
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010 5091

Direct Multi–grid Methods for Linear Systems
With Harmonic Aliasing Patterns

Pablo Navarrete Michelini

Abstract—Multi–level numerical methods that obtain the exact
solution of a linear system are presented. The methods are
devised by combining ideas from the full multi–grid algorithm
and perfect reconstruction filters. The problem is stated as
whether a direct solver is possible in a full multi–grid scheme by
avoiding smoothing iterations and using different coarse grids
at each step. The coarse grids must form a partition of the
fine grid and thus establishes a strong connection with domain
decomposition methods. An important analogy is established
between the conditions for direct solution in multi–grid solvers
and perfect reconstruction in filter banks. Furthermore, simple
solutions of these conditions for direct multi–grid solvers are
found by using mirror filters. As a result, different configurations
of direct multi–grid solvers are obtained and studied.

Index Terms—multigrid, perfect reconstruction filter, domain
decomposition, direct solver, aliasing.

I. INTRODUCTION

THIS study focuses on the problem of solving the linear
system of equations

Au = f (1)

over the field of complex numbers. The problem is restricted
to the case when the number of equations, n, is the same as
the number of unknowns, and the number n is even (in some
cases a power of 2). The system matrix A ∈ Cn×n is sparse
and it will be assumed to be invertible, with special attention
to ill–conditioned cases. The problem becomes challenging
when n scales to large numbers (e.g. thousands of unknowns).
This situation arises frequently in scientific and engineering
computations, most notably in the solution of PDEs [1], [2]
and other areas like simulation of stochastic models [3] and
the solution of optimization problems [4].

A vast amount of numerical methods exist to solve this
problem efficiently. They vary from direct (or exact) solvers
that compute the exact solution, u, to iterative solvers that
compute a sequence of approximations that converges to the
exact solution, vk → u. Here, convergence must be defined
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to minimize some norm of the approximation error, ek =
u− vk. Direct solvers are often based on some type of matrix
factorization, being the most popular those based on LU
decomposition [5], [6]. Among the iterative solvers, the most
common are: stationary iterative methods (e.g. Gauss–Seidel,
Jacobi and Richardson iterations), Krylov subspace methods
(e.g. conjugate gradients, GMRES and BiCG) and multi–level
methods (e.g. multi–grid and domain decomposition) [1], [2].

In this study, multi–level numerical methods working as
direct solvers are obtained. In the same category there are other
direct multi–level solvers like: total reduction methods [7], [8],
partial (cyclic) reduction methods [9] and LU factorization of
non–standard forms [10]. Besides their structural differences,
each method works under certain limitations. Total reduction
and partial (cyclic) reduction methods are specifically designed
for Poisson’s equation, and LU factorization of non–standard
forms works for elliptic problems. In this study, the limitations
are not described in terms of categories of PDEs but in terms
of two additional properties on the system. These are: A has to
be diagonalizable, and ignoring some of the unknowns should
produce a specific aliasing pattern.

First, by assuming that the system matrix is diagonalizable,
we have the eigendecomposition

A = WΛV H , (2)

where the columns of W form the set of right eigenvectors,
Λ is a diagonal matrix with the eigenvalues of A, and the
columns of V form the set of left eigenvectors. Here, the
right and left eigenvectors form a biorthogonal basis so that
V HW = I . This restriction limits the applications to non–
defective problems.

The second restriction is on the effects of down–sampling
the eigenvectors of the system. This operation drops a num-
ber of components when applied to vectors and keeps the
remaining components untouched. An example is shown in
Fig. 1 where one every two samples of harmonic functions
are dropped. By down–sampling the eigenvectors of the system
their linear independence is lost, because the dimension of the
down–sampled space is less than the number of eigenvectors.
This is a general description of the phenomenon of aliasing.
Here, it will be assumed that there is a subset of n/2
components defining a down–sampling operation that makes
each down–sampled eigenvector equal (up to sign) to only
one of the other down–sampled eigenvectors (see Fig. 1). This
specific pattern is called harmonic aliasing pattern [11] and is
found in harmonic functions, which are eigenvectors of linear
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Fig. 1. Example of harmonic aliasing pattern in a harmonic sine basis. The set of vectors wj ∈ R8, j = 1, . . . , 8, with components (wj)i =
√

2
9

sin( ijπ
9

),
i = 1, . . . , 8 forms an orthonormal basis of R8. A down–sampling operation drops the components with even i. The resulting down–sampled eigenvectors
are not linearly independent. The down–sampling of wk is equal to the down–sampling of w9−k with k = 1, . . . , 4.

space invariant (LSI) systems1, and other bases including at
least: Hadamard matrices and eigenvectors of coupled systems
of equations [11], [12].

The generality of a system with harmonic aliasing patterns
is not known at its largest extent. They were introduced in [11]
in order to extend the strong convergence analysis of multi–
grid algorithms based on local Fourier analysis (LFA). This
analysis was introduced by Achi Brandt in the late 70’s and
remains as the main rigorous tool for the design of multi–
grid methods [13], [14]. LFA is based on Fourier analysis
and is thus restricted to LSI systems, which makes it difficult
to use it in many applications. The extended convergence
analysis in [11] has not overcome this problem drastically.
Nevertheless, in this study its algebraic framework will allow
not only the analysis of traditional multi–grid methods but
also the introduction of new direct solvers with connections
to other important numerical methods.

The contributions of this paper are thus both practical and
conceptual. From the practical side, multi–grid algorithms
have been successfully applied in many practical problems
but the theory behind does not reach the same level. The
most common implementation is algebraic multi–grid (AMG)
which obtains a multi–grid configuration based on heuristics
[15]. The numerical methods obtained in this paper represent
a step forward on what the theory can achieve. This is,
under the assumptions just mentioned, a completely algebraic
configuration is found that solves the problem exactly with no
use of heuristics. The algorithms are computationally efficient
and adaptable to the computational resources (single–core or
multi–core).

The conceptual contribution of this paper is the introduction
of numerical methods in a setting that establishes a direct
analogy between multi–rate systems and different multi–level
numerical methods. The analysis exploits the structural simi-
larities of the full multi–grid algorithm [16] and problems of
signal reconstruction in multi–rate systems [17]. On one hand,
both classical and extended convergence analysis for multi–
grid solvers have shown the importance of aliasing phenomena
to explain how the algorithm converges [11], [15]. Here,
aliasing appears as an additional source of error that has to be
controlled by the algorithm. On the other hand, the problem of

1In numerical analysis a different terminology is used. The stencil of an
unknown is defined as a geometric arrangement of the non–zero coefficients
in the correspondent row in A, centered at the diagonal element. This is
equivalent to the concept of impulse response in signal processing and an LSI
system is equivalent to a system with constant stencil coefficients.

signal reconstruction in multi–rate systems follows a different
approach. A signal is decomposed in different coarse levels
and the question is posed as whether the original signal can
be reconstructed from these different pieces of information.
Here, each coarse level component has aliasing effects and
perfect reconstruction is possible because these effects cancel
each other. Given the structural similarities between multi–grid
methods and multi–rate system, the central question is whether
aliasing cancellation can be used in multi–grid to obtain direct
solvers, where the analogue of “perfect reconstruction” is
“exact solution.”

The connection between multi–grid methods and multi–rate
systems itself is not a new topic of research. There have been
several efforts to configure multi–grid methods based on the
theory of wavelets [18]–[22]. These efforts move around a
common aim of using a wavelet decomposition in order to
derive the restriction and interpolation operators. On the other
hand, the aim of this work follows a different approach. While
wavelet decompositions use perfect reconstruction filters in the
design of restriction and interpolation operators, the multi–
level solvers in this work will not use perfect reconstruction
filters at any step of their configuration. Perfect reconstruc-
tion filters will only motivate the analogy between “perfect
reconstruction” and “exact solution” which stands as the main
conceptual contribution.

The main goal, under the assumptions just mentioned, is
to modify a full multi–grid algorithm and obtain a direct
multi–grid solver in direct analogy with the problem of perfect
reconstruction filters. In order to establish this analogy the
problem of perfect reconstruction needs to be generalized
for systems with harmonic aliasing patterns, which allows to
configure perfect reconstruction filters that are not necessarily
LSI systems. On the other hand, the full multi–grid algorithm
also requires modifications. Multiple coarse grids are needed
in order to keep all the information from the original problem
in coarse levels. A partition of the complete set of unknowns
defines several coarse levels and represents a particular type
of domain decomposition [23].

Similar approaches can be found in the literature. The use
of multiple coarse grids in multi–grid has been introduced
by Frederickson and McBryan in [24] and Hackbusch in
[25], [26]. It is known that aliasing cancellation helps these
methods to converge fast [27]. Nevertheless, none of them
work as direct solvers and they use smoothing iterations. Total
reduction methods are the closest in structure to the direct
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Fig. 2. The numerical methods introduced in this paper are based on two systems. First, the full two–grid algorithm in Fig. 2a. This is an iterative algorithm
to obtain an approximate solution of Au = f . The dotted line separates vectors from the fine and coarse grid domains. The interpolation (restriction) operation
is applied to vectors crossing the dotted line from below (above). Second, the two–channel multi–rate system in Fig. 2b. Here, each box represents an LSI
system and the stationary impulse response is shown inside. The circles with “↓ 2” represent down–sampling operators that drop one every two samples.
Similarly, circles with “↑ 2” represent up–sampling operators that insert one zero every two samples.

solvers obtained and can be seen as a more restrictive version
of one of the algorithms presented.

In section II, full two–grid algorithms and multi–rate sys-
tems are reviewed. In section III, harmonic aliasing patterns
are introduced. In section IV, perfect reconstruction filters are
studied. In section V, the convergence analysis of two–grid
methods is studied. In section VI, the problem of finding direct
two–grid solvers is stated and solved. In section VII, the multi–
grid case is considered. In section VIII, some examples are
presented. And section IX presents some comparisons with
other solvers.

II. PRELIMINARIES

A. Full two–grid algorithm

The full two–grid algorithm is an iterative solver used to
obtain approximate solutions of (1). In order to simplify the
problem, the algorithm uses the concept of grids and coarse
grids. Whatever the nature of the problem is, the system (1)
can always be associated with a graph in which the unknowns
of the system are the nodes of the graph. The nodes of the
graph are associated with a set of labels Ω which is called the
fine grid. A coarse grid, Ω̄, is a proper subset of the fine grid;
i.e., Ω̄ ⊂ Ω.

The so–called inter–grid operators are defined as any linear
transformation between scalar fields on Ω and Ω̄. That is
ĪI ∈ Cn×|Ω̄| and ĪR ∈ C|Ω̄|×n, where ĪI is the interpolation
operator and ĪR is the restriction operator. In addition to
these operations, and following the standard of most multi–
grid applications, a coarse system matrix is defined following
the Galerkin condition [16]

Ā
def
= ĪR A ĪI . (3)

A full two–grid algorithm solves (1) by using the system
shown in Fig. 2a. Here, there are three steps involved. First,
two boxes perform fixed numbers of smoothing or stationary
iterative iterations. These iterations –typically Gauss–Seidel,
Jacobi, Richardson, etc.– are known to obtain good local
approximations of the solution [16]. This means that high–
frequency components of the approximation error, ek =
u − vk, are efficiently reduced. In each smoothing iteration
the approximation error evolves as ek+1 = Sek. The matrix S
is thus called the smoothing operator. For better understanding
of this step is convenient to assume that S is a filter, or Fourier
multiplier. If this is the case then S has same eigenvectors

as A and it can be decomposed as S = WΣV H . The
matrix of eigenvalues, Σ, contains the frequency response, or
symbols, of the smoothing operator. The smoothing effect on
the approximation error is seen in the frequency domain as a
damping effect concentrated on high–frequency eigenvectors.
In other words, the eigen–decomposition of S can be written
in block–form as

S = W

[
ΣL

ΣH

]
V H , (4)

where ΣL and ΣH correspond to low– and high–frequency
eigenvalues close to 1 and 0, respectively.

The remaining steps in Fig. 2a make use of the coarse
grid. First, the so–called nested iteration step takes f and
computes an initial approximation v0. This step solves a coarse
grid equation using a restricted version of the source vector,
f̄ . And second, the so–called correction scheme improves
the approximation v1 to obtain v2. This step computes an
approximation of ek from the error equation Aek = rk,
where rk = f − Avk is the residual vector taking the
role of the source vector. A coarse grid equation is solved
using a restricted version of the source vector, r̄k. Once
the approximation is obtained, it is added to correct the
current approximation. This step is eventually repeated with
smoothing iterations until convergence is achieved.

It is observed that the approximation of ek obtained in the
coarse grid equations effectively represents its low–frequency
components and fails to represents its high–frequency com-
ponents. This is a consequence of the computations in coarse
grids where the big picture (low–frequencies) of the solution
is clear but details (high–frequencies) are lost.

The approximation error in the coarse grid steps evolves as

e0 = K̄u and ek+1 = K̄ek , (5)

for nested iterations and the correction scheme, respectively.
Here, the matrix

K̄ = I − ĪIĀ−1ĪRA (6)

determines the evolution of the approximation error and is
called the coarse grid correction matrix [28].

The reduction of low–frequency components of the error in
two–grid steps suggests that K̄ is a high–pass filter. If this
would be the case then there would be a decomposition K̄ =
W Γ̄V H where Γ̄ is a diagonal matrix. One would expect a
frequency response of the filter with the shape shown in Fig.
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Fig. 3. Representation of the frequency effects of a coarse grid correction operator in a two–grid algorithm. The operator is not a filter and thus is not
completely represented by filtering effects. The operator is completely represented by filtering and aliasing effects. Γ̄L→L indicates the region of low–
frequencies where the symbols are close to 0. Γ̄H→H indicates the region of high–frequencies where the symbols are close to 1. Γ̄L→H and Γ̄H→L
multiply low– and high–frequencies and take them into high– and low–frequencies, respectively.

Ω

(a) Fine grid with nodes colored red and black.

Ω̄

Ω̃
(b) Red and black coarse grids

Fig. 4. Red–black partition of a grid in 1D. The fine grid Ω is partitioned into a red coarse grid Ω̄ and a black coarse grid Ω̃.

3a. Unfortunately, this is not the case. K̄ is not a filter because
of aliasing effects.

Although K̄ is not technically a filter (or Fourier multi-
plier), under the assumption of harmonic aliasing patterns a
decomposition K̄ = W Γ̄V H exists where Γ̄ is sparse (but not
diagonal). In the forthcoming sections it will be shown that

K̄ = W

[
Γ̄L→L Γ̄H→L
Γ̄L→H Γ̄H→H

]
V H , (7)

where Γ̄L→L, Γ̄H→L, Γ̄L→H and Γ̄H→H are all diagonal ma-
trices if one assumes harmonic aliasing patterns. The filtering
effect is contained in Γ̄L→L and Γ̄H→H , and are expected
to be as shown in Fig. 3a. As opposed to a proper filter, this
figure does not tell everything about the coarse grid correction
matrix. A second graphic, shown in Fig. 3b, must show the
aliasing effect from Γ̄H→L and Γ̄L→H .

B. Two–channel multi–rate systems

In multi–rate systems one is interested to decompose a
discrete signal in different components at lower sampling rates
[17], [29]. A two–channel multi–rate system is shown in Fig.
2b. Two restriction operations are performed by filtering and
down–sampling. These operations split the original signal, s,
into two signals, s0 and s1, each with half of the original
samples. The original signal is recovered by summing two
interpolation operations performed by inserting zeros (up–
sampling) and then filtering.

Here, the boxes represent LSI systems which have stationary
impulse responses and are filters with respect to a harmonic
basis. Their frequency responses are given by the Fourier
transforms of their impulse responses: H0(ω), H1(ω), G0(ω)
and G1(ω). In practical applications the problem is whether
the support of the frequency responses can overlap and still
be able to recover the original signal. This is possible when
the filters fulfill the following conditions by Vetterli [30]

G0(ω)H0(ω) +G1(ω)H1(ω) = 2 , (8)
G0(ω)H0(ω − π) +G1(ω)H1(ω − π) = 0 . (9)

Here, condition (9) causes the aliasing effects from different
channels to cancel each other and (8) causes the final sum to
be equal to the original signal. The more general result with
an arbitrary number of decompositions is due to Vaidyanathan
[31].

III. RED–BLACK HARMONIC ALIASING

A red coarse grid, Ω̄, and a black coarse grid, Ω̃, are defined
by a partition of the fine grid. This is, Ω = Ω̄ + Ω̃, where the
sum denotes the disjoint union of two sets. An example is
shown in Fig. 4. The motivation of the red–black partition is
to keep track of all the fine grid nodes in coarser grids. In
this way the partition represents a particular type of domain
decomposition [23].

The selection of nodes to the red and black partition will
be represented by down–sampling operators according to the
following definition.

Definition 1 (Down/Up–sampling matrices): The red and
black down–sampling matrices are defined as D̄ ∈ {0, 1}|Ω̄|×n
and D̃ ∈ {0, 1}|Ω̃|×n such that

(D̄)i,j
def
=

{
1 if node j ∈ Ω is the ith red node in Ω̄
0 otherwise

(10)

and

(D̃)i,j
def
=

{
1 if node j ∈ Ω is the ith black node in Ω̃
0 otherwise

,

(11)

respectively. Similarly, the red and black up–sampling matrices
are defined as Ū ∈ {0, 1}n×|Ω̄| and Ũ ∈ {0, 1}n×|Ω̃| such that
Ū = D̄T and Ũ = D̃T , respectively.

The down–sampling matrix of a certain color represents a
linear transformation that takes a fine grid vector and drops all
the values that correspond to a node of different color. The up–
sampling matrix takes a coarse grid vector and inserts zeros at
the new nodes (of different color) in the fine grid. From this
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Fig. 5. Difference between red and black harmonic aliasing patterns. The red down–sampling of wL and wH are equal, D̄wL = D̄wH . Whereas the black
down–sampling of wL is the negative of the black down–sampling of wH , D̃wL = −D̃wH .

interpretation, a set of basic properties follows

D̄Ū = I and D̃Ũ = I , (12)

D̃Ū = 0 and D̄Ũ = 0 , and (13)

ŪD̄ + ŨD̃ = I . (14)

In [11] a so–called harmonic aliasing pattern was defined
only for the red grid. The following definition considers both
red and black grids. This addition has important consequences
in the results to come.

Definition 2 (Red and Black Harmonic Aliasing Patterns):
A matrix M ∈ Cn×n is said to have red and black harmonic
aliasing patterns if it is diagonalizable, with biorthogonal
eigenvectors W and V , and there exists a red–black partition
which divides the domain into two halves, with down–
sampling matrices D̄ ∈ {0, 1}

n
2×n and D̃ ∈ {0, 1}

n
2×n, such

that
V H ŪD̄W = N̄ and V H ŨD̃W = Ñ , (15)

respectively. Here, N̄ and Ñ are the red and black harmonic
aliasing patterns defined, respectively, as

N̄
def
=

1

2

[
I I
I I

]
and Ñ

def
=

1

2

[
I −I
−I I

]
. (16)

In this definition the red and black harmonic aliasing
patterns appear as independent properties. The following state-
ment shows how these definitions are equivalent.

Proposition 1: A matrix with red harmonic aliasing pattern
has black harmonic aliasing pattern, and vice versa. Therefore,
a matrix with these properties is said to have a red–black
harmonic aliasing pattern.

Proof: Taking (14), pre–multiplied by V H and post–
multiplied by W gives

V H ŪD̄W + V H ŨD̃W = I . (17)

Thus, if V H ŪD̄W = N̄ then V H ŨD̃W = Ñ , and vice versa.

The definition of red–black harmonic aliasing pattern is
convenient for algebraic manipulation but the connection with
the common concept of aliasing is not clear yet. In the
following theorem an alternative and equivalent definition is
given which makes this connection explicit.

Theorem 1 (Navarrete and Coyle): A matrix M ∈ Cn×n
with red–black harmonic aliasing pattern is equivalent to have

a diagonalizable matrix, with biorthogonal eigenvectors W and
V , for which there exists a red–black partition dividing the
domain into two halves, with down–sampling matrices D̄ ∈
{0, 1}

n
2×n and D̃ ∈ {0, 1}

n
2×n, and such that there is an

ordering of the eigenvectors for which the partitions W =
[WLWH ] and V = [VLVH ] fulfill the conditions

D̄WL = D̄WH , D̄VL = D̄VH , (18)

D̃WL = −D̃WH and D̃VL = −D̃VH . (19)

The proof of this theorem is partially contained in [11] were
only the red coarse grid was considered. The result for the
black coarse grid is shown in Appendix A.

The sign difference between the red and black harmonic
aliasing patterns is explained in Fig. 5 and it represents the fact
that harmonic basis vectors are composed of two envelopes
which, intermixed with the same sign form a low frequency
and, intermixed with opposed signs form a high–frequency.

The definition of red–black harmonic aliasing patterns for
a given matrix does not involve its eigenvalues. But, in the
algebra derived from the partition of eigenvectors in Theorem
1 it will be necessary to specify which eigenvalues are asso-
ciated to each partition. The following remark introduces the
notation to make this distinction clear.

Remark 1: For a matrix M ∈ Cn×n with red–black
harmonic aliasing patterns and eigen–decomposition M =
WEV H , the partition of eigenvectors, W = [WLWH ] and
V = [VLVH ], induces a partition of eigenvalues such that
E =

[
EL

EH

]
, where EL and EH are the diagonal matrices

of eigenvalues associated with L and H eigenvectors, respec-
tively.

IV. PERFECT RECONSTRUCTION FILTERS FOR SYSTEMS
WITH HARMONIC ALIASING PATTERNS

In the context of finite discrete systems we want to extend
the idea of perfect reconstruction filters for systems with
harmonic aliasing patterns, which are more general than LSI
systems. First, we define an object that will extend the
operation of quadrature mirror filters [32]–[34].

Definition 3 (Mirror Matrix): The mirror of a matrix M ∈
Cn×n with respect to a red–black partition represented by
down/up–sampling matrices D̄, Ū = D̄T , and D̃, Ũ = D̃T ,
is defined as

M? def
= (ŪD̄ − ŨD̃)M(ŪD̄ − ŨD̃) . (20)
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F̄R D̄ Ū F̄I

+

F̃R D̃ Ũ F̃I
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t

Fig. 6. Two–channel finite multi–rate system. The system takes a signal
s ∈ Cn, decomposes it into s̄ ∈ Cn/2 and s̃ ∈ Cn/2, and recovers t ∈ Cn.
A perfect reconstruction system is such that t = s. Here, F̄R and F̃R are
restriction filters; F̄I and F̃I are interpolation filters; D̄ and D̃ represent
down–sampling operations; and, Ū and Ũ represent up–sampling operations.

Matrices ŪD̄ ∈ {0, 1}n×n and ŨD̃ ∈ {0, 1}n×n are
diagonal with one’s whenever i = j is a red or black node,
respectively, and zero otherwise. Therefore, ŪD̄ − ŨD̃ is a
diagonal matrix that takes the value 1 when i = j is a red
node, and takes the value −1 when i = j is a black node.

For an LSI system with stationary impulse response h[n],
the mirror operator with respect to a uniform down–sampling
by factor of 2 (where red nodes are even nodes) produces an
impulse response h?[n] = (−1)nh[n]. This filter has symbols
H?(ω) = H(ω−π) and thus swaps low and high frequencies.
The following proposition generalizes this result to systems
with red–black harmonic aliasing patterns.

Proposition 2: The mirror of a matrix M ∈ Cn×n with
red–black harmonic aliasing patterns and eigen–decomposition
M = W

[
EL

EH

]
V H , is a filter with eigen–decomposition

M? = W

[
EH

EL

]
V H . (21)

Proof: Using the eigen–decomposition of M and the
definition of red and black harmonic aliasing patterns, the
result is obtained as follows

M? = WV H(ŪD̄ − ŨD̃)W E V H(ŪD̄ − ŨD̃)WV H

= W [ 0 I
I 0 ]

[
EL 0
0 EH

]
[ 0 I
I 0 ]V H

= W
[
EH

EL

]
V H .

(22)

These results are all we need to proceed into the results of
the next sections. Now, in order to show the analogy between
perfect reconstruction filters and direct multi–grid solvers we
have to look back to the problem of perfect reconstruction
and see how the main results look for systems with harmonic
aliasing patterns. First, we need to restrict the problem to
discrete signals in Cn. The two–channel multi–rate system
in Fig. 6 is then the finite and discrete version of the system
in Fig. 2b. The problem is to find interpolation and restriction
matrices F̄I , F̄R, F̃I and F̃R in Cn×n that are filters with
respect to a biorthogonal basis W and V , and such that we
have perfect reconstruction; i.e., t = s.

The following theorem restates Vetterli’s conditions (8) and
(9) in this new context.

Theorem 2 (Vetterli): Let F̄I , F̄R, F̃I and F̃R be filters with
respect to a biorthogonal basis W and V in Cn×n. Let their
matrices of eigenvalues be Π̄I , Π̄R, Π̃I and Π̃R, respectively,
and the eigenvectors have red–black harmonic aliasing patterns
with respect to the down–sampling matrices D̄ and D̃. Then,

the multi–rate system in Fig. 6 has the perfect reconstruction
property, t = s, if and only if

Π̄IΠ̄R + Π̃IΠ̃R = 2I , (23)

Π̄I,LΠ̄R,H − Π̃I,LΠ̃R,H = 0 , and (24)

Π̄I,HΠ̄R,L − Π̃I,HΠ̃R,L = 0 , (25)

where the L and H subindexes follow the notation introduced
in Remark 1.

Proof: From Fig. 6, perfect reconstruction is obtained if
and only if

F̄I ŪD̄F̄R + F̃I ŨD̃F̃R = I . (26)

Pre–multiplying by V H , post–multiplying by W and using the
definitions in (15) gives

1
2

[
Π̄I,LΠ̄R,L+Π̃I,LΠ̃R,L Π̄I,LΠ̄R,H−Π̃I,LΠ̃R,H

Π̄I,HΠ̄R,L−Π̃I,HΠ̃R,L Π̄I,HΠ̄R,H+Π̃I,HΠ̃R,H

]
= [ I 0

0 I ] .

(27)
The blocks in the diagonal are equivalent to (23) and the off–
diagonals give (24) and (25).

Next, we are interested in a particular solution of these
conditions using mirror filters. The following corollary gen-
eralizes the solution using quadrature mirror filters (QMF)
for perfect reconstruction in a two–channel multi–rate system
with respect to a biorthogonal basis with red–black harmonic
aliasing patterns.

Corollary 1 (Croisier et al.): Perfect reconstruction condi-
tions (23), (24) and (25) are fulfilled if F̄I is such that

Π̄2
I,L + Π̄2

I,H = 2I , and (28)

F̄R = F̄I , F̃I = F̄ ?I , and F̃R = F̄ ?I . (29)

Proof: Using Proposition 2, if (29) is assumed then the
conditions (24) and (25) are fulfilled. The mirror condition
(28) is necessary to fulfill (23).

Quadrature mirror filters were introduced as a solution of
the perfect reconstruction problem in [32]. In its original
formulation, only a Haar filter gives a sparse quadrature mirror
filter [35]. Later, this problem was solved by the introduction
of conjugate mirror filters [33], [34], and later generalized
for biorthogonal and multi–channel paraunitary systems [30],
[31]. The problem to obtain perfect reconstruction FIR filters
has to do with the delays between the filters. From a signal
processing perspective the red–black partition corresponds to
a polyphase decomposition [17], [29], [36] that introduces
the delays in the down/up–sampling operations and allows to
obtain the different solutions for perfect reconstruction.

V. TWO–GRID CONVERGENCE

Since the configuration of a two–grid algorithm involves
many parameters and assumptions, it is convenient to introduce
a single terminology that refers to this configuration.

Definition 4 (Red–Black Harmonic Two–grid Configuration):
A red–black harmonic two–grid configuration is a set of
matrices depending on a system matrix A ∈ Cn×n with
red–black harmonic aliasing patterns and biorthogonal
eigenvectors W and V . The red–black partition of nodes
is represented by down–sampling operators D̄ and D̃. The
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configuration is completed with the inter–grid filters F̄R, F̄I ,
F̃R and F̃I , all in Cn×n. Then, a series of matrices associated
with the configuration are defined. First, the interpolation
and restriction operators, and the two coarse system matrices
given by the Galerkin condition, are defined as

ĪR = D̄F̄R , ĪI = F̄I Ū , ĨR = D̃F̃R , ĨI = F̃I Ũ , (30)

Ā = ĪRAĪI and Ã = ĨRAĨI . (31)

The system matrix and the inter–grid filters have eigen–
decompositions

A = W Λ V H ,

F̄R = W Π̄R V
H , F̄I = W Π̄I V

H ,

F̃R = W Π̃R V
H and F̃I = W Π̃I V

H ,

and the partition of eigenvectors, W = [WLWH ] and V =
[VLVH ], leads to the partitions of eigenvalues

Λ =
[

ΛL

ΛH

]
,

Π̄R =
[

Π̄R,L

Π̄R,H

]
, Π̄I =

[
Π̄I,L

Π̄I,H

]
,

Π̃R =
[

Π̃R,L

Π̃R,H

]
and Π̃I =

[
Π̃I,L

Π̃I,H

]
.

Finally, the two coarse grid correction matrices are defined as

K̄ = I − ĪIĀ−1ĪRA and (32)

K̃ = I − ĨIÃ−1ĨRA . (33)

Now, based on these definitions, the goal is to obtain an
eigen–decomposition of the coarse grid correction matrices.
The following lemma takes the first step by giving useful
expressions for the inverse of the coarse system matrices in
(32) and (33).

Lemma 1 (Navarrete and Coyle): In a red–black harmonic
two–grid configuration the inverses of the red and black coarse
grid matrices are given by

Ā−1 = 4 (D̄WL)∆̄−1(D̄VL)H and (34)

Ã−1 = 4 (D̃WL)∆̃−1(D̃VL)H , (35)

respectively, with

∆̄ = Π̄R,LΛLΠ̄I,L + Π̄R,HΛHΠ̄I,H and (36)

∆̃ = Π̃R,LΛLΠ̃I,L + Π̃R,HΛHΠ̃I,H . (37)

The proof of this lemma is partially contained in [11] were
only the red coarse grid was considered. The proof for the
black grid is shown in Appendix B.

The result in Lemma 1 reflects the structure of a system
with harmonic aliasing patterns. The eigenvectors of coarse
system matrices are given by a linear–independent subset of
the down–sampling eigenvectors of the system matrix. The
coarse eigenvalues are expressed as sums of low– and high–
frequency eigenvalues as a result of aliasing effects.

Finally, the following theorem gives the eigen–
decompositions of coarse grid correction matrices.

Theorem 3 (Navarrete and Coyle): In a red–black har-
monic two–grid configuration the red and black coarse grid

correction matrices (32) and (33) can be decomposed as

K̄ = W

[
Γ̄L→L Γ̄H→L
Γ̄L→H Γ̄H→H

]
V H and (38)

K̃ = W

[
Γ̃L→L Γ̃H→L
Γ̃L→H Γ̃H→H

]
V H , (39)

with
Γ̄L→L = I − Π̄I,L∆̄−1Π̄R,LΛL ,

Γ̄H→L = −Π̄I,L∆̄−1Π̄R,HΛH ,

Γ̄L→H = −Π̄I,H∆̄−1Π̄R,LΛL ,

Γ̄H→H = I − Π̄I,H∆̄−1Π̄R,HΛH

and
Γ̃L→L = I − Π̃I,L∆̃−1Π̃R,LΛL ,

Γ̃H→L = Π̃I,L∆̃−1Π̃R,HΛH ,

Γ̃L→H = Π̃I,H∆̃−1Π̃R,LΛL ,

Γ̃H→H = I − Π̃I,H∆̃−1Π̃R,HΛH .

The proof of this theorem is partially contained in [11] were
only the red coarse grid was considered. The result for the
black coarse grid is shown in Appendix C.

The results for the red and black coarse grids carry the
difference in sign from the definition of harmonic aliasing
patterns, which can be seen in the cross–modal symbols
(H → L and L→ H).

VI. DIRECT TWO–GRID METHODS

In this section the full two–grid algorithm shown in Fig. 2a
will be modified to obtain direct two–grid solvers for systems
with harmonic aliasing patterns. The motivation is to eliminate
smoothing iterations in the full two–grid scheme and base
the algorithm purely on nested iterations and/or correction
schemes.

A mere elimination of smoothing iterations in Fig. 2a would
make it impossible for the algorithm to converge since partial
information in a single coarse grid is not enough to get all the
information from the fine grid. The algebra is very clear on
this point because, based on the Galerkin condition, a coarse
grid correction matrix is idempotent (or projection matrix).
This is,

K̄2 = K̄ and K̃2 = K̃ , (40)

which means that several iterations of two–grid steps with a
single coarse grid do nothing more than a single iteration.
On the other hand, the red–black partition keeps all the
information from the fine grid. Therefore, combining red and
black coarse grids at different steps of the algorithm has a
chance to converge depending on the configuration of the
algorithm.

A. Multiplicative Approach

Two modifications of the full two–grid algorithm from
Fig. 2a are considered in Fig. 7a. First, smoothing iterations
are removed. And second, red and black coarse grids are
considered in the nested iteration and correction scheme steps,
respectively.
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(b) Additive scheme

Fig. 7. Two–grid schemes approaches to solve Au = f exactly. The multiplicative scheme is different than the full two–grid scheme shown in Fig. 2a
because no smoothing iterations are used, and different coarse grids are used at each step. The additive scheme is the two–grid algorithm’s version of the
two–channel multi–rate system in Fig. 6. In both cases the two coarse grids form a partition of the fine grid and thus capture all the information from the
fine grid. This fact allows these schemes to work as direct solvers; i.e., allows v = u.

If this algorithm works as a direct solver then it means
that the problem is being factorized into coarse grid sub–
problems. The following proposition shows this in terms of
a factorization of A−1.

Proposition 3: The system shown in Fig. 7a works as a
direct solver; i.e., v = u, if and only if the following
decomposition applies on the inverse of the system matrix:

A−1 = ĪIĀ
−1ĪR+ ĨIÃ

−1ĨR− ĨIÃ−1(ĨRAĪI)Ā
−1ĪR . (41)

Proof: Using (5) in Fig. 7a gives

e = K̃K̄u . (42)

Then, an exact solution is obtained if and only if K̃K̄ = 0.
Using (32) and (33) gives (41).

In this matrix factorization, the first two terms indicate the
components of the inverse that come from the red and coarse
grids independently. The third term indicates the dependence
between the two solutions. In fact, the correction scheme in
Fig. 7a works on top of the solution given by nested iteration
and thus mixes the solutions from both coarse grids.

This factorization is known in domain decompositions as
the multiplicative Schwartz procedure [23]. In this procedure
the evolution of the approximation error in m iteartions is
represented by the multiplicative operator, Pmu = I − Emu.
Here, Emu = Km · · ·K1K0 and Ki are coarse grid correction
matrices. The classical domain decomposition approach does
not work as a direct solver and therefore Pmu 6= I . Thus,
the two–grid configuration in Fig. 7a corresponds to a direct
multiplicative Schwartz configuration.

The following theorem establishes conditions on the inter–
grid filters to obtain a direct solver.

Theorem 4: A red–black harmonic two–grid configuration
arranged as shown in Fig. 7a, with non–singular A, Ā, F̄R, Ã
and F̃I , works as a direct solver; i.e., v = u, if and only if

Π̄R,LΛLΠ̃I,L = Π̄R,HΛHΠ̃I,H . (43)

Proof: From (42), the direct solution is obtained if and
only if

K̃K̄ = [ 0 0
0 0 ] . (44)

Using Theorem 3, the conditions in the diagonal blocks, which
guarantee a perfect recovery of the solution, give

(I − Π̃I,L∆̃−1Π̃R,LΛL)(I − Π̄I,L∆̄−1Π̄R,LΛL)

= Π̃R,HΠ̃R,L(∆̄∆̃)−1Π̃I,LΠ̄I,HΛLΛH (45)

and

(I − Π̃I,H∆̃−1Π̃R,HΛH)(I − Π̄I,H∆̄−1Π̄R,HΛH)

= Π̃R,LΠ̄R,H(∆̄∆̃)−1Π̃I,HΠ̄I,LΛLΛH . (46)

The conditions in the off–diagonal blocks, which take care of
aliasing cancellation, give

(I − Π̃I,L∆̃−1Π̃R,LΛL)Π̄I,L∆̄−1Π̄R,HΛH

= (I − Π̄I,H∆̄−1Π̄R,HΛH)Π̃I,L∆̃−1Π̃R,HΛH (47)

and

(I − Π̃I,H∆̃−1Π̃R,HΛH)Π̄I,H∆̄−1Π̄R,LΛL

= (I − Π̄I,L∆̄−1Π̄R,LΛL)Π̃I,H∆̃−1Π̃R,LΛL . (48)

Here, all matrices are diagonal and therefore their products
commute. None of the eigenvalues of inter–grid filters are zero
because they are non–singular. Then, it is safe to multiply by
any inverse of these matrices if necessary for simplifications.
Since the coarse grid matrices are non–singular, each of
the conditions above can be multiplied by ∆̄∆̃. After this
multiplication, using (36) and (37), the simplifications for the
four equations independently give the same condition shown
in (43).

It is clear from (43) that inter–grid filters satisfying this
condition should swap the low– and high–frequency eigenval-
ues of the system matrix. The mirror of the system matrix
fits perfectly for this purpose. The following corollary gives a
particular solution which tries to keep the algorithm as simple
as possible.

Corollary 2: A red–black harmonic two–grid configuration
arranged as shown in Fig. 7a, with non–singular A and such
that det(ΛL + ΛH) 6= 0, works as a direct solver with the
following configuration:

F̄I = I , F̄R = I ,

F̃I = A? and F̃R = I .
(49)
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The coarse grid correction matrices for this configuration are

K̄ = (ΛL + ΛH)−1 W

[
ΛH −ΛH
−ΛL ΛL

]
V H and

K̃ =
1

2
W

[
I I
I I

]
V H . (50)

Proof: Using the eigen–decomposition of filters and
Proposition 2 gives

Π̄I = I , Π̄R = I ,

Π̃I,L = ΛH , Π̃I,H = ΛL and Π̃R = I .
(51)

Using these eigenvalues in (36) and (37) gives ∆̄ = ΛL +
ΛH and ∆̃ = 2ΛLΛH . Therefore, by Lemma 1 the coarse
grid system matrices are invertible. Then, Theorem 4 can be
applied and the eigenvalues of inter–grid filters above fulfill
the condition (43). Finally, using (51) in Theorem 3 gives (50).

From K̃ in (50) we see that the nested iteration step is not
filtering nor reducing any frequency component of the error. It
just equals the gain of all the effects. On the other hand, from
K̄ in (50) we see that the correction scheme acts as a mirror
filter by swapping the low– and high–frequency eigenvalues of
the system matrix in the diagonal blocks. The aliasing effect
in the off–diagonals is adjusted to cancel the symbols at the
same row in K̃, so that K̃K̄ = 0.

This solution is particularly simple in the nested iteration
step, since only down/up–sampling operations are used. The
coarse grid matrix Ā = D̄AŪ has better sparseness than the
system matrix A. On the other hand, the sparseness of Ã =
D̃A?AŨ depends on the structure of down–sampling and non–
zeros in A.

When solving Poisson’s equation, this solution is equivalent
to the total reduction method by Schröder and Trottenberg [7],
[8]. The derivation of total reduction methods was based on
the structure of a stationary impulse response for LSI systems
and thus imposes stronger assumptions on the system.

B. Additive Approach

The second approach is the two–grid algorithm shown in
Fig. 7b which uses the structure of the two–channel multi–
rate system from Fig. 6. This is a two–grid scheme with
two nested iterations working in parallel at red and black
coarse grids. The red and black coarse grids work as the two
channels of a multi–rate system, but now, linear systems of
equations are solved before the interpolation and addition of
the two approximations. In a multi–rate system the idea is to
reconstruct the input signal (in this case f ) but now the idea is
to transform this signal into the solution of the linear system.

If this algorithm works as a direct solver then it means
that the problem is being factorized into coarse grid sub–
problems. The following proposition shows this in terms of
a factorization of A−1.

Proposition 4: The system shown in Fig. 7b works as a
direct solver; i.e., v = u, if and only if the following
decomposition applies on the inverse of the system matrix:

A−1 = ĪIĀ
−1ĪR + ĨIÃ

−1ĨR . (52)

Proof: The approximation error in Fig. 7b is given by
e = u− (v̄ + ṽ). Using (5) gives

e =
(
K̄ + K̃ − I

)
u (53)

Then, an exact solution is obtained if and only if K̄+ K̃ = I .
Using (32) and (33) gives (52).

As opposed to (41), here no cross–terms appear in the
decomposition. This reflects the fact that nested iterations run
independent of each other. This makes this scheme better
suited for parallelization.

This factorization is known in domain decompositions as the
additive Schwartz procedure [23]. In this procedure the evolu-
tion of the approximation error in m iteartions is represented
by the additive operator, Pad = Km + · · ·+K1 +K0, where
Ki are coarse grid correction matrices. The classical domain
decomposition approach does not work as a direct solver and
therefore Pad 6= I . Thus, the two–grid configuration in Fig.
7b corresponds to a direct additive Schwartz configuration.

The following theorem establishes conditions on the inter–
grid filters to obtain a direct solver.

Theorem 5: A red–black harmonic two–grid configuration
arranged as shown in Fig. 7b, with non–singular A, Ā, F̄R, Ã
and F̃I , works as a direct solver; i.e., v = u, if and only if

Π̄R,LΠ̃R,LΛ2
LΠ̄I,LΠ̃I,L = Π̄R,HΠ̃R,HΛ2

HΠ̄I,HΠ̃I,H , (54)

Π̄R,LΠ̃R,HΛ2
LΠ̄I,LΠ̃I,L + Π̄R,HΠ̃R,HΛ2

HΠ̄I,HΠ̃I,L =

Π̄R,HΠ̃R,LΛ2
LΠ̄I,LΠ̃I,L + Π̄R,HΠ̃R,HΛ2

HΠ̄I,LΠ̃I,H

(55)

and

Π̄R,LΠ̃R,LΛ2
LΠ̄I,LΠ̃I,H + Π̄R,HΠ̃R,LΛ2

HΠ̄I,HΠ̃I,H =

Π̄R,LΠ̃R,LΛ2
LΠ̄I,HΠ̃I,L + Π̄R,LΠ̃R,HΛ2

HΠ̄I,HΠ̃I,H .
(56)

Proof: From (53) the direct solution is obtained if and
only if

K̄ + K̃ = [ I 0
0 I ] . (57)

Using Theorem 3, the conditions in the diagonal blocks, which
guarantee a perfect recovery of the solution, give

Π̄I,L∆̄−1Π̄R,LΛL + Π̃I,L∆̃−1Π̃R,LΛL = I and (58)

Π̄I,H∆̄−1Π̄R,HΛH + Π̃I,H∆̃−1Π̃R,HΛH = I . (59)

The conditions in the off–diagonal blocks, which take care of
aliasing cancellation, give

Π̄I,L∆̄−1Π̄R,H − Π̃I,L∆̃−1Π̃R,H = 0 and (60)

Π̄I,H∆̄−1Π̄R,L − Π̃I,H∆̃−1Π̃R,L = 0 . (61)

Here, all matrices are diagonal and therefore their products
commute. None of the eigenvalues of inter–grid filters are zero
because they are non–singular. Then, it is safe to multiply by
any inverse of these matrices if necessary for simplifications.
Since the coarse grid matrices are non–singular, each of the
conditions above can be multiplied by ∆̄∆̃. After this multi-
plication, using (36) and (37), the algebra on the conditions
(58) and (59) simplifies to the same condition in (54), and
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the algebra on (60) and (61) simplifies to (55) and (56),
respectively.

These conditions are analogous to Vetterli’s conditions (23–
25). The analogy is more clear from (58–61) where the only
difference with (23–25) is the existence of the matrices ∆̄, ∆̃,
ΛL and ΛH . This indicates the fact that a linear system of
equations is being solved.

Again, the mirror of the system matrix can be used to find
a solution of these conditions. The following corollary gives a
particular solution which tries to keep the algorithm as simple
as possible.

Corollary 3: A red–black harmonic two–grid configuration
arranged as shown in Fig. 7b, with non–singular A, works as
a direct solver with the following configuration:

F̄I = A? , F̄R = I ,

F̃I = A? and F̃R = I .
(62)

The coarse grid correction matrices for this configuration are

K̄ =
1

2
W

[
I −I
−I I

]
V H and

K̃ =
1

2
W

[
I I
I I

]
V H . (63)

Proof: Using the eigen–decomposition of filters and
Proposition 2 gives

Π̄I,L = ΛH , Π̄I,H = ΛL , Π̄R = I ,

Π̃I,L = ΛH , Π̃I,H = ΛL and Π̃R = I .
(64)

Using these eigenvalues in (36) and (37) gives ∆̄ = ∆̃ =
2ΛLΛH . Therefore, by Lemma 1, the coarse grid system
matrices are invertible. Then, Theorem 5 can be applied and
the eigenvalues of inter–grid filters fulfill conditions (54–56).
Using the eigenvalues from (64) in Theorem 3 gives (63).

The coarse grid correction matrices in (63) equal the gain
of filtering and aliasing effects. Interestingly, the symbols of
K̄ and K̃ correspond to the black and red harmonic aliasing
pattern in (16), Ñ and N̄ , respectively. The aliasing effect in
the off–diagonals have opposed signs between red and black
coarse grids, so that K̃ + K̄ = I .

Compared with the solution for the multiplicative approach,
the additive approach involves more computations. This is
because both red and black coarse grid matrices use a mirror
filter. On the other hand, this approach is better suited for
parallelization. Therefore, both the multiplicative an additive
approaches become useful depending on the computational
resources available. The multiplicative approach is more con-
venient in a single processor and the additive approach is more
convenient in a multi–core architecture.

VII. DIRECT MULTI–GRID METHODS

The convergence analysis of previous sections will be valid
at each coarse level if harmonic aliasing patterns exist for each
coarse system matrix. The following definition introduces the
multi–scale property needed on the biorthogonal eigenvectors
of the system.

Definition 5 (Multi–grid Harmonic Basis): A multi–grid
harmonic basis of level 0 is any biorthogonal basis of Cn. A

multi–grid harmonic basis of level l > 0 is a biorthogonal
basis of Cn, n = 2ln0 and n0 ∈ N+, with red–black
harmonic aliasing patterns and such that the down–sampled
low–frequency eigenvectors form a multi–grid harmonic basis
of level l − 1.

The two–grid methods in section VI can be extended to
multiple grids if the eigenvectors of a system matrix A ∈
Cn×n, with n = 2ln0 and n0 = O(1), form a multi–grid
harmonic basis of level l.

A. Multiplicative direct multi–grid algorithm

The recursive implementation of the multiplicative approach
shown in Fig. 7a is explained in Table I. Here, the difference
equation for the number of multiplications performed gives
p(n) = O(n log n).

Starting from two coarse grids in the first level, the algo-
rithm creates coarser grids which form a partition of the fine
grid into more subsets of nodes. In Fig. 8a the sequence of
coarse grids visited by the algorithm is shown for l = 3. The
structure is a W–cycle, well known in multi–grid methods [16].
At each level the partition of nodes is duplicated. For instance,
in the coarsest level the grid partition gives

Ω = Ωrrr + Ωrrb+ Ωrbr + Ωrbb+ Ωbrr + Ωbrb+ Ωbbr + Ωbbb ,
(65)

where the subindexes from left (fine) to right (coarse) indicate
if red or black grids were chosen.

This algorithm has the convenient property that the red
coarse system matrix Ā = D̄AŪ reduces the sparseness of
the system matrix A. In coarser levels the system matrix might
soon become diagonal and the system is solved in linear time.
Thus, there are good chances that the structure in Fig. 8a
changes from a W–cycle into a V–cycle [16], reducing the
computational complexity from O(n log n) to O(n). This is
actually what happens when solving Poisson’s equation, where
this method is equivalent to total reduction methods [7], [8].
In general, this depends on the structure of the system and it
will not be study here in depth. The PDE example in section
VIII shows a case where the computational complexity is
effectively reduced.

B. Additive direct multi–grid algorithm

The recursive implementation of the additive approach
shown in Fig. 7b is explained in Table I. Here, the difference
equation for the number of multiplications performed gives
p(n) = O(n log n).

Same as for the multiplicative approach, the algorithm
creates coarser grids which form a partition of the fine grid
into more subsets of nodes. In Fig. 8b the sequence of coarse
grids visited by the algorithm is shown for l = 3. The structure
is a binary tree that duplicates the number of partitions at each
level. The partition at the coarsest level is the same as in (65).

This algorithm is more convenient for parallelization. In
fact, as shown in Fig. 7b, a problem separated into red and
coarse grids can run in two different processors at the same
time. In the coarsest grids of Fig. 8b, a total of eight problems
can run in parallel if eight different processors are available.
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TABLE I
PSEUDOCODE FOR THE DIRECT MULTI–GRID ALGORITHM FOLLOWING MULTIPLICATIVE AND ADDITIVE APPROACHES TO SOLVE Au = f . THE MATRIX

A? REPRESENTS THE MIRROR OF A ACCORDING TO DEFINITION 3.

Task Products

u = DMG multiplicative(A, f, n) p(n)

if n > n0 , n0 = O(1)

f̄ = D̄f 0

Ā = D̄AŪ 0

v̄ = DMG multiplicative(Ā, f̄ , n
2

) p(n
2

)

v0 = Ū v̄ 0

r = f −Av0 O(n)

r̃ = D̃r 0

ĨI = A?Ũ 0

Ã = D̃AĨI O(n)

ẽ = DMG multiplicative(Ã, r̃, n
2

) p(n
2

)

e0 = ĨI ẽ O(n)

u = v0 + e0 0

return(u)

else

return(A−1f) O(1)

Task Products

u = DMG additive(A, f, n) p(n)

if n > n0 , n0 = O(1)

f̄ = D̄f 0

ĪI = A?Ū 0

Ā = D̄AĪI O(n)

v̄ = DMG additive(Ā, f̄ , n
2

) p(n
2

)

f̃ = D̃f 0

ĨI = A?Ũ 0

Ã = D̃AĨI O(n)

ṽ = DMG additive(Ã, f̃ , n
2

) p(n
2

)

u = ĪI v̄ + ĨI ṽ O(n)

return(u)

else

return(A−1f) O(1)

r r r b b b

rr rr rr rb rb rb br br br bb bb bb

rrr rrb rbr rbb brr brb bbr bbb

f u

(a) Multiplicative algorithm

rrr
rr rr

rrb
r r

rbr
rb rb

rbb

brr
br br

brb
b b

bbr
bb bb

bbb

f u

(b) Additive algorithm

Fig. 8. Dataflow diagram showing the sequence of coarse grids visited when using multiplicative or additive approaches. The sequence of letters in each
box indicates the coarse grid where computations take place. Inside of the boxes, from left to right, letters ‘r’ or ‘b’ indicates red or black grids, respectively,
selected from fine to coarse levels. The execution time moves from left to right. The source vector f enters from the left end and the exact solution u is
obtained at the right end. Boxes in the same horizontal position indicate grids where computations can run in parallel. In the multiplicative approach, coarse
grids are visited sequentially through a W–cycle, not allowing parallel computations. In the additive approach, coarse grids are visited through a binary tree,
allowing parallel computations.

Thus, under the assumption of a multi–grid harmonic basis of
level l, with n = 2ln0 and n0 = O(1), if O(n) processors
are available then the computational complexity reduces from
O(n log n) to O(log n). Unfortunately, such an ideal situation
rarely exists. A similar scenario happens in a sensor network
where a set of sensors are deployed over an area where they
measure the source vector of a linear model. Each sensor
performs computations in–site and can be associated with
a small group of grid nodes. In this case, communications
between sensors prevent the algorithm to reach the ideal time
complexity to solve the model equations. Nevertheless, this
approach provides a simple way to parallelize the solution of
a linear system using all the available computational resources.

VIII. EXAMPLES

Two examples are considered: deblurring an image and
solving a PDE. Both problems solve the linear system (1) for a
two–dimensional operator A with stationary impulse response

1
256

[
4 6 12 6 4
6 9 18 9 6
12 18 36 18 12
6 9 18 9 6
4 6 12 6 4

]
and

[ −1

−1 (4−(
π
12 )2) −1

−1

]
(66)

for the blurring and the differential operator, respectively. The
underlines in (66) denote the diagonal elements. In both prob-
lems the size of the discrete domain is set to n = 128× 128
and periodic boundary conditions are considered.

In the deblurring problem, an unkown image u passes
through an imperfect optical system that spreads each pixel
value over its neighbouring pixels and gives the observed
blurred image f . This blurring effect needs to be removed by
solving the linear system. This is not a straightforward problem
to be solved by multi–grid techniques since the system is
represented by an integral matrix (low–pass filter) instead of a
differential matrix (high–pass filter). On one hand, multi–grid
iterative methods have been adapted to solve this problem,
see for example [37], [38]. And on the other hand, the direct



5102 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

(a) Ω = Ωr + Ωb

(b) Ω = Ωrr + Ωrb + Ωbr + Ωbb

(c) Ω = Ωrrr + Ωrrb + Ωrbr + Ωrbb + Ωbrr + Ωbrb + Ωbbr + Ωbbb

Fig. 9. Red–black partitions of nodes for a 2D square domain Ω of size
n = 16× 16. Dark squares indicate the selected nodes. The same pattern is
used in the examples of Section VIII on a domain of size n = 128× 128.

multi–grid solvers work naturally regardless of the operator
being integral or differential.

In the PDE problem, the operator represents the finite–
difference discretization of Helmholtz’s equation −∇2u −
k2u = f on a square domain with unit step size and
wavenumber k = π

12 . The equation needs to be solved for
a known source vector f . A sparse source vector will be
considered, which represents a common situation in PDEs
where non–zero values of sources are normally located at
boundaries or point sources.

Both systems are invariant under space shifts and therefore
the eigenvectors are given by harmonic functions (W )i,j =
exp

(√
−1 2π

n ij
)
. After proper reordering, the basis has har-

monic aliasing patterns if the down–sampling pattern shown
in Fig. 9 is used. A checkerboard down–sampling as shown
in Fig. 9a gives a mirror matrix A? with stationary impulse
response

1
256




4 −6 12 −6 4
−6 9 −18 9 −6
12 −18 36 −18 12
−6 9 −18 9 −6
4 −6 12 −6 4


 and

[
1

1 4−(
π
12 )2 1

1

]
(67)

for the blurring and the differential operator, respectively.
An important problem arises naturally for systems in two

or more dimensions. The down/up–sampling by a factor of 2
is not enough to reduce the impulse response of the product
AA?. Then, the impulse response of system matrices grows
larger and larger in coarse grids. An example for the impulse
response of a Laplacian operator is shown in Fig. 10. The
same problem appears in other direct multi–grid solvers like
total and partial (or cyclic) reduction methods [7]–[9].

In Fig. 11a and 11b a blurred image (known) and a
deblurred image (unkown) are shown. In Fig. 12a and 12b the
intermediate solutions of a two–grid multiplicative approach

are shown. In this case the red coarse system matrix represents
a smaller blurring mask. Therefore, the nested iteration step
removes some of the blurring effects and obtains a good initial
approximation. The black coarse system adds the correction
with all the missing details. In Fig. 13a, 13c and 13e the
intermediate solutions of an additive multi–grid approach are
shown for three coarse levels. Here, the solutions from each
coarse grid gives the same amount of detail to construct the
deblurred image.

In Fig. 11c and 11d a solution of Helmholtz’s equation is
shown for a sparse source vector. In Fig. 12c and 12d the
intermediate solutions of a two–grid multiplicative approach
are shown. Here, the red coarse system matrix is diagonal and
the source vector is sparse. Therefore, the initial approximation
of nested iteration is sparse. Then, the correction scheme adds
the remaining component which, in this case, is the most
significant part of the solution. In Fig. 13b, 13d and 13f
the solutions at coarse grids are shown by using an additive
approach. Each of the 4 point sources in f appears in one of
the coarse grids Ωrr, Ωrb, Ωbr and Ωbb. At the third coarse
level the point sources only appear in Ωrrr, Ωrbr, Ωbrb and
Ωbbb. Therefore, each point source appears only once at each
coarse level. This is a consequence of the down–sampling
restriction and makes this approach an effective way to obtain
the Green’s function of a system for specific point sources.

IX. COMPARISONS

In terms of computational complexity, under general as-
sumptions the direct multi–grid algorithms do not compete
against iterative solvers. For instance, the full multi–grid al-
gorithm is an iterative solver that can be efficiently configured
for LSI systems and reaches computational complexity O(n),
whereas the direct multi–grid approaches need O(n log n)
computations. In specific cases, including the solution of
Poisson’s equation, the multiplicative approach reduces the W–
cycle in Fig. 8a to a V–cycle where O(n) computations are
needed. Still, this was already known for these cases where
the multiplicative approach is equivalent to the total reduction
method [7], [8].

On the other hand, the direct multi–grid methods are
competitive compared with other direct solvers. In terms of
computational complexity, for LSI systems the direct–multi–
grid solvers stand along with FFT–based solvers, needing
O(n log n) computations [15]. The comparison with sparse
LU solvers is not clear in general since the performance
of these solvers strongly depends on the fill–in during the
factorization process [5]. In terms of memory space it is
important not to store all the coarse grid matrices at once
as this soon becomes prohibitive, scaling as O(n log n). The
number of variables needed to run a direct multi–grid solver
is between 2n and 3n depending on the implementation,
although the grow of impulse responses shown in Fig. 10
might increase this number depending on the problem.

Since direct multi–grid solvers make internal use of a direct
solver in the coarsest grids, these methods can also be used
to boost a different direct solver. For example, if an efficient
direct solver only uses a single processor then the additive
approach can be used to parallelize this solver.
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-1

-1 4 -1

-1

(a) Impulse response in Ω

-1

-2 -2

-1 12 -1

-2 -2

-1

(b) Impulse response in Ωr

1

-2 -32 -2

1 -32 132 -32 1

-2 -32 -2

1

(c) Impulse response in Ωrr

Fig. 10. Impulse response coefficients from a finite–difference discretization of the Laplacian operator: −∇2. The coarse grid system matrices obtained with
mirror filters give impulse responses that grow in coarse grids.

(a) Source vector: f . (b) Exact solution: u. (c) Source vector: f . (d) Exact solution: u.

Fig. 11. In the first example, the convolution of an image and the mask 1
256

[2 3 6 3 2]T [2 3 6 3 2] forms the source vector in 11a. The exact solution is
shown in 11b. In the second example, Helmholtz’s equation, −∇2u−k2u = 0 with k = π

12
, is solved in a square domain with periodic boundary conditions.

In 11c the source vector is equal to 1 in four neighboring nodes at the center of the figure and zero elsewhere. The exact solution is shown in 11d.

(a) v0 for f in Fig. 11a (b) e0 for f in Fig. 11a (c) v0 for f in Fig. 11c (d) e0 for f in Fig. 11c

Fig. 12. Intermediate solutions of the direct two–grid multiplicative approach from Fig. 7a. In 12a and 12b the intermediate solutions are shown for a
deblurring problem. In 12c and 12d the intermediate solutions are shown for a PDE problem.

X. CONCLUSIONS

Numerical methods to solve linear systems of equations
were obtained based on the similarities of the full two–grid
algorithm and perfect reconstruction filter banks. The two
alternatives, multiplicative and additive, correspond to direct
Schwartz domain decomposition methods based on a partition
of the original domain. The additive approach can be used
to parallelize the problem among all the available processors,
whereas the multiplicative approach is more efficient in a
single processor.

Future research will focus on the application of these
algorithms in systems that are not LSI. On one hand, the
algorithms are ready to work on systems that are known to

have harmonic aliasing patterns but more numerical studies
are necessary. And, on the other hand, the most challenging
problem is to understand the physical and geometrical im-
plications of harmonic aliasing patterns. This is essential to
construct practical methods to check aliasing patterns and be
able to use these methods in more challenging problems.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof of the red harmonic aliasing pattern
being equivalent to (18) is due to Navarrete and Coyle [11].
The proof of the black harmonic aliasing pattern being equiv-
alent to (19) follows the same reasoning. Given the partition
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(a) ur and ub (b) ur and ub

(c) urr , urb, ubr and ubb (d) urr , urb, ubr and ubb

(e) urrr , urrb, urbr , urbb, ubrr , ubrb, ubbr and ubbb (f) urrr , urrb, urbr , urbb, ubrr , ubrb, ubbr and ubbb

Fig. 13. Intermediate solutions of the direct multi–grid additive approach from Fig. 7b. Considering the sources in Fig. 11a and 11c for the deblurring and
PDE problems, respectively, the exact solution is given by: u = ur+ub at the first coarse level in Fig. 13a and 13b, respectively; u = urr+urb+ubr+ubb
at the second coarse level in Fig. 13c and 13d, respectively; and u = urrr + urrb + urbr + urbb + ubrr + ubrb + ubbr + ubbb at the third coarse level in
Fig. 13e and 13f, respectively.

of eigenvectors W = [WLWH ] and V = [VLVH ], the black
harmonic aliasing pattern can be written as the following set
of biorthogonal relationships

(D̃VL)H(D̃WL) = 1
2 I , (68)

(D̃VL)H(D̃WH) = − 1
2 I , (69)

(D̃VH)H(D̃WL) = − 1
2 I and (70)

(D̃VH)H(D̃WH) = 1
2 I . (71)

Since W and V form a biorthogonal basis,

WV H = WLV
H
L +WHV

H
H

= I .

Pre-multiplying by D̃ and post-multiplying by Ũ gives

(D̃W )(D̃V )H = (D̃WL)(D̃VL)H + (D̃WH)(D̃VH)H

= I . (72)

First, (19) is assumed. Then, equation (72) immediately
implies the set of biorthogonal relationships above, and the
black harmonic aliasing pattern is fulfilled. Second, the black
harmonic aliasing pattern is assumed. Pre–multiplying (72) by
(D̃VL)H and using equations (68) and (69) gives D̃VL =
−D̃VH . Similarly, post–multiplying (72) by D̃WH and using
equations (69) and (71) gives D̃WL = −D̃WH . Therefore,
the black harmonic aliasing pattern implies (19).

APPENDIX B
PROOF OF LEMMA 1

Proof: The proof of (34) is due to Navarrete and Coyle
[11]. The proof of (35) follows from

Ã−1 =
{
D̃F̃RAF̃I Ũ

}−1

(73)

=
{

(D̃W )Π̃RΛΠ̃I(D̃V )H
}−1

(74)

=
{

(D̃WL)∆̃(D̃VL)H
}−1

(75)

= 4 (D̃WL)∆̃−1(D̃VL)H , (76)

where (30) is used in (73), the eigen–decompositions of filters
is used in (74), Theorem 1 is used in (75) and the biorthogonal
relationships (68) to (71) are used in (76).

APPENDIX C
PROOF OF THEOREM 3

Proof: The proof of (38) is due to Navarrete and Coyle
[11]. The proof of (39) follows from

K̃ = I − F̃I Ũ Ã−1D̃F̃RA (77)

= I − 4 W Π̃I(V
H ŨD̃WL)∆̃−1(V HL ŨD̃W )Π̃RΛV H

(78)

= WV H − 4 W Π̃I

(
1
2

[
I
−I
])

∆̃−1
(

1
2 [ I −I ]

)
Π̃RΛV H

(79)

= W
[
I−Π̃I,L∆̃−1Π̃R,LΛL Π̃I,L∆̃−1Π̃R,HΛH

Π̃I,H∆̃−1Π̃R,LΛL I−Π̃I,H∆̃−1Π̃R,HΛH

]
V H . (80)
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where (30) is used in (77), the eigen–decomposition of filters
and Lemma 1 are used in (78), definition 2 is used in (79) and
the partition of eigenvalues is used in (80).
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