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ABSTRACT

We study mixture policies in entropy-regularized reinforcement learning. Mix-
ture policies offer greater flexibility than base policies like Gaussians, which we
show theoretically provides improved solution quality and robustness to the en-
tropy scale. Despite these potential benefits, they are rarely used for algorithms
like Soft Actor-Critic, potentially due to the fact that Gaussians are easily repa-
rameterized to get lower variance gradient updates, but mixtures are not. We fill
this gap, introducing reparameterization gradient estimators for the mixture pol-
icy. Through extensive experiments on environments from classic control, Mu-
JoCo, the DeepMind Control Suite and a suite of randomly generated bandits, our
results show that mixture policies explore more efficiently in tasks with unshaped
rewards (across entropy scales), while performing comparably to base policies in
tasks with shaped rewards, and are more robust to multimodal critic surfaces.

1 INTRODUCTION

Policy gradient methods are widely used in online reinforcement learning (RL), particularly for
continuous action spaces. However, there are many design decisions in these methods that remain
under-explored. One of these is the choice of policy parameterization. Gaussian policies are by far
the most common parameterization (Williams, 1992; Degris et al., 2012; Lillicrap et al., 2015; Duan
et al., 2016; Schulman et al., 2017; Neumann et al., 2022), or its bounded variants like squashed
Gaussian policies (Haarnoja et al., 2018a). There are a handful of works exploring other distribu-
tions, including beta policies (Chou et al., 2017) and the family of heavy-tailed policies (Kobayashi,
2019; Bedi et al., 2024). Using mixture policies, such as a conditional Gaussian mixture model for
the policy, however, has been largely unexplored.

Yet there are reasons that this increased flexibility from mixture policies could be beneficial. A more
flexible policy class may contain better optimal policies. For example, when the environment is par-
tially observable, the optimal policy could be stochastic and multimodal. Even in fully observable
settings, it is now common to use entropy-regularized objectives, which prefer stochastic policies;
multimodal rather than unimodal policies may be better in this regime. The increased flexibility
may also facilitate exploration. Several works have shown that heavy-tailed policies may improve
learning through persistent exploration compared to Gaussian policies (Kobayashi, 2019; Bedi et al.,
2024). Mixture policies have the potential to provide mode-directed exploration, by keeping proba-
bility high for multiple promising actions.

Though under-explored, some work has looked at more flexible policy classes. Implicit policies use
deep generative models (e.g., energy-based models (Haarnoja et al., 2017; Messaoud et al., 2024);
normalizing flows (Tang & Agrawal, 2018; Mazoure et al., 2020); diffusion models (Wang et al.,
2023)) for the policy. Compared to these more complex distributions, policies using parametric dis-
tributions like mixture models have two benefits: they are simpler to train and the explicit densities
are useful in entropy-regularized RL. Otherwise, several unpublished works briefly touch on mix-
ture policies. The first version of the SAC paper (Haarnoja et al., 2018b) did test mixture policies
but then did not pursue this further nor provide insights on this choice. We hypothesize the lack of
reparameterization estimators for mixture policies might be the reason that later versions of SAC
switched to a single Gaussian, as they found the reparameterization gradient estimator works better
(see Footnote 3 on Page 67 of Haarnoja, 2018). Later, Hou et al. (2020) tried to avoid reparameter-
ization of the whole mixture policy in SAC by using a separate objective for the weighting policy,
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but they found little improvement from their approach. Finally, Baram et al. (2021) explore the util-
ity of the upper and lower bounds of the mixture model’s entropy, without considering a learnable
weighting policy. We provide a more in-depth discussion on related work in Appendix A.

In this work, we provide a directed study on the potential benefits of mixture policies in the entropy-
regularized setting. We first prove that mixture models provide improved solution quality: they have
comparable or better objective values and are more robust to larger entropy regularization, in that
stationary points may not exist for the Gaussian policy but do for the Gaussian mixture. We then
derive two reparameterized gradient updates: a partial reparameterization obtained by extending the
reparameterization policy gradient theorem (Lan et al., 2022) and a reparameterization combining
the Gumbel-softmax reparameterization with the reparameterization on the base policy in the mix-
ture. Though simple, to the best of our knowledge, these reparameterizations have not been proposed
for conditional mixture models. We test mixture policies and these two reparameterization updates
with Soft-Actor Critic (SAC; Haarnoja et al., 2018a) in seven MuJoCo, twelve DeepMind Control
Suite and three classic control environments, and note that differences only arise for environments
without shaped rewards. For such uninformative rewards, that do not guide the agent to the goal,
we find the mixture policies more consistently find the goal and perform better for a wider range of
entropy scales. We find that the critic is less smooth, with more peaks, in the unshaped setting, and
that the policy actually uses multiple modes for such a critic. Further, in targeted experiments in
multimodal bandits to mimic such a multimodal critic, we find the mixture policy more often finds
the maximal peak compared to the base policy.

2 PROBLEM FORMULATION

We consider the standard Markov decision process (MDP) problem setting. An MDP is defined by
⟨S,A, p, d0, r, γ⟩, where S is the state space, A is the action space, p is the transition function, d0
is the initial state distribution, r is the reward function, and γ is the discount factor. In this paper,
we consider A to be continuous, and r is deterministic and bounded by [−rmax, rmax]. Define
Eπ[
∑∞

t=0 ·]
.
= ES0∼d0,At∼π(·|St),St+1∼p(·|St−1,At−1)[

∑∞
t=0 ·], the agent’s goal is to find a policy π

that maximizes the expected return from the start states:

J0(π)
.
= Eπ

[∑∞
t=0 γ

tr(St, At)
]
. (1)

Oftentimes, the agent optimizes the entropy-regularized objective that promotes stochastic policies:

J(π)
.
=Eπ

[∑∞
t=0 γ

t
(
r(St, At) + αH(π(·|St))

)]
=Es∼d0,a∼π(·|s) [Qπ(s, a)− α log π(a|s)] , (2)

where α is the entropy scale,H(q) .
= −

∫
q(x) log q(x) dx is the differential entropy for distribution

q(x), and Qπ(s, a)
.
= Eπ[

∑∞
t=0 γ

t(r(St, At) + αγH(π(·|St+1)))] is the soft action-value function.

Soft Actor-Critic (SAC; Haarnoja et al., 2018a) learns π through maximizing a surrogate of (2):

Ĵ(πθ) = ESt∼B,At∼πθ(·|St) [Qw(St, At)− α log πθ(At|St)] . (3)

where B is a buffer of collected data and Qw is an estimate of Qπθ
. In this work, we focus on the

role of policy parameterization; we refer the reader to the original paper for other details on SAC.

We can obtain an unbiased sample of the gradient of (3) in two ways. One is the likelihood-ratio
gradient estimator (Williams, 1992):

∇̂θĴ(πθ) = ∇θ log πθ(At|St)
(
Qw(St, At)− α log πθ(At|St)

)
. (4)

The likelihood-ratio estimator often suffers from high variance, and a baseline is used to reduce
variance. When the action is reparameterizable, for example, At = fθ(ϵt;St), an alternative is to
use the reparameterization gradient estimator:

∇̂θĴ(πθ) = ∇θ

(
Qw(St, fθ(ϵt;St))− α log πθ(fθ(ϵt;St)|St)

)
, (5)

where ϵt is a sample from a noise distribution p(·). Though there is no guarantee that the reparame-
terization estimator is better than the likelihood-ratio estimator in general (Gal, 2016; Parmas et al.,
2018), it is shown to have lower variance under some assumptions (Xu et al., 2019).

Gaussian policies are a common choice when the action space is continuous:

πθ(a|s) = N (a;µθ(s), σθ(s)
2), (6)
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where µθ(s) is the mean and σθ(s) is the standard deviation. Gaussian policies have infinite support,
but the action space is typically bounded in practice. To address the bias of truncating the density,
squashed Gaussian policies use tanh to transform the unbounded support to a bounded interval:

πθ(a|s) = N (tanh−1(a);µθ(s), σθ(s)
2). (7)

In this paper, we study mixture policies with N ∈ N+ components:

πm
θ (a|s) =

∑N
k=1 π

w
θ (k|s)πb

θ(a|s, k),

where πw
θ is the weighting policy and πb

θ with different k are the component policies.
When needed, we also explicitly write πm

θm(a|s) =
∑N

k=1 π
w
θw(k|s)πb

θb
k

(a|s), where θm =[
θb
1
⊤, · · · ,θb

N
⊤,θw⊤]⊤. The weighting policy is usually parameterized as a softmax policy, while

the component policies can be any continuous policy. When the component policies are Gaussian
policies (6), we call the resulting policy the Gaussian mixture (GM) policy. In this context, we call
the Gaussian policy the base policy. Similarly, when the base policy is the squashed Gaussian policy
(7), we call the resulting mixture policy the squashed Gaussian mixture (SGM) policy.

3 ROBUSTNESS OF MIXTURE POLICIES TO ENTROPY REGULARIZATION

The policy parameterization influences the set of stationary points of the entropy-regularized objec-
tive in (3), which is non-concave (Agarwal et al., 2019). We first show that mixture policies improve
solution quality, in terms of having a higher regularized objective and a higher unregularized objec-
tive if an entropy-constrained optimization is used. Then we show that mixtures are robust to higher
levels of entropy, both theoretically and empirically. Appendix B contains proofs for this section.

3.1 OPTIMALITY OF STATIONARY POINTS

We first show that the optimal stationary points, namely θ∗ .
= argmaxθ∈{θ|∇θJ(πθ)=0} J(πθ), of

the mixture policy is at least as good as or better than the base policy in Proposition 3.1.
Proposition 3.1. When both πb

θb,∗ and πm
θm,∗ exist, then J(πm

θm,∗) ≥ J(πb
θb,∗).

The inequality is likely strict when the return landscape is multimodal, as the mixture policy can
maintain high returns while increasing its entropy by splitting its density into different modes (see
Figure 1 (Left) for intuition).

The next natural question is how their optimal stationary points compare regarding the unregularized
objective (the expected return) J0(πθ). In general, it is difficult to guarantee J0(πm

θm,∗) ≥ J0(π
b
θb,∗).

However, when the entropy is imposed as a constraint instead of regularization, the mixture policy
is guaranteed to be at least as good as the base policy, as shown in Proposition 3.2.
Proposition 3.2. Consider entropy-constrained policy optimization maxθ J0(πθ) subject to
H(πθ) ≥ H for some H > 0 and define the optimal solution as θ′, then J0(π

m
θm,′) ≥ J0(π

b
θb,′).

3.2 NON-EXISTENCE OF STATIONARY POINTS WITH STRONG ENTROPY REGULARIZATION

This section shows that the mixture policy may have stationary points in scenarios where the base
policy does not. We focus on the bandit setting, in which case, the objective degenerates to

J(πθ) = Ea∼πθ
[r(a)− α lnπθ(a)]. (8)

Proposition 3.3 shows that for a sufficiently large entropy regularization, there are no stationary
points for the Gaussian policy.
Proposition 3.3. Assume r : A → R is an integrable function on A = R. For all α > 3

2rmax,
J(πµ,σ) = Ea∼N (µ,σ)[r(a)− α logN (a;µ, σ)] does not have any stationary point.

The Gaussian mixture (GM) policy, on the other hand, is less sensitive to entropy regularization.
Specifically, we show that for every stationary point of the regularized objective with the base policy,
there exists a corresponding set of stationary points for the mixture policy.
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Figure 1: Numerical study on a bimodal bandit. Left: Reward function of the bandit and optimal
policies when α = 0.3. Middle: Expected reward of the optimal policies for different α. Right: The
percentage of bimodal policies among all stationary GM policies found in 100 trials. The dashed
vertical lines in the figure mark different levels of entropy regularization, each having qualitatively
distinct effects on the Gaussian and GM policies.

Proposition 3.4. For any θ̃
b

such that∇θbJ(πb

θ̃
b) = 0 and arbitrary θw, we have∇θmJ(πm

θ̃
m) = 0,

where θ̃
m

=
[
θ̃
b⊤, · · · , θ̃

b⊤,θw⊤]⊤.

Following from Proposition 3.4, we have the following remark: the minimum α after which the
mixture policy does not have a stationary point is at least as large as the base policy.

Remark 3.5. Define απ
min = inf{α | ∇θJ(πθ) ̸= 0, ∀θ} for policy πθ, then απm

min ≥ απb

min.

In fact, it is possible to find examples where the inequality is strict. Figure 1 (Left) shows such an
example. In this example with α = 0.3, the optimal GM policy has two separate modes covering
two modes of the reward function, while the optimal Gaussian policy has its only mode covering
the the middle of the two reward modes. When α = 0.4, the Gaussian policy’s standard deviation
always diverges to infinity, while the GM policy still has good stationary points.

3.3 A NUMERICAL STUDY ON A BIMODAL BANDIT

In this section, we empirically corroborate that mixtures are more robustness to entropy regular-
ization and better balance entropy and reward maximization. We use a Bimodal Bandit problem,
in Figure 1 (Left), with a Gaussian base policy and GM policy with two components. We obtain
stationary points {θ | ∇θJ(πθ) = 0} for both by running a local gradient descent optimization on
(8) with various α from 100 different random starting points. More details are in Appendix C.

Robustness to entropy regularization. Figure 1 (Middle) shows the expected reward J0(πθ∗) of
the optimal stationary points for the two policies. The points with zero expected reward indicate no
stationary point found. The GM dominates for α ∈ (0.2, 0.45]. More specifically, for α ∈ (0.2, 0.3],
the optimal Gaussian policy cannot concentrate its mode in any of the reward mode while the GM
policy can concentrate on both (see Figure 1 (Left) for α = 0.3). For α ∈ (0.3, 0.45], the Gaussian
policy does not find any stationary points, while the GM policy continues to perform reasonably.

Preference for multimodality increases with larger entropy regularization. The GM policy can
be either unimodal and bimodal. We plot the ratio between these two types found in the 100 trials
in Figure 1 (Right). We can see a general trend: as α increases, the frequency of finding bimodal
policies also increases. This effect is most pronounced after α = 0.3, where all policies found are
bimodal. This result suggests that a high entropy scale can help prevent mode collapse in mixture
policies, a phenomenon where the policy loses its multimodality and becomes effectively unimodal.

4 REPARAMETERIZED GRADIENT ESTIMATORS FOR MIXTURE POLICIES

In this section, we derive reparameterization gradient estimators for mixture policies. The mixture
policy is hard to reparameterize because of the softmax weighting policy, even though the individual
Gaussian component policies are easy to reparameterize. We provide two approaches: a partial
reparameterization, where we only reparameterize component policies, giving an unbiased gradient,
and a full reparameterization using a Gumbel-softmax, which results in a biased reparameterization.
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4.1 REPARAMETERIZATION OF COMPONENT POLICIES

We extend the reparameterization policy gradient theorem (Lan et al., 2022) to the case of mixture
policies where we reparameterize only the components. This half-reparameterization remains un-
biased, though we cannot be certain that it has the same variance reduction properties as a typical
reparameterization. Intuitively, it should reduce some variance due to the component policies, and
we do find it has empirical benefits later. We assume the component policies are reparameterized as
πb
θ(a|s, k) = p(ϵ), where a = fθ(ϵ; s, k) and p(·) is the corresponding noise distribution. Appendix

B contains the proofs, and the result for the unregularized setting is obtained by setting α = 0.
Assumption 4.1. S and A are compact.
Assumption 4.2. p(s′|s, a), d0(s), r(s, a) fθ(ϵ; s, k), f−1

θ (a; s, k), πw
θ (k|s), πb

θ(a|s, k), p(ϵ), and
their derivatives are continuous in variables s, a, s′, θ, and ϵ.
Theorem 4.3 (Entropy-Regularized Half-Reparameterization Policy Gradient Theorem). Under As-
sumptions 4.1 and 4.2, we have

∇θJ(π
m
θ )=Es∼dπm

θ
,k∼πw

θ (·|s),ϵ∼p

[
∇θ log π

w
θ (k|s)

(
Qπm

θ
(s, fθ(ϵ; s, k))−α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θfθ(ϵ; s, k)∇a

(
Qπm

θ
(s, a)−α log πm

θ (a|s)
)
|a=fθ(ϵ;s,k)

]
,

where dπm
θ
(s)

.
=
∑∞

t=0 Eπm
θ
[γtI(St = s)] is the (discounted) occupancy measure under πm

θ .

Similarly, we can obtain the half-reparameterization gradient of the objective of SAC in (3).
Assumption 4.4. Qw(s, a) and its derivatives are continuous in variables s and a.
Proposition 4.5. Under Assumptions 4.1, 4.2, and 4.4, we have

∇θĴ(π
m
θ ) = Es∼B,k∼πw

θ (·|s),ϵ∼p

[
∇θ log π

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)]
.

From Proposition 4.5, we can obtain the half-reparameterization estimator for SAC’s objective:

∇̂θĴ(π
m
θ ) =∇θ log π

w
θ (Kt|St)

(
Qw(St, fθ(ϵt;St,Kt))− α log πm

θ (fθ(ϵt;St,Kt)|St)
)

−∇θ

(
Qw(St, fθ(ϵt;St,Kt))− α log πm

θ (fθ(ϵt;St,Kt)|St)
)
. (9)

4.2 REPARAMETERIZATION OF WEIGHTING POLICIES WITH GUMBEL-SOFTMAX

Since the output of the weighting policy πw
θ (·|s) for any state s is a categorical distribution, we can

not directly reparameterize it. However, there are various approaches to obtain biased reparameter-
ized samples from it (Bengio et al., 2013; Maddison et al., 2016; Jang et al., 2016). Here, we use
the straight-through Gumbel-softmax reparameterization (Jang et al., 2016).

Given a weighting distribution πw
θ (·|s) and i.i.d samples from Gumbel(0, 1), g1, · · · , gN , we can

obtain a sample from the corresponding Gumbel-softmax distribution:

yθ(g; s, k) =
exp (log πw

θ (k|s) + gk)/τ∑N
k′=1 exp (log π

w
θ (k

′|s) + gk′)/τ
for k = 1, . . . , N,

where we define g = [g1, · · · , gN ]. Using the Gumbel-max trick, we can obtain a sample from
πw
θ (·|s) using the Gumbel-softmax sample yθ(g; s, k):

ẑ = one hot
(
argmax

k

(
yθ(g; s, k)

))
= one hot

(
argmax

k

(
log πw

θ (k|s) + gk
))

.

We can further use the straight-through trick to obtain a differentiable one-hot sample z =
[zθ(g; s, 1), · · · , zθ(g; s,N)], where zθ(g; s, k) is defined as follows:

zθ(g; s, k) = ẑk + yθ(g; s, k)− yϕ(g; s, k)|ϕ=θ for k = 1, . . . , N.

Finally, using the differential one-hot sample z from the weighting policy πw
θ and reparameterized

samples from the component policies, we can obtain a differentiable action sample a:

a =
∑N

k=1 zθ(g; s, k)fθ(ϵ; s, k). (10)

5
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Plugging (10) back to (5), we can obtain a full reparameterization estimator, which we call the
Gumbel-reparameterization estimator:

∇̂θĴ(π
m
θ )=∇θ

(
Qw(St, At)−α log πm

θ (At|St)
)

where At=
∑N

k=1zθ(gt;St, k)fθ(ϵt;St, k) (11)

The temperature parameter τ controls a bias-variance trade-off. When τ approaches 0, the
soft sample y = [yθ(g; s, 1), · · · , yθ(g; s,N)] will converge to a one-hot vector and recover the
categorical sample. However, the variance of the gradients with respect to πw

θ (·|s) will increase.
On the other hand, when τ becomes larger, the variance of the gradients will decrease, but the soft
sample y will converge to a uniform vector. See Jang et al. (2016) for detailed discussions. In our
study, we find that using a fixed temperature τ = 1 works well.

5 EXPERIMENTS

In this section, we conduct experiments to investigate the utility of mixture policies in continuous
control problems. We use SAC as the base learning algorithm and the squashed Gaussian policy as
the base policy. We denote different SAC instances using X-Y, where X represents the policy’s gradi-
ent estimator, and Y represents the policy’s parameterization. For the base squashed Gaussian policy
, we consider the likelihood (Like-Squashed) and the reparameterization (Rep-Squashed) estima-
tors. For the squashed Gaussian mixture (SGM) policy, we consider the likelihood (Like-SGM), the
half-reparameterization (HalfRep-SGM), and the Gumbel-reparameterization (GumbelRep-SGM)
estimators. We use a mixture of 5 components for the mixture policy in all our experiments, while
we also provide a study on the effect of the number of components in Appendix E.6.

5.1 SOLVING CONTINUOUS CONTROL PROBLEMS WITH MIXTURE POLICIES

We first investigate the performance of mixture policies in 19 environments from two commonly
used continuous control benchmarks: 7 MuJoCo environments from OpenAI Gym (Brockman et al.,
2016) and 12 environments from the DeepMind Control Suite (Tassa et al., 2018). We use SAC
with automatic entropy tuning and the hyperparameters reported in the SAC paper (Haarnoja et al.,
2018c), which are tuned based on Rep-Squashed. The likelihood-ratio estimator is relatively less
stable in these high-dimensional environments, so we will focus on comparing Rep-Squashed with
HalfRep-SGM and GumbelRep-SGM while noting that the used hyperparameters may not be the
best for the mixture policies. We use 8 random seeds in these experiments. Please refer to Appendix
D for more implementation details.

Mixture policies aren’t helpful when the rewards are shaped. Figure 2 shows the learning curves
in twelve selected environments. We can see that the performances of the mixture variants are quite
similar to the base policy across different environments except in cartpole:swingup sparse, where
they have better average performance though with overlapping confidence intervals. Among these
environments, only cartpole:balance sparse, ball in cpu:catch, and cartpole:swingup sparse have
sparse rewards, while other environments have shaped rewards to guide policy learning. Thus, it
is not surprising that the mixture policy is not helping here. While cartpole:balance sparse and
ball in cpu:catch are too easy for all policies, it is interesting to see that the mixture policy has a
better performance in cartpole:swingup sparse. The observation in the remaining seven environ-
ments is consistent with our discussion here, please refer to Appendix D for more details.

5.2 MIXTURE POLICIES IMPROVE LEARNING WHEN THE REWARDS ARE UNSHAPED

Based on the results in Figure 2, we hypothesize that mixture policies improve exploration in envi-
ronments with unshaped rewards but not in those with shaped rewards. In this section, we design
experiments and analysis to verify this hypothesis.

To perform a more extensive empirical investigation with proper hyperparameter tuning, we use
three classic control environments in this section: Pendulum, Acrobot, and MountainCar. Specifi-
cally, we use two different variants for each of them: one with shaped rewards (ShapedPendulum,
ShapedAcrobot, and ShapedMountainCar) and the other one with unshaped rewards (Pendulum,
Acrobot, and MountainCar). We refer the reader to Appendix D about their specific reward func-
tions. In this experiment, we use SAC with a fixed entropy scale as it is reported that SAC with
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Figure 2: Learning curves in four MuJoCo and eight DeepMind Control Suite environments. The
shaded area shows the 95% bootstrap confidence intervals across 8 runs.

automatic entropy performs worse in this domain (Neumann et al., 2022). Specifically, we sweep
the entropy scale α = 10y for y ∈ {−3,−2,−1, 0}. In addition, we sweep the initial critic
step size ηq,0 = 10x for x ∈ {−5,−4,−3,−2} and the initial actor step size ηp,0 = κηq,0 for
κ ∈ {10−2, 10−1, 1, 10}. We run each hyperparameter setting for 10 runs and report another 30
reruns of the best setting that has the largest area under the learning curve (AUC).
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Figure 3: Learning curves for in-
dividual runs of Rep-Squashed
(blue) and HalfRep-SGM (red)
in Acrobot.

Mixture policies improve exploration when the rewards are
shaped. The top two rows of Figure 4 show the learning curves
of the best hyperparameter setting. By comparing the two rows,
we can see that the performances in the environments with
shaped rewards are much stabler than those with unshaped re-
wards. While the mixture policy is performing quite similarly
to the base policy in the former case, the learning curve of the
mixture policy is consistently above the corresponding variant of
the base policy in the latter. Note that it is reasonable to see such
large performance variation in these environments because the
agent is only rewarded when reaching goal states and receives
very few reward signals otherwise. Figure 3 plots the individual
runs for Rep-Squashed and HalfRep-SGM in Acrobot, where
we can intuitively see the failing seeds will induce wide confi-
dence intervals. In addition, we can also see that HalfRep-SGM
has more seeds that find the goal states after the initial training
phase, suggesting its more persistent exploration.

Mixture policies are more robust to the entropy regularization. The bottom row of Figure
4 shows the sensitivity to the entropy scale for Rep-Squashed, HalfRep-SGM, and GumbelRep-
SGM in environments with unshaped rewards. Despite the bootstrap confidence intervals being
again quite large, we can see that the sensitivity curves of HalfRep-SGM and GumbelRep-SGM are
mostly above Rep-Squashed, suggesting the mixture policy is relatively robust to the entropy scale
compared to the base policy.

The critic is less smooth when the rewards are unshaped. To shed some light on why mixture
policies may behave more differently from the base policy when the rewards are unshaped, we
plot the learning curve, action-value estimates, and the policy density at a starting state close to
the bottom in both ShapedMountainCar and MountainCar. From Figure 5, we can see that the
mixture policy maintains its multimodality more often in the MountainCar, where the rewards are
unshaped. Note that the agent at the starting state needs to decide which way to start to accumulate
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Figure 4: Learning curves and sensitivity curves for classic control environments. The shaded area
shows the 95% bootstrap confidence intervals across 30 runs. The error bars plot the 95% bootstrap
confidence intervals across 10 runs.
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Figure 5: Learning curve, action-value estimates, and policy density at a starting state from a sample
run of HalfRep-SGM in two MountainCar variants. The y-axes differ across plots and are not shown
with ticks to highlight the shape of the curves rather than their exact values. The learning curves
show faster convergence and smoother performance in ShapedMountainCar with shaped rewards,
whereas unshaped rewards in MountainCar lead to more erratic and slower learning. The action-
value estimates are smoother and more stable in ShapedMountainCar. In contrast, they are more
unstable and multimodal in MountainCar. Correspondingly, the density quickly becomes unimodal
and concentrates on one of the boundaries in ShapedMountainCar, while multimodal density has
more occurrence in MountainCar, reflecting continued exploration of the mixture policy.

its momentum to explore states farther away. In this case, maintaining a multimodal density may
help the agent explore hills on both sides. The multimodality of the policy may explain why the
mixture policy explores better in this case. On the other hand, in ShapedMountainCar, the critic
and the actor (policy) are guided by the shaped rewards, resulting in much smoother action-value
estimates with fewer modes and reducing the need to explore multiple directions. This may also
be why mixture policies don’t provide many benefits in terms of exploration in those environments
with shaped rewards presented in Figure 2 because there is no or minimum need to explore.
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Figure 6: Left: Examples of randomly generated multimodal bandits and the corresponding learning
curves on them. Right: Performance across different α. Each dot represents the final performance of
the best hyperparameter setting under the corresponding α. The error bars show the 95% bootstrap
confidence intervals across 100 different bandits. We can see that SGM with unbiased estimators
(Like and HalfRep) outperforms squashed Gaussian consistently. In addition, the gap between their
performance increases as α increases.

5.3 DISENTANGLING FROM THE NONSTATIONARITY OF THE CRITIC

We have seen in the last section that the critic can sometimes be multimodal, and mixture policies
can explore multiple rewarding directions at the same time with a multimodal density in this case.
In this section, we demonstrate their another benefit that is not clearly shown: Mixture policies can
more easily identify higher peaks in the critic’s value function compared to the base policy. This
is not obvious if we examine the critic and the actor during the learning process in an MDP as in
Figure 5, as the critic is constantly changing. Thus, to understand this effect, we investigate it in the
simpler bandit setting, where the critic (i.e., the reward function) is given to the agent and stationary.

Specifically, we randomly generate 100 continuous bandits with the reward function proportional to
the summation of 30 Gaussian density functions. The means and standard deviations are uniformly
sampled from [−3, 3] and [0.1, 1.0], respectively. Figure 6 (Left) shows a few examples of the
generated bandits and the learning curves corresponding to them. We sweep the initial actor step size
ηp,0 = 10x for x ∈ {−4,−3,−2,−1} and the entropy scale α = 10y for y ∈ {−4,−3,−2,−1}.
We run each hyperparameter setting for one run on each bandit. We report results of the best setting
that has the highest average reward over the last 10.0% training steps, as we are mostly interested in
how well the agent explores. We also report results based on AUC and other experimental details in
Appendix D.

Mixture policies explore more efficiently. Figure 6 (Right) shows the aggregated final perfor-
mance of all five algorithm instances. We can see that the SGM policy is better than the squashed
Gaussian policy when using either the likelihood-ratio gradient estimator or the unbiased half-
reparameterization gradient estimator across different α. On the other hand, the SGM policy with
the Gumbel-reparameterization gradient estimator is worse than the counterpart of the base policy.
We hypothesize that the reason is that this gradient estimator is biased and will learn slower in simple
environments like this, which allows very large step sizes.

Mixture policies also improve robustness. Another observation from Figure 6 (Right) is that
mixture policies are more robust to the entropy scale, which is consistent with our results presented
in Section 3. Specifically, other than the consistent improvement of the SGM policy with unbiased
estimators over the base policy, we can see that the gap between them increase as α increases. In
addition, the gap between the base policy and the SGM policy with a biased gradient (GumbelRep-
SGM) appears to shrink as α increases. This result suggests that mixture policies are possibly more
robust to larger entropy scales and explore more efficiently with a moderate large entropy scale. This
is not the case for the base policy in this experiment.
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6 CONCLUSIONS

Mixture policies are a simple way to increase the flexibility of the policy parameterization, but very
little has been documented about their efficacy, or lack of efficacy. Our aim was to start to fill
this gap, to make this a more accessible tool when using entropy-regularized actor-critic algorithms
with continuous actions, like Soft-Actor Critic. The clear outcome from the study is that mixture
policies are comparable, and sometimes notably better than, a base unimodal policy. Through a
few basic theoretical results and experiments in bandits, we highlighted that mixture policies are
more robust to entropy scale, with 1) a preference for multimodality increasing with higher entropy,
2) divergence (lack of stationary points) for the base Gaussian policy, unlike the mixture, 3) better
balance between entropy and the expected reward objective, resulting in higher unregularized values
in addition to higher regularized values and 4) higher likelihood of finding maxima on a multimodal
surface. This behavior seemed to manifest in better exploration in environments with unshaped, or
uninformative rewards; in such environments, without shaped rewards, exploration is critical and the
mixture policies performed better than the unimodal base policy. In particular, we found the base
policy had more failed runs where it was unable to find the goal at all.

To leverage the utility of mixture policies, however, we needed a small algorithmic improvement:
a reparameterization gradient. We proposed two new reparameterization gradient estimators for
mixture policies, filling in a gap in the literature. The first estimator is a half-reparameterization,
only reparameterizing the component policies and not the softmax weighting policy. This estima-
tor provides an unbiased estimate but does not fully reparameterize, potentially not obtaining the
same variance reduction properties. We provided a full reparameterization by using the Gumbel-
reparameterization for the softmax, giving up unbiasedness. Despite this bias, this estimator was
still effective, though we found it to be more sensitive than the half-reparameterization gradient.

There are several limitations of this work. The primary limitation is that we used default hyper-
parameters for the mixture policies in MuJoCo; such defaults were tuned for SAC with the base
policy. Hyperparameter tuning in large domains is extremely expensive, and arguably overtuning
can also produce misleading results. Characterizing if there are differences in effective hyperparam-
eters for these different policy parameterization, however, would provide a more complete picture.
Otherwise, as with any empirical study, there is always a limitation in scope, though arguably this
limitation is necessary to make progress. We dove deeply into SAC, and started with an exploratory
study across standard benchmarks. The study highlighted that we should expect to see bigger differ-
ences in environments without shaped rewards, and sets up a clear question for a follow-up study.

REPRODUCIBILITY STATEMENT

We present proofs for all theoretical results in Appendix B. We also enclose relevant details about
all empirical investigations with our best effort in Appendices C, D, and F. In addition, we provide
additional experiments in Appendix E to support the generality of our findings. We will release the
source code for all our experiments before publication.

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International conference on machine learning, pp.
151–160. PMLR, 2019.

Nir Baram, Guy Tennenholtz, and Shie Mannor. Maximum entropy reinforcement learning with
mixture policies. arXiv preprint arXiv:2103.10176, 2021.

Amrit Singh Bedi, Anjaly Parayil, Junyu Zhang, Mengdi Wang, and Alec Koppel. On the sample
complexity and metastability of heavy-tailed policy search in continuous control. Journal of
Machine Learning Research, 25(39):1–58, 2024.
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A RELATED WORKS

In this section, we provide a more in-depth discussion of related work, beyond that given in the
introduction.

Implicit policies. Existing works on modeling continuous distributions on continuous action
spaces can be put into two categories: Policies using parametric distributions and implicit poli-
cies. We have discussed the former in the introduction of our paper. Here, we discuss the latter.
Implicit policies utilize deep generative models (e.g., energy-based models; Haarnoja et al., 2017;
Messaoud et al., 2024; normalizing flows; Tang & Agrawal, 2018; Mazoure et al., 2020; diffusion
models; Wang et al., 2023) to model the policy. These models can model complex distributions
and have improved learning efficiency, but they usually have more parameters and complex training
pipelines. Compared to these more complex policies, policies using parametric distributions have
several benefits. Firstly, they are simpler and more efficient to train. Secondly, they have simple ex-
plicit probability density, which is useful in various ways in entropy-regularized RL. Note that some
implicit policies don’t hold such a property. Further, mixture policies, which we consider in our
paper, also have modeling power to model arbitrary distribution given a sufficiently large number of
components. Given these benefits, we think it is important to improve our understanding of mixture
policies. Nevertheless, we agree that it is also important to investigate more complex but powerful
implicit policies, and the benefits of mixture policies demonstrated in our paper can potentially be
generalized to them.

Other uses of mixture policies. Since mixture distributions are a widely known model, mixture
policies have been investigated in various ways in the literature. Daniel et al. (2012) and Celik
et al. (2022) focus on exploiting the hierarchy in mixture policies for problems with hierarchical
structures. In their work, they design algorithms specific to mixture policies. Sharing the same
motivation to use mixture policies to model diverse behaviors, Nematollahi et al. (2022) learn a
prior GMM using imitation learning and then use SAC to learn the changes to the prior GMM for
adaptation. Here, the action space of SAC is the changes to GMM’s parameters. With a different
motivation, Seyde et al. (2022) use mixture policies to select from a diverse set of sub-policies to
reduce the hyperparameter sensitivity of the algorithm.

Mixture policies as the policy parameterizations for SAC. Different from these previous works,
our motivation for using mixture policies is to treat them as a more complex policy class and under-
stand the effect of a more complex policy class under the entropy-regularization setting. Thus, our
treatment does not include designing specific objective functions for mixture policies but using the
standard regularized objective that is agnostic to policy parameterizations. In this regard, the closest
related works are Haarnoja et al. (2018b), Hou et al. (2020), and Baram et al. (2021). In the first
version of SAC, Haarnoja et al. did indeed test mixture policies but then did not pursue this further
nor provide insights on this choice. We hypothesize the lack of reparameterization estimators for
mixture policies might be the reason that later versions of SAC switched to a single Gaussian as
they found the reparameterization gradient estimator works better (see Footnote 3 on Page 67 of
Haarnoja, 2018). Later, Hou et al. try to avoid reparameterization of the whole mixture policy in
SAC by using a separate objective for the weighting policy. However, their evaluation on a restrictive
set of MuJoCo environments doesn’t show a significant improvement from their approach. Further,
Baram et al. also revisit SAC with a mixture policy. However, their focus is to explore the utility of
the upper and lower bounds of mixture models’ entropy, without considering a learnable weighting
policy.

It is not highly novel to use mixture policies, but rather to understand the effect of doing so. In our
work: 1) We provide new insights into the effect of a more flexible policy class in the stationary
points of the entropy regularized objective; 2) we are the first to propose and study reparameteriza-
tion gradient estimators for mixture policies, filling in a gap in the literature; and 3) we explore the
benefits of and provide insights into using mixture policies in environments with unshaped rewards,
complementing existing works on using mixture policies in entropy-regularized actor-critic.
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B PROOFS

B.1 PROOFS FOR RESULTS IN SECTION 3

Proposition 3.1. When both πb
θb,∗ and πm

θm,∗ exist, then J(πm
θm,∗) ≥ J(πb

θb,∗).

Proof. Since the policy class of πm
θm is a super set of the policy class of πb

θb , it is apparent that the
optimal value of the policy class of πm

θm is better than that of πb
θb .

Proposition 3.2. Consider entropy-constrained policy optimization maxθ J0(πθ) subject to
H(πθ) ≥ H for some H > 0 and define the optimal solution θ′, then J0(π

m
θm,′) ≥ J0(π

b
θb,′).

Proof. Define θ̃
m

= [θb,′⊤, · · · ,θb,′⊤,θw⊤]⊤ for arbitrary θw. Apparently, πm
θ̃
m(a) = πb

θb,′(a).
Then,

J0(π
m
θm,′) ≥ J0(π

m
θ̃
m) = J0(π

b
θb,′).

Proposition 3.3. Assume r : A → R is an integrable function on A = R. For all α > 3
2rmax,

J(πµ,σ) = Ea∼N (µ,σ)[r(a)− α logN (a;µ, σ)] doesn’t have any stationary point.

Proof. To show that J(πµ,σ) doesn’t have any stationary point, it is sufficient to show that its partial
derivative with respect to σ is lower bounded by zero:

∂J(πµ,σ)

∂σ
> 0, ∀µ ∈ R, σ > 0. (12)

We first simplify the entropy term H(N (·;µ, σ)) for the Gaussian policy:

H(N (·;µ, σ)) = −Ea∼N (µ,σ)[logN (a;µ, σ)]

= −Ea∼N (µ,σ)

[
log

(
1√
2πσ2

exp

(
− (a− µ)2

2σ2

))]
=

1

2
log(2πσ2) +

1

2σ2
Ea∼N (µ,σ)[(a− µ)2]

=
1

2
log(2πσ2) +

1

2
.

Further, we can derive its partial derivative with respect to σ: ∂H(N (·;µ,σ))
∂σ = 1

σ .

Define r(µ, σ) = Ea∼N (µ,σ)[r(a)] =
∫
a
r(a)N (a|µ, σ) da. Then,

∂J(πµ,σ)

∂σ
=

∂

∂σ
Ea∼N (µ,σ)[r(a)− α logN (a;µ, σ)]

=
∂

∂σ
(r(µ, σ) + αH(N (·;µ, σ)))

=
∂r(µ, σ)

∂σ
+

α

σ
.

To show (12), we just need to show

σ
∂r(µ, σ)

∂σ
> −α. (13)
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We first analyze the left hand side of (13):

σ
∂r(µ, σ)

∂σ
= σ

∂

∂σ

∫
a

r(a)N (a|µ, σ) da

= σ

∫
a

r(a)
∂

∂σ
N (a|µ, σ) da

= σ

∫
a

r(a)
∂

∂σ

(
1√
2πσ2

exp

(
− 1

2σ2
(a− µ)2

))
da

= σ

∫
a

r(a)

(
− 1√

2πσ4
+

(a− µ)2√
2πσ8

)
exp

(
− 1

2σ2
(a− µ)2

)
da

=

∫
a

r(a)
1√
2πσ2

exp

(
− (a− µ)2

2σ2

)(
(a− µ)2

σ2
− 1

)
da

b= a−µ
σ=

∫
b

r(σb+ µ)
1√
2π

exp

(
−b2

2

)(
b2

2
− 1

)
db,

which is bounded:∣∣∣∣σ∂r(µ, σ)∂σ

∣∣∣∣ = ∣∣∣∣∫
b

r(σb+ µ)
1√
2π

exp

(
−b2

2

)(
b2

2
− 1

)
db

∣∣∣∣
≤
∫
b

|r(σb+ µ)| 1√
2π

exp

(
−b2

2

) ∣∣∣∣b22 − 1

∣∣∣∣ db
≤
∫
b

rmax
1√
2π

exp

(
−b2

2

) ∣∣∣∣b22 − 1

∣∣∣∣ db
≤ rmax

∫
b

1√
2π

exp

(
−b2

2

)(
b2

2
+ 1

)
db

≤ rmaxEb∼N (0,1)

[
b2

2
+ 1

]
=

3

2
rmax.

Then for any α > 3
2rmax, we have σ ∂r(µ,σ)

∂σ ≥ − 3
2rmax > −α.

Proposition 3.4. For arbitrary θw and any θ̃
b

such that∇θbJ(πb

θ̃
b) = 0, we have∇θmJ(πm

θ̃
m) = 0,

where θ̃
m

=
[
θ̃
b⊤, · · · , θ̃

b⊤,θw⊤]⊤.

Proof. By assumption,

∇θbJ(πb

θ̃
b) = ∇θbEa∼πb

θ̃b (a)

[
r(a)− α log πb

θ̃
b(a)

]
= ∇θb

∫
a

πb

θ̃
b(a)

(
r(a)− α log πb

θ̃
b(a)

)
da

=

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

)
∇θbπb

θ̃
b(a) da

= 0.

For any θw, to show∇θmJ(πm
θ̃
m) = 0, we can show∇θb

k
J(πm

θ̃
m) = 0 and∇θwJ(πm

θ̃
m) = 0.

We first derive the gradient of πm
θm with respect to θb

k and θw:

∇θb
k
πm
θm(a) = ∇θb

k

N∑
k=1

πw
θw(k)πb

θb
k
(a) = πw

θw(k)∇θb
k
πb
θb
k
(a),

∇θwπm
θm(a) = ∇θw

N∑
k=1

πw
θw(k)πb

θb
k
(a) =

N∑
k=1

∇θwπw
θw(k)πb

θb
k
(a).
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Then, we can derive the gradient J(πm
θm) with respect to θb

k:

∇θb
k
J(πm

θm) = ∇θb
k
Ea∼πm

θm (a) [r(a)− α log πm
θm(a)]

= ∇θb
k

∫
a

(
r(a)− απm

θm(a) log πm
θm(a)

)
da

=

∫
a

(
r(a)− α log πm

θm(a)− α
)
∇θb

k
πm
θm(a) da

=

∫
a

(
r(a)− α log πm

θm(a)− α
)
πw
θw(k)∇θb

k
πb
θb
k
(a) da

= πw
θw(k)

∫
a

(
r(a)− α log πm

θm(a)− α
)
∇θb

k
πb
θb
k
(a) da.

Plugging θ̃
m

=
[
θ̃
b⊤, · · · , θ̃

b⊤,θw⊤]⊤ and πm
θ̃
m(a) = πb

θ̃
b(a) in, we have

∇θb
k
J(πm

θ̃
m) = πw

θw(k)

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

)
∇θb

k
πb

θ̃
b(a) da = 0.

Next, we derive the gradient J(πm
θm) with respect to θw:

∇θwJ(πm
θm) = ∇θwEa∼πm

θm (a) [r(a)− α log πm
θm(a)]

= ∇θw

∫
a

(
r(a)− απm

θm(a) log πm
θm(a)

)
da

=

∫
a

(
r(a)− α log πm

θm(a)− α
)
∇θwπm

θm(a) da

=

∫
a

(
r(a)− α log πm

θm(a)− α
) N∑
k=1

∇θwπw
θw(k)πb

θb
k
(a) da.

Again, plugging θ̃
m

=
[
θ̃
b⊤, · · · , θ̃

b⊤,θw⊤]⊤ and πm
θ̃
m(a) = πb

θ̃
b(a) in, we have

∇θwJ(πm
θ̃
m) =

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

) N∑
k=1

∇θwπw
θw(k)πb

θ̃
b(a) da

=

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

)
πb

θ̃
b(a) da

N∑
k=1

∇θwπw
θw(k)

=

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

)
πb

θ̃
b(a) da∇θw

N∑
k=1

πw
θw(k)

=

∫
a

(
r(a)− α log πb

θ̃
b(a)− α

)
πb

θ̃
b(a) da∇θw1

= 0.

Thus, ∇θ̃J(π
m
θ̃
m) = [∇θb

1
J(πm

θ̃
m)⊤, · · · ,∇θb

N
J(πm

θ̃
m)⊤,∇θwJ(πm

θ̃
m)⊤]⊤ = 0.

B.2 PROOFS FOR RESULTS IN SECTION 4

Define the (discounted) occupancy measure under πm
θ as dπm

θ
(s)

.
=
∑∞

t=0 Eπm
θ
[γtI(St = s)]. We

first prove the half-reparameterization policy gradient theorem, which is a special case of Theorem
4.3 with α = 0.

Assumption 4.1. S and A are compact.

Assumption 4.2. p(s′|s, a), d0(s), r(s, a) fθ(ϵ; s, k), f−1
θ (a; s, k), πw

θ (k|s), πb
θ(a|s, k), p(ϵ), and

their derivatives are continuous in variables s, a, s′, θ, and ϵ.
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Theorem B.1 (Half-Reparameterization Policy Gradient Theorem). Under Assumptions 4.1 and
4.2, we have

∇θJ0(π
m
θ ) = Es∼dπm

θ
,k∼πw

θ (·|s),ϵ∼p

[
Qπm

θ
(s, fθ(ϵ; s, k))∇θ log π

w
θ (k|s)

+∇θfθ(ϵ; s, k)∇aQπm
θ
(s, a)|a=fθ(ϵ;s,k)

]
.

Proof. We start with the policy gradient theorem (Sutton et al., 1999), which shows

∇θJ0(π
m
θ ) =

∫
s,a

dπm
θ
(s)πm

θ (a|s)Qπm
θ
(s, a)∇θ log π

m
θ (a|s) da ds.

Then

∇θJ0(π
m
θ ) =

∫
s,a

dπm
θ
(s)πm

θ (a|s)Qπm
θ
(s, a)∇θ log π

m
θ (a|s) da ds

=

∫
s

dπm
θ
(s)

(∫
a

Qπm
θ
(s, a)∇θπ

m
θ (a|s) da

)
ds (14)

=

∫
s

dπm
θ
(s)

(∫
a

Qπm
θ
(s, a)∇θ

(
N∑

k=1

πw
θ (k|s)πb

θ(a|s, k)

)
da

)
ds

=

∫
s

dπm
θ
(s)

N∑
k=1

(∫
a

Qπm
θ
(s, a)∇θ

(
πw
θ (k|s)πb

θ(a|s, k)
)
da

)
ds

=

∫
s

dπm
θ
(s)

N∑
k=1

(∫
a

Qπm
θ
(s, a)∇θπ

w
θ (k|s)πb

θ(a|s, k) da

+

∫
a

Qπm
θ
(s, a)πw

θ (k|s)∇θπ
b
θ(a|s, k) da

)
ds

=

∫
s

dπm
θ
(s)

N∑
k=1

(∫
a

Qπm
θ
(s, a)∇θ log π

w
θ (k|s)πw

θ (k|s)πb
θ(a|s, k) da

+ πw
θ (k|s)

(∫
a

∇θ

(
Qπm

θ
(s, a)πb

θ(a|s, k)
)
da−

∫
a

πb
θ(a|s, k)∇θQπm

θ
(s, a) da

))
ds

=

∫
s

dπm
θ
(s)

N∑
k=1

πw
θ (k|s)

(∫
a

Qπm
θ
(s, a)∇θ log π

w
θ (k|s)πb

θ(a|s, k) da

+∇θ

∫
a

Qπm
θ
(s, a)πb

θ(a|s, k) da−
∫
a

πb
θ(a|s, k)∇θQπm

θ
(s, a) da

)
ds

a=fθ(ϵ;s,k)
=

∫
s

dπm
θ
(s)

N∑
k=1

πw
θ (k|s)

(∫
ϵ

p(ϵ)Qπm
θ
(s, fθ(ϵ; s, k))∇θ log π

w
θ (k|s) dϵ

+∇θ

∫
ϵ

p(ϵ)Qπm
θ
(s, fθ(ϵ; s, k)) dϵ−

∫
ϵ

p(ϵ)∇θQπm
θ
(s, a)|a=fθ(ϵ;s,k) dϵ

)
ds

=

∫
s

dπm
θ
(s)

N∑
k=1

πw
θ (k|s)

(∫
ϵ

p(ϵ)Qπm
θ
(s, fθ(ϵ; s, k))∇θ log π

w
θ (k|s) dϵ

+

∫
ϵ

p(ϵ)∇θfθ(ϵ; s, k)∇aQπm
θ
(s, a)|a=fθ(ϵ;s,k) dϵ

)
ds

=Es∼dπm
θ

,k∼πw
θ (·|s),ϵ∼p

[
Qπm

θ
(s, fθ(ϵ; s, k))∇θ log π

w
θ (k|s)

+∇θfθ(ϵ; s, k)∇aQπm
θ
(s, a)|a=fθ(ϵ;s,k)

]
,
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where the second last equality is due to

∇θQπm
θ
(s, fθ(ϵ; s, k))−∇θQπm

θ
(s, a)|a=fθ(ϵ;s,k)

=∇θfθ(ϵ; s, k)∇aQπm
θ
(s, a)|a=fθ(ϵ;s,k) +∇θQπm

θ
(s, a)|a=fθ(ϵ;s,k) −∇θQπm

θ
(s, a)|a=fθ(ϵ;s,k)

=∇θfθ(ϵ; s, k)∇aQπm
θ
(s, a)|a=fθ(ϵ;s,k).

Remark B.2. The key contribution of this proof is the decoupling of the gradient of the weighting
policy πw

θ and the gradient of the component policies πb
θ. The former, ∇θπ

w
θ , is converted back to

the likelihood-ratio gradient, while the latter, ∇θπ
b
θ, is handled in the same way as in the proof the

reparameterization policy gradient theorem (Lan et al., 2022).

Combining the insight from Remark B.2 with the proof of the entropy-regularized reparameteriza-
tion policy gradient theorem in Lan et al. (2022), we can obtain Theorem B.3, which is a restatement
of Theorem 4.3.
Theorem B.3 (Entropy-Regularized Half-Reparameterization Policy Gradient Theorem). Under
Assumptions 4.1 and 4.2, we have

∇θJ(π
m
θ )=Es∼dπm

θ
,k∼πw

θ (·|s),ϵ∼p

[
∇θ log π

w
θ (k|s)

(
Qπm

θ
(s, fθ(ϵ; s, k))−α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θfθ(ϵ; s, k)∇a

(
Qπm

θ
(s, a)−α log πm

θ (a|s)
)
|a=fθ(ϵ;s,k)

]
.

Proof. From (3) of Ahmed et al. (2019), we have the entropy-regularized policy gradient for the
regularized objective:

∇θJ(π
m
θ ) =

∫
s,a

dπm
θ
(s)πm

θ (a|s)
(
Qπm

θ
(s, a)∇θ log π

m
θ (a|s) + α∇θH(πm

θ (·|s))
)
da ds.

The first term, Qπm
θ
(s, a)∇θ log π

m
θ (a|s), can be directly handled by Theorem B.1. Here, we ana-

lyze the second term, α∇θH(πm
θ (·|s)). Notice that

∇θH(πm
θ (·|s)) = −∇θ

∫
a

πm
θ (a|s) log πm

θ (a|s) da

= −
∫
a

(∇θπ
m
θ (a|s) log πm

θ (a|s) + πm
θ (a|s)∇θ log π

m
θ (a|s)) da

= −
∫
a

(∇θπ
m
θ (a|s) log πm

θ (a|s) +∇θπ
m
θ (a|s)) da

∫
a
∇θπ

m
θ (a|s) da=0
= −

∫
a

∇θπ
m
θ (a|s) log πm

θ (a|s) da,

then we have ∫
s,a

dπm
θ
(s)πm

θ (a|s)α∇θH(πm
θ (·|s)) da ds

=α

∫
s

dπm
θ
(s)∇θH(πm

θ (·|s)) ds

=− α

∫
s

dπm
θ
(s)

∫
a

∇θπ
m
θ (a|s) log πm

θ (a|s) dads. (15)

Since (15) resembles (14), by following the same steps in the proof of Theorem B.1, we can obtain∫
s,a

dπm
θ
(s)πm

θ (a|s)α∇θH(πm
θ (·|s)) da ds

=Es∼dπm
θ

,k∼πw
θ (·|s),ϵ∼p

[
− α log πm

θ (fθ(ϵ; s, k)|s)∇θ log π
w
θ (k|s)

− α∇θfθ(ϵ; s, k)∇a log π
m
θ (a|s)|a=fθ(ϵ;s,k)

]
,

Combining the above gradient term with the gradient term from Theorem B.1 concludes the proof.
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By using the same technique, we can obtain the half-reparameterization gradient of SAC’s objective
in (3).

Assumption 4.4. Qw(s, a) and its derivatives are continuous in variables s and a.
Proposition B.4. Under Assumptions 4.1, 4.2, and 4.4, we have

∇θĴ(π
w
θ ) = Es∼B,k∼πw

θ (·|s),ϵ∼p

[
∇θ log π

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)]
.

Proof. We first rewrite (3) with reparameterized component policies:

Ĵ(πw
θ ) = ESt∼B,At∼πm

θ
[Qw(St, At)− α log πm

θ (At|St)]

=

∫
s

dB(s)

∫
a

πm
θ (a|s)

(
Qw(s, a)− α log πm

θ (a|s)
)
da ds

=

∫
s

dB(s)

∫
a

N∑
k=1

πw
θ (k|s)πb

θ(a|s, k)
(
Qw(s, a)− α log πm

θ (a|s)
)
da ds

a=fθ(ϵ;s,k)
=

∫
s

dB(s)

∫
ϵ

N∑
k=1

πw
θ (k|s)p(ϵ)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)
dϵ ds

=

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

πw
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)
dϵ ds.

We can then derive its gradient:

∇θĴ(π
m
θ )

=∇θ

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

πw
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)
dϵ ds

=

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

∇θ

(
πw
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
))

dϵ ds

=

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

(
∇θπ

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+ πw
θ (k|s)∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
))

dϵ ds

=

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

(
πw
θ (k|s)∇θ log π

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+ πw
θ (k|s)∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
))

dϵ ds

=

∫
s

dB(s)

∫
ϵ

p(ϵ)

N∑
k=1

πw
θ (k|s)

(
∇θ log π

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
))

dϵ ds

=Es∼B,k∼πw
θ (·|s),ϵ∼p

[
∇θ log π

w
θ (k|s)

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)

+∇θ

(
Qw(s, fθ(ϵ; s, k))− α log πm

θ (fθ(ϵ; s, k)|s)
)]
.
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C NUMERICAL STUDY DETAILS

In this section, we provide more details on the numerical study presented in Section 3.3. The reward
function of the bimodal bandit is the normalized summation of two Gaussians’ density functions
whose standard deviations are both 0.5 and whose means are −1 and 1, respectively. We use the
default optimization algorithm for variable with bounds in SciPy (Virtanen et al., 2020) to optimize
the entropy regularized objective J(πθ) = Ea∼πθ

[r(a)−α log πθ(a)], where r(a) is the value of the
action depicted in Figure 1. We then sort the obtained stationary points based on their regularized
values J(πθ) and use the ones that have the highest values as the parameters of optimal policies for
Figure 1.

For each policy class, we run the default optimization algorithm for 100 trials, each with a set
of randomly sampled initial policy parameters. Specifically, the initial means, log standard devi-
ations, and mixing weights are randomly sampled from [−2, 2], [−3, 0], and [0, 1], respectively.
To avoid numerical issues in numerical integral when the standard deviation gets too large, we
impose an upper bound of 3 for the log standard deviation. In addition, the mixing weights are
defined and bounded within [0, 1]. We initially run this optimization procedure for seven dif-
ferent entropy scales: α ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. With difference shown when α is
between 0.2 and 0.5 (see Figure 1 (Middle)), we additionally run another eight entropy scales:
α ∈ {0.22, 0.24, 0.26, 0.28, 0.325, 0.35, 0.375, 0.45} to obtain more insights when α within this
range. Note that, we didn’t obtain any convergent results for the Gaussian policy when α >= 0.325
and for the Gaussian mixture (GM) policy when α > 0.5.
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Figure 7: Expected reward and objective value of the regularized objective’s stationary points found
in 100 trials for the Gaussian and the Gaussian mixture policies. Note that the stationary points
are sorted by their regularized objective value for clarity (dashed line). When a line ends before
Trial 100, it means that the rest of the trials either diverged or encountered a numerical issue. The
difference between the dash line and the solid line represents the differential entropy scaled by α.

Figure 7 shows the expected reward and objective value of all the stationary points found for repre-
sentative α. Apart from the observation discussed in Section 3.3, we can see that both the Gaussian
and the GM mixture often have different types of stationary points. The optimal Gaussian policy
concentrates on one of the reward modes with a high expected reward with small α, but it then shifts
to the middle of two modes in α = 0.26 and α = 0.3 with a lower expected reward but a much
higher entropy. The optimal GM policy, on the other hand, always has two modes covering two
reward modes: it obtains a high reward while maintaining a higher entropy.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL DETAILS

In this section, we supply the omitted experimental details in Section 5.

Common configurations. For SAC with a likelihood-ratio gradient for the actor, we sample
N = 30 actions for the given state and use the average of the corresponding action values as
the baseline (see Algorithm 1). We also use such a baseline for the likelihood-ratio part of the
half-reparameterization gradient estimator. We use the Adam optimizer (Kingma & Ba, 2014) with
β1 = 0.9 and β2 = 0.999 for all experiments.

MuJoCo and DeepMind Control Suite environments. We use a two-layer feedforward network
with a hidden dimension of 256, a replay buffer size of 1, 000, 000, and a batch size of 100. We use
the automatic entropy tuning and the same initial step size 3× 10−4 for the actor, critic, and entropy
scale. We use a double Q network and a target network for the critic, which is an exponential moving
average of the critic with a smoothing factor of 0.005. In the initial 10, 000 steps, the actions are
uniformly sampled.

Classic control environments. We use a two-layer feedforward network with a hidden dimension
of 64, a replay buffer size of 100, 000, and a batch size of 32. We use a double Q network and a
target network for the critic, which is an exponential moving average of the critic with a smoothing
factor of 0.01.

Multimodal bandits. We use a two-layer feedforward network with a hidden dimension of 16, a
replay buffer size of 5000, and a batch size of 32. Note that we replace the critic with the true value
function as these bandits with a deterministic reward function are for illustration purposes.

Network architecture of mixture policies. Compared to the base policy’s actor, the mixture pol-
icy’s actor has additional heads for the additional parameters in the mixture distribution. For exam-
ple, the last layer of a squashed Gaussian policy’s actor has two outputs (one for the mean and one
for the standard deviation), while the last layer of a squashed Gaussian policy’s actor with five com-
ponents has 15 outputs (five for the means, five for the standard deviations, and five for the mixing
weights).

Reference training time. We provide training time samples for Pendulum and HalfCheetah in
Table 1 for reference. The training time samples is obtained via an example run when the server is
idle and no other active program is running. The CPU of the server is AMD Ryzen 9 5900X 12-Core
Processor, and the GPU of the server is NVIDIA Geforce RTX 3080 Ti.

Table 1: Training time sample.
Rep-Squashed HalfRep-SGM GumbelRep-SGM

Pendulum-CPU-10K 24s 42s 31s
Pendulum-CPU-100K (projected) 4m 7m 5m10s
HalfCheetah-GPU-100K 627s 843s 801s
HalfCheetah-GPU-1000K (projected) 1h40m30s 2h20m30s 2h13m30s

D.2 CLASSIC CONTROL ENVIRONMENT DETAILS

We use the v1 version of Pendulum from OpenAI Gym for ShapedPendulum. For Pendulum, we
set the reward to 1 if the angle of the pendulum from the upright position is smaller than 0.25 and
0 otherwise. For ShapedAcrobot, we set the reward to be − cos(θ1) − cos(θ2 + θ1) − 1.0, where
θ1 and θ2 are the first two dimensions of the state. For ShapedMountainCar, we set the reward to
be x − 0.6, where x is first dimension of the state. For Acrobot and MountainCar, we adapt the
discrete version in Gym to the continuous action case as it is done in Neumann et al. (2022). All

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

environments use a discount factor of 0.99. The episode cut-offs for the Pendulum, Acrobot, and
MountainCar are 200, 1000, and 1000, respectively.

D.3 PLOTS FOR REMAINING MUJOCO AND DEEPMIND CONTROL SUITE ENVIRONMENTS

In Figure 8, we present the learning curves in the remaining three MuJoCo and four DeepMind
Control Suite environments. The conclusions are similar to those in the main text.
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Figure 8: Learning curves in the remaining three MuJoCo and four DeepMind Control Suite envi-
ronments. The shaded area shows the 95% bootstrap confidence intervals across 8 runs.

D.4 DETAILS FOR DATA VISUALIZATION

Visualization of the action-value estimates and policy density for the base policy. We pre-
sented the visualization of the action-value estimates and policy density for the mixture policy
in Figure 5 to highlight the difference between ShapedMountainCar and MountainCar, one with
shaped rewards and the other with unshaped rewards. In Figure 9, we show the same plot for the
base policy, Rep-Squashed. The difference between the two types of environments is not so much
different from that in Figure 5, but we can see the density is always unimodal during training, indi-
cating less efficient exploration.
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Figure 9: Learning curve, action-value estimates, and policy density at a starting state from a sample
run of Rep-Squashed in two MountainCar variants. The y-axes differ across plots and are not shown
with ticks to highlight the shape of the curves rather than their exact values. The observations are
similar to those in Figure 5 with the exception that the density is always unimodal except for the
starting step. It indicates that Rep-Squashed explore less efficiently, potentially explaining its worse
performance in MountainCar.
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D.5 ADDITIONAL PLOTS FOR MULTIMODAL BANDITS EXPERIMENTS

Figure 10 shows the learning curves of Like-Squashed and Like-SGM with their best hyperparameter
setting in all 100 multimodal bandits. We can see that Like-SGM outperforms Like-Squashed in a
handful of bandits while tying with the latter in the rest.

Results on Each Reward Function

Reward Like-Squashed Like-SGM

Figure 10: Learning curves of Like-Squashed and Like-SGM in each bandit. Each bandit is run for
one seed.
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Figure 11: Left: Best learning curves averaged over 100 bandits. Right: Average reward over all
training steps. The shaded area and error bars show the 95% bootstrap confidence intervals across
different bandits.

Figure 11 (Left) shows the learning curves of the hyperparameter setting that achieves the best final
performance. We can see that the speed of convergence for the mixture with unbiased estimator
(Like-SGM and HalfRep-SGM) is similar to the base policy, while converging to better solutions.
On the other hand, the learning of GumbelRep-SGM is slower and noisier as its gradient estimation
is biased. Figure 11 (Right) shows the results for the hyperparameter setting that has the largest
AUC. We can see that the conclusion is very similar to the case using the final performance when
comparing the base and the mixture policies under the same type of gradient estimator. However,
we can also observe that the gaps between the likelihood-ratio estimators and reparameterization
estimators increase.
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E ADDITIONAL EXPERIMENTS

E.1 EFFECT OF THE NUMBER OF COMPONENTS

We use mixture policies with five components in all experiments in the main text. Here, we study
the effect of this choice in classic control environments with unshaped rewards, where differences
between the base and the mixture policies are more prominent. We use the same experiment protocol
as in Section 5.2 and test mixture policies with two and eight components using the half reparame-
terization gradient estimator. Specifically, we sweep the same hyperparameters for each variant of
mixture policies and rerun the best hyperparameter setting for plotting the learning curves.

Figure 12 shows the learning curves of the best hyperparameter setting and the sensitivity to the en-
tropy scale. We can see that while the results are noisy and not quite consistent across environments,
mixture policies with various numbers of components generally outperform the base policy. Note
that though the learning curve of the best hyperparameter setting of HalfRep-SGM with m = 8 is
worse than that of Rep-Squashed, the sensitivity curve indicates that HalfRep-SGM with m = 8
dominates Rep-Squashed across different α. This again suggests that there is significant noise in
the evaluation process. Nevertheless, we can see that mixture policies with various numbers of
components are similarly effective. More results for mixture policies with different numbers of
compoenents can be found in Appendix E.6.
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Figure 12: Learning curves and sensitivity curves for mixture policies with different number of
components. The shaded area shows the 95% bootstrap confidence intervals across 30 runs. The
error bars plot the 95% bootstrap confidence intervals across 10 runs.

E.2 EFFECT OF USING A FIXED WEIGHTING POLICY

Aside from half reparameterization and Gumbel reparameterization, an alternative way to use repa-
rameterization in mixture policies is by using a fixed weighting scheme, as explored by Baram et al.
(2021). However, in general, we lack prior knowledge about what constitutes an effective fixed
weighting policy, so a uniform weighting scheme is typically chosen. It is important to note that
such a fixed weighting policy can have drawbacks. First, restricting the weighting scheme reduces
the flexibility of the policy class, which may be undesirable. Second, mixture policies with fixed
weights often require more significant parameter updates when transitioning between distributions.

For instance, when all modes have collapsed to a single mode, it is more challenging for fixed-weight
mixture policies to introduce a new mode far from the current mode, as the component locations are
constrained near the existing mode due to the non-zero fixed weights. In contrast, mixture policies
with learnable weights can focus on a specific mode while keeping other components positioned far
away, as their negligible weights minimize their impact on the resulting distribution. In scenarios
where the mixture policy needs to introduce a new mode, a learnable-weight policy can simply
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adjust the mixing weight of a component that is already near the desired mode, enabling more
efficient adaptation.

Following the above intuition, we hypothesize that mixture policies with a uniform weighting pol-
icy will underperform mixture policies with learnable weighting policy. We test this hypothesis in
classic control environments. We use the same experiment protocol as in Section 5.2 and test the
uniform-weight mixture policy with reparameterized component policies.

Figure 13 shows the learning curves of the best hyperparameter setting and the sensitivity to the
entropy scale. We can see that while the uniform-weight mixture policy (UniformRep-SGM) appears
to perform well in Pendulum, it is likely to be worse than HalfRep-SGM and GumbelRep-SGM in
the other two environments. Especially in MountainCar, it even seems to underperform the base
policy.
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Figure 13: Learning curves and sensitivity curves for different variants of mixture policies. The
shaded area shows the 95% bootstrap confidence intervals across 30 runs. The error bars plot the
95% bootstrap confidence intervals across 10 runs.

E.3 EFFECT OF USING A HEAVY-TAILED BASE POLICY

In principle, the base policy can be any policy and even be different across different components.
Here, we consider Cauchy policy Bedi et al. (2024) as the base policy, which is heavy-tailed and
promotes persistent exploration. Our hypothesis is that using mixture policies would also provide
benefits when the base policy is Cauchy policy. We adopt the same experiment protocol as in Section
5.2 and test Cauchy and Cauchy mixture (CM) policies with reparameterization gradient estimators.

Figure 14 shows the learning curves of the best hyperparameter setting and the sensitivity to the en-
tropy scale. In Acrobot and MountainCar, mixture policies appear to be helpful when the base pol-
icy is heavy-tailed. However, in Pendulum, Cauchy-based policies all perform significantly worse
than the corresponding Gaussian-based policies. This might potentially be due to two reasons: 1)
Cauchy-based policies are generally not suitable for this environment, or 2) the preset search range
of α is too large for Cauchy-based policies. In summary, we conclude that even when the base pol-
icy is heavy-tailed, using mixture policies may still provide benefits in environments with unshaped
rewards.

E.4 RESULTS ON ADDITIONAL ROBOTIC ENVIRONMENTS

In addition to environments from MuJoCo and the DeepMind Control Suite, we conduct experiments
on three sparse-reward robotic simulation environments: Pen Rajeswaran et al. (2018), FetchReach
Plappert et al. (2018), and FetchSlide Plappert et al. (2018). We use the same experiment protocol
as in Section 5.1. Note that, in other more difficult sparse-reward environments like FetchPush and
FetchPickAndPlace from Plappert et al. (2018) and ObjectRelocation, DoorOpening, and Hammer
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Figure 14: Learning curves and sensitivity curves when the base policy is Cauchy policy. The
shaded area shows the 95% bootstrap confidence intervals across 30 runs. The error bars plot the
95% bootstrap confidence intervals across 10 runs.

from Rajeswaran et al. (2018), learning online without any advanced exploration strategy is very
difficult as random exploration may seldom or never experience success.

From Figure 15, we can see that the performance difference in Pen and FetchReach is very small.
Note that although Pen is introduced with both dense-reward and sparse-reward settings, we found
that the returned rewards are also shaped rewards in the latter case despite the magnitude of rewards
being much smaller than the former. On the other hand, FetchReach is mentioned to be so easy that
even partially broken implementations can learn successfully Plappert et al. (2018). Thus, it is not
surprising that we are seeing very minor difference in these two environments. Finally, we observe
some performance difference in FetchSlide. While GumbelRep-SGM seems to perform slightly
better than the baseline, Rep-Squashed, it is not the case for HalfRep-SGM. It is difficult to draw a
conclusion from this limited result, and we leave further investigation for future work.
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Figure 15: Learning curves in three additional robotic environments. The shaded area shows the
95% bootstrap confidence intervals across 8 runs.

E.5 MUJOCO ENVIRONMENTS WITH SHIFTED REWARDS

Since we observe more performance improvement in Acrobot and MountainCar, in which the critic
is optimistically initialized, we originally hypothesized that mixture policies would exhibit a more
obvious performance gain in MuJoCo environments under the same conditions. Thus, we design
variants of these environments that have such characteristics.

Environments. We use five MuJoCo environments in this experiment: Hopper, Walker2D,
HalfCheetah, Ant, and Swimmer. However, we shift the per step reward by −5, −5, −15, −5,
and −0.5, respectively. If the episode terminates before 1000 steps in episodic tasks, including
Hopper, Walker2D, and Ant, we assume the agent enters an absorbing state until timestep 1000.
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Figure 16 shows the results for this setting. We can see that the performances of the base policy
and the mixture variants are also quite close in this setting, invalidating our hypothesis above. Thus,
we turned into investigating the separation between environments with shaped rewards versus those
with unshaped rewards as in Section 5.2.
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Figure 16: Learning curves in five MuJoCo environments with shifted rewards. The shaded area
shows the 95% bootstrap confidence intervals across 8 runs. The shifted rewards are removed in the
plot for comparison with the original environment.

The effect of the temperature parameter τ . In Figure 17, we also show the results of a hyper-
parameter sensitivity study on the temperature parameter τ . As discussed in Section 4.2, a smaller
temperature is less stable, while a larger temperature is more stable.
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Figure 17: Effect of the temperature parameter τ in Walker2D with shifted rewards. The shaded
area shows the 95% bootstrap confidence intervals across 8 runs. The shifted rewards are removed
in the plot for comparison with the original environment.

E.6 BEYOND SAC AND SQUASHED GAUSSIAN POLICIES

In this section, we present experiments using a different entropy-regularized actor-critic algorithm
to further demonstrate the effectiveness of mixture policies and supply an important ablation study.

Algorithms. In this experiment, we use Greedy Actor-Critic (GreedyAC; Neumann et al., 2022).
GreedyAC updates the policy using the idea of cross-entropy method (Rubinstein, 1999), which
is significantly different from SAC. Further, GreedyAC uses the Gaussian policy instead of the
squashed Gaussian policy and thus serves as a very good supplement to our study. In addition,
GreedyAC does not have a reparameterization gradient estimator but selectively optimizes the log
likelihood of good actions. For more details, please refer to Neumann et al. (2022).

Environments. We use Pendulum and MountainCar from Neumann et al. (2022). Both environ-
ments use a discount factor of 0.99 and have an episode cut-off of 1000. Since their version of
Pendulum is different from the one we use, we refer to it as Pendulum-v2.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Experimental details. We use a two-layer feedforward network with a hidden dimension of
64, a replay buffer size of 100, 000, and a batch size of 32. We sweep the initial critic step
size ηq,0 = 10x for x ∈ {−5,−4,−3,−2,−1}, the initial actor step size ηp,0 = κηq,0 for
κ ∈ {10−3, 10−2, 10−1, 1, 2, 10}, and the entropy scale α = 10y for y ∈ {−3,−2,−1, 0, 1}.
Both the actor policy and the proposal policy in GreedyAC use the same initial step size. We run
each hyperparameter setting for 10 runs and directly report the performance of the best setting that
has the largest area under the learning curve (AUC).
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Figure 18: Learning curves and sensitivity curves to α of GreedyAC in Pendulum-v2 and
MountainCar. The shaded area and error bars show the standard errors across 10 runs.

Do mixture policies work in another algorithm with a different policy parameterizations?
Figure 18 shows both learning curves and sensitivity curves to α. By comparing GreedyAC-GM
(N=1) and GreedyAC-GM (N=5) in both environments, we can see that the mixture policy both
helps with learning and is more robust to the entropy scale. Since MountainCar is an environment
with sparse signals, the results also suggest that the mixture policy helps with exploration in this
case.

How sensitive are mixture policies to the number of components? Figure 18 also plots the
performance of GreedyAC-GM (N=2) and GreedyAC-GM (N=8). We can see that mixture policies
may perform a bit worse with just two components, which may be due to the insufficient flexibility
of a two-mixture. However, increasing the number of components from 5 to 8 does not show a
significant difference. Thus, we hypothesize that the marginal benefit of increasing the number of
components will decrease, and using a mixture of a few components should be sufficient in most
cases.
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F PSEUDOCODE

Algorithm 1 Soft Actor-Critic
Initialize parameters w1,w2,θ, w̄1 ← w1, w̄2 ← w2, replay buffer B
Obtain initial state S0

while agent interacting with the environment do
Sample action At ∼ πθ(·|St)
Take action At, observe Rt+1, St+1

Add ⟨St, At, St+1, Rt+1⟩ to the buffer B
Grab a random mini-batch B from buffer B
Sample A′ ∼ πθ(·|S′) for each transition ⟨S,A, S′, R⟩ in B
Update wi on B for i ∈ {1, 2} using

wi ← wi+αq,t

(
R+ γ

(
min

j∈{1,2}
Qw̄j

(S′, A′)− α log πθ(A
′|S′)

)
−Qwi

(S,A)

)
∇Qwi

(S,A)

Sample Ã ∼ πθ(·|S) for each transition ⟨S,A, S′, R⟩ in B
if using the reparameterization estimator then

Update θ on B using

θ ← θ+αp,t

(
∇θα log πθ(Ã|S)− (∇Ã min

j∈{1,2}
Qθj

(S, Ã)−∇Ãα log πw(Ã|S))∇wfw(ϵ;S)

)
else

Sample N actions {Ai}Ni=1 from πθ(·|S) and compute baseline Vb(S) =
1
N

∑N
i=1 minj∈{1,2} Qθj (S,Ai)

Update θ on B using

θ ← θ + αp,t

(
min

j∈{1,2}
Qθj

(S, Ã)− Vb(S)− α log πw(Ã|S)
)
∇w log πw(Ã|S)

end if
Update target network weights w̄i

w̄i ← τwi + (1− τ)w̄i for i ∈ {1, 2}

end while
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