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Abstract
Cross-device training is a crucial subfield of federated learning, where the number of clients can
reach into the billions. Standard approaches and local methods are prone to issues such as client
drift and insensitivity to data similarities. We propose a novel algorithm (SPAM) for cross-device
federated learning with non-convex and non-smooth losses. We provide sharp analysis under
second-order (Hessian) similarity, a condition satisfied by a variety of machine learning problems
in practice. Additionally, we extend our results to the partial participation setting, where a cohort
of selected clients communicate with the server at each communication round.

1. Introduction

Federated learning (FL) [11, 18, 26] is a machine learning approach where multiple entities, known
as clients, work together to solve a machine learning problem under the guidance of a central server.
Each client’s raw data stays on their local devices and is not shared or transferred; instead, focused
updates intended for immediate aggregation are used to achieve the learning goal [11].

This paper focuses on cross-device training [13], where the clients are mobile or IoT devices.
To model such a large number of clients, we study the following stochastic optimization problem:

min
x∈Rd

f(x), where f(x) := Eξ∼D [fξ(x)] , (1)

where fξ may be non-convex. Here, we do not have access to the full function f , nor its gradient.
This reflects the cross-device setting, where the number of clients is extremely large (e.g., billions
of mobile phones), so each client participates in the training process only a few times or maybe even
once. Therefore, we cannot expect full participation to obtain the exact gradient.

Instead of the exact function or gradient values, we can sample from the distribution D and
compute fξ(x) and ∇fξ(x) at each point x. We assume that the gradient and the expectation are
interchangeable, meaning Eξ∼D [∇fξ(x)] = ∇f(x). In the context of cross-device training, fξ
represents the loss of client ξ on its local data [13].

The formulation (1) is more appropriate than the finite-sum (cross-silo) formulation [39]:

min
x∈Rd

f(x), where f(x) :=
1

n

n∑
i=1

fi(x),

as the number of clients n is relatively small, which is more relevant for collaborative training by
organizations (e.g., medical [31]).
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Communication bottleneck. In federated learning, broadcasting or communicating information
between computing nodes, such as the current gradient vector or model state, is necessary. This
communication often becomes the main challenge, particularly in the cross-device setting where
the nodes are less powerful devices with slow network connections [5, 11, 17]. Two main ap-
proaches to reducing communication overhead are compression and local training. Communication
compression uses inexact but relevant approximations of the transferred messages at each round.
These approximations often rely on (stochastic) compression operators, which can be applied to
both the gradient and the model. For a more detailed discussion on compression mechanisms, see
[34, 41].

Local training. The second technique for reducing communication overhead is to perform local
training. Local SGD steps have been a crucial component of practical federated training algorithms
since the inception of the field, demonstrating strong empirical performance by improving commu-
nication efficiency [24–26]. However, rigorous theoretical explanations for this phenomenon were
lacking until the recent introduction of the ProxSkip method [27]. ScaffNew (ProxSkip special-
ized to the distributed setting) has been shown to provide accelerated communication complexity
in the convex setting. While ScaffNew works for any level of heterogeneity, it does not benefit
from the similarity between clients. In addition, methods like ScaffNew, designed to fix the client
drift issue [1, 12], require each client to maintain state (control variate), which is incompatible with
cross-device FL [33].

Partial participation. In generic (cross-silo) federated learning, periodically, all clients may be
active in a single communication round. However, an important property of cross-device learning
is the impracticality of accessing all clients simultaneously. Most clients might be available only
once during the entire training process. Therefore, it is crucial to design federated learning methods
where only a small cohort of devices participates in each round. Modeling the problem according to
(1) naturally avoids the possibility of engaging all clients at once. We refer the reader to [13, 14, 33]
for more details on partial participation.

Data heterogeneity. Despite recent progress in federated learning, handling the heterogeneity of
data across clients remains a significant challenge [11]. Empirical observations show that clients’
labels for similar inputs can vary significantly [2, 36]. This variation arises from clients having
different preferences. When local steps are used in this context, clients tend to overfit their own
data, a phenomenon known as client drift.

An alternative to local gradient steps is to use a local proximal point operator oracle, which
involves solving a regularized local optimization problem on the selected client(s). This approach
underlies FedProx [19], which relies on a restrictive heterogeneity assumption. The algorithm was
analyzed from the perspective of the Stochastic Proximal Point Method (SPPM) in [42]. Inde-
pendently, the theory of SPPM has been shown to be compatible with the second-order similarity
condition (Assumption 2) from an analytical perspective. Based on these connections, various stud-
ies have explored SPPM-based federated learning algorithms, and we refer interested readers to
[14, 21] for more details.

1.1. Contributions

In this paper, we introduce a novel method called Stochastic Proximal point And Momentum
(SPAM). This method combines Momentum Variance Reduction (MVR) on the server side to lever-
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Table 1: Comparison of the proposed algorithm with other relevant methods.

Algorithm Hessian
similarity

Partial
Participation

No Smoothness
assumption

Cross
Device

Server
update

Client
oracle

FedProx [42] ✗ ✔ ✔ ✔ – PPM

SABER [28] ✔ ✗ ✔ ✗ PAGE PPM

MIME [13] ✔ ✗ ✗ ✔ MVR SGD

CE-LSGD [32] ✔ ✔ ✗ ✔ MVR SARAH

SPAM ✔ ✔ ✔ ✔ MVR PPM

age its efficiency in stochastic optimization while employing Stochastic Proximal Point Method
(SPPM) updates on the clients’ side. We analyze four versions of the proposed algorithm:

• SPAM - using exact PPM with constant parameters,

• SPAM - employing exact PPM with varying parameters,

• SPAM-inexact - employing inexact PPM with varying parameters,

• SPAM-PP - using inexact PPM with varying parameters and partial participation.

We then carry out a complete theoretical analysis of the proposed methods, showcasing their
advantages compared to relevant competitors and addressing the limitations present in those works.
The analysis includes the stationarity guarantees for all variants of SPAM. Specifically, we demon-
strate the convergence of the average expected gradient norm to a neighborhood of 0 for all variants.

We also conduct a communication complexity analysis based on our convergence results. Specif-
ically, we match the lower bounds, established in [32], for the number of iterations required to reach
precision error ε for SPAM-PP. In addition, following the varying stepsize scheme introduced in
the original MVR paper, we design a stepsize schedule that removes the neighborhood from the sta-
tionarity bounds. Leveraging this scheme, our algorithm achieves the optimal convergence rate of
O(1/K1/3), where K denotes the number of iterations.

Our algorithms, in particular, SPAM-PP shine in the cross-device setting when compared to its
competitors. First, in contrast to non-SPPM-based algorithms, such as MIME and CE-LSGD, we
allow greater flexibility for the local solvers. Thus, unlike MIME and CE-LSGD, we do not require
neither convexity nor smoothness of the local objectives. In fact, our algorithm is compatible with
any local solver, as soon as it satisfies certain conditions outlined in Definition 1. Furthermore,
when compared to SABER, our partial participation setting does not require (weak) convexity of the
objective. We present a visual comparison of the relevant methods in Table 1.

Another important aspect of our algorithms is that they do not need local states/control variates
to be stored on each client, as opposed to many standard federated learning techniques [1, 12, 27].
This is crucial for cross-device learning as each client may participate in training a single time.

Finally, we validate our theoretical findings through meticulously designed experiments. Specif-
ically, we tackle a federated ridge regression problem, where we can control the second-order het-
erogeneity parameter δ, as well as the computation of the local proximal operator.
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2. Notation and assumptions

We use ∇f for the gradient, ∥·∥ for the Euclidean norm, E [·] for the expectation. Unif(S) denotes
uniform distribution over the discrete set S. The proximal point operator of a real-valued function
g : Rd → R is defined as the solution of the following optimization

proxg (x) := argmin
y

{
g(y) +

1

2
∥x− y∥2

}
. (2)

We refer the reader to [4] for the properties of the proximal point operator. There exists a lower
bound for function f and it is denote as finf > −∞.

We use index i for a non-random client, while ξ is used for a randomly selected client. One
of the main assumption of our analysis, is that we have access to stochastic samples ξ ∼ D and in
particular we can evaluate the gradient ∇fξ at any point x ∈ Rd.

Assumption 1 (Bounded variance). We assume there exists σ ≥ 0 such that for any x ∈ Rd

E
[
∥∇fξ(x)−∇f(x)∥2

]
≤ σ2 (3)

We say that the function f is L-smooth, if its gradient is Lipschitz continuous ∀x, y ∈ Rd:

∥∇f(y)−∇f(x)∥ ≤ L∥x− y∥. (4)

In many machine learning scenarios, the non-convex objective functions do not satisfy (4). More-
over, several prior works [7, 43] showed that such smoothness condition does not capture the prop-
erties of popular models like LSTM, Recurrent Neural Networks, and Transformers.

Our second assumption is the second order heterogeneity. Further in the analysis, this assump-
tion will take the role of smoothness.

Assumption 2 (Hessian similarity). Assume there exists δ ≥ 0 such that for any ξ and x, y ∈ Rd

∥∇fξ(x)−∇f(x)−∇fξ(y) +∇f(y)∥ ≤ δ∥x− y∥. (5)

When all functions fξ are twice-differentiable condition (5) can also be formulated as∥∥∇2fξ(x)−∇2f(x)
∥∥ ≤ δ, (6)

motivating the name second-order heterogeneity used interchangeably with Hessian similarity [14].
This assumption [22, 35] holds for a large class of machine learning problems where the input

data are similar but the labels vary. Typical examples include regression tasks logistic loss functions
[40], statistical learning for quadratics [35], generalized linear models [9], and semi-supervised
learning [6]. Specifically, the parameter δ remains small, even if different clients have similar input
distributions but widely varying outputs for the same input. See more details on the assumption
in [14, Section 9]. Furthermore, a similar assumption was used to improve convergence results in
centralized [38] and communication-constrained distributed settings [37].

We focus on non-convex optimization problem (1), where it is typically desired to find an ε-
approximate stationary point x ∈ Rd such that E

[
∥∇f(x)∥2

]
≤ ε.
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3. SPAM

In this section, we describe our main algorithm in its simpler form, that is SPAM with one sampled
client and exact proximal point computations. We then provide theoretical convergence guarantees
and a complexity analysis of the proposed methods.

The algorithm proceeds as follows. We first choose a stepsize sequence γk and a momentum
sequence pk. The server samples a client. Selected client then computes the new gradient estimator
gk and assigns the new iterate as the proximal point operator with a shifted gradient term:

xk+1 = proxγkfξk
(xk + γk(∇fξk(xk)− gk)) = argmin

y
ϕk(y),

where ϕk is defined as

ϕk(y) := fk(y) + ⟨gk −∇fk(xk), y − xk⟩+
1

2γk
∥y − xk∥2. (7)

The new iterate is then sent to the server and the process repeats itself. For the pseudocode of the
algorithm, please refer to Algorithm 1. The following proposition is the cornerstone of our analysis.

Algorithm 1 SPAM, SPAM-inexact

1: Input: Starting point x0 = x−1 ∈ Rd, initialize g0 = g−1,
choose γk > 0 and pk > 0;

2: for k = 0, 1, 2, . . . do
3: samples ξk ∼ D;
4: sets gk = ∇fξk(xk) + (1− pk) (gk−1 −∇fξk(xk−1));

5: sets xk+1 ∈
{
proxγkfξk

(xk + γk(∇fξk(xk)− gk)) ; ▷ SPAM

a-proxϵ (xk, gk, γk, ξk) ; ▷ SPAM-inexact
6: sends xk+1 to the server.
7: end for

It provides a recurrent bound for a certain sequence Vk, which serves as a Lyapunov function:

Vk = f(xk)− finf +
15γk

16(2pk − p2k)
∥gk −∇f(xk)∥2. (8)

Proposition 1. Let xk be the iterates of SPAM for an objective function f , which satisfies Assump-
tions 1 and 2. If γ2k ≤ min

{
1

16δ2
, pk
96δ2(1−pk)

}
, then for every k ≥ 1

E [Vk+1] ≤ E [Vk]−
γk
32

E
[
∥∇f(xk+1)∥2

]
+ 2γkpkσ

2,

where Vk is defined in (8).

The proof can be found in Appendix G.1. This proposition then leads to a convergence result
for SPAM with fixed stepsizes.
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Theorem 2 (SPAM with constant parameters). Suppose Assumptions 1, 2 are satisfied. Then,

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ 32(f(x0)− finf)

γK
+

32∥g0 −∇f(x0)∥2
(2p− p2)K

+ 64pσ2, (9)

where γ2 ≤ min
{

1
16δ2

, p
96δ2(1−p)

}
.

The proof of the theorem can be found in Appendix G.2.

Corollary 3. The result can also be written as

E
[
∥∇f(x̃K+1)∥2

]
≤ 32(f(x0)− finf)

γK
+

32∥g0 −∇f(x0)∥2
(2p− p2)K

+ 64pσ2,

where x̃K+1 is taken uniformly randomly from the iterates of the algorithm {x1, x2, . . . , xK+1}.

Our primary focus is on communication complexity, which is typically the main bottleneck in
cross-device federated settings [11]. Below, we present the communication complexity of SPAM
with fixed parameters.

Corollary 4. Choose constant stepsize γk = γ = min
(
1
δ ,
(

F
2δ2σ2K

)1/3)
and momentum parameter

pk = p = max(γ2δ2, 1/K). Then, the communication complexity of SPAM, to obtain ε error is of
order O

(
δF+σ2

ε + δσF
ε3/2

)
, where F := f(x0)− finf .

The proof is deferred to Appendix H.1. Our result indicates that higher similarity (smaller δ)
leads to fewer communication rounds required to solve the problem. Obtained complexity remark-
ably improves upon the lower bound O

(
LF+σ2

ε + LσF
ε3/2

)
for δ ≪ L [3].

Suppose now that we can initialize g0 = ∇f(x0). Then, the second term in the conver-
gence upper bound (9) vanishes. Repeating the exact steps as in the proof of Corollary 4, we
obtain the convergence rate: O

(
δF
K +

(
δσF
K

)2/3)
, which leads to a communication complexity of

O
(
δF
ε + δσF

ε3/2

)
. Thus, our result shows that in the homogeneous case (i.e., δ = 0), communication

is not needed at all, as each client can solve the problem locally.

Remark 1. Lower bounds for two-point first-order oracle federated learning algorithms with local
steps were investigated in [32]. However, these bounds are specifically designed for local SGD-
type methods, such as MIME. In addition, results by [32] require smoothness. As our methods are
agnostic to the choice of local solvers, the applicability of these bounds to our setting remains
limited.

It is important to highlight that the stepsize γ in SPAM differs from the stepsize used in local
methods such as MIME and CE-LSGD. In these methods, the stepsize is intended for running the
algorithms locally on a selected client. However, SPAM only requires an oracle for proximal points,
allowing the oracle to use any optimization method suitable for the problem at hand. Additionally,
the stepsize for local SGD-based methods depends on the smoothness parameter, which is not re-
quired in our theorem. Thus, our approach allows much more flexibility for choosing local solvers
that are adaptive to the curvature of the loss [23, 29]. For a detailed comparison of the methods, see
Table 1.
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[18] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
NIPS Private Multi-Party Machine Learning Workshop, 2016.

[19] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[20] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International Conference on
Machine Learning, pages 6286–6295. PMLR, 2021.

[21] Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization
under average second-order similarity: Algorithms and analysis. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

[22] Julien Mairal. Optimization with first-order surrogate functions. In International Conference
on Machine Learning, pages 783–791. PMLR, 2013.

[23] Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In
International Conference on Machine Learning, pages 6702–6712. PMLR, 2020.

[24] Olvi L Mangasarian and Mikhail V Solodov. Backpropagation convergence via deterministic
nonmonotone perturbed minimization. Advances in Neural Information Processing Systems,
6, 1993.

8



SPAM: STOCHASTIC PROXIMAL POINT METHOD WITH MOMENTUM VARIANCE REDUCTION

[25] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the struc-
tured perceptron. In Human language technologies: The 2010 annual conference of the North
American chapter of the association for computational linguistics, pages 456–464, 2010.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[27] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. ProxSkip:
Yes! Local gradient steps provably lead to communication acceleration! Finally! In Interna-
tional Conference on Machine Learning, pages 15750–15769. PMLR, 2022.

[28] Konstantin Mishchenko, Rui Li, Hongxiang Fan, and Stylianos Venieris. Federated learn-
ing under second-order data heterogeneity. Openreview, https://openreview.net/
forum?id=jkhVrIllKg, 2023.

[29] Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, and Robert M Gower. Di-
rectional smoothness and gradient methods: Convergence and adaptivity. arXiv preprint
arXiv:2403.04081, 2024.

[30] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
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Konečnỳ, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization.
In International Conference on Learning Representations, 2020.

[34] Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication
compression in distributed and federated learning and the search for an optimal compressor.
Information and Inference: A Journal of the IMA, 11(2):557–580, 2022.

[35] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning,
pages 1000–1008. PMLR, 2014.

[36] Andrew Silva, Katherine Metcalf, Nicholas Apostoloff, and Barry-John Theobald. Fedembed:
Personalized private federated learning. arXiv preprint arXiv:2202.09472, 2022.

9

https://openreview.net/forum?id=jkhVrIllKg
https://openreview.net/forum?id=jkhVrIllKg


SPAM: STOCHASTIC PROXIMAL POINT METHOD WITH MOMENTUM VARIANCE REDUCTION

[37] Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably
faster distributed nonconvex optimization. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=GugZ5DzzAu.

[38] Alexander Tyurin, Lukang Sun, Konstantin Burlachenko, and Peter Richtárik. Sharper rates
and flexible framework for nonconvex SGD with client and data sampling. Transactions on
Machine Learning Research, 2023.

[39] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[40] Blake Woodworth, Konstantin Mishchenko, and Francis Bach. Two losses are better than one:
Faster optimization using a cheaper proxy. In International Conference on Machine Learning,
pages 37273–37292. PMLR, 2023.

[41] Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Kon-
stantinos Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for
distributed deep learning: Survey and quantitative evaluation. Technical report, http:
//hdl.handle.net/10754/662495, 2020. URL http://hdl.handle.net/
10754/662495.

[42] Xiaotong Yuan and Ping Li. On convergence of FedProx: Local dissimilarity invariant bounds,
non-smoothness and beyond. Advances in Neural Information Processing Systems, 35:10752–
10765, 2022.

[43] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping acceler-
ates training: A theoretical justification for adaptivity. In International Conference on Learn-
ing Representations (ICLR), 2019.

10

https://openreview.net/forum?id=GugZ5DzzAu
http://hdl.handle.net/10754/662495
http://hdl.handle.net/10754/662495
http://hdl.handle.net/10754/662495
http://hdl.handle.net/10754/662495


SPAM: STOCHASTIC PROXIMAL POINT METHOD WITH MOMENTUM VARIANCE REDUCTION

Appendix
Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Notation and assumptions 4

3 SPAM 5

A Prior work 12

B SPAM with time varying parameters 13

C Inexact proximal operator 13

D Partial participation 14

E Experiments 15

F Conclusion 16

G Proofs 17
G.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
G.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
G.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
G.4 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
G.5 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

H Complexity analysis of the methods 21
H.1 Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
H.2 Proof of Corollary 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Partial participation with averaging 22
I.1 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

J Proofs of the technical lemmas 25
J.1 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
J.2 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
J.3 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
J.4 Proof of Lemma 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
J.5 Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
J.6 Proof of Lemma 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

K Experimental details 32

11



SPAM: STOCHASTIC PROXIMAL POINT METHOD WITH MOMENTUM VARIANCE REDUCTION

Appendix A. Prior work

Momentum. Momentum Variance Reduction (MVR) was introduced in the context of server-only
stochastic non-convex optimization [8]. The primary motivation behind this method, also known
as STORM, was to avoid computing full gradients (which is impractical in the stochastic setting)
or requiring "giant batch sizes" of order O(1/ε2). Such large batch sizes are necessary for other
methods like PAGE [20] to find an ε-stationary point.

The authors assume bounded variance for stochastic gradients ∇fξ and analyze the method
under additional restrictive conditions. However, these conditions can be replaced with the second-
order heterogeneity (Assumption 2). The convergence result of MVR for non-convex objectives
includes the stochastic gradient noise term σ2 in the upper bound. To eliminate the dependence on
this parameter, they propose an adaptive stepsize schedule, under the additional assumption that fξ
is Lipschitz continuous.

MIME. MIME is a flexible framework that makes existing optimization algorithms applicable in
the distributed setting [13]. They describe a general scheme that combines local SGD updates with
a generic optimization algorithm. The authors then study particular instances of framework, such
as MIME + ADAM [16] and MIME + MVR [8].

However, their analysis with local steps is limited from the non-convex cross-device learning
perspective. First, they assume smoothness also in the case of one sampled client. Moreover, MIME
suffers from a common issue of local methods. In Theorem 4 of [13], the stepsize is taken to be
of order O(1/Lm), where L is the smoothness parameter of the client loss and m is the number
of local steps. This means that the stepsize is so small that multiple steps become equivalent to
a single, smoother stochastic gradient descent step, negating the potential benefits of local SGD.
Finally, their analysis requires an additional weak convexity assumption for the objective in the
partial participation setting.

CE-LSGD. The Communication Efficient Local Stochastic Gradient Descent (CE-LSGD) was
introduced by [32]. They propose and analyze two algorithms, with the second one tailored for
the cross-device setting (1). This algorithm comprises two components: the MVR update on the
server and SARAH local steps on the selected client. The latter, known as the Stochastic Recursive
Gradient Algorithm, is a variance-reduced version of SGD that periodically requires the gradient of
the objective function [30].

The analysis of [32] explicitly describes how to choose the number of local updates and the local
stepsize. They also provide lower bounds for two-point first-order oracle-based federated learning
algorithms. The drawback of their setting is that in order to have meaningful local updates, they
need smoothness of each client function fξ. In addition, similar to MIME, it has a dependence of the
stepsize on the number of local steps, which undermines the benefits of doing many steps.

SABER. The SABER algorithm combines SPPM updates on the clients with PAGE updates on the
server [28]. Their paper utilizes Hessian similarity (Assumption 2) and leverages it for the finite-
sum optimization objective. However, their analysis for the partial participation setting relies on an
assumption that is difficult to verify in the general non-convex regime. In fact, if the function is not
weakly convex, as in the case of MIME, this assumption may not hold true. Specifically, it requires
that f

(
1
b

∑b
i=1wi

)
≤ 1

b

∑b
i=1 f(wi), where wi are arbitrary vectors in Rd obtained using proximal

point operators.

12
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Appendix B. SPAM with time varying parameters

In (9) we notice that the last term, which is due to the stochastic nature of our problem, does not
vanish when K is large. In order to remove the stationarity neighborhood, let us now consider
varying stepsizes for SPAM, with decaying momentum parameters pk.

Theorem 5 (SPAM). Consider SPAM for an objective function f that satisfies Assumptions 1 and
2. Let γk be a sequence of varying stepsizes satisfying γ2k ≤ 1

16δ2
and choose pk =

96δ2γ2
k

96δ2γ2
k+1

. Then,

1

ΓK

K∑
k=1

γkE
[
∥∇f(xk)∥2

]
≤ 32V0

ΓK
+

2

ΓK

K∑
k=1

96δ2γ3k
96δ2γ2k + 1

σ2, (10)

where ΓK =
∑K

k=1 γk.

The proof of Theorem 5 can be found in Appendix G.3.

Remark 2. Similar to Theorem 2, we can represent the left-hand side of (10) with a single expec-
tation: E

[
∥∇f(x̃K)∥2

]
, where x̃K = xi, for i = 1, . . . ,K with probability γi/ΓK .

To ensure that the right-hand side converges to zero as K → ∞, we need γK → 0 and ΓK →
+∞. This suggests using a stepsize schedule of order γk = O(kβ−1), implying ΓK = O(Kβ)
for some β ∈ (0, 1). Consequently, the right-hand side of (10) is of order O(K−β +K2β−2). By
optimizing over β, we deduce that γk = O(k−1/3) results in a stationarity bound of order O(K−2/3).

Corollary 6 (Optimal stepsize schedule). If γk = 1
4δk1/3

and pk =
96δ2γ2

k

96δ2γ2
k+1

, then to obtain ε-

stationarity for SPAM we need K = O(ε3/2) iterations under assumptions 1 and 2.

This coincides with the existing lower bounds by [3], meaning that our result is tight up to
constants.

Appendix C. Inexact proximal operator

In the previous theorems, we assume that each sampled client ξk can do an exact computation of
the proximal operator to obtain the new iterate xk+1. The latter means, that this client can exactly
solve a (potentially) non-convex minimization problem, which might be hard in practice. However,
in the proofs of these theorems, we do not use that the new iterate xk+1 is the exact solution of
the proximal operator (see Appendix J.1). Instead, we use two properties of the proximal point
operator:

• decrease in function value: ϕk(xk+1) ≤ ϕk(xk);

• stationarity: ∇ϕk(xk+1) = 0.

Thus, we can replace the step of finding an exact proximal point in Algorithm 1 with finding a point
that satisfies the above two conditions. Furthermore, we will relax the latter condition by taking an
approximate stationary point. These arguments are summarized in the below assumption.

13
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Definition 1 (a-prox). For a given client k, a gradient estimator gk, a current state xk, a stepsize γk
and a precision level ϵ, the approximate proximal point a-proxϵ (xk, gk, γk, k) is the set of vectors
yap, which satisfy

• decrease in function value: E [ϕk(yap)] ≤ ϕi(x
k);

• approximate stationarity: E
[
∥∇ϕk(yap)∥2

]
≤ ϵ2,

where ϕk is defined in (7). We then replace the exact proximal step in line 6 of Algorithm 1
with the approximate operator.

Theorem 7 (SPAM-inexact). Consider SPAM-inexact for an objective function f that satisfies As-
sumptions 1 and 2. Let γk be a sequence of varying stepsizes satisfying γ2 ≤ 1

16δ2
and choose

pk =
96δ2γ2

k

96δ2γ2
k+1

. Then,

1

ΓK

K∑
k=1

γkE
[
∥∇f(xk+1)∥2

]
≤ 40V0

ΓK
+

2

ΓK

K∑
k=1

pkγ
2
kσ

2 +
ϵ2

8
. (11)

where ΓK =
∑K

k=1 γk.

The proof is postponed to Appendix G.4. We observe that the level of inexactness ϵ2 appears
explicitly in the theorem. In case, when ϵ = 0, we recover the result in Theorem 5 up to a constants.
SPAM-inexact allows to avoid solving the local minimization problem required for finding the in-
exact proximal point operator. This is a significant improvement over SPAM, as the latter requires
minimizing (potentially) non-convex objectives at each iteration.

Appendix D. Partial participation

In this section, we present the most general form of our algorithm, which works with the approxi-
mate proximal operator and samples multiple clients (cohort) at each round. Specifically, it uses the
random cohort Sk to construct a better gradient estimator gk. This gradient estimator is then broad-
casted to a single random client ξk ∼ D, who computes the approximate proximal point locally.
The pseudocode can be found in Algorithm 2.

Theorem 8 (SPAM-PP). Suppose Assumptions 1 and 2 are satisfied. If ξk ∼ Unif(Sk) at every

iteration, then the iterates of SPAM-PP with γk ≤ 1
4δ and pk =

96δ2γ2
k

96δ2γ2
k+B2 satisfy

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

The proof of the theorem is postponed to Appendix G.5. When the client cohort size B in-
creases, the neighborhood shrinks. This is intuitive as when B → ∞, we can have access to the
exact objective f , and the neighborhood will vanish.

Corollary 9. For properly chosen constant γk = γ and momentum parameter pk = p communica-
tion complexity of SPAM-PP, to obtain ε error is of order

O
(
δF

ε
+

σ2

Bε
+

δσF√
Bε3/2

)
.

14
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Algorithm 2 SPAM-PP

1: Input: learning rate γ > 0, cohort size B, starting point x0 ∈ Rd;
proximal precision level ϵ; initialize g0 = g−1;

2: for k = 0, 1, 2, . . . do
3: samples a subset of clients Sk, with size |Sk| = B;
4: broadcasts xk to the clients from Sk.
5: for i ∈ Sk in parallel do
6: Set gik = ∇fi(xk) + (1− pk) (gk−1 −∇fi(xk−1));
7: Send gik to the server;
8: end for
9: gk = 1

B

∑
i∈Sk

gik ;
10: ξk+1 ∼ D;
11: xk+1 ∈ a-proxϵ

(
xk, gk, γk, ξ

k+1
)
;

12: end for

This result significantly improves upon the lower bound for L-smooth case O
(
LF
ε + σ2

Bε +
LσF√
Bε3/2

)
when δ ≪ L [3]. We also observe that the complexity is an increasing function of δ. Thus, our
bound improves when data on different clients is similar. Moreover, increasing cohort size B brings
acceleration but to a certain level. The proof of the corollary can be found in Appendix H.2.

In Appendix I, we present another version of SPAM-PP, called SPAM-PPA, which uses the
sampled cohort of clients to compute local proximal points. These points are then communicated to
the server, and the new iterate is their average. Hence, the name SPAM-PP with Averaging.

Appendix E. Experiments

To empirically validate our theoretical framework and its implications, we focus on a carefully
controlled experimental setting similar to [14, 21]. Specifically, we consider a distributed ridge re-
gression problem formulated in (25), which allows us to calculate and control the Hessian similarity
δ. An essential advantage of this optimization problem is that the proximal operator has an explicit
(closed-form) representation and can be computed precisely (up to machine accuracy). This allows
us to isolate the effect of varying parameters on the method’s performance. Appendix K provides
more details on the setup.

In Figure 1, we display convergence of Algorithm 1 with constant parameters p and γ. The
legend is shared, and labels refer to proximal operator computations: “exact” means using closed-
form solution, “1” and “10” correspond to the number of local gradient descent steps. We evaluate
the logarithm of a relative gradient norm log(∥∇f(xk)∥/∥∇f(x0)∥) in the vertical axis. At every
iteration, one client is sampled uniformly at random.

Observations. All the plots indicate convergence of the method to the neighborhood of the sta-
tionary point, followed by subsequent oscillations around the error floor. The first (left) plot shows
that for small momentum p = 0.1 and γ exceeding the theoretical bound 1/δ, the algorithm can be
very unstable with exact proximal point computations. Interestingly, approximate computation (1
or 10 local steps) results in more robust convergence. The second (middle) plot demonstrates that a
greater p = 0.9 results in steady convergence even for misspecified (too large) γ. In addition, one
can observe that in this case, more accurate proximal point evaluation results in significantly faster
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convergence but to a larger neighborhood than for one local step. This agrees well with observa-
tions for local gradient descent methods [15]. The last (right) figure shows that a properly chosen,
smaller γ = 0.5/δ slows down convergence (twice as many communication rounds are shown).
However, the method reaches a significantly lower error floor (as the vertical axis is shared across
plots), which does not depend much on the accuracy of proximal point operator calculation. More-
over, 10 local steps are enough for basically the same fast convergence as with exact proximal point
computation.

We would like to specifically note that momentum-based variance reduction has already shown
empirical success [10, 13] in practical federated learning scenarios. That is why our experiments
focus on simpler but insightful setting to carefully study the properties of the proposed algorithm.
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Figure 1: Convergence of SPAM-inexact on a ridge regression problem with different p and γ.

Appendix F. Conclusion

We introduced SPAM, an algorithm tailored for cross-device federated learning, which combines
momentum variance reduction with the stochastic proximal point method. Operating under condi-
tions of second-order heterogeneity and bounded variance, SPAM does not necessitate smoothness
of the objective function. In its most general form, SPAM achieves optimal communication com-
plexity. Furthermore, it does not prescribe a specific local method for analysis, providing practition-
ers with flexibility and responsibility in selecting suitable local solver.

Limitations and future work. The paper is of a theoretical nature and focuses on improving
the understanding of stochastic non-convex optimization under hessian similarity in the context
of cross-device federated learning. We believe that separate experiments should be conducted to
evaluate the experimental performance in a setting close to real life.

In standard optimization, the stepsize usually depends on the smoothness parameter. Adaptive
methods allow to iteratively adjust the stepsize without additional information. In our case, the
smoothness parameter is replaced by the second-order heterogeneity parameter δ, on which the
stepsize and momentum sequences of SPAM depend. Removing this dependence using adaptive
techniques under general assumptions remains an open problem even for the server-only MVR,
which serves as the basis for our algorithm.
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Finally, federated learning comprises other aspects that we have not discussed above. These in-
clude privacy, security, personalization, etc., while our focus is on optimization and communication
complexity. We leave the study of their interplay as future work.

Appendix G. Proofs

G.1. Proof of Proposition 1

Recall that
Vk = f(xk)− finf +

3γk
2pk − p2k

∥gk −∇f(xk)∥2.

We bound each term separately. We formulate three technical lemmas, which are proved in Ap-
pendix J. We start with bounding the first term, that is the function values.

Lemma 10. Under the conditions of Proposition 1, the following recurrent inequality takes place

f(xk+1)− finf ≤ f(xk)− finf −
1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 (12)

Then, we bound the second term of Vk.

Lemma 11. Under the conditions of Proposition 1, the following recurrent inequality takes place

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
≤ (1−pk)

2∥gk −∇f(xk)∥2+2(1−pk)
2δ2∥xk+1 − xk∥2+2p2kσ

2.

(13)

We observe that in both upper bounds, there is the term ∥xk+1 − xk∥2. The following lemma,
provides a lower bound for this expression.

Lemma 12. Under the conditions of Proposition 1, the following recurrent inequality is true

E
[
∥xk+1 − xk∥2

]
≥ γ2k

4
E
[
∥∇f(xk+1)∥2

]
− γ2kE

[
∥gk −∇f(xk)∥2

]
. (14)

We now combine the results of the lemmas to bound VK+1:

E [Vk+1]
(12)+(13)

≤ α(1− pk)
2∥gk −∇f(xk)∥2 + 2αδ2(1− pk)

2∥xk+1 − xk∥2 + 2αp2kσ
2

+E [f(xk)− finf ]−
1

4γk
E
[
∥xk+1 − xk∥2

]
+ 2γkE

[
∥∇f(xk)− gk∥2

]
= E [Vk] +

(
2αδ2(1− pk)

2 − 1

4γk

)
E
[
∥xk+1 − xk∥2

]
+ 2αp2kσ

2

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The last inequality is true for every positive value of α. Let us now choose α = 3γk
2pk−p2k

. Then,

2αδ2(1− pk)
2 − 1

4γk
=

6γkδ
2(1− pk)

2

2pk − p2k
− 1

4γk
≤ − 1

8γk
,
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where the latter is due to 4δγk ≤
√

pk/6(1−pk). Therefore, we deduce

E [Vk+1] ≤ E [Vk]−
1

8γk
E
[
∥xk+1 − xk∥2

]
− γkE

[
∥∇f(xk)− gk∥2

]
+ 2αp2kσ

2

(14)
≤ E [Vk]−

γk
32

E
[
∥∇f(xk+1)∥2

]
+

γk
8
E
[
∥∇f(xk)− gk∥2

]
−γkE

[
∥∇f(xk)− gk∥2

]
+

6γkpk
2− pk

σ2

≤ E [Vk]−
γk
32

E
[
∥∇f(xk+1)∥2

]
+ 6γkpkσ

2.

This concludes the proof of the proposition.

G.2. Proof of Theorem 2

Let us apply Proposition 1 for the fixed stepsize γk = γ and a fixed momentum coefficient pk = p.

E [Vk+1] ≤ E [Vk]−
γ

32
E
[
∥∇f(xk+1)∥2

]
+ 6γpσ2.

Summing up these inequalities for k = 0, . . . ,K − 1 leads to

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ 32

γK
(V0 − E [VK ]) + 192pσ2

≤ 32(f(x0)− finf)

γK
+

30∥g0 −∇f(x0)∥2
(2p− p2)K

+ 192pσ2.

where γ2 ≤ min
{

1
16δ2

, 4p
3δ2(1−p)

}
. This concludes the proof of the theorem.

G.3. Proof of Theorem 5

From Proposition 1 we have

−γk
32

E
[
∥∇f(xk+1)∥2

]
≤ E [Vk]− E [Vk+1] + 6γkpkσ

2.

Let us now sum up these inequalities for k = 0, 1, . . . ,K − 1. We have telescoping sum on the
right-hand side. Then, dividing both sides on ΓK =

∑K
i=1 γi, we deduce the following bound:

1

ΓK

K∑
k=1

γkE
[
∥∇f(xk)∥2

]
≤ 32V0

ΓK
+

2

ΓK

K∑
k=1

15δ2γ3k
15δ2γ2k + 4

σ2.

This concludes the proof.

G.4. Proof of Theorem 7

We start by repeating the steps of the proof for Proposition 1. Notice that, in the statement of the
proposition, we assume that the iterate is exactly equal to the proximal point operator. However, as
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stated in Appendix C, in the proofs of lemmas 10 and 11 we only use the property that ϕk(xk+1) ≤
ϕk(xk) (see (21)). Thus, both (12) and (13) are true for SPAM-inexact. Therefore,

E [Vk+1] ≤ E [Vk] − 1

8γk
E
[
∥xk+1 − xk∥2

]
− (2γk − α(2pk − p2k))E

[
∥∇f(xk)− gk∥2

]
+2αp2kσ

2.

Below, reformulate the adaptation of Lemma 12 for the inexact case to lower bound the second term
on the right-hand side.

Lemma 13. Under the conditions of Proposition 1, we have the following bound

E
[
∥xk+1 − xk∥2

]
≥ γ2k

5
E
[
∥∇f(xk+1)∥2

]
− γ2kE

[
∥gk −∇f(xk)∥2

]
− γ2kϵ

2. (15)

The proof can be found in Appendix J.4. Thus,

E [Vk+1]
(15)
≤ E [Vk]−

γk
40

E
[
∥∇f(xk+1)∥2

]
+

15γkpk
8(2− pk)

σ2 +
γkϵ

2

8

+
γk
8
E
[
∥∇f(xk)− gk∥2

]
− (2γk − α(2pk − p2k))E

[
∥∇f(xk)− gk∥2

]
≤ E [Vk]−

γk
40

E
[
∥∇f(xk+1)∥2

]
+ 2γkpkσ

2 +
γkϵ

2

8
.

Repeating this step for k = 0, . . . ,K − 1, we deduce

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40V0

ΓK
+

2

ΓK

K−1∑
k=0

15σ2γ3k
15σ2γ2k + 4

σ2 +
ϵ2

8
.

G.5. Proof of Theorem 8

The proof follows the logic of Proposition 1. Recall that

Vk = f(xk)− finf +
3γk

2pk − p2k
∥gk −∇f(xk)∥2.

Recall that Lemma 10 is true for any gradient estimator gk. Thus, (12) is valid for SPAM-PP as
well. Next, we estimate the second term of the Lyapunov function. Recall that

gk+1 =
1

Sk

∑
i∈Sk

{∇fi(xk+1) + (1− pk) (gk −∇fi(xk))}

= ∇f̃k(xk+1) + (1− pk)
(
gk −∇f̃k(xk)

)
,

where f̃k(x) := 1
Sk

∑
i∈Sk

∇fi(x). Notice also that E
[
f̃k(x)

]
= f(x), for every fixed x ∈ Rd.

Furthermore, combining the convexity of the Euclidean norm and Hessian similarity (5) we deduce
that the estimator f̃k satisfies the Hessian similarity condition∥∥∥∇f̃k(x)−∇f(x)−∇f̃k(y) +∇f(y)

∥∥∥ ≤ 1

B

∑
i∈Sk

∥∇fi(x)−∇f(x)−∇fi(y) +∇f(y)∥

≤ δ

B
∥x− y∥.
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Finally, Jensen’s inequality implies that f̃k satisfies the bounded variance condition as well:

E
[∥∥∥∇f̃k(x)−∇f(x)

∥∥∥] ≤ σ2/B.

Repeating the analysis exactly as in the proof of Lemma 11, we obtain

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤ (1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+2(1− pk)

2 δ
2

B2
E
[
∥xk+1 − xk∥2

]
+

2p2kσ
2

B
. (16)

Let us now bound the Lyapunov function using (12) and (16):

E [Vk+1] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E
[
∥xk+1 − xk∥2

]
+α(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2α(1− pk)

2 δ
2

B2
E
[
∥xk+1 − xk∥2

]
+

2αp2kσ
2

B

= E [Vk] +

(
2α

δ2

B2
(1− pk)

2 − 1

4γk

)
E
[
∥xk+1 − xk∥2

]
+

2αp2kσ
2

B

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The latter is true for every positive α. Let us now plug in the value of α = 3γk
2pk−p2k

. Then, using

γ ≤
√

B2pk
96δ2(1−pk)

, we obtain

2α
δ2

B2
(1− pk)

2 − 1

4γk
≤ 6γkδ

2

B2(2pk − p2k)
(1− pk)

2 − 1

4γk
≤ − 1

8γk
. (17)

Hence, we have the following bound

E [Vk+1] ≤ E [Vk]−
1

8γk
E
[
∥xk+1 − xk∥2

]
− γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B(2− pk)

(15)
≤ E [Vk]−

1

8γk

(
γ2k
5
E
[
∥∇f(xk+1)∥2

]
− γ2kE

[
∥gk −∇f(xk)∥2

]
− γ2kϵ

2

)
−γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B

≤ E [Vk]−
γk
40

E
[
∥∇f(xk+1)∥2

]
− 7γk

8
E
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8

≤ E [Vk]−
γk
40

E
[
∥∇f(xk+1)∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8
.

Thus, we have

1

ΓK

K−1∑
k=0

γkE
[
∥∇f(xk+1)∥2

]
≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

This concludes the proof of the theorem.
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Appendix H. Complexity analysis of the methods

We use ≲ to ignore numerical constants in the subsequent analysis.

H.1. Proof of Corollary 4

We have stepsize condition γ ≲ min{1/δ,
√

p/(δ2(1− p))}, which implies that γ ≲
√
p/δ or

p ≳ (γδ)2. Denote F := f(x0)− finf , then convergence rate of SPAM can be expressed as

RK :=
1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≲

f(x0)− finf
γK

+
∥g0 −∇f(x0)∥2
(2p− p2)K

+ pσ2

≲
F

γK
+

∥g0 −∇f(x0)∥2
pK

+ pσ2,

where in the last inequality we used condition for the stepsize and the fact that p(2 − p) ≥ p.
Next, by using an argument similar to that in [13], we suppose (without loss of generality) that the
method is run for K iterations. For the first K/2 iterations, we simply sample ∇fξ at x0 to set

g0 = 1
K/2

∑K/2
i=1 ∇fξi(x0). Then, according to (3), we have E

[
∥g0 −∇f(x0)∥2

]
≤ σ2

K/2 . Now,

choose p = max(γ2δ2, 1/K)

RK ≲
F

γK
+

σ2

pK2
+ pσ2 ≲

F

γK
+

σ2

K
+ γ2δ2σ2 +

σ2

K
.

Next set γ = min
(
1
δ ,
(

F
2δ2σ2K

)1/3)
and the rate results in

RK ≲
δF

K
+

F

K

(
2δ2σ2K

F

)1/3

+

(
F

2δ2σ2K

)2/3

δ2σ2 +
σ2

K

≲
δF + σ2

K
+

(
δσF

K

)2/3

,

which leads to communication complexity of O
(
δF+σ2

ε + δσF
ε3/2

)
. This concludes the proof.

H.2. Proof of Corollary 9

In this part we perform analyze communication complexity similarly to Section H.2. The focus is
on constant stepsize case γk ≡ γ ≲ min{1/δ,√pB/δ} and exact proximal computation ϵ = 0.
Denote F := f(x0)− finf , then convergence rate of SPAM-PP can be expressed as

RK :=
1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≲

F

γK
+

∥g0 −∇f(x0)∥2
pK

+
pσ2

B
.

By using the same reasoning as in H.1 set

g0 =
1

BK/2

K/2∑
j=1

Sj∑
i=1

∇fξi(x0)
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to make sure E
[
∥g0 −∇f(x0)∥2

]
≤ σ2/(BK/2). Then

RK ≲
F

γK
+

σ2

pBK2
+

pσ2

B
.

Now choose p = max(γ2δ2, 1/K) which leads to

RK ≲
F

γK
+

σ2

BK
+

γ2δ2σ2

B
+

σ2

BK
.

Next set γ = min
(
1
δ ,
(

BF
2δ2σ2K

)1/3)
and the rate results in

RK ≲
δF

K
+

F

K

(
2δ2σ2K

BF

)1/3

+
σ2

BK
+

(
BF

2δ2σ2K

)2/3 δ2σ2

B
+

σ2

BK

≲
δF

K
+

σ2

BK
+

(
δσF√
BK

)2/3

,

which leads to communication complexity

O
(
δF

ε
+

σ2

Bε
+

δσF√
Bε3/2

)
.

Appendix I. Partial participation with averaging

Algorithm 3 SPAM-PPA

1: Input: learning rate γ > 0, starting point x0 ∈ Rd;
proximal precision level ϵ; initialize g0 = g−1;

2: for k = 0, 1, 2, . . . do
3: Sample a subset of clients Sk, with size |Sk| = B;
4: Selected clients do local SPAM updates;
5: for i ∈ Sk do
6: Set gik = ∇fi(xk) + (1− pk) (gk−1 −∇fi(xk−1));
7: Broadcast gik to the server;
8: end for
9: gk = 1

B

∑
i∈Sk

gik ;
10: for i ∈ Sk do
11: Set xik+1 = a-proxϵ (xk, gk, γk, i);
12: Broadcast xik+1 to the server;
13: end for
14: The server aggregates the local iterates: xk+1 =

1
B

∑
i∈Sk

xik+1;
15: end for
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Theorem 14 (SPAM-PPA). Suppose Assumptions 1, 2 are satisfied and the objective function f is
L-smooth. If ξk ∼ Unif(Sk) at every iteration, then the iterates of SPAM-PPA with γk ≤ 1

4(δ+L)

and pk =
96δ2γ2

k

96δ2γ2
k+B2 satisfy

1

ΓK

K−1∑
k=0

γkE

[∥∥∥∇f(xξk+1)
∥∥∥2] ≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

The result of the theorem is similar to the one in Theorem 8. In fact, following the proof scheme
of Corollary 9, one can derive the complexity analysis for SPAM-PPA. However, unlike previous
results, we require the objective function f to be smooth.

I.1. Proof of Theorem 14

The proof follows the logic of Proposition 1. Recall that

Vk = f(xk)− finf +
3γk

2pk − p2k
∥gk −∇f(xk)∥2.

We start with proving a descent lemma. Recall that ξk ∼ Unif(Sk), for the fixed Sk.

Lemma 15. For an L-smooth objective f satisfying assumptions 1,2 and parameters γ2k ≤ min
{

1
16(L+δ)2

, 4pk
15δ2(1−pk)

}
,

the iterates of the SPAM-PPA algorithm satisfy

E [f(xk+1)− finf ] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξkk+1 − xk

∥∥∥2] .
(18)

The proof of the lemma is deferred to Appendix J.5. Next, we estimate the second term of the
Lyapunov function. Recall that

gk+1 =
1

Sk

∑
i∈Sk

{∇fi(xk+1) + (1− pk) (gk −∇fi(xk))}

= ∇f̃k(xk+1) + (1− pk)
(
gk −∇f̃k(xk)

)
,

where f̃k(x) := 1
Sk

∑
i∈Sk

∇fi(x). Notice that E
[
f̃k(x)

]
= f(x), for every fixed x ∈ Rd. Further-

more, combining the convexity of the Euclidean norm and Hessian similarity (5) we deduce that the
estimator f̃k satisfies the Hessian similarity condition∥∥∥∇f̃k(x)−∇f(x)−∇f̃k(y) +∇f(y)

∥∥∥ ≤ 1

B

∑
i∈Sk

∥∇fi(x)−∇f(x)−∇fi(y) +∇f(y)∥

≤ δ

B
∥x− y∥.

Furthermore, Jensen’s inequality implies that f̃k satisfies the bounded variance condition as well:

E
[∥∥∥∇f̃k(x)−∇f(x)

∥∥∥] ≤ σ2/B.
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Repeating the analysis exactly as in the proof of Lemma 11, we obtain

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤ (1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+2(1− pk)

2 δ
2

B2
E
[
∥xk+1 − xk∥2

]
+

2p2kσ
2

B
.

Assume now that ξk ∼ Unif(Sk), for a fixed Sk. The latter means xk+1 = E
[
xξkk+1

∣∣∣Gk

]
, and

subsequently, Jensen’s inequality yields

E
[
∥gk+1 −∇f(xk+1)∥2

]
≤(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ
2

B2
E

[∥∥∥E [
xξkk+1

∣∣∣Gk

]
− xk

∥∥∥2]+
2p2kσ

2

B

≤(1− pk)
2E

[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ
2

B2
E

[
E

[∥∥∥xξkk+1 − xk

∥∥∥2∣∣∣∣Gk

]]
+

2p2kσ
2

B

=(1− pk)
2E

[
∥gk −∇f(xk)∥2

]
+ 2(1− pk)

2 δ
2

B2
E

[∥∥∥xξkk+1 − xk

∥∥∥2]+ 2p2kσ
2

B
.

Now, we need to bound E

[∥∥∥xξkk+1 − xk

∥∥∥2] from below.

Lemma 16. Under assumptions 1 and 2, we have the following lower bound for the iterates of
SPAM-PPA algorithm

E

[∥∥∥xξkk+1 − xk

∥∥∥2] ≥ γ2k
5
E

[∥∥∥∇f(xξkk+1)
∥∥∥2]− γ2kE

[
∥gk −∇f(xk)∥2

]
− γkϵ

2. (19)

The proof of the lemma can be found in Appendix J.6. Let us now bound the Lyapunov function
using (18) and (19):

E [Vk+1] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξkk+1 − xk

∥∥∥2]
+α(1− pk)

2E
[
∥gk −∇f(xk)∥2

]
+ 2α(1− pk)

2 δ
2

B2
E

[∥∥∥xξkk+1 − xk

∥∥∥2]+
2αp2kσ

2

B

= E [Vk] +

(
2α

δ2

B2
(1− pk)

2 − 1

4γk

)
E

[∥∥∥xξkk+1 − xk

∥∥∥2]+
2αp2kσ

2

B

+(2γk − α(2pk − p2k))E
[
∥∇f(xk)− gk∥2

]
.

The latter is true for every positive α. Let us now plug in the value of α = 3γk
2pk−p2k

. Then, using

γ ≤
√

B2pk
96δ2(1−pk)

, we obtain

2α
δ2

B2
(1− pk)

2 − 1

4γk
≤ 6γkδ

2

B2(2pk − p2k)
(1− pk)

2 − 1

4γk
≤ − 1

8γk
. (20)
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Hence, we have the following bound

E [Vk+1] ≤ E [Vk]−
1

8γk
E

[∥∥∥xξkk+1 − xk

∥∥∥2]− γkE
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B(2− pk)

(19)
≤ E [Vk]−

1

8γk

(
γ2k
5
E

[∥∥∥∇f(xξkk+1)
∥∥∥2]− γ2kE

[
∥gk −∇f(xk)∥2

]
− γ2kϵ

2

)
−γkE

[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B

≤ E [Vk]−
γk
40

E

[∥∥∥∇f(xξkk+1)
∥∥∥2]− 7γk

8
E
[
∥∇f(xk)− gk∥2

]
+

6pkγkσ
2

B
+

γkϵ
2

8

≤ E [Vk]−
γk
40

E

[∥∥∥∇f(xξkk+1)
∥∥∥2]+

6pkγkσ
2

B
+

γkϵ
2

8
.

Thus, we have

1

ΓK

K−1∑
k=0

γkE

[∥∥∥∇f(xξkk+1)
∥∥∥2] ≤ 40

ΓK
(V0 − E [VK ]) +

240

ΓK

K−1∑
k=0

pkγk
σ2

B
+ 7.5ϵ2.

This concludes the proof of the theorem.

Appendix J. Proofs of the technical lemmas

J.1. Proof of Lemma 10

By the main theorem of Calculus, we have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ,

fξk(xk+1)− fξk(xk) =

∫ 1

0

〈
∇fξk(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ

Therefore the difference in function value can be bounded as follows:

f(xk+1)− f(xk) = fξk(xk+1)− fξk(xk)

+

∫ 1

0
⟨∇f(x(τ))−∇fξk(x(τ)), xk+1 − xk⟩ dτ

= fξk(xk+1)− fξk(xk) + ⟨gk −∇fξk(xk), xk+1 − xk⟩

+

∫ 1

0
⟨∇f(x(τ))−∇fξk(x(τ))− gk +∇fξk(xk), xk+1 − xk⟩ dτ

≤ − 1

2γk
∥xk+1 − xk∥2 + ⟨∇f(xk)− gk, xk+1 − xk⟩

+

∫ 1

0
⟨∇f(x(τ))−∇fξk(x(τ))−∇f(xk) +∇fξk(xk), xk+1 − xk⟩ dτ.
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The last inequality is due to

fξk(xk+1) + ⟨gk −∇fξk(xk), xk+1 − xk⟩+
1

2γk
∥xk+1 − xk∥2 ≤ fξk(xk), (21)

which is a direct consequence of xk+1 = argmin
x

{
fξk(x) + ⟨gk −∇fξk(xk), x− xk⟩+ 1

2γk
∥x− xk∥2

}
.

Let us now apply Cauchy-Schwartz inequality to bound both scalar products:

f(xk+1)− f(xk) ≤ − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+

∫ 1

0
∥∇f(x(τ))−∇fξk(x(τ))−∇f(xk) +∇fξk(xk)∥∥xk+1 − xk∥dτ

(5)
≤ − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+δ

∫ 1

0
∥x(τ)− xk∥∥xk+1 − xk∥dτ

= − 1

2γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2 +

1

8γk
∥xk+1 − xk∥2

+
δ

2
∥xk+1 − xk∥2

γk≤ 1
4δ≤ − 1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2.

Thus, we have

f(xk+1)− finf ≤ f(xk)− finf −
1

4γk
∥xk+1 − xk∥2 + 2γk∥∇f(xk)− gk∥2. (22)

This concludes the proof of the lemma.

J.2. Proof of Lemma 11

Recall that gk+1 = ∇fξk+1
(xk+1)+(1−pk)

(
gk −∇fξk+1

(xk)
)
. We define Fk := {xk+1, xk, gk}.

Then,

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
= E

[∥∥∇fξk+1
(xk+1) + (1− pk)

(
gk −∇fξk+1

(xk)
)
−∇f(xk+1)

∥∥2∣∣∣Fk

]
= E

[∥∥∇fξk+1
(xk+1)−∇f(xk+1) + (1− pk)

(
∇f(xk)−∇fξk+1

(xk)
)∥∥2∣∣∣Fk

]
+(1− pk)

2∥gk −∇f(xk)∥2.

The last equality (∗) is due to the bias-variance formula and the fact that ξk+1 is independent from
Fk and that the stochastic gradients are unbiased. Using the Cauchy-Schwartz inequality we deduce
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the following bound for the first term on the right-hand side, where α > 0 is an arbitrary constant:

E
[∥∥∇fξk+1

(xk+1)−∇f(xk+1) + (1− pk)
(
∇f(xk)−∇fξk+1

(xk)
)∥∥2 | Fk

]
= E

[
∥pk

(
∇fξk+1

(xk+1)−∇f(xk+1)
)

(23)

+ (1− pk)
(
∇fξk+1

(xk+1)−∇f(xk+1) +∇f(xk)−∇fξk+1
(xk)

)
∥2 | Fk

]
≤ (1 + α)p2kE

[∥∥∇fξk+1
(xk+1)−∇f(xk+1)

∥∥2∣∣∣Fk

]
(24)

+ (1 + α−1)(1− pk)
2E

[∥∥∇fξk+1
(xk+1)−∇f(xk+1) +∇f(xk)−∇fξk+1

(xk)
∥∥2∣∣∣Fk

]
.

We apply (3) and (5) to bound, respectively, the first term and the second term on the right-hand
side of (23):

E
[∥∥∇fξk+1

(xk+1)−∇f(xk+1) + (1− pk)
(
∇f(xk)−∇fξk+1

(xk)
)∥∥2∣∣∣Fk

]
≤ (1 + α)p2kσ

2 + (1 + α−1)(1− pk)
2δ2∥xk+1 − xk∥2.

Taking α = 1, we obtain the following

E
[
∥gk+1 −∇f(xk+1)∥2

∣∣∣Fk

]
≤ (1−pk)

2∥gk −∇f(xk)∥2+2(1−pk)
2δ2∥xk+1 − xk∥2+2p2kσ

2.

This concludes the proof of the lemma.

J.3. Proof of Lemma 12

By the definition of xk+1, we have

∥xk+1 − xk∥2 = γ2k∥∇fξk(xk+1) + gk −∇fξk(xk)∥2

= γ2k∥∇f(xk+1) + gk −∇f(xk) +∇fξk(xk+1)−∇f(xk+1)−∇fξk(xk) +∇f(xk)∥2

≥ γ2k
3
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2

−γ2k∥∇fξk(xk+1)−∇f(xk+1)−∇fξk(xk) +∇f(xk)∥2

≥ γ2k
3
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kδ

2∥xk+1 − xk∥2,

where we used a variant of Jensen’s inequality 3(a2 + b2 + c2) ≥ (a + b + c)2, for a, b, c > 0.
Therefore, we have

∥xk+1 − xk∥2 ≥ 1

1 + γ2kδ
2

(
γ2k
3
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2

)
≥ 16

17

(
γ2k
3
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2

)
≥ γ2k

4
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2.

Thus, we have

E
[
∥xk+1 − xk∥2

]
≥ γ2k

4
E
[
∥∇f(xk+1)∥2

]
− γ2kE

[
∥gk −∇f(xk)∥2

]
.

This concludes the proof of the lemma.
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J.4. Proof of Lemma 13

Let xk+1 = a-proxϵ (xk, gk, γk, ξk). Then, from the definition of the function ϕk (7), we have

∥xk+1 − xk∥2 = γ2k∥∇fξk(xk+1) + gk −∇fξk(xk)−∇ϕk(xk+1)∥2

≥ γ2k

(
1

4
∥∇f(xk+1)∥2 − ∥gk −∇f(xk)∥2 − δ2∥xk+1 − xk∥2−∥∇ϕk(xk+1)∥2

)
.

Since ∥a1 + a2 + a3 + a4∥2 ≤ 4
(
∥a1∥2 + ∥a2∥2 + ∥a3∥2 + ∥a4∥2

)
for any vectors ai ∈ Rd,

which implies ∥a4∥2 ≥ 1
4 ∥a1 + a2 + a3 + a4∥2−∥a1∥2−∥a2∥2−∥a3∥2 and E

[
∥∇ϕk(xk+1)∥2

]
≤

ϵ2, we deduce

∥xk+1 − xk∥2 ≥
γ2k

1 + γ2kδ
2

(
1

4
∥∇f(xk+1)∥2 − ∥gk −∇f(xk)∥2−ϵ

)
.

Therefore, we have

∥xk+1 − xk∥2 ≥ 1

1 + γ2kδ
2

(
γ2k
4
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2

)
≥ 16

17

(
γ2k
4
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2

)
≥ γ2k

5
∥∇f(xk+1)∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2.

Taking expectations on both sides leads to

E
[
∥xk+1 − xk∥2

]
≥ γ2k

5
E
[
∥∇f(xk+1)∥2

]
− γ2kE

[
∥gk −∇f(xk)∥2

]
− γ2kϵ

2.

This concludes the proof of the lemma.

J.5. Proof of Lemma 15

Recalling that xξkk+1 = a-proxϵ (xk, gk, γk, ξk), we have

fξk(x
ξk
k+1) +

〈
gk −∇fξk(xk), x

ξk
k+1 − xk

〉
+

1

2γk
∥xξkk+1 − xk∥2 ≤ fξk(xk).

Similar to the proof of Proposition 1 we start with

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + τ(xk+1 − xk)︸ ︷︷ ︸

:=x(τ)

), xk+1 − xk

〉
dτ,

fξk(x
ξk
k+1)− fξk(xk) =

∫ 1

0

〈
∇fξk(xk + τ(xξkk+1 − xk)︸ ︷︷ ︸

:=xξk (τ)

), xξkk+1 − xk

〉
dτ.
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Thus, we have

f(xk+1)− f(xk) = fξk(x
ξk
k+1)− fξk(xk)

+

∫ 1

0
⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ)), xξkk+1 − xk

〉
dτ

= fξk(x
ξk
k+1)− fξk(xk) +

〈
gk −∇fξk(xk), x

ξk
k+1 − xk

〉
+

∫ 1

0
⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ))− gk +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ.

Applying the descent property of a-prox (see Definition 1), we deduce the following:

f(xk+1)− f(xk) ≤ − 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 + 〈
∇f(xk)− gk, x

ξk
k+1 − xk

〉
+

∫ 1

0
⟨∇f(x(τ)), xk+1 − xk⟩ dτ

+

∫ 1

0

〈
−∇fξk(x

ξk(τ))−∇f(xk) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ.

Let us take expectation from both sides conditioned to Gk = {xk, xk+1, Sk, gk}. In other words,
we take expectation with respect to the random index ξk chosen uniformly from the already chosen
Sk:

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 + 〈
∇f(xk)− gk, x

ξk
k+1 − xk

〉
| Gk

]
+E

[∫ 1

0
⟨∇f(x(τ)), xk+1 − xk⟩ dτ | Gk

]
+E

[∫ 1

0

〈
−∇fξk(x

ξk(τ))−∇f(xk) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ

∣∣∣∣Gk

]
= E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+E

[∫ 1

0

〈
∇f(x(τ))−∇f(xk)−∇fξk(x

ξk(τ)) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ | Gk

]
.
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Here the last equality is due to the fact that ξk is independent of Gk and xk+1 = E
[
xξkk+1 | Gk

]
.

Therefore, applying Cauchy-Schwartz inequality

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+ E

[∫ 1

0

〈
∇f(x(τ))−∇f(xξk(τ)), xξkk+1 − xk

〉
dτ | Gk

]
+ E

[∫ 1

0

〈
∇f(xξk(τ))−∇f(xk)−∇fξk(x

ξk(τ)) +∇fξk(xk), x
ξk
k+1 − xk

〉
dτ | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+ ⟨∇f(xk)− gk, xk+1 − xk⟩

+ E

[∫ 1

0

∥∥∥∇f(x(τ))−∇f(xξk(τ))
∥∥∥∥∥∥xξkk+1 − xk

∥∥∥dτ | Gk

]
+ E

[∫ 1

0

∥∥∥∇f(xξk(τ))−∇f(xk)−∇fξk(x
ξk(τ)) +∇fξk(xk)

∥∥∥∥∥∥xξkk+1 − xk

∥∥∥dτ | Gk

]
.

Applying Cauchy-Schwartz inequality once again we deduce

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+E

[∫ 1

0
L
∥∥∥x(τ)− xξk(τ)

∥∥∥∥∥∥xξkk+1 − xk

∥∥∥dτ | Gk

]
+E

[∫ 1

0
δ
∥∥∥xξk(τ)− xk

∥∥∥∥∥∥xξkk+1 − xk

∥∥∥dτ | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+E

[∫ 1

0
Lτ

∥∥∥xk+1 − xξkk+1

∥∥∥∥∥∥xξkk+1 − xk

∥∥∥dτ | Gk

]
+E

[∫ 1

0
δτ

∥∥∥xξkk+1 − xk

∥∥∥2dτ | Gk

]
.

Computing the integral with respect to τ we obtain

f(xk+1)− f(xk) ≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+
L

2
E
[∥∥∥xk+1 − xξkk+1

∥∥∥∥∥∥xξkk+1 − xk

∥∥∥ | Gk

]
+

δ

2
E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
≤ E

[
− 1

2γk

∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
+

C

2
∥∇f(xk)− gk∥2 +

1

2C
∥xk+1 − xk∥2

+
L

4
E

[∥∥∥xk+1 − xξkk+1

∥∥∥2 | Gk

]
+

2δ + L

4
E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
.
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Recall again that xk+1 = E
[
xξkk+1 | Gk

]
, thus xk+1 = argmina∈Rd E

[∥∥∥xξkk+1 − a
∥∥∥2 | Gk

]
. There-

fore,

E

[∥∥∥xξkk+1 − xk+1

∥∥∥2 | Gk

]
≤ E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
.

Furthermore,

∥xk+1 − xk∥2 =
∥∥∥E [

xξkk+1 | Gk

]
− xk

∥∥∥2 ≤ E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
.

Combining these two bounds, we deduce

f(xk+1)− f(xk) ≤ C

2
∥∇f(xk)− gk∥2

+

(
1

2C
+

δ + L

2
− 1

2γk

)
E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
.

The previous bound is true for every positive value of C. Thus, it is true also for C = 4γk. Taking
into account that γk < 1

4(L+δ) , we get

1

2C
+

δ + L

2
− 1

2γk
≤ 1

8γk
+

1

8γk
− 1

2γk
= − 1

4γk
.

Therefore,

f(xk+1)− f(xk) ≤ 2γk∥∇f(xk)− gk∥2 −
1

4γk
E

[∥∥∥xξkk+1 − xk

∥∥∥2 | Gk

]
.

Thus, taking full expectation on both sides we have

E [f(xk+1)− finf ] ≤ E [f(xk)− finf ] + 2γkE
[
∥∇f(xk)− gk∥2

]
− 1

4γk
E

[∥∥∥xξkk+1 − xk

∥∥∥2] .
This concludes the proof.

J.6. Proof of Lemma 16

By the definition of xξkk+1, for every ξ ∈ Sk we have∥∥∥xξkk+1 − xk

∥∥∥2 = γ2k

∥∥∥∇fξk(x
ξk
k+1) + gk −∇fξk(xk)−∇ϕk(xk+1)

∥∥∥2
= γ2k

∥∥∥∇f(xξkk+1) + gk −∇f(xk) +∇fξk(x
ξk
k+1)

−∇f(xξkk+1)−∇fξk(xk) +∇f(xk)−∇ϕk(xk+1)
∥∥∥2

≥ γ2k
4

∥∥∥∇f(xξkk+1)
∥∥∥2 − γ2k∥gk −∇f(xk)∥2

−γ2k

∥∥∥∇fξk(x
ξk
k+1)−∇f(xξkk+1)−∇fξk(xk) +∇f(xk)

∥∥∥2 − γ2kϵ
2

≥ γ2k
4

∥∥∥∇f(xξkk+1)
∥∥∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kδ

2
∥∥∥xξkk+1 − xk

∥∥∥2 − γ2kϵ
2.
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The third inequality is due to Cauchy-Schwartz and the second property of the approximate proximal
operator (See Definition 1). Therefore, we have∥∥∥xξkk+1 − xk

∥∥∥2 ≥ 1

1 + γ2kδ
2

(
γ2k
4

∥∥∥∇f(xξkk+1)
∥∥∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2

)
≥ 16

17

(
γ2k
4

∥∥∥∇f(xξkk+1)
∥∥∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2

)
≥ γ2k

5

∥∥∥∇f(xξkk+1)
∥∥∥2 − γ2k∥gk −∇f(xk)∥2 − γ2kϵ

2.

We deduce

E

[∥∥∥xξkk+1 − xk

∥∥∥2] ≥ γ2k
5
E

[∥∥∥∇f(xξkk+1)
∥∥∥2]− γ2kE

[
∥gk −∇f(xk)∥2

]
− γ2kϵ

2.

This concludes the proof of the lemma.

Appendix K. Experimental details

We provide additional details on the experimental settings from Section E.
Consider a distributed ridge regression problem defined as

f(x) = Eξ

[
∥Aξx− yξ∥2

]
+

λ

2
∥x∥2, (25)

where ξ is uniform random variable over {1, . . . , n} for n = 10, λ = 0.1. We follow a similar
to [21] procedure for synthetic data generation, which allows us to calculate and control Hessian
similarity δ. Namely, a random matrix A0 ∈ Rd×d (d = 100) is generated with entries from a
standard Gaussian distribution N (0, 1). Then we obtain A = A0A

⊤
0 (to ensure symmetry) and set

A′
ξ = A + Bξ by adding a random symmetric matrix Bξ (generated similarly to A). Afterwards

we modify Aξ = A′
ξ + Iλmin(A

′
ξ) by adding an identity matrix I times minimum eigenvalue to

guarantee Aξ ⪰ 0. Entries of vectors yξ ∈ Rd, and initialization x0 ∈ Rd are generated from a
standard Gaussian distribution N (0, 1).

In case of inexact proximal point computation (1/10 local steps) local subproblems (7) are solved
with gradient descent.

Simulations were performed on a machine with 24 Intel(R)Xeon(R) Gold 6246 CPU @ 3.30
GHz.
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