 5% code mix 60%
code mix 20% code mix 10%
code mix 2.5% code mix 20%
code mix 10% ode-ft code mix 40% o= codelft
code mix 60% ero-shot code mix 5% zero-shot
code mix 40% ode mix 50% | coge mix 2.5% codejmix 50%
056 058 750 775

(b) Qwen3-1.7B-Base

Figure 22: Task performance of Qwen3-0.6, 1.7B-Base when mixing different ratio of code data dur-
ing finetuning. In general higher code percentages improves performance, with math tasks showing
large variation.

Gemma-3 model family results (individual perturbations) See performance of all perturbation
configurations in Figure [43]

OIMo-2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure

SmolLLM2 model family results (individual perturbations) See performance of all perturbation
configurations in Figure {7

A.5.7 TASK PERFORMANCE WITH DIFFERENT PROGRAMMING LANGUAGES (RQ3)

Qwen3 model family results See performance of grouped performance and individual program-
ming languages in Figure 8 and Figure [d9] respectively.

Llama-3 model family results
ming languages in Figure 50}

See performance of grouped performance and individual program-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

I Structure-perturbations

I Semantics-perturbations

unperturbed-code

NL & General Math Code Understanding Code Generation
0.46 0.50 7.0
) 0.550 0.48
©044] 0.412 ’ 6.5
2™ 0.404 |o0.525 :
E 0461 0.441 | |
0.42
E 0.500 0.441 6.0 5.736
Q 0.40 0.475 0.42
X 5.5
° 0.38 0.450 0.40

o
w
>

0.425

0.38

5.0

NL & General Math Code Understanding Code Generation
0.56 0.7 8.5
0541 0.60
g 0.493
20.52 06
©
£ 050 Q.55 e 0:532
.’C:’ 0.5
048 0.428 0.495
0.50
E 0.46 0.4

0.44
0.42

0.650

00625
v

°o o
u oo
S o
o o

0.550

Task Performan

o
w
N
o

0.500

NL & General

Math

Code Understanding

Code Generation

0.577 0.575

0.750

0.70

0.645

9.5

9.0

Figure 23: Task performance under perturbations aggregated by structure vs semantics across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

NL & General Math Code Understanding Code Generation
0.475
5.5
o 0.450 0.24 0.30
v
Soaas| R e
£ 0.374 0376 |022] 9293 0.199 4.514
£ 0.400 . 0.26 s
L ..
a 0.235
X 0.375 0.20 0.24 4.066
©
©
0.350 4.0
0.325 35
NL & General Math Code Understanding Code Generation
0.52 0.44
0.18 0.161 7.5
0.50 0.42
g 0.391
So.ag| 0.451 0.453 0.40 7.0
=l -
= 0.38
% 0.46 oa
a .
% 0.44 o
1© 0.42 :
0.32
0.40
0.30

Figure 24: Task performance under perturbations aggregated by structure vs semantics across
Llama-3.2 models (1B (top), 3B (bottom)).

SmolLM2 model family results See performance of grouped performance and individual pro-
gramming languages in Figure[51]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

NL & General Math Code Understanding Code Generation
3.75
0.40
Y 0.109 0.111 o026 3.50
§0.38 0.232 3.25
2036 3.00
9 0.211 2.691
%034 2751 2.546
e 2.50
0.32
2.25
NL & General Math Code Understanding
0.5501 0.38
0.45
0.5251 0.488 (0361 | e
g 0.485 . :
g 0.331 0.331 |p40
g 0.5001
s 0.34
E 0.475 0.35
9 .
0.32
% 0.450 0.30
© ' 0.269
0.4254 0.30
0.25
0.4001

Figure 25: Task performance under perturbations aggregated by structure vs semantics across
Gemma-3 models (1B (top), 4B (bottom)).

WE Structure-perturbations WEE Semantics-perturbations unperturbed-code
NL & General Math Code L i 3 Code
0.46 034)
0.20
0.180 350
0.44
o 0.19
g 0.396 0.397 325
goe 018 : 0.286
S 3.00 2.821
£ 0.40 0.17 0.273
5
& 275
%038 0.16 2.493
©

0.15 2.50

0.14 2.25

Figure 26: Additional performance of OLMo-2-0425-1B aggregated by structure vs semantics
across tasks.

I Structure-perturbations ~ HEE Semantics-perturbations unperturbed-code
NL & General Math Code Understandin: Code Generation
- 0.089 g
0.40 0.100 3.6
o 0.358 0.095
Y038 0.351 3.4
©
0.090 g,
g 0.36 2.961
E 0.085 30| 2.834
0.34 .
X~
v 0.080 28
©
0.32 0.075 26
0.30 0.070
NL & General Math Code Understanding Code Generation
0.50
015 0.135 0.44 5.50
80481 o a2 525
é B 0.440 0.396
g 0.46 5,007 ot 4.747....
£
044 475 4.527
&
E 0.42 4.50
©
0.40 4.25
0.38 4.00

Figure 27: Task performance under perturbations aggregated by structure vs semantics across
SmolLM2 models (360M (top), 1.7B (bottom)).

25

Under review as a conference paper at ICLR 2026

1350
1351
1352 BN Runnable-code B Code-like-broken-syntax BN Linear-algorithmic-form WEEI Graphical-structural-abstraction BB Natural-language-procedure unperturbed-code
1353 050 NL & General Math Code Understanding Code Generation
- 0.525 70
1354)
0.48 0.500
0.435
1355 0.46 0.475 0.462 0.460 6.5
oa10 || | 7 oaso || cas0o mm mm | e
1356 . 04415 403 0:408 04501, 6.0{5.720 5:803
5 0.42 0.425
1357 & ool amm -l T 55 5.329 ; .3,
’ 0.400 5.043
1358 0.38 0.375 5.0
1359 0.36 0.350
1360 034 0325 45
1 361 NL & General Math Code L i Code Generation
0.56 0.7 060 8.5
1362] e -
0.54 0.553
0.497 0489 0.6 05510532 0.538. T 8.0
1363 052 0.485 ¢ 4g; ** 0.501 7.459
1364 050 0.5 050 2.5{7-257
‘tnc} 0.48 o4 0.5 6.922 6.896 6.891
1365 oo ' : 70
1366 044 03 040 65
0.188 0.186 0.35
1367 042 02 0.168)
0.40 6.0
1368
NL & General Math Code Understanding Code Generation
1369 07
0.650 0.85 95
1370 0.625 0.80 0760
1371 0600|9573 0.579 0.579 0.577 5, 0.746 0.742
<
1372 505751,
2]
1373 0.550
1374 0.525
1375 0.500
1376

1377 Figure 28: Task performance under perturbations aggregated by explicitness of code structure across
1378 Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

1379
1380
1381
1382
1383
1 384 BmE Runnable-code WM Code-like-broken-syntax ~ B Linear-algorithmic-form W Graphical-structural-abstraction ~ BB Natural-language-procedure unperturbed-code
NL & General Math Code Understanding Code Generation
1385 ot 025
0.46 : 0.300 5.5
1386 0.44 024 027519372 0:2685 v
0.23 0.250 0.248|
1387 042 reeerreesnmeeeees 03847 e 0.207 9:209 0.250
© 40/0-375 0:376 0.376 0221, 199 0.200 0,198
1388 3 0.361 (21 0.225
P 0.38
0.20 0.200
1389 0.36
1390 034 019 0.175 o-159
0.18 0.150
0.32 .
1391 017
1 392 NL & General Math 450 Code Understanding Code Generation
0.
0.20
1393 052 o.180 0.425 75
0.50 0.391 0.392 7.0
0.400 0.386 SO
1394 0.45]0-452 %457 0.452 0.452 65/6317 *4%8
1395 vous 075
1396 S 0.350 6.0 5.589
¥ 0.44
0.325 5.5 5.133
0.42
1397 0.300 >0 4.477
0.40
1398 025 45
0.38 4.0
1 399 0.250
1400

Figure 29: Task performance under perturbations aggregated by explicitness of code structure across

::g; Llama-3.2 models (1B (top), 3B (bottom)).

1403

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B Runnable-code

B Code-like-broken-syntax

I Linear-algorithmic-form

B Graphical-structural-abstraction

B Natural-language-procedure

unperturbed-code

NL & General Math Code L Code Generation
0.42
o013 0.117 o 1.6 375
0.26
0.40 0.367 0.368 0.109 0.110 3501
0.363 .

0.359 012 325

038 - 42 12.995

0.11

3.00
2.75
2.50

2.055 2:094

225
0.32
2.00
0.09
0.30 175
NL & General Math Code Understanding
0.56
0.54
0.52{0.487 0492 ¢ 486
0.361
0.50
o
S 0.48
0

0461
0.44

0.42

0.40

Figure 30: Task performance under perturbations aggregated by explicitness of code structure across

Gemma-3 models (1B (top), 4B (bottom)).

-

NL & General

Code.

Code Generation

Figure 31: Additional performance of OLMo-2-0425-1B aggregated by explicitness of code struc-

ture across tasks.

I Runnable-code

NL & General

B Code-like-broken-syntax

0.407 0.406

0.396 0,305

I Linear-algorithmic-form

Math

0-26%70.281 0.282 3.00
0.275

0.258]

N Graphical-structural-abstraction

Code L

B Natural-language-procedure

2.351
2.255 2.223|

Code Generation

0.13

0.114

unperturbed-code

3.6

3.4

3.213.010

62
30 2.776 2.780 2.790

2.8

2.6

2.4

NL & General Math Code Understanding Code Generation

0.50 0.44 5.50

a4 042 5.25
0487 430 0.42 %946 0.aa3 0.397 0.305
- 0.435 .

0.46 0401,
N SO O SO S R I 038
S0.44
& 036

Figure 32: Task performance under perturbations aggregated by explicitness of code structure across

0.34
0.32

0.30

SmolLM?2 models (360M (top), 1.7B (bottom)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B Strong-reduced-density I Moderate-reduced-density I Near-baseline-density I Increased-density unperturbed-code
NL & General Math Code Understanding Code Generation
0.48 0.52 7.0
0.550
0.46 0.50
0.423 0.525 0.489 0.491 6.5
0.4810.461
0.44 0.406 0.405 40, 0.500
0.46 6.0 5.701
0.475)
) o.aal- 5.520
0.450
0.42 5.515.186
0.425 4
0.40 5.0
0.400
0.38
0.375
0.36 4.5
NL & General Math Code Understanding Code Generation
0.7 .
0.56 8.5
.. 0.60
0.54 0.502| 0.6 8.0
0.52 7.527
k os 0.479 0.471 | 05510538 ooy 0530 0:532
¢0.50
S
& 0.48
’ 0.4 0.50 0.479
0.46
0.44 03
’ 0.214 0.45
0.42 02 0.187
NL & General Math Code Understanding Code Generation
0.650 0.85 0.725 9.5
0.625 0.700
. 0.579 0.80 .
0.573 0572 0.573 0:762 0.675 0
0.600 0.643 0.644 0.644 8.266 8.340 8,258 8.389
o 0,650 4+ ez e 8.266 e ,258. |
S 0.5751. 0.622 8.5
w -10.625
0.550
0.600 8.0
0.525
0.575 75
0.500 0.550

Figure 33: Task performance under perturbations aggregated by relative information density across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

I Strong-reduced-density I Moderate-reduced-density I Near-baseline-density I Increased-density unperturbed-code
0.48 NL & General Math Code Understanding Code Generation
0.46 0.30 55
0.24
0.44 0287 0:272 0272 |
S SO P AU 0.258 4.599
0,824 e 0220203 0.203 0.26 4.518
o 0.380 0.377 0.375 0.200 | O- 4.327
£ 040 0.373 - 0.195 45
@ 0.24
0.38 0.20 0.22 4.0
0.36 0.205 3.580
0.34 0.18 0.20 3.5
0.32 0.18
NL & General 0.20 Math Code Understanding Code Generation
) 0.44
0.52 019 0.174 75
030 701 i
0.4g,0.452 0.453 0.453 451 o5 6.239 6.344
. 6.063
6.0
55 5.033
5.0
4.5

Figure 34: Task performance under perturbations aggregated by relative information density across
Llama-3.2 models (1B (top), 3B (bottom)).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

B Strong-reduced-density B Moderate-reduced-density BB Near-baseline-density ~ BB Increased-density unperturbed-code
NL & General Math Code Understanding Code Generation
0.42
0.130{ 0-117 3.75
04071 0,367 0.362 0.125 3.50
" 0361 g35700100] | 0207 | L 0:236.0.234. 5 55
2.938
0.1151¢- 0.219 3.00 2.832
0110 2.75
0.105 0.197 2.484
2.50712.318
0.100
2.25
0.095
2.00
NL & General Math Code Understanding
0.56
0.45
0.54 038
0.492 B T O O B el el tar
05219482 0-487 0.486 | o35 9-343 0.339 0.40 0.379
0.50 0.350
<
S0.48 0.315
w .
0.46
0.44
0.42 0.219
0.40

Figure 35: Task performance under perturbations aggregated by relative information density across
Gemma-3 models (1B (top), 4B (bottom)).

B Strong-reduced-density B Mod duced-density B Near-baseline-density = d.densi d
NL & General Code Code Generation
0.46 36
0.44{ 0,407 34
042 0393 0397 0.3% 32 2.928
28 30
§ 0.40 0278 0.277 0.284 e 2787 2.709

26
5.4]2:303
22

2.0

Figure 36: Additional performance of OLMo-2-0425-1B aggregated by relative information density
across tasks.

B Strong-reduced-density WM Moderate-reduced-density WM Near-baseline-density ~ BB Increased-density unperturbed-code
NL & General Math Code Understanding Code Generation
0.1279,105 031
0.40 . 3.6
0.30
0.360 0.357 3.4
0.38 0.351 0.351 0.29
028 0.275 0.273 o.270| 3207 3,069 - ooeenn
- 0.268 ° 2.952
. 2.871
0.27 X
3.0 2.778
0.26
2.8
| 0.25
0.24 26
0.23 2.4
NL & General Math Code Understanding Code Generation
0.16
0.50 0.140 0.44 5.50
0.48
0.445 0.440 0.440 0.440
4.775
............ P PR Y Y
4.460

Figure 37: Task performance under perturbations aggregated by relative information density across
SmolLM2 models (360M (top), 1.7B (bottom)).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

[0 High-interpretability

B Medium-interpretability

Bl Low-interpretability

unperturbed-code

NL & General Math Code Understanding Code Generation
0.575 0.52 7.0
0.46 K
0.550 0.50
0.441 0.410 0.410 0.505 0.48 6.5
0.401 0525 ’ 0457 P P
0.46 5.857
0.500 - 0- 6.0 5.706
0.44
0475 0.42 5.5{ 5.202
0.450 0.40
5.0
0.425 0.38
0.400 0.36 4.5

[High-interpretability I Medium-interpretability I Low-interpretability unperturbed-code
NL & General Math Code Understanding Code Generation
0.56 0.625 8.5
0.54 odes ...[0.600
0.52 0.488 0:575
l0.550 0.539......... 6535
9 0.50) .
8 0.525
048 0.493 7.0
0.500)
0.46
0.475
0.44 65
0.450
0.42
0.425 6.0
NL & General Math Code Understanding Code Generation
0.650 0.85 9.5
0625 0.584 0.80 0.769
0.376 0571 |
0.600 :
o
5 0.75
2 0.575
kY .

0.550

0.525

0.500

0.70

0.65

0.60

Figure 38: Task performance under perturbations aggregated by human interpretability across
Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

[0 High-interpretability

N Medium-interpretability

I Low-interpretability

unperturbed-code

0.48 NL & General Math Code Understanding Code Generation
.4
0.25
0.46 0.30 55
0.24 B
0.44 T 4.844 ...
0.23 0.287.cceeeeeiii 0.270......... 0.268-
02 I T
0.22{ 0.202 0.202 4-420
1< 0.377
£ 0.40] 0373 0.375 0.199 | ;¢ 45
b 0.21
0.38 0.20 0.24 0.233 4.0
3.594
0.36 0.19
0.22
0.34 0.18 35
0.32 0.17 0.20
NL & General 0.19 Math Code Understanding Code Generation
0.52 0.44 7.5
0.50 0.42
. 7.0
0.457 0.d53 0398 | TO0{_......... GLELB s
0.48 0.40 6.285
6.5
0.38
6.0
0.36
034 551 5.066
0.32 5.0
0.30 4.5

Figure 39: Task performance under perturbations aggregated by human interpretability across

Llama-3.2 models (1B (top), 3B (bottom)).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

[0 High-interpretability ~ W Medium-interpretability ~ BB Low-interpretability unperturbed-code
0.42 NL & General Math Code Understanding Code Generation
0130 3.75
0.40 0.1254 0.111 0.112 0.26
0.366
0.360 0.359 | 0.120
0115 0.230 0.231
3.00
o110 0.209
0.105 7% 2520 2.467
0.100 2.50
0.095 2.25
NL & General Math Code Understanding
0.56 0.38
0.45
0.54
0.494 0.36 0.338 | frreereeieii
0.52 0.481 0.487
0.50
o 0.34 0.353
S 0.48 0.342
@ : 0.32
0.46 ’
0.44 0.30 0.275
0.42
0.28
0.40

Figure 40: Task performance under perturbations aggregated by human interpretability across
Gemma-3 models (1B (top), 4B (bottom)).

= High-i — Medium-i -
NL & General Math Code Code Generation
046 034
0201 0.180 36
044 019 0.174 0173 | 032 34
042 0.309 0.396 0.396 32 ooy
’ I 0.18 0.30) :
4] I 0.283 0.283 | 30
g o040 017 0.277
o 028 28 2.662
038 016 2| 2499
0.26
036 015 24
034 014 0.24 22

Figure 41: Additional performance of OLMo-2-0425-1B aggregated by human interpretability
across tasks.

00 High-interpretability B Medium-interpretability B Low-interpretability unperturbed-code
NL & General Math Code Understanding Code Generation
0.095
0.40 0.105 031 3.6
0.100 0.30
0.38 0.355 0.355 0.353 3.4
.2
0095 0-29 0276 |
0.090 0.28 32 2.978
2.917
0.085 027 3.0{ 2856
0.0801 | 0.26
2.8
0.075 0.25
2.6
0.070 0.24
0.23
NL & General Math Code Understanding Code Generation
0.50 0.138 0.44 5.50
0.48
.. 0.442 5.25
0.441 0.439 0.397 4.868

Figure 42: Task performance under perturbations aggregated by human interpretability across
SmolLM?2 models (360M (top), 1.7B (bottom)).

31

Under review as a conference paper at ICLR 2026

NL & General
flowchart H © 0435

remove comments 0416
pseudocode 0.410
remove whitespace 0.410
swap comments local 0.410
replace keywords nonen 0.409

0.404

replace keywords nonsense
replace variables

comment enhancement
imaginary

replace comments global
step by step

comment obfuscation

0.391
0.385 |
0.38 0.39 0.40 0.41 042 043 0.44 045

Code Understanding

remove whitespace 0.467
remove comments 0.462
pseudocode 0.462
flowchart 0.460

replace variables

swap comments local
imaginary

replace keywords nonsense
comment enhancement
replace keywords nonen
replace comments global
step by step

comment obfuscation

NL & General
comment obfuscation
remove whitespace 0.490
flowchart 0.489
replace variables 0.489
remove comments 0.485
replace keywords nonsense 0.484
swap comments local 0.484
replace keywords nonen 0.483
pseudocode 0.481
comment enhancement 0.478
imaginary 473
replace comments global .468
step by step{ = 0.466

unperturbed-code

Math

remove comments
replace variables
remove whitespace
replace keywords nonen
replace keywords nonsense
imaginary

replace comments global
comment enhancement
pseudocode

comment obfuscation
flowchart

step by step

swap comments local

i 0.508
0.504
~1—0.503

0.499

0.497
0.488
0.488
.483
Q.480

0.470

0.462

0.455

0.366

0.350 0.375 0.400 0.425 0.450 0.475 0.500 0.525 0.550

Code Generation

swap comments local
replace variables
imaginary

remove comments

replace keywords nonsense
replace keywords nonen
remove whitespace
flowchart

step by step

pseudocode
replace comments global

unperturbed-code

comment enhancement
comment obfuscation
remove comments

replace variables

remove whitespace
replace comments global
replace keywords nonsense
swap comments local
replace keywords nonen
imaginary

step by step

0.46 0.48 0.50 0.52 054 056 0.58 0.60
Code Understanding
flowchart 0.558 swap comments local
0.54§

remove whitespace
replace keywords nonen
comment enhancement
replace variables

0.541
0.541
0.534

remove comments .534

replace comments global .531
imaginary .530

swap comments local .529
replace keywords nonsense 524
pseudocode 22
comment obfuscation 22

replace keywords nonsense
replace keywords nonen
replace variables
imaginary

remove whitespace
remove comments
pseudocode

flowchart

step by step

replace comments global

step by step

0.35 0.40 0.45 0.50 0.55
---- unperturbed-code
NL & General
remove comments i ~ 0589 remove whitespace
replace keywords nonsense 10584 replace variables
remove whitespace 0582 remove comments
replace variables i~ 0581 replace comments global
pseudocode 0:579 replace keywords nonen
flowchart 0577 replace keywords nonsense
comment enhancement 0:576 swap comments local
swap comments local 40576 imaginary
replace keywords nonen AT 0576 pseudocode
step by step Sy 0572 comment obfuscation
imaginary 0572 comment enhancement
replace comments global 10:568 flowchart
comment obfuscation 0:549 ! step by step
054 055 056 057 058 059 060
Code Understanding
pseudocode 0.65p comment enhancement
replace keywords nonen & 0.65 swap comments local
remove whitespace . 0.656 imaginary
imaginary &1 0.648 replace keywords nonen
remove comments w1 0.647 remove whitespace
swap comments local +} 0.646 remove comments
replace keywords nonsense i+ 0.645 replace variables
replace variables + 10.643 flowchart
comment enhancement 0.643 replace keywords nonsense
replace comments global 0.642 pseudocode
comment obfuscation 633 comment obfuscation
flowchart 6 step by step
step by step{ =+ 0.538 replace comments global

054 056 058 0.60 0.62 0.64 0.66 0.68

Figure 43: All perturbations across Qwen3-Base models (0.6B (top), 1.7B (mid), 8B (bottom)).

32

6,040
. 5.954
e 5.951
. 5.887,
- 5.774
5763
5732
5329
5234
5.043
5.000
5.0 512 514 516 518 610 612 614
Math
i
H
;
0.217
i 0.214 :
S 0.210 |
5 0.205 '
5 0.201 i
0.188 |
0.186 :
0.168 :
0.2 03 0.4 0.5 0.6 0.7
Code Generation
7634
©7.549
7532
©17.500
7407
7350
7278
6.922
6.89
o 6.891
6.622
6.6 6.8 7.0 72 7.4 7.6 7.8
Math
0771
0.770
0.766
0.764
0.763
0.761
0.759
0.745
0.690
o 0.682
Dv‘GEI D.‘7U D.‘72 0.‘74 0.‘76 D.‘7E 0.‘80

Code Generation

Under review as a conference paper at ICLR 2026

---- unperturbed-code

NL & General Math
flowchart 0.384 step by step 0.209
replace variables 0.382 flowchart 0.207
imaginary 0380 comment obfuscation 0.204
remove comments 0.380 replace variables 0.202
replace keywords nonsense - 0380 replace keywords nonen 0.202
swap comments local 0377 imaginary 0.202
replace comments global 0:376 remove comments 0.202
pseudocode 0.376 remove whitespace 0.201
replace keywords nonen 0374 replace comments global 0.201
comment enhancement 0.372 pseudocode 0.198
remove whitespace 0.370 replace keywords nonsense 0.196
comment obfuscation 0.365 comment enhancement 0.194
step by step{i 0361 swap comments local{ +0.189
0.36 0.1’37 0.‘38 0. ‘39 0.‘40 0.iB 0. iQ 0}20 O.‘Zl 0.‘22

Code Understanding Code Generation

comment obfuscation 0.27p swap comments local 4 5.110
replace varlalbIeS* 3 85771 replace variables ~ i 5.017
swap comments local { i 273 R) -
! 0.273 imaginary ;1.990325

remove whitespace §
remove comments

ot cormmants o —— | 071
replace comments global 0.271) replace keywords nonen ~ 4.678
- — 4.613

5 10.270 remove whitespace

replace keywords nonen -
replace keywords nonsense 1 £10.270 replace comments global 4.089
remove comments A ©0.264 pseudocode =3-‘370
pseudocode . 0.250
step by step 1 +0.248 step by step - 3.619
imaginary 1 5 0.247, flowchart ~ - 3.491
flowchart{ ¢+ 0.159 replace keywords nonsense{ =~ 3.285
016 018 020 022 024 026 028 030 35 40 a5 50 55
----- unperturbed-code
NL & General Math
remove comments © 1046l swap comments local ~ 0197
imaginary 0.460 flowchart ~ 0180
replace keywords nonen 0458 replace keywords nonsense 0177
remove whitespace 0457 replace keywords nonen Fo0.163
replace variables 0:454 replace variables ~+0.160
replace comments global 0.454 step by step 0.156
replace keywords nonsense 0453 comment obfuscation 0.155
swap comments local 0.453 remove comments 152
pseudocode 0.452 replace comments global 0,151
flowchart S 0452 imaginary 0.3147
comment enhancement 0.448 pseudocode 0.132
comment obfuscation 0.443 remove whitespace{ +0.131
0435 comment enhancement 0.128

step by step
0.14 0.16 0.18 0.20 0.22

0.43 0.44 0.45 0.46 0.47 0.12

Code Understanding Code Generation

replace keywords nonsense +0.407 imaginary T 6.944
replace keywords nonen . (?'4(?5’ swap comments local i 6.868
remove comments d 4 replace variables ~16.676
remove whitespace - 0.400
flowchart 0.392 replace keywords nonen o 6521
comment enhancement 0.391 remove comments ~— 6.467
replace variables 0.390 remove whitespace o 6411
swap comments local 0.389 replace keywords nonsense . 5.837
replace comments global 0.382 flowchart - 5.589
comment obfuscation
imaginary replace comments global 5.257
step by stepy -+ 0.295 step by step - 5133
pseudocode 4.477

pseudocode 0.291

030 032 034 036 038 040 042 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Figure 44: All perturbations across Llama-3.2 models (1B (top), 3B (bottom)).

33

Under review as a conference paper at ICLR 2026

NL & General
flowchart 1 0368
pseudocode 0.367
remove whitespace 0.367
imaginary 0.366
replace variables 0.366
remove comments 0.365
swap comments local i——0.363
replace keywords nonen 0.360
replace comments global 0.359
replace keywords nonsense 0.357
comment enhancement 0.355
step by step 0.352
comment obfuscation 0346
0.34 0.35 0.36 0.37 0.38

Code Understanding

comment obfuscation
remove whitespace
swap comments local
replace variables

replace comments global
replace keywords nonen
comment enhancement

replace keywords nonsense 0.218

remove comments -+ 0.215
imaginary & 0.210
step by step e 0.210
pseudocode 0.205

0.189

flowchart

0.19 020 0.21 0.22 0.23 0.24 025 0.26

NL & General
remove whitespace i 0501
swap comments local i 0494
replace keywords nonsense i 0491
replace variables H 0491
remove comments i 049
comment enhancement 0.489
replace comments global 0.489
replace keywords nonen i 0.488
imaginary H e 0.487
pseudocode 0.486
flowchart i 0478
comment obfuscation 0.471
step by step{ = 40471
046 047 048 049 050 051

Code Understanding

unperturbed-code

Math
pseudocode NN 0.117 |
flowchart{ i 0.116
replace keywords nonen 0116
replace variables q 10113
remove comments A 10113
0112

replace keywords nonsense q
replace comments global

0.111
—_— 110
comment enhancement 0,110

swap comments local

remove whitespace § 0.110
imaginary § P 0.102
step by step 1 0.102
comment obfuscation {EEEEE 0.098
0.09 0.10 0.11 0.12 0.13

Code Generation

comment enhancement NN - 3.387
remove comments A ©13.234
replace variables 3.210
swap comments localq 142
imaginary § 100
remove whitespace q
replace comments global
pseudocodeF
comment obfuscation 2.261
step by step 1 i 2.094
flowchart i+ 2.055
replace keywords nonen & 1.885
1.678
20

= 3

B 3.

2.901
2.734
2.582

replace keywords nonsense{ =

2.5

unperturbed-code

pseudocode

replace keywords nonen
replace comments global
imaginary

flowchart

replace keywords nonsense
swap comments local
remove whitespace
comment enhancement
comment obfuscation
remove comments
replace variables

step by step{ =

0.305 i

030 031 032 033 034 035 036

Code Generation (not available)

replace variables

replace comments global
swap comments local
replace keywords nonen
remove comments
comment enhancement
replace keywords nonsense
step by step

comment obfuscation
remove whitespace
imaginary

pseudocode

flowchart

-390

0.40|

0.20 0.25 0.30

Figure 45: All perturbations across Gemma-3 models (1B (top), 4B (bottom)).

34

Under review as a conference paper at ICLR 2026

pseudocode

flowchart

remove comments

swap comments local
replace keywords nonsense
replace keywords nonen
replace variables

comment enhancement
replace comments global

comment obfuscation
remove whitespace

remove comments

swap comments local
comment enhancement
replace keywords nonsense
replace keywords nonen
pseudocode

replace comments global
imaginary

replace variables
comment obfuscation
remove whitespace
flowchart

step by step

NL & General
0.394
0.393
0391
0390
0.387
- 0387
0.38 0.39 0.40 0.41 0.42
Code Understanding
0.297
292
292
9
0.30

unperturbed-code

Math

pseudocode

replace keywords nonsense
step by step

replace variables

replace keywords nonen

comment obfuscation
remove whitespace
comment enhancement
remove comments

0.167

replace comments global : 0.163
swap comments local +0.156
015 016 017 018 019 020

Code Generation

swap comments local
remove comments
comment enhancement
replace variables
imaginary

remove whitespace
replace comments global
replace keywords nonen
pseudocode

replace keywords nonsense
comment obfuscation
flowchart

step by step

3.174
3.168
3.168
129

Figure 46: OLMo-2-0425-1B with all perturbations.

35

Under review as a conference paper at ICLR 2026

NL & General

unperturbed-code

Math

0.114

pseudocode flowchart —
imaginary comment obfuscation 0.106
replace keywords nonsense pseudocode 0.096
remove comments comment enhancement 0:090
flowchart replace comments global 0.089
swap comments local replace keywords nonsense 1 % 0.086
remove whitespace swap comments local o 0081
replace keywords nonen step by step{ 1 0.080
replace variables remove whitespace{ = 0.080
comment enhancement replace keywords nonen & +-0.079
step by step imaginary {751 0.078
replace comments global remove comments{ 10.077
comment obfuscation replace variables{ + 0.076
033 034 035 0.36 0.37 0.38 007 008 009 010 011 012 013
Code Understanding Code Generation
remove comments - 0.284 swap comments local 1 3.266
pseudocode 0.281 remove comments 3194
replace keywords nonsense 0275 imaginary § 3137
remove whitespace ~—0.274 comment enhancement 3.078
swap comments local S0.274 replace variables} - —3.052
replace keywords nonen 10.273 replace comments global 2.872
imaginary 0273 replace keywords nonsense 1 © 2855
replace variables - —a271 step by step ~ 2790
flowchart 0.269 flowchart A F2.780
comment enhancement 0.268 pseudocode 2.776
comment obfuscation 0.264 replace keywords nonen 2771
replace comments global 0.262 remove whitespace o 2.687
step by step 0.262 comment obfuscation 2.600
0.260 0.265 0.270 0.275 0.280 0.285 0.290 2.6 2.8 3.0 3.2 3.4
---- unperturbed-code
NL & General Math

pseudocode

remove whitespace
replace keywords nonen
flowchart

swap comments local
replace variables
imaginary

remove comments
replace keywords nonsense
comment enhancement
replace comments global
step by step

comment obfuscation

0.436
0.435
0.432

0.425 0.430 0435 0.440 0.445 0.450 0455 0.460

Code Understanding

comment enhancement
imaginary

comment obfuscation
replace comments global
replace keywords nonen
remove whitespace
replace keywords nonsense
replace variables

swap comments local
remove comments
pseudocode

flowchart

step by step

0.336
D.‘36

0.34 0.38 0.40 0.42

replace comments global
replace keywords nonsense
remove comments
replace keywords nonen
remove whitespace
swap comments local
replace variables
flowchart

step by step

comment obfuscation
pseudocode

imaginary

comment enhancement

comment enhancement
swap comments local
replace variables
remove comments
imaginary

remove whitespace
replace keywords nonsense
pseudocode

replace keywords nonen
replace comments global
flowchart

comment obfuscation
step by step

0.44

0.13 0.14

Code Generation

0.15 0.16

Figure 47: All perturbations across SmolLM?2 models (360M (top), 1.7B (bottom)).

36

Under review as a conference paper at ICLR 2026

---- full-code-ft zero-shot
NL & General Math Code Understanding Code Generation
0,525 049 bas1 P I
0.420 4 0.520 0489 ok 0-‘}77 6.0
0.415D.412 0. '
0410 ¢ 4od S1PSIL 5519 0474 0.468 ool
0.4104 : 0.510 5.?42 5.?29 5.?17
___________________ | 0.505 O'T“ 0.46 5.6
0.4051
0.500 f-m=f=====mmmemmm e - 0.45 4 547
0.400 oa0s{ 5.2
-------------------- 0.44
0.3951 04904 L 5.04
0434 L e
0.3904 T T T 0485 T T T T T 481 T T T
Aot et oxe™ et L ound aate <xe an (ound xe! Aate
A e e v
vow &Y s ® a o T ere st et gw Y ° g s ow Y e
(a) Qwen3-0.6B-Base
0.462 0.462 0.481 -
0.395 4 0.464 ‘t ‘TG 0-‘158 p.471 7.0
0.390 - - 0471 5% "046277"
: 0.386 0.385 0.44 : 6.493
0.3851 7 0133 042 0.46 1 L 0.4%56 6s P4 6.421 6.33(
0.3801 0.404 0.45 6.0
03751 035 0.44
0.3704 5.57
,,,,,,,,,, 0.36 0.43
036518 @ mml PR 50
0.344 1
0.360 L . ; | . . 0.42 4 . . . i : ||
(ot JURTINC) e e ot Lotind e Lotind ot N3 \ote A\
eO\d! (\pt\ S AU O\ ot X ot edid O A\a! e
e ™™ g s yon Y 0o T e g s W g s e g s e gu Y
(b) Qwen3-0.6B
0.621 0.621 0.535 1
0.47 0.62 1 ? ? Lo e ey
0.463 5461 Aacd @ . [TTTTTTTTTTTTTTTTTTIE
0467"1‘ ______ 9'_[[.6_];____9;‘%6_9 0.60 - 0-330D. 85 B.349 8.314 8 %71
0.58 0.525
8.01
0.45 0564
0.520 1
0.44 1 osa4 754
0.515
0.521
04310 0.50 0.510 7.04
g xe U G\ awate L ound xer® L ound \ate
! B \ ! W\t
e P \ow &Y \ow &Y 5@ (e _\“‘em\e b 5@ o Y ow &Y ¥ ocA\P o exene

(c) Qwen3-1.7B

Figure 48: Grouped performance of Qwen-3 family under low-system, intermediate, and high-
scripting programming languages.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Rust
Python

C
TypeScript

CSharp
Rust
JavaScript
Python
TypeScript
Go

PHP

===+ full-code-ft zero-shot

NL & General

Go
Rust

Java
TypeScript
JavaScript
C

CSharp
Python
cpp

- PHP
0.38 0.39 0.40 0.41 0.42 043 0.47
Code Understanding
D TypeScript
PHP
Rust

Go

Java

CpP
JavaScript
CSharp
Python

(a) Qwen3-0.6B-Base

===+ full-code-ft zero-shot

NL & General
Python
C
Java
Rust
CPP
TypeScript
Go

Math

81
H

0.48 0.49 0.50 0.51 0.52 053

Code Generation

Math

0.36 0.37 0.38 0.39

Code Understanding

Java
Python
TypeScript
Go
JavaScript
PHP
CPP
Rust
CSharp

038 040 042

Code Generation

(b) Qwen3-0.6B

===+ full-code-ft zero-shot

NL & General
Rust
Python
C
PHP
JavaScript
CSharp
CPP
Go
TypeScript

0.42 0.43 0.44 0.45
Code Understanding

CPP
CSharp
Rust
TypeScript
C

Java
JavaScript

75

Math

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Code Generation

054

(c) Qwen3-1.7B

Figure 49: All programming language specific performance of Qwen-3 family.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

---- full-code-ft - zero-shot
NL & General Math Code Understanding Code Generation
0.284
0.42 0.225 7 0282 5.0
0.41 0.220 4 0.280 48
0.278 0.277
s P
039 02109 0.274 0774 44 n.273
036 0.180 0.179 0.177 0. T ojo" 0272 a2 i 4.]171 4A]146
0.205 1 0.269
IR SE— 0-270 4.0
0.200 4 o268 L
o &Y i oot med\a‘e \nteﬂ“ed\a‘e\ow s‘ls‘em,\ o scr'\v"‘“q wah sd'\@"‘r:?“e‘med‘a‘e\ on s st o oS e\o\u oy pttd
(a) Grouped results (low-system, intermediate, high-scripting)
---- full-code-ft - zero-shot
NL & General Math
Go
Rust
CSharp
PHP
TypeScript
Python
Java
JavaScript
CppP
C g H
0.36 0.38 0.40 0.42 0.44 0.19 0.20 0.21 0.22 0.23
Code Understanding Code Generation
0.30 a8 50 52

(b) Per-language results

Figure 50: Performance for Llama-3.2-1B. (a) Programming language groups, (b) individual lan-

guages.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

---- full-code-ft - zero-shot
NL & General Code Understanding Code Generation
0.4525
0.4500 1 01307 04101 1
oaars 0145] 0.405 { e 803 4.7188 4784
’ T ' 0.400 P.397 0.394
0.4450 A B
5 T41 0.140]] 03905{ | Z 469
0.4425 1 0.440 0.444 0.136 Q135
e 2220 . 0:440 ‘ 0.390 441
0.4400 0.1354 -
0.13] 03851
2234 0.130 ‘ 1 0.380 0.375 421
Bt R A R A 0375 bl o
0.4325 1 0125 01
JURSLAC) em ot ate e R Lotind em \ote) \otind
apt™ B e e B 19 (o) B 0V edV 19
gt 5 ow ST ert® ke 0w ST s g 5T oW T ert® W ST erm e g sC!

(a) Grouped results (low-system, intermediate, high-scripting)

---- full-code-ft

NL & General

zero-shot

Java

C

Rust
Python
JavaScript
CPP

Go

TypeScript

Math

0.13

Code Generation

0.14

JavaScript
Java

Go

Python
CPP

C

PHP
CSharp
Rust
TypeScript

0.38

0.37

0.40 0.41

0.42

(b) Per-language results

5.2

Figure 51: Performance for SmolLM2-1.7B. (a) Programming language groups, (b) individual lan-

guages.

40

	Introduction
	Related Work
	Methodology
	Instruction Data Generation
	Systematic Perturbation Design
	Rule-Based Perturbations
	Generative Perturbations

	Model Training and Evaluation

	Results and Discussion
	Conclusion
	Limitations
	Reproducibility Statement
	Appendix
	Evaluation suite details
	Categorization of perturbations for RQ2 analysis
	Implementation details
	Prompts
	Extended results
	Task performance showcasing code data impact in finetuning (RQ1)
	Task performance under perturbations aggregated by structure vs semantics (RQ2)
	Task performance under perturbations aggregated by explicitness of code structure (RQ2)
	Task performance under perturbations aggregated by relative information density (RQ2)
	Task performance under perturbations aggregated by human interpretability (RQ2)
	Task performance for all individual perturbations (RQ2)
	Task performance with different programming languages (RQ3)

