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Abstract

In recent years, methods based on convolutional kernels have achieved state-of-the-1

art performance in video frame interpolation task. However, due to the inherent2

limitations of their convolutional kernel size, it seems that their performances3

have reached a plateau. On the other hand, Transformers are gradually replac-4

ing convolutional neural networks as a new backbone structure in image tasks,5

thanks to their ability to establish global correlations. However, in video tasks, the6

computational complexity and memory requirements of Transformer will become7

more challenging. To address this issue, we employ two different Transformers,8

SGuTA and SCubA, in VFI task. SGuTA utilizes the spatial information of each9

video frame to guide the generation of temporal vector at each pixel position.10

Meanwhile, SCubA introduces local attention into the VFI task, which can be11

viewed as a counterpart of 3D convolution in local attention Transformers. Ad-12

ditionally, we analyze and compare different embedding strategies and propose13

a more balanced embedding strategy in terms of parameter count, computational14

complexity, and memory requirements. Extensive quantitative and qualitative15

experiments demonstrate that our models exhibit high proficiency in handling16

large motions and providing precise motion estimation, resulting in new state-of-17

the-art results in various benchmark tests. The source code can be obtained at18

https://github.com/esthen-bit/SGuTA-SCubA.19

1 Introduction20

Video frame interpolation (VFI) is the process of reconstructing uncaptured intermediate frames21

during the exposure time by synthesizing adjacent frames, which can enhance its visual quality and22

smoothness of motion. As a fundamental problem in computer vision, it requires an understanding of23

both spatially and temporally consistence within the video frames, breaking the limitations of video24

sampling rate and lighting conditions. Its applications span across diverse domains, including virtual25

reality [1], video compression [2, 3, 4], and slow-motion generation [5, 6].26

The majority of state-of-the-art techniques for VFI rely on convolutional neural networks (CNNs),27

particularly those based on kernels [7, 8, 9, 10, 11, 12, 13, 14], which have gained increasing28

popularity in recent years. Nevertheless, due to the inherent constraint imposed by the kernel29

size, convolutional kernels seem to have reached their performance ceiling, even after undergoing30

transformations such as 2D kernels, separable kernels, deformable kernels, and 3D kernels. It appears31

that there is a limited potential for further improvement of VFI methods based on CNNs and their32

associated kernels. Meanwhile, Transformers [15] have recently demonstrated its great potential33

in various image tasks such as image classification [16, 17, 18], object detection [19, 20], spectral34

reconstruction [21], and image restoration [22, 23, 24], due to their ability to capture long-range35
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Figure 1: a) A simple illustration of the correlation between space and time within a video. The
colored pixels move from left to right, these uncaptured frames can be restored because T = S. b) A
simple illustration of shifted cubes approach, where the boundaries of the dimensions are connected,
and the cubes with the same color are merged and masked after being shifted.

dependencies and contextual relationships in sequences. However, extending the Transformer to36

video tasks is not as straightforward as extending 2D convolutions to 3D convolutions, as it poses37

challenges such as computational complexity and memory requirements.38

This article introduces two distinct Transformer-based approaches, SCubA (Shifted-Cube Attention)39

and SGuTA (Spatially-Guided Temporal Attention), which are integrated into a multi-stage multi-scale40

framework for VFI task. Both methodologies exhibit linear computational complexity with respect to41

the patch number, making them concise, efficient, and demonstrating exceptional performance.42

It is revealed by [25] that there exists an inherent correlation between the spatial information and43

temporal sequence of a video. Fig. 1(a) illustrates a simple example for this phenomenon. If we44

exchange any spatial dimension (height or width) with the temporal dimension, a new video sequence45

can be obtained in which the low-resolution version of the original spatial information is recurred.46

Therefore, the higher-resolution original spatial information can provide powerful guidance for47

improving the temporal resolution. Inspired by this, we propose SGuTA, a self-attention mechanism48

that establishes intrinsic correlations between spatial information and temporal sequence.49

Inspired by [16, 18, 26], as shown in Fig. 1(b), SCubA treats 3D-patches as tokens and partitions50

them into cubes with a fixed size along the height, width, and time axis. Local self-attention is51

computed within each cube, followed by shifted-cube mechanism to establish connections between52

adjacent cubes. This approach enables the model to exploit spatiotemporal locality inductive bias and53

achieve better performance than existing methods.54

The main contributions of this work are listed as follow:55

1) We present a novel Transformer called SGuTA, which is designed to establish the inherent56

correlations between the spatial characteristics and the temporal sequence within a video. SGuTA57

outperforms VFIT-B [14] in terms of PSNR by 0.58dB on vimeo-90k test set.58

2) We propose a method called SCubA, which applies Video Swin Transformer [26] to VFI task.59

Compared to VFIT-B, SCubA achieves a PSNR improvement of 1.08dB while reducing both the60

number of parameters (Params) and computational complexity (FLOPs) by approximately 40%.61

3) We conduct a analysis of existing embedding strategies, and put forth a novel half-overlapping62

embedding strategy. This method exhibits a more balanced performance in relation to Params,63

computational complexity, and memory usage.64

2 Related Works65

2.1 Video Frame Interpolation66

The objective of VFI is to generate intermediate frames by combining adjacent frames that were not67

captured during the exposure period. This longstanding and classical problem in video processing68

is currently tackled through three prominent approaches: phase-based methods, optical flow-based69

methods, and kernel-based methods.70
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Phase-based methods [27, 28] utilize Fourier theory to estimate motion by analyzing the phase71

discrepancy between corresponding pixels in consecutive frames. These techniques generate interme-72

diate frames by applying phase-shifted sinusoids. However, the 2π-ambiguity problem can pose a73

significant challenge in determining the correct motion.74

Flow-based methods [5, 10, 29, 30, 31, 32, 33] utilize optical flow estimation to perceive motion75

information and capture dense pixel correspondence between frames. These methods use a flow76

prediction network to compute bidirectional optical flow that guides frame synthesis, along with77

predicting occlusion masks or depth maps to reason about occlusions. However, these methods78

are limited by the accuracy of the underlying flow estimator remaining challenging problems in79

real-world videos, especially when there is large motion and heavy occlusion.80

Kernel-based methods have gained momentum in VFI since the emergence of AdaConv [7], a81

method that uses a fully convolutional network to estimate spatially adaptive convolution kernels.82

This is because it no longer requires motion estimation or pixel synthesis like flow-based methods.83

DSepConv [9] and AdaCoF [10] employ Deformable convolution to overcome the limitation of84

a fixed grid of locations in original convolution. CAIN [11] expands the receptive field size of85

convolution by utilizing Pixel Shuffle. SepConv [8] performs separable convolution, thereby reducing86

the Params and memory usage. Then, FLAVR [13] substitutes the 2D convolutions utilized in87

Unet with their 3D counterparts, while applying feature gating to each of the resultant 3D feature88

maps. This achieves the best performance among CNN-based methods at the cost of a large Params.89

However, these CNN-based architectures still cannot overcome their inherent limitation of using90

fixed-size kernels, which prevent them from capturing global dependencies to handle large motion91

and limit their further development for VFI task. Inspired by Depth-wise separable convolution92

[34], Zhihao Shi et al. introduce VFIT [14], a separated spatio-temporal multi-head self-attention93

mechanism, which outperforms all existing CNN-based approaches while significantly reducing the94

Params. Within the field of kernel-based methods, CNN backbones have undergone a developmental95

trajectory from 2D to separable and then to 3D kernels. Zhihao Shi et al. has proposed a space-time96

separation strategy [14] in Transformer methods. In this work, we introduce a 3D version of the local97

self-attention mechanism and a spatially-guided temporal self-attention mechanism to the VFI task.98

2.2 Vision Transformer99

The key innovation of the ViT [16] is its application of the Transformer architecture, originally100

developed for natural language processing, to computer vision tasks. This represents a notable101

departure from the standard backbone architecture of CNNs in computer vision. By dividing the image102

into a sequence of patches and leveraging the Transformer encoder to capture global dependencies103

between them, ViT achieves impressive performance on image classification benchmarks. This104

pioneering work has paved the way for subsequent research aimed at improving the utility of the ViT105

model, and underscores the potential of the Transformer architecture in computer vision applications.106

To mitigate the computational and memory challenges associated with ViT, Swin-Transformer107

[18] partitions the embedded patches into non-overlapping windows. Within each window, local108

self-attention is calculated by ViT. Subsequently, shifted-window self-attention is computed to109

establish the correlation among windows. This strategy has demonstrated remarkable performance110

in various image tasks, such as image classification [18, 35], object detection [20, 19], and image111

restoration [36, 24], achieving state-of-the-art results. Despite Swin-Transformer’s success in image112

tasks, extending it to video tasks by simply expanding along the time dimension resurfaces thorny113

computational and memory issues [14]. To address these issues, Ze Liu et al. further proposed a114

new 3D shifted windows mechanism [26] that efficiently captures temporal information, reduces the115

computational and memory demands, and achieves state-of-the-art results on video action recognition116

tasks. This method makes Swin-Transformer a promising approach for video analysis tasks.117

3 Proposed method118

SCubA and SGuTA share this same network architecture. Fig. 2(a) depicts a multi-stage architecture119

that utilizes Ns cascaded Multi-Scale Transformer. Instead of selecting two or four adjacent frames120

next to the reference frame I0.5 as input, as in previous methods [11, 13, 14], our approach chooses121

six adjacent frames to accurately estimate the motion of the interpolated frame. Moreover, a long122

identity mapping is employed to mitigate the vanishing gradient problem. The desired interpolated123
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Figure 2: The overall pipeline of SGuTA and SCubA. a) Multi-stage Architecture. b) Multi-scale
Transformer. c) Brief explanation of Multi-head Self-Attention. d) Global Multi-head Self-Attention
Block (G-MAB). e) Feed Forward Network. f) Shifted-Cube Multi-head Self-Attention Block
(SC-MAB).

frame Î0.5 is finally obtained via a 3D convolution operation. Fig. 2(b) illustrates the network124

structure of the Multi-Scale Transformer when Ns = 1. Specifically, in the embedding layer, patches125

of frames are transformed into dense representations. The de-embedding layer performs the inverse126

operation of the embedding layer, whereby the representations are restored to patches. To enable127

multi-scale self-attention, it is essential to downsample the output of the Multi-Head Attention Block128

(MAB) from the previous scale before each MAB layer in the encoder. Similarly, in the decoder,129

the upsampling of the output of each MAB layer is first performed to restore the original spatial130

resolution, before sending into the next scale. Moreover, skip connections are employed at same131

scale, while a 1 × 1 × 1 convolutional operation is applied to halve the depth of the concatenated132

feature maps.133

SGuTA and SCubA are two transformer-based models that differ in their self-attention mechanisms.134

SGuTA is derived from the global self-attention mechanism, and its MAB module comprises solely135

the G-MAB module illustrated in Fig. 2(d). In contrast, SCubA is based on the local self-attention136

mechanism and its MAB module is constituted by the G-MAB module shown in Fig. 2(d), as well as137

the SC-MAB module depicted in Fig. 2(f), with the dotted line being solely applicable when utilizing138

SCubA. The composition of the feed-forward network (FFN) is presented in Fig. 2(e), whereas a139

concise procedure of multi-head self-attention (MSA) is portrayed in Fig. 2(c) (with some details140

omitted for concision). The disparity between SCubA and SGuTA is situated in the MSA module,141

which will be expounded upon in Section 3.1142

3.1 Proposed MSA143

3.1.1 SGuTA144

Assuming an input tensor of shape Xin ∈ RT×H×W×D, where D denotes the length of embedding145

vector , the MSA module of SGuTA first transposes and reshapes it into a 2D tensor X ∈ RHW×TD.146

This reshaped tensor X is then projected through linear transformations WQ, WK , and WV ∈147

RTD×TD to obtain the query Q, key K, and value V ∈ RHW×TD, respectively:148

Q = XWQ,K = XWK , V = XWV (1)

Such a transformation enables MSA to leverage the interactions among different spatial features within149

the input tensor, facilitating the capturing of complex dependencies in the subsequent processing.150

Then, Q,K, V ∈ RHW×TD are divided into n heads: Q = [Q1, ..., Qn], K = [K1, ...,Kn],151
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V = [V1, ..., Vn], so that each head has a dimension of dh = TD
n . The remaining process of SGuTA152

can be expressed as follows:153

SGuTA(Qi,Ki, Vi, d) = [
n

Concat
j=1

(headj)]W + P (V ), headj = Vjsoftmax(
QT

j Kj

d
) (2)

where d ∈ R1 and W ∈ RTD×TD are learnable parameters. P (V ) = 3DConv(Gelu(3DCon(v)))154

to generate positional embedding. The output Xout ∈ RT×H×W×D are obtained by reshaping the155

result of Eq. (2). Observing that SGuTA establishes correlations from space to time. Compared to156

the Global MSA method of establishing spatio-temporal correlations between all patches, SGuTA is157

capable of effectively alleviating memory requirements and computational complexity issues. The158

computational complexity of SGuTA can be easily obtained as follows:159

Ω(SGuTA) = 4TD2(THW ) +
2TD2

n
(THW ) (3)

3.1.2 SCubA160

In accordance with [26], the input tensor Xin ∈ RT×H×W×D is subjected to a process of partitioning161

into THW
thw non-overlapping cubes of size t×h×w utilizing an even partitioning strategy, as presented162

in Fig. 1b. The resulting cubes are reshaped into x ∈ Rthw×D by the MSA module of SCubA. Linear163

transformations, specifically wq , wk, and wv ∈ RD×D, are employed to produce the query q, key k,164

and value v ∈ Rthw×D representations, respectively.165

q = xwq, k = xwk, v = xwv (4)

Similarly, q, k, v ∈ Rthw×D are divided into n heads: q = [q1, ..., qn], k = [k1, ..., kn], v =166

[v1, ..., vn], so that each head has a dimension of dh = D
n . The multi-head self-attention operation is167

then conducted within each cube according to the following equation:168

SCubA(qi, ki, vi, d) = [
n

Concat
j=1

(headj)]W + P (v), headj = softmax(
qjk

T
j

d
)vj (5)

To establish connections among the cubes, each cube is shifted along the time, height, and width169

dimensions by t/2, h/2, and w/2 steps, respectively, as depicted in Fig. 1b. The SC-MSA (corre-170

sponding to Fig. 2f) is calculated within each new cube.171

The process in Eq. (4) and Eq. (5) is calculated for THW
thw times, and its computational complexity172

can be specifically expressed as:173

Ω(SCuBA) = 4D2(THW ) + 2thwD(THW ) (6)

3.2 Other MSAs174

In general, Global MSA [16] and Feature MSA [21] follow a standard procedure: the input Xin ∈175

RT×H×W×D is reshaped and linearly transformed using W ′
Q, W ′

K , and W ′
V ∈ RD×D to obtain176

Q′, K ′, and V ′ ∈ RTHW×D, which are then divided into n heads. Specifically, Q′ = [Q′
1, ..., Q

′
n],177

K ′ = [K ′
1, ...,K

′
n], and V ′ = [V ′

1 , ..., V
′
n], with each head having a dimension of dh = D

n .178

For Global MSA and Feature MSA, The multi-head self-attention is obtained by:179

Global(Q′
j ,K

′
j , V

′
j , d) = [

n

Concat
j=1

(headj)]W
′ + P (V ′), headj = softmax(

Q′
jK

′T
j

d
)V ′

j (7)
180

Feature(Q′
j ,K

′
j , V

′
j , d) = [

n

Concat
j=1

(headj)]W
′ + P (V ′), headj = V ′

j softmax(
Q′T

j K
′
j

d
) (8)

The computational complexity for Global MSA and Feature MSA is respectively given by:181

Ω(Global) = 4D2(THW ) + 2D(THW )2 (9)
182

Ω(Feature) = 4D2(THW ) +
2D2

n
(THW ) (10)

We validate the performance of the MSAs listed above, in addition to STS and Sep-STS [14], in the183

VFI task. Specific results and analysis can be found in Section 4.3.2.184
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3.3 Half Overlapping Embedding Strategy185

We observe that the embedding strategies of Transformers can be mainly classified into two categories:186

the Non-overlapping [16] and Wide-overlapping [14] embedding strategy, which have no overlap187

and significant overlap between adjacent patches respectively. Specifically, if the patch size is set to188

t× h× w, the Non-overlapping and Wide-overlapping embedding strategies extract patches with189

strides of t × h × w, and 1 × 1 × 1 respectively. Clearly, on the one hand, different stride will190

significantly impact the number of tokens and further affect the memory requirements during training.191

On the other hand, the length of the representation will change Params. Both factors influence the192

final performance of the model. We found that different embedding strategies maintain comparable193

performance when the following equation is satisfied:194

D2

D1
=

√
t1h1w1

t2h2w2
(11)

Here, D1 and D2 respectively represent the length of the embedding representation when patches are195

extracted with strides of t1 × h1 × w1 and t2 × h2 × w2.196

Hence, we propose a compromise solution - the Half-overlapping embedding strategy - where adjacent197

patches overlap by half of their area or the stride is set to t×h/2×w/2. The length of its embedding198

representation is set by Eq. (11). A detailed performance comparison and analysis of the three199

different embedding strategies can be found in Section 4.3.1.200

4 Experiment201

4.1 Implementation Details202

Training: Consistent with [13], a basic l1 loss is employed to train the networks: ||I0.5 − Î0.5||. The203

training batch size is set to 4, and the cube size of SCubA is set to 2× 4× 4. The Adam optimizer204

[37] is utilized with β1 = 0.9 and β2 = 0.99. The learning rate is initialized to 2e−4, and a Cosine205

Annealing scheme is adopted over 100 epochs. Both SGuTA and SCubA employ Half-overlapping206

strategy with patch size setting to 1× 4× 4 pixels.207

Dataset: In this study, we use the Vimeo-90K septuplet training set [38] for training, it includes208

64,612 seven-frame sequences with a resolution of 448× 256. We selected the middle frame from209

each sequence as the ground truth, and pad one blank frame to the beginning and end of the remaining210

six frames. After random cropping, we obtain a video sequence of size 8×3×128×128 as input. We211

use the data augmentation method of FLAVR [13], which randomly applied horizontal and vertical212

flips and temporal flips to the input video sequence.213

The performance of our models is accessed on widely-used datasets, including the Vimeo-90K214

septuplet test set [38], which comprises 7824 septuplets with a resolution of 448× 256; the DAVIS215

dataset [39], containing 2849 triplets with a resolution of 832 × 448; and the SNU-FILM dataset216

[11], which is classified four categories based on the degree of motion: Easy, Medium, Hard, and217

Extreme. Each category comprises 310 triplets, primarily with a resolution of 1280 × 720. we218

transform the DAVIS dataset and SNU-FILM dataset into septuplets while preserving the ground219

truth to accommodate our network requirements and ensure fairness in comparing various models.220

4.2 Evaluation against the State of the Arts221

We conducted a comparative analysis of SGuTA and SCubA with competitive state-of-the-art methods,222

including SuperSlomo [31], SepConv [8], QVI [30], BMBC [32], CAIN [11], AdaCoF [10], FLAVR223

[13], VFIT-S [14], VFIT-B [14]. Tab. 1 reports the performance of each model in terms of Params,224

FLOPs, peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) on the Vimeo-90K225

and Davis datasets. Compared with the current SOTA method VFIT on the Vimeo-90K dataset,226

SGuTA achieves a significant performance improvement of 0.58dB with similar Params and FLOPs.227

Moreover, SCubA reduces the Params and FLOPs by 40% and 39%, respectively while achieving a228

notable performance improvement of 1.08dB. Fig. 3 illustrates the PSNR-FLOPs-Params comparison229

of these methods, which demonstrated that both SCubA and SGuTA are located in the upper-left230

region of the figure.231
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Table 1: Quantitative comparisons on the Vimeo-90K
and DAVIS datasets.

Methods Params FLOPs Vimeo-90K DAVIS(M) (G)

SuperSloMo [31] 39.61 49.81 32.90/0.957 25.65/0.857
SepConv [8] 21.68 25.00 33.60/0.944 26.21/0.857

QVI [30] 29.21 72.93 35.15/0.971 27.17/0.874
BMBC [32] 11.01 175.27 34.76/0.965 26.42/0.868
CAIN [11] 42.78 43.50 34.83/0.970 27.21/0.873

AdaCoF [10] 21.84 24.83 35.40/0.971 26.49/0.866
FLAVR [13] 42.06 133.14 36.30/0.975 27.44/0.874
VFIT-S [14] 7.54 40.09 36.48/0.976 27.92/0.885
VFIT-B [14] 29.08 85.03 36.96/0.978 28.09/0.888

SGuTA 27.60 73.55 37.54/0.980 28.39/0.892
SCubA 17.30 51.71 38.04/0.981 28.86/0.899

Figure 3: PSNR-FLOPS-Params compar-
isons on Vimeo-90K dataset

Tab. 2 reports the performance of each model on the SNU-FILM dataset. Compared with the third-232

best model, SGuTA and SCubA achieve an average improvement of 0.67dB and 0.96dB, respectively,233

and a remarkable improvement of 1.14dB and 1.59dB in Hard scenario. This indicates that SGuTA234

and SCubA fully utilize the Transformer’s ability to establish long-range correlations and prove their235

capability to handle challenging large-motion scenarios.236

We provide qualitative results comparing our SGuTA and SCubA models to FLAVR [13] and VFIT237

[14]. As shown in Fig. 4. The first two rows fully demonstrate the ability of SGuTA and SCubA to238

provide accurate motion estimation (please carefully compare the rotation of the wheels and balls239

with the ground truth; other methods fail to restore the accurate rotation angles). The third row shows240

the performance of various models in non-rigid motion scenarios, where only SCubA clearly restores241

all the letters. In the fourth row, SGuTA and SCubA reconstruct clearer texture details. The last two242

rows again demonstrate the strong ability of our models to handle large motion scenarios.

Table 2: Quantitative comparisons on the SNU-FILM datasets.

Methods SNU-FILM

Easy Medium Hard Extreme

SuperSloMo [31] 37.28/0.986 33.80/0.973 28.98/0.925 24.15/0.845
SepConv [8] 39.41/0.990 34.97/0.976 29.36/0.925 24.31/0.845
BMBC [32] 39.88/0.990 35.30/0.977 29.31/0.927 23.92/0.843
CAIN [11] 39.92/0.990 35.61/0.978 29.92/0.929 24.81/0.851

AdaCoF [10] 40.08/0.990 35.92/0.980 30.36/0.935 25.16/0.860
FLAVR [13] 40.43/0.991 36.36/0.981 30.86/0.942 25.41/0.867
VFIT-S [14] 40.43/0.991 36.52/0.983 31.07/0.946 25.69/0.870
VFIT-B [14] 40.53/0.991 36.53/0.982 31.03/0.945 25.73/0.871

SGuTA 40.79/0.991 37.41/0.985 32.17/0.957 26.15/0.880
SCubA 40.90/0.992 37.78/0.986 32.62/0.960 26.37/0.884

243

4.3 Ablation Study244

4.3.1 Embedding Strategy245

In this section, we explore the relationship between various embedding strategies and the length of246

embedding vectors D. Taking SCubA as an example, given the input video size of T ×H ×W =247

8× 128× 128, we set Ns = 2 and the patch size to 1× 4× 4. The Wide, Half and Non-Overlapping248

Strategies extract patches with stride of 1× 1× 1, 1× 2× 2, 1× 4× 4, respectively. As shown in249

Tab. 3, changing the Wide-Overlapping Strategy to the Non-Overlapping Strategy while keeping250

the size of D = 32 the same can reduce FLOPs and memory usage, but lower the performance.251
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Overlayed FLAVR VFIT-S VFIT-B SGuTA SCubA GT

Figure 4: Qualitative comparisons against state-of-the-art VFI methods. Both SGuTA and SCubA
outperform others in providing precise motion estimation, clear texture details, handling non-rigid
motion and large motion scenarios. Note the rotational position of the wheel and the ball when
comparing these methods in the first two rows.

Strategies that satisfy Eq. (11) perform similarly, thus we can use this equation to balance Params,252

FLOPs, and memory usage. The rationale behind this phenomenon is that the correlation between253

adjacent patches exhibits redundancy under the Wide-Overlapping Strategy, whereas it manifests254

sparsity in the Non-Overlapping Strategy. Consequently, the latter requires a lengthier representation255

to restore the comparable performance. The correlation of Half-Overlapping Strategy lies between256

the previous two strategies, and the appropriate overlapping region can provide some inductive bias,257

such as the relative positional information, to MSA. It is worth noting that due to the non-linear nature258

of Eq. (11), the Half-Overlapping Strategy exhibits a distinct feature of high returns on investment,259

with lower Params, FLOPs, and memory requirements compared to the average values of the Wide260

Overlapping Strategy and Non-Overlapping Strategy at the same performance level.

Table 3: Quantitative comparisons on different embedding strategy.

Embedding Strategy (Patch Number) ×D
Params FLOPs Memory Usage Vimeo-90K(M) (G) (Gi)

Wide-Overlapping (8× 128× 128)× 32 2.99 39.60 23.78 36.03/0.973
Non-Overlapping (8× 32× 32)× 32 2.99 2.99 3.15 33.64/0.956
Non-Overlapping (8× 32× 32)× 128 45.24 2.99 7.75 36.04/0.973
Half-Overlapping (8× 64× 64)× 64 11.53 11.53 12.38 36.08/0.973

261
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4.3.2 Self-Attention Mechanism262

In this section, We first replace all MSA blocks with two layers of 3D ResBlocks [40] to enable a com-263

parative assessment of CNN-based methods with other Transformer-based methods. Subsequently, a264

thorough evaluation of the performance of different MSAs is conducted. The scrutinized MSA-based265

methods are enumerated as follows: 1) Baseline where the MSA modules are all removed from the266

multi-scale Transformer. 2) STS MSA [14] and 3) Sep-STS MSA [14] replaces our MSA modules267

with STS blocks and Sep-STS blocks [14] respectively. 4) Feature MSA [21] obtain self-attention268

from Eq. (8). 5) SGuTA and 6) SCubA are the methods proposed in this paper. Besides, Global269

MSA [16] employs Eq. (7) for self-attention, but its performance is unreported due to the excessively270

high computational complexity (587.93G) and memory requirements. To ensure fairness, all methods271

are configured with Ns = 2 and adopt the half overlapping embedding strategy with D = 64.272

Because the differences between models can be distinguished at the early stages of training, we report273

performance for all models trained for 20 epochs.274

As shown in Tab. 4, on the one hand, compared to the 3D ResBlock method based on CNN,275

Transformers benefit from their ability to establish long-range dependencies, achieving improved276

performance with lower Params and FLOPs. On the other hand, compared to the Baseline, Feature277

MSA only provides a modest improvement in PSNR by 0.06dB, indicating that the self-attention for278

features has limited benefit for VFI task. STS MSA and Sep-STS MSA show PSNR improvements279

of 0.37dB and 0.60dB, respectively, with Sep-STS MSA acting similarly to depth-wise separable280

convolution [34], resulting in a lighter and more efficient STS-MSA. Compared to Feature MSA,281

SGuTA significantly improves PSNR by 0.54dB, demonstrating the effectiveness of SGuTA in282

establishing correlations between space and time. SCubA leverages the shifted-cube mechanism to283

fully exploit the power of local attention, achieving the best performance among all MSAs.

Table 4: Ablation study of different MSA
Methods Params (M) FLOPs (G) Vimeo-90K

3D ResBlock 17.50 57.94 34.82/0.966
Baseline 7.84 5.12 35.33/0.969

Feature MSA 8.76 22.11 35.39/0.970
STS MSA 11.53 37.97 35.70/0.972

Sep-STS MSA 10.61 29.76 35.91/0.973
SGuTA 18.40 49.04 35.93/0.973
SCubA 11.53 34.48 36.08/0.973

Table 5: Ablation study of stage number

Methods Ns
Params FLOPs Vimeo-90K(M) (G)

SGuTA
1 9.20 24.52 35.65/0.971
2 18.40 49.04 37.28/0.979
3 27.60 73.55 37.54/0.980

SCubA
1 5.77 17.24 36.72/0.976
2 11.53 34.48 37.48/0.980
3 17.30 51.71 38.04/0.981

284

4.3.3 Stage285

In this section, we explore the impact of the number of cascaded Multi-scale Transformers Ns. Due286

to concerns regarding Params and FLOPs, we only consider the case when Ns ≤ 3. The results are287

presented in Tab. 5, where it can be observed that when Ns = 3, both SGuTA and SCubA perform288

the best. Additionally, it is worth noting that when Ns = 1, compared to VFIT-S, SCubA achieves a289

PSNR improvement of 0.24dB while reducing the Params and FLOPs by 23% and 58%, respectively.290

When Ns = 2, compared to VFIT-B, SCubA achieves a PSNR improvement of 0.52dB with 43% of291

its Params and 40% of the FLOPs.292

5 Conclusions293

In this paper, we employ two different Transformers, SGuTA and SCubA, to the VFI task. SGuTA is294

designed to establish intrinsic connections between video spatial and temporal information, while295

SCubA employs a 3D local self-attention mechanism. Both methods are integrated into a multi-stage296

multi-scale framework. Compared to previous state-of-the-arts, extensive experiments show that our297

methods achieve the best and second-best performance on multiple benchmarks, and particularly excel298

in handling large motion and providing accurate motion estimation. Additionally, we summarized the299

regularity between the patch extraction stride and the length representation when different embedding300

strategies maintain comparable performance. We will further verify the universality of this regularity,301

as well as extend our model to multi-frame interpolation in future work.302
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