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Abstract

The expressive power of graph learning architectures based on the k-dimensional
Weisfeiler–Leman (k-WL) hierarchy is well understood. However, such architec-
tures often fail to deliver solid predictive performance on real-world tasks, lim-
iting their practical impact. In contrast, global attention-based models such as
graph transformers demonstrate strong performance in practice. However, com-
paring their expressivity with the k-WL hierarchy remains challenging, particu-
larly since attention-based architectures rely on positional or structural encod-
ings. To address this, we show that the recently proposed Edge Transformer,
a global attention model operating on node pairs instead of nodes, has 3-WL
expressive power when provided with the right tokenization. Empirically, we
demonstrate that the Edge Transformer surpasses other theoretically aligned ar-
chitectures regarding predictive performance and is competitive with state-of-the-
art models on algorithmic reasoning and molecular regression tasks while not
relying on positional or structural encodings. Our code is available at https:
//github.com/luis-mueller/towards-principled-gts.

1 Introduction

Graph Neural Networks (GNNs) are the de-facto standard in graph learning [17, 44, 29, 51] but suffer
from limited expressivity in distinguishing non-isomorphic graphs in terms of the 1-dimensional
Weisfeiler–Leman algorithm (1-WL) [36, 51]. Hence, recent works introduced higher-order GNNs,
aligned with the k-dimensional Weisfeiler–Leman (k-WL) hierarchy for graph isomorphism testing
[1, 34, 36, 37, 39], resulting in more expressivity with an increase in k > 1. The k-WL hierarchy
draws from a rich history in graph theory and logic [3, 4, 5, 10, 50], offering a deep theoretical
understanding of k-WL-aligned GNNs. While theoretically intriguing, higher-order GNNs often fail
to deliver state-of-the-art performance on real-world problems, making theoretically grounded models
less relevant in practice [1, 37, 39]. In contrast, graph transformers [18, 20, 32, 42, 53] recently
demonstrated state-of-the-art empirical performance. However, they draw their expressive power
mostly from positional/structural encodings (PEs), making it difficult to understand these models in
terms of an expressivity hierarchy such as the k-WL. While a few works theoretically aligned graph
transformers with the k-WL hierarchy [27, 28, 54], we are not aware of any works reporting empirical
results for 3-WL-equivalent graph transformers on established graph learning datasets.

In this work, we aim to set the ground for graph learning architectures that are theoretically aligned
with the higher-order Weisfeiler–Leman hierarchy while delivering strong empirical performance
and, at the same time, demonstrate that such an alignment creates powerful synergies between
transformers and graph learning. Hence, we close the gap between theoretical expressivity and
real-world predictive power. To this end, we apply the Edge Transformer (ET) architecture, initially
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Figure 1: Tokenization of the Edge Transformer.
Given a graph G, we construct a 3D tensor where
we embed information from each node pair into
a d dimensional vector.
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Figure 2: Tensor operations in a single triangular
attention head; see Algorithm 1 for a comparison
to standard attention in pseudo-code.

developed for systematic generalization problems [6], to the field of graph learning. Systematic
(or compositional) generalization refers to the ability of a model to generalize to complex novel
concepts by combining primitive concepts observed during training, posing a challenge to even the
most advanced models such as GPT-4 [15].

Specifically, we contribute the following:

1. We propose a concrete implementation of the Edge Transformer that readily applies to various
graph learning tasks.

2. We show theoretically that this Edge Transformer implementation is as expressive as the
3-WL without the need for positional/structural encodings.

3. We demonstrate the benefits of aligning models with the k-WL hierarchy by leveraging
well-established results from graph theory and logic to develop a theoretical understanding
of systematic generalization in terms of first-order logic statements.

4. We demonstrate the superior empirical performance of the resulting architecture compared
to a variety of other theoretically motivated models, as well as competitive performance
compared to state-of-the-art models in molecular regression and neural algorithmic reasoning
tasks.

2 Related work

Many graph learning models with higher-order WL expressive power exist, notably δ-k-GNNs [37],
SpeqNets [39], k-IGNs [35, 34], PPGN [33], and the more recent PPGN++ [41]. Moreover, Lipman
et al. [31] devise a low-rank attention module possessing the same power as the folklore 2-WL
and Bodnar et al. [8] propose CIN with an expressive power of at least 3-WL. For an overview of
Weisfeiler–Leman in graph learning, see Morris et al. [38].

Many graph transformers exist, notably Graphormer [53] and GraphGPS [42]. However, state-of-the-
art graph transformers typically rely on positional/structural encodings, which makes it challenging to
derive a theoretical understanding of their expressive power. The Relational Transformer (RT) [12]
operates over both nodes and edges and, similar to the ET, builds relational representations, that is,
representations on edges. Although the RT integrates edge information into self-attention and hence
does not need to resort to positional/structural encodings, the RT is theoretically poorly understood,
much like other graph transformers. Graph transformers with higher-order expressive power are
Graphormer-GD [54] and TokenGT [28] as well as the higher-order graph transformers in Kim et al.
[27]. However, Graphormer-GD is strictly less expressive than the 3-WL [54]. Further, Kim et al. [27]
and Kim et al. [28] align transformers with k-IGNs and, thus, obtain the theoretical expressive power
of the corresponding k-WL but do not empirically evaluate their transformers for k > 2. In addition,
these higher-order transformers suffer from a O(n2k) runtime and memory complexity. For k = 3,
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the ET offers provable 3-WL expressivity with O(n3) runtime and memory complexity, several orders
of magnitude more efficient than the corresponding 3-WL expressive transformer in Kim et al. [28].
For an overview of graph transformers, see Müller et al. [40].

Finally, systematic generalization has recently been investigated both empirically and theoretically
[6, 15, 26, 43]. In particular, Dziri et al. [15] demonstrate that compositional generalization is lacking
in state-of-the-art transformers such as GPT-4.

3 Edge Transformers

The ET was originally designed to improve the systematic generalization abilities of machine learning
models. To borrow the example from Bergen et al. [6], a model that is presented with relations such
as MOTHER(x, y), indicating that y is the mother of x, could generalize to a more complex relation
GRANDMOTHER(x, z), indicating that z is the grandmother of x if MOTHER(x, y) ∧ MOTHER(y, z)
holds. The particular form of attention used by the ET, which we will formally introduce hereafter, is
designed to explicitly model such more complex relations. Indeed, leveraging our theoretical results
of Section 4, in Section 5, we formally justify the ET for performing systematic generalization. We
will now formally define the ET; see Appendix D for a complete description of our notation.

In general, the ET operates on a graph G with nodes V (G) and consecutively updates a 3D tensor state
X ∈ Rn×n×d, where d is the embedding dimension and Xij or X(u) denotes the representation of
the node pair u := (i, j) ∈ V (G)2; see Figure 1 for a visualization of this construction. Concretely,
the t-th ET layer computes

X
(t)
ij := FFN

(
X

(t−1)
ij + TriAttention

(
LN
(
X

(t−1)
ij

)))
,

for each node pair (i, j), where FFN is a feed-forward neural network, LN denotes layer normalization
[2] and TriAttention is defined as

TriAttention(Xij) :=

n∑

l=1

αiljVilj , (1)

which computes a tensor product between a three-dimensional attention tensor α and a three-
dimensional value tensor V, by multiplying and summing over the second dimension. Here,

αilj := softmax
l∈[n]

( 1√
d
XilW

Q
(
XljW

K
)T) ∈ R (2)

is the attention score between the features of tuples (i, l) and (l, j), and

Vilj := XilW
V1 ⊙XljW

V2 , (3)

we call value fusion of the tuples (i, l) and (l, j) with ⊙ denoting element-wise multiplication.
Moreover, WQ,WK ,W V1 ,W V2 ∈ Rd×d are learnable projection matrices; see Figure 2 for an
overview of the tensor operations in triangular attention and see Algorithm 1 for a comparison to
standard attention [46] in pseudo-code. Note that similar to standard attention, triangular attention can
be straightforwardly extended to multiple heads.

As we will show in Section 4, the ET owes its expressive power to the special form of triangular
attention. In our implementation of the ET, we use the following tokenization, which is sufficient to
obtain our theoretical results.

Tokenization We consider graphs G := (V (G), E(G), ℓ) with n nodes and without self-loops,
where V (G) is the set of nodes, E(G) is the set of edges, and ℓ : V (G)→ N assigns an initial color
to each node. We construct a feature matrix F ∈ Rn×p that is consistent with ℓ, i.e., for nodes i and
j in V (G), Fi = Fj if and only if, ℓ(i) = ℓ(j). Note that, for a finite subset of N, we can always
construct F , e.g., using a one-hot encoding of the initial colors. Additionally, we consider an edge
feature tensor E ∈ Rn×n×q, where Eij denotes the edge feature of the edge (i, j) ∈ E(G). If no
edge features are available, we randomly initialize learnable vectors x1,x2 ∈ Rq and assign x1 to
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Algorithm 1 Comparison between standard attention and triangular attention in PYTORCH-like
pseudo-code.

function ATTENTION(X : n× d)
Q,K,V← linear(X).chunk(3)
# no op
Ã← einsum(id, jd→ ij,Q,K)

A← softmax(Ã/
√
d,−1)

O← einsum(ij, jd→ id,A,V)
return linear(O)

end function

function TRI_ATTENTION(X : n× n× d)
Q,K,V1,V2 ← linear(X).chunk(4)
V← einsum(ild, ljd→ iljd,V1,V2)

Ã← einsum(ild, ljd→ ilj,Q,K)

A← softmax(Ã/
√
d,−1)

O← einsum(ilj, iljd→ ijd,A,V)
return linear(O)

end function

Eij if (i, j) ∈ E(G). Further, for all i ∈ V (G), we assign x2 to Eii. Lastly, if (i, j) ̸∈ E(G) and
i ̸= j, we set Eij = 0. We then construct a 3D tensor of input tokens X ∈ Rn×n×d, such that for
node pair (i, j) ∈ V (G)2,

Xij := ϕ
(
[Eij Fi Fj ]

)
, (4)

where ϕ : R2p+q → Rd is a neural network. Extending Bergen et al. [6], our tokenization additionally
considers node features, making it more appropriate for the graph learning setting.

Efficiency The triangular attention above imposes a O(n3) runtime and memory complexity, which
is significantly more efficient than other transformers with 3-WL expressive power, such as the higher-
order transformers in Kim et al. [27] and Kim et al. [28] with a runtime ofO(n6). Nonetheless, the ET
is still significantly less efficient than most graph transformers, with a runtime of O(n2) [32, 42, 53].
Thus, the ET is currently only applicable to mid-sized graphs; see Section 7 for an extended discussion
of this limitation.

Positional/structural encodings Additionally, GNNs and graph transformers often benefit empir-
ically from added positional/structural encodings [13, 32, 42]. We can easily add PEs to the above
tokens with the ET. Specifically, we can encode any PEs for node i ∈ V (G) as an edge feature in
Eii and any PEs between a node pair (i, j) ∈ V (G)2 as an edge feature in Eij . Note that typically,
PEs between pairs of nodes are incorporated during the attention computation of graph transformers
[32, 53]. However, in Section 6, we demonstrate that simply adding these PEs to our tokens is also
viable for improving the empirical results of the ET.

Readout Since the Edge Transformer already builds representations on node pairs, making predic-
tions for node pair- or edge-level tasks is straightforward. Specifically, let L denote the number of
Edge Transformer layers. Then, for a node pair (i, j) ∈ V (G)2, we simply readout X(L)

ij , where on
the edge-level we restrict ourselves to the case where (i, j) ∈ E(G). In the case of nodes, we can
for example read out the diagonal of X(L), that is, the representation for node i ∈ V (G) is X(L)

ii .
In addition to the diagonal readout, we also design a more sophisticated read out strategy for nodes
which we describe in Appendix A.1.

With tokenization and readout as defined above, the ET can now be used on many graph learning
problems, encoding both node and edge features and making predictions for node pair-, edge-, node-,
and graph-level tasks. We refer to a concrete set of parameters of the ET, including tokenization and
positional/structural encodings, as a parameterization. We now move on to our theoretical result,
showing that the ET has the same expressive power as the 3-WL.

4 The expressivity of Edge Transformers

Here, we relate the ET to the folklore Weisfeiler–Leman (k-FWL) hierarchy, a variant of the k-WL
hierarchy for which, for k > 2, (k− 1)-FWL is as expressive as k-WL [19]. Specifically, we show that
the ET can simulate the 2-FWL, resulting in 3-WL expressive power. To this end, we briefly introduce
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the 2-FWL and then show our result. For detailed background on the k-WL and k-FWL hierarchy, see
Appendix D.

Folklore Weisfeiler–Leman Let G := (V (G), E(G), ℓ) be a node-labeled graph. The 2-FWL
colors the tuples from V (G)2, similar to the way the 1-WL colors nodes [36]. In each iteration, t ≥ 0,
the algorithm computes a coloring C2,F

t : V (G)2 → N and we write C2,F
t (i, j) or C2,F

t (u) to denote
the color of tuple u := (i, j) ∈ V (G)2 at iteration t. For t = 0, we assign colors to distinguish pairs
(i, j) in V (G)2 based on the initial colors ℓ(i), ℓ(j) of their nodes and whether (i, j) ∈ E(G) or i = j.
For a formal definition of the initial node pair colors, see Appendix D. Then, for each iteration, t > 0,
the coloring C2,F

t is defined as

C2,F
t (i, j) := recolor

(
(C2,F

t−1(i, j), Mt−1(i, j))
)
,

where recolor injectively maps the above pair to a unique natural number that has not been used in
previous iterations and

Mt−1(i, j) := {{(C2,F
t−1(i, l), C

2,F
t−1(l, j)) | l ∈ V (G)}}.

We show that the ET can simulate the 2-FWL, resulting in at least 3-WL expressive power. Further,
we show that the ET is also, at most, as expressive as the 3-WL. As a result, we obtain the following
theorem; see Appendix E for a formal statement and proof details.
Theorem 1 (Informal). The ET has exactly 3-WL expressive power.

Note that following previous works [33, 37, 39], our expressivity result is non-uniform in that our
result only holds for an arbitrary but fixed graph size n; see Proposition 7 and Proposition 8 for the
complete formal statements and proof of Theorem 1.

In the following, we provide some intuition of how the ET can simulate the 2-FWL. Given a tuple
(i, j) ∈ V (G)2, we encode its color at iteration t with X

(t)
ij . Further, to represent the multiset

{{(C2,F
t−1(i, l), C

2,F
t−1(l, j)) | l ∈ V (G)}},

we show that it is possible to encode the pair of colors

(C2,F
t−1(i, l), C

2,F
t−1(l, j)) via X

(t−1)
il W V1 ⊙X

(t−1)
lj W V2 ,

for node l ∈ V (G). Finally, triangular attention in Equation (1), performs weighted sum aggregation
over the 2-tuple of colors (C2,F

t−1(i, l), C
2,F
t−1(l, j)) for each l, which we show is sufficient to represent

the multiset; see Appendix E. For the other direction, namely that the ET has at most 3-WL expressive
power, we simply show that the recolor function can simulate the value fusion in Equation (3), as well
as the triangular attention in Equation (1).

Interestingly, our proofs do not resort to positional/structural encodings. The ET draws its 3-WL
expressive power from its aggregation scheme, the triangular attention. In Section 6, we demonstrate
that this also holds in practice, where the ET performs strongly without additional encodings. In what
follows, we use the above results to derive a more principled understanding of the ET in terms of
systematic generalization, for which it was originally designed. Thereby, we demonstrate that graph
theoretic results can also be leveraged in other areas of machine learning, further highlighting the
benefits of theoretically grounded models.

5 The logic of Edge Transformers

After borrowing the ET from systematic generalization in the previous section, we now return the
favor. Specifically, we use a well-known connection between graph isomorphism and first-order logic
to obtain a theoretical justification for systematic generalization reasoning using the ET. Recalling the
example around the GRANDMOTHER relation composed from the more primitive MOTHER relation
in Section 3, Bergen et al. [6] go ahead and argue that since self-attention of standard transformers
is defined between pairs of nodes, learning explicit representations of GRANDMOTHER is impossible
and that learning such representations implicitly incurs a high burden on the learner. Conversely, the
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authors argue that since the ET computes triangular attention over triplets of nodes and computes
explicit representations between node pairs, the Edge Transformer can systematically generalize to
relations such as GRANDMOTHER. While Bergen et al. [6] argue the above intuitively, we will now
utilize the connection between first-order logic (FO-logic) and graph isomorphism established in Cai
et al. [10] to develop a theoretical understanding of systematic generalization; see Appendix D for
an introduction to first-order logic over graphs. We will now briefly introduce the most important
concepts in Cai et al. [10] and then relate them to systematic generalization of the ET and similar
models.

Language and configurations Here, we consider FO-logic statements with counting quantifiers and
denote with Ck,m the language of all such statements with at most k variables and quantifier depth m.
A configuration is a map between first-order variables and nodes in a graph. Concretely, configurations
let us define a statement φ in first-order logic, such as three nodes forming a triangle, without speaking
about concrete nodes in a graph G = (V (G), E(G)). Instead, we can use a configuration to map
the three variables in φ to nodes v, w, u ∈ V (G) and evaluate φ to determine whether v, w and u
form a triangle in G. Of particular importance to us are k-configurations f where we map k variables
x1, . . . , xk in a FO-logic statement to a k-tuple u ∈ V (G)k such that u = (f(x1), . . . , f(xk)). This
lets us now state the following result in Cai et al. [10], relating FO-logic satisfiability to the k-FWL
hierarchy. Here, Ck,F

t denotes the coloring of the k-FWL after t iterations; see Appendix D for a
precise definition.
Theorem 2 (Theorem 5.2 [10], informally). Let G := (V (G), E(G)) and H := (V (H), E(H)) be
two graphs with n nodes and let k ≥ 1. Let f be a k-configuration mapping to tuple u ∈ V (G)k and
let g be a k-configuration mapping to tuple v ∈ V (H)k. Then, for every t ≥ 0,

Ck,F
t (u) = Ck,F

t (v),

if and only if u and v satisfy the same sentences in Ck+1,t whose free variables are in {x1, x2, . . . , xk}.

Together with Theorem 1, we obtain the above results also for the embeddings of the ET for k = 2.
Corollary 3. Let G := (V (G), E(G)) and H := (V (H), E(H)) be two graphs with n nodes and let
k = 2. Let f be a 2-configuration mapping to node pair u ∈ V (G)2 and let g be a 2-configuration
mapping to node pair v ∈ V (H)k. Then, for every t ≥ 0,

X(t)(u) = X(t)(v),

if and only if u and v satisfy the same sentences in C3,t whose free variables are in {x1, x2}.

Systematic generalization Returning to the example in Bergen et al. [6], the above result tells
us that a model with 2-FWL expressive power and at least t layers is equivalently able to evaluate
sentences in C3,t, including

GRANDMOTHER(x, z) = ∃y
(

MOTHER(x, y) ∧ MOTHER(y, z)
)
,

i.e., the grandmother relation, and store this information encoded in some 2-tuple representation
X(t)(u), where u = (u, v) and X(t)(u) encodes whether u is a grandmother of v. As a result, we
have theoretical justification for the intuitive argument made by Bergen et al. [6], namely that the ET
can learn an explicit representation of a novel concept, in our example the GRANDMOTHER relation.

However, when closely examining the language C3,t, we find that the above result allows for an even
wider theoretical justification of the systematic generalization ability of the ET. Concretely, we will
show that once the ET obtains a representation for a novel concept such as the GRANDMOTHER
relation, at some layer t, the ET can re-combine said concept to generalize to even more complex
concepts. For example, consider the following relation, which we naively write as

GREATGRANDMOTHER(x, a) = ∃z∃y
(

MOTHER(x, y) ∧ MOTHER(y, z) ∧ MOTHER(z, a)
)
.

At first glance, it seems as though GREATGRANDMOTHER ∈ C4,2 but GREATGRANDMOTHER ̸∈ C3,t
for any t ≥ 1. However, notice that the variable y serves merely as an intermediary to establish the
GRANDMOTHER relation. Hence, we can, without loss of generality, write the above as
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GREATGRANDMOTHER(x, a) = ∃y
(
∃a
(

MOTHER(x, a) ∧ MOTHER(a, y)
))

︸ ︷︷ ︸
a is re-quantified and temporarily bound

∧MOTHER(y, a)
)
,

i.e., we re-quantify a to temporarily serve as the mother of x and the daughter of y. Afterwards, a is
released and again refers to the great grandmother of x. As a result, GREATGRANDMOTHER ∈ C3,2
and hence the ET, as well as any other model with at least 2-FWL expressive power, is able to
generalize to the GREATGRANDMOTHER relation within two layers, by iteratively re-combining
existing concepts, in our example the GRANDMOTHER and the MOTHER relation. This becomes even
more clear, by writing

GREATGRANDMOTHER(x, a) = ∃y
(

GRANDMOTHER(x, y) ∧ MOTHER(y, a)
)
,

where GRANDMOTHER is a generalized concept obtained from the primitive concept MOTHER. To
summarize, knowing the expressive power of a model such as the ET in terms of the Weisfeiler–
Leman hierarchy allows us to draw direct connections to the logical reasoning abilities of the model.
Further, this theoretical connection allows an interpretation of systematic generalization as the ability
of a model with the expressive power of at least the k-FWL to iteratively re-combine concepts from
first principles (such as the MOTHER relation) as a hierarchy of statements in Ck+1,t, containing all
FO-logic statements with counting quantifiers, at most k + 1 variables, and quantifier depth t.

6 Experimental evaluation

We now investigate how well the ET performs on various graph-learning tasks. We include tasks on
graph-, node-, and edge-level. Specifically, we answer the following questions.

Q1 How does the ET fare against other theoretically aligned architectures regarding predictive
performance?

Q2 How does the ET compare to state-of-the-art models?
Q3 How effectively can the ET benefit from additional positional/structural encodings?

The source code for our experiments is available at https://github.com/luis-mueller/
towards-principled-gts. To foster research in principled graph transformers such as the ET, we
provide accessible implementations of ET, both in PyTorch and Jax.

Datasets We evaluate the ET on graph-, node-, and edge-level tasks from various domains to
demonstrate its versatility.

On the graph level, we evaluate the ET on the molecular datasets ZINC (12K), ZINC-FULL [14],
ALCHEMY (12K), and PCQM4MV2 [21]. Here, nodes represent atoms and edges bonds between
atoms, and the task is always to predict one or more molecular properties of a given molecule. Due
to their relatively small graphs, the above datasets are ideal for evaluating higher-order and other
resource-hungry models.

On the node and edge level, we evaluate the ET on the CLRS benchmark for neural algorithmic
reasoning [47]. Here, the input, output, and intermediate steps of 30 classical algorithms are translated
into graph data, where nodes represent the algorithm input and edges are used to encode a partial
ordering of the input. The algorithms of CLRS are typically grouped into eight algorithm classes:
Sorting, Searching, Divide and Conquer, Greedy, Dynamic Programming, Graphs, Strings, and
Geometry. The task is then to predict the output of an algorithm given its input. This prediction is
made based on an encoder-processor-decoder framework introduced by Velickovic et al. [47], which is
recursively applied to execute the algorithmic steps iteratively. We will use the ET as the processor in
this framework, receiving as input the current algorithmic state in the form of node and edge features
and outputting the updated node and edge features, according to the latest version of CLRS, available
at https://github.com/google-deepmind/clrs. As such, the CLRS requires the ET to make
both node- and edge-level predictions.

Finally, we conduct empirical expressivity tests on the BREC benchmark [49]. BREC contains
400 pairs of non-isomorphic graphs with up to 198 nodes, ranging from basic, 1-WL distinguishable
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Table 1: Average test results and standard deviation for the molecular regression datasets. ALCHEMY
(12K) and ZINC-FULL over 5 random seeds, ZINC (12K) over 10 random seeds.

Model ZINC (12K) ALCHEMY (12K) ZINC-FULL

MAE ↓ MAE ↓ MAE ↓
GIN(E) [51, 41] 0.163 ±0.03 0.180 ±0.006 0.180 ±0.006

CIN [8] 0.079 ±0.006 – 0.022 ±0.002

Graphormer-GD [54] 0.081 ±0.009 – 0.025 ±0.004

SignNet [30] 0.084 ±0.006 0.113 ±0.002 0.024 ±0.003

BasisNet [22] 0.155 ±0.007 0.110 ±0.001 –
PPGN++ [41] 0.071 ±0.001 0.109 ±0.001 0.020 ±0.001

SPE [22] 0.069 ±0.004 0.108 ±0.001 –

ET 0.062 ±0.004 0.099 ± 0.001 0.026 ±0.003

ET+RRWP 0.059 ±0.004 0.098 ± 0.001 0.024 ±0.003

graphs to graphs even indistinguishable by 4-WL. In addition, BREC comes with its own training
and evaluation pipeline. Let f : G → Rd be the model whose expressivity we want to test, where f
maps from a set of graphs G to Rd for some d > 0. Let (G,H) be a pair of non-isomorphic graphs.
During training, f is trained to maximize the cosine distance between graph embeddings f(G) and
f(H). During the evaluation, BREC decides whether f can distinguish G and H by conducting a
Hotelling’s T-square test with the null hypothesis that f cannot distinguish G and H .

Baselines On the molecular regression datasets, we compare the ET to an 1-WL expressive GNN
baseline such as GIN(E) [52].

On ZINC (12K), ZINC-FULL and ALCHEMY, we compare the ET to other theoretically-aligned
models, most notably higher-order GNNs [8, 37, 39], Graphormer-GD, with strictly less expressive
power than the 3-WL [54], and PPGN++, with strictly more expressive power than the 3-WL [41]
to study Q1. On PCQM4MV2, we compare the ET to state-of-the-art graph transformers to study
Q2. To study the impact of positional/structural encodings in Q3, we evaluate the ET both with and
without relative random walk probabilities (RRWP) positional encodings, recently proposed in Ma
et al. [32]. RRWP encodings only apply to models with explicit representations over node pairs and
are well-suited for the ET.

On the CLRS benchmark, we mostly compare to the Relational Transformer (RT) [12] as a strong
graph transformer baseline. Comparing the ET to the RT allows us to study Q2 in a different domain
than molecular regression and on node- and edge-level tasks. Further, since the RT is similarly
motivated as the ET in learning explicit representations of relations, we can study the potential benefits
of the ET provable expressive power on the CLRS tasks. In addition, we compare the ET to DeepSet
and GNN baselines in Diao and Loynd [12] and the single-task Triplet-GMPNN in Ibarz et al. [24].

On the BREC benchmark, we study questions Q1 and Q2 by comparing the ET to selected models
presented in Wang and Zhang [49]. First, we compare to the δ-2-LGNN [37], a higher-order GNN
with strictly more expressive power than the 1-WL. Second, we compare to Graphormer [53], an
empirically strong graph transformer. Third, we compare to PPGN [33] with the same expressive
power as the ET. We additionally include the 3-WL results on the graphs in BREC to investigate how
many 3-WL distinguishable graphs the ET can distinguish in BREC.

Experimental setup See Table 6 for an overview of the used hyperparameters.

For ZINC (12K), ZINC-FULL, and PCQM4MV2, we follow the hyperparameters in Ma et al. [32].
For ALCHEMY, we follow standard protocol and split the data according to Morris et al. [39]. Here,
we simply adopt the hyper-parameters of ZINC (12K) from Ma et al. [32] but set the batch size to 64.

We choose the same hyper-parameters as the RT for the CLRS benchmark. Also, following the RT,
we train for 10K steps and report results over 20 random seeds. To stay as close as possible to the
experimental setup of our baselines, we integrate our Jax implementation of the ET as a processor
into the latest version of the CLRS code base. In addition, we explore the OOD validation technique
presented in Jung and Ahn [25], where we use larger graphs for the validation set to encourage size
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Table 2: Average test micro F1 of different algorithm classes and average test score of all algorithms
in CLRS over ten random seeds; see Appendix B.3 for test scores per algorithm and Appendix B.4 for
details on the standard deviation.

Algorithm Deep Sets [12] GAT [12] MPNN [12] PGN [12] RT [12] Triplet-
GMPNN [24] ET (ours)

Sorting 68.89 21.25 27.12 28.93 50.01 60.37 82.26
Searching 50.99 38.04 43.94 60.39 65.31 58.61 63.00
DC 12.29 15.19 16.14 51.30 66.52 76.36 64.44
Greedy 77.83 75.75 89.40 76.72 85.32 91.21 81.67
DP 68.29 63.88 68.81 71.13 83.20 81.99 83.49
Graphs 42.09 55.53 63.30 64.59 65.33 81.41 86.08
Strings 2.92 1.57 2.09 1.82 32.52 49.09 54.84
Geometry 65.47 68.94 83.03 67.78 84.55 94.09 88.22

Avg. class 48.60 41.82 49.23 52.83 66.60 74.14 75.51
All algorithms 50.29 48.08 55.15 56.57 66.18 75.98 80.13

generalization. This technique can be used within the CLRS code base through the experiment
parameters.

Finally, for BREC, we keep the default hyper-parameters and follow closely the setup used by Wang
and Zhang [49] for PPGN. We found learning on BREC to be quite sensitive to architectural choices,
possibly due to the small dataset sizes. As a result, we use a linear layer for the FFN and additionally
apply layer normalization onto XilW

Q, XljW
K in Equation (2) and Vilj in Equation (3).

For ZINC (12K), ZINC-FULL, PCQM4MV2, CLRS, and BREC, we follow the standard
train/validation/test splits. For ALCHEMY, we split the data according to the splits in Morris et al.
[39], the same as our baselines.

All experiments were performed on a mix of A10, L40, and A100 NVIDIA GPUs. For each run, we
used at most 8 CPU cores and 64 GB of RAM, with the exception of PCQM4MV2 and ZINC-FULL,
which were trained on 4 L40 GPUs with 16 CPU cores and 256 GB RAM.

Table 3: Number of distinguished pairs of non-isomorphic graphs on the BREC benchmark over 10
random seeds with standard deviation. Baseline results (over 1 random seed) are taken from Wang
and Zhang [49]. For reference, we also report the number of graphs distinguishable by 3-WL.

Model Basic Regular Extension CFI All

δ-2-LGNN 60 50 100 6 216
PPGN 60 50 100 23 233
Graphormer 16 12 41 10 79

ET 60 ± 0.0 50 ±0.0 100 ±0.0 48.1 ±1.9 258.1 ±1.9

3-WL 60 50 100 60 270

Results and discussion In the following, we answer questions Q1 to Q3. We highlight first ,
second, and third best results in each table.

We compare results on the molecular regression datasets in Table 1. On ZINC (12K) and ALCHEMY, the
ET outperforms all baselines, even without using positional/structural encodings, positively answering
Q1. Interestingly, on ZINC-FULL, the ET, while still among the best models, does not show superior
performance. Further, the RRWP encodings we employ on the graph-level datasets improve the
performance of the ET on all three datasets, positively answering Q3. Moreover, in Table 5, we
compare the ET with a variety of graph learning models on ZINC (12K), demonstrating that the ET
is highly competitive with state-of-the-art models. We observe similarly positive results in Table 4
where the ET outperforms strong graph transformer baselines such as GRIT [32], GraphGPS [42] and
Graphormer [53] on PCQM4MV2. As a result, we can positively answer Q2.
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Table 4: Average validation MAE on the
PCQM4MV2 benchmark over a single random
seed.

Model Val. MAE (↓) # Params

EGT [23] 0.0869 89.3M
GraphGPSSmall [42] 0.0938 6.2M
GraphGPSMedium [42] 0.0858 19.4M
TokenGTORF [28] 0.0962 48.6M
TokenGTLap [28] 0.0910 48.5M
Graphormer [53] 0.0864 48.3M
GRIT [32] 0.0859 16.6M
GPTrans-L 0.0809 86.0M

ET 0.0840 16.8M
ET+RRWP 0.0832 16.8M

Table 5: ZINC (12K) leaderboard.

Model ZINC (12K)

MAE ↓
SignNet [30] 0.084 ±0.006

SUN [16] 0.083 ±0.003

Graphormer-GD [54] 0.081 ±0.009

CIN [8] 0.079 ±0.006

Graph-MLP-Mixer [20] 0.073 ±0.001

PPGN++ [41] 0.071 ±0.001

GraphGPS [42] 0.070 ±0.004

SPE [22] 0.069 ±0.004

Graph Diffuser [18] 0.068 ±0.002

Specformer [7] 0.066 ±0.003

GRIT [32] 0.059 ±0.002

ET 0.062 ±0.004

ET+RRWP 0.059 ±0.004

In Table 2, we compare results on CLRS where the ET performs best when averaging all tasks or
when averaging all algorithm classes, improving over RT and Triplet-GMPNN. Additionally, the ET
performs best on 4 algorithm classes and is among the top 3 in 7/8 algorithm classes. Interestingly,
only some models are best on a majority of algorithm classes. These results indicate a benefit of
the ETs’ expressive power on this benchmark, adding to the answer of Q2. Further, see Table 7 in
Appendix B.2 for additional results using the OOD validation technique.

Finally, on the BREC benchmark, we observe that the ET cannot distinguish all graphs distinguishable
by 3-WL. At the same time, the ET distinguishes more graphs than PPGN, the other 3-WL expressive
model, providing an additional positive answer to Q1; see Table 3. Moreover, the ET distinguishes
more graphs than δ-2-LGNN and outperforms Graphormer by a large margin, again positively answer-
ing Q2. Overall, the positive results of the ET on BREC indicate that the ET is well able to leverage
its expressive power empirically.

7 Limitations

While proving to be a strong and versatile graph model, the ET has an asymptotic runtime and
memory complexity of O(n3), which is more expensive than most state-of-the-art models with linear
or quadratic runtime and memory complexity. We emphasize that due to the runtime and memory
complexity of the k-WL, a trade-off between expressivity and efficiency is likely unavoidable. At
the same time, the ET is highly parallelizable and runs efficiently on modern GPUs. We hope that
innovations for parallelizable neural networks can compensate for the asymptotic runtime and memory
complexity of the ET. In Figure 4 in the appendix, we find that we can use low-level GPU optimizations,
available for parallelizable neural networks out-of-the-box, to dampen the cubic runtime and memory
scaling of the ET; see Appendix C for runtime and memory experiments and an extended discussion.

8 Conclusion

We established a previously unknown connection between the Edge Transformer and 3-WL, and
enabled the Edge Transformer for various graph learning tasks, including graph-, node-, and edge-level
tasks. We also utilized a well-known connection between graph isomorphism testing and first-order
logic to derive a theoretical interpretation of systematic generalization. We demonstrated empiri-
cally that the Edge Transformer is a promising architecture for graph learning, outperforming other
theoretically aligned architectures and being among the best models on ZINC (12K), PCQM4MV2
and CLRS. Furthermore, the ET is a graph transformer that does not rely on positional/structural
encodings for strong empirical performance. Future work could further explore the potential of the
Edge Transformer in neural algorithmic reasoning and molecular learning by improving its scalability
to larger graphs, in particular through architecture-specific low-level GPU optimizations and model
parallelism.
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Table 6: Hyperparameters of the Edge Transformer across all datasets.

Hyperparameter ZINC(12K) ALCHEMY ZINC-FULL CLRS BREC PCQM4MV2

Learning rate 0.001 0.001 0.001 0.00025 0.0001 0.0002
Grad. clip norm 1.0 1.0 1.0 1.0 – 5.0
Batch size 32 64 256 4 16 256
Optimizer AdamW Adam AdamW Adam Adam AdamW

Num. layers 10 10 10 3 5 10
Hidden dim. 64 64 64 192 32 384
Num. heads 8 8 8 12 4 16
Activation GELU GELU GELU RELU – GELU
Pooling SUM SUM SUM – – SUM
RRWP dim. 32 32 32 – – 128

Weight decay 1e-5 1e-5 1e-5 – 0.0001 0.1
Dropout 0.0 0.0 0.0 0.0 0.0 0.1
Attention dropout 0.2 0.2 0.2 0.0 0.0 0.1

# Steps – – – 10K – 2M
# Warm-up steps – – – 0 – 60K
# Epochs 2K 2K 1K – 20 –
# Warm-up epochs 50 50 50 – 0 –
# RRWP steps 21 21 21 – – 22

A Implementation details

Here, we present details about implementing the ET in practice.

A.1 Node-level readout

In what follows, we propose a pooling method from node pairs to nodes, which allows us also to make
predictions for node- and graph-level tasks. For each node i ∈ V (G), we compute

ReadOut(i) :=
∑

j∈[n]

ρ1

(
X

(L)
ij

)
+ ρ2

(
X

(L)
ji

)
,

where ρ1, ρ2 are neural networks and X(L) is the node pair tensor after L ET layers. We apply ρ1
to node pairs where node i is at the first position and ρ2 to node pairs where node i is at the second
position. We found that making such a distinction has positive impacts on empirical performance.
Then, for graph-level predictions, we first compute node-level readout as above and then use common
graph-level pooling functions such as sum and mean [51] or set2seq [48] on the resulting node
representations. We use this readout method in our molecular regression experiments in Section 6.

B Experimental details

Table 6 gives an overview of selected hyper-parameters for all experiments.

See Appendix B.2 through Appendix B.4 for detailed results on the CLRS benchmark. Note that in
the case of CLRS, we evaluate in the single-task setting where we train a new set of parameters for
each concrete algorithm, initially proposed in CLRS, to be able to compare against graph transformers
fairly. We leave the multi-task learning proposed in Ibarz et al. [24] for future work.

B.1 Data source and license

ZINC (12K), ALCHEMY (12K) and ZINC-FULL are available at https://pyg.org under an
MIT license. PCQM4MV2 is available at https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
under a CC BY 4.0 license. The CLRS benchmark is available at https://github.com/
google-deepmind/clrs under an Apache 2.0 license. The BREC benchmark is available at
https://github.com/GraphPKU/BREC under an MIT license.
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Table 7: Average test scores for the different algorithm classes and average test scores of all algorithms
in CLRS with the OOD validation technique over 10 seeds; see Appendix B.3 for test scores per
algorithm and Appendix B.4 for details on the standard deviation. Baseline results for Triplet-GMPNN
and TEAM are taken from Jung and Ahn [25]. Results in %.

Algorithm Triplet-GMPNN TEAM ET (ours)

Sorting 72.08 68.75 88.35
Searching 61.89 63.00 80.00
DC 65.70 69.79 74.70
Greedy 91.21 91.80 88.29
DP 90.08 83.61 84.69
Graphs 77.89 81.86 89.89
Strings 75.33 81.25 51.22
Geometry 88.02 94.03 89.68

Avg. algorithm class 77.48 79.23 80.91
All algorithms 78.00 79.82 85.01
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Figure 3: Difference in micro F1 with and without the OOD validation technique in Jung and Ahn
[25], for Triplet-GMPNN [24] and ET, respectively.

B.2 Experimental results OOD validation in CLRS

In Table 7, following [25], we present additional experimental results on CLRS when using graphs of
size 32 in the validation set. We compare to both the Triplet-GMPNN [24], as well as the TEAM [25]
baselines. In addition, in Figure 3, we present a comparison of the improvements resulting from the
OOD validation technique, comparing Triplet-GMPNN and the ET. Finally, in Table 8, we compare
different modifications to the CLRS training setup that are agnostic to the choice of processor.

B.3 CLRS test scores

We present detailed results for the algorithms in CLRS. See Table 11 for divide and conquer algorithms,
Table 12 for dynamic programming algorithms, Table 13 for geometry algorithms, Table 15 for greedy
algorithms, Table 10 for search algorithms, Table 9 for sorting algorithms, and Table 16 for string
algorithms.
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Table 8: CLRS-30 Processor-agnostic modifications.
Processor Markov [9] OOD Validation [25] Avg. algorithm class All algorithms

Triplet-GMPNN ✓ ✗ 79.75 82.89
Triplet-GMPNN ✗ ✓ 77.65 78.00
TEAM ✗ ✓ 79.23 79.82
ET ✗ ✓ 80.91 85.02

Table 9: Detailed test scores for the ET on sorting algorithms.

Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Bubble Sort 93.60 3.87 87.44 13.48
Heapsort 64.36 22.41 80.96 12.97
Insertion Sort 85.71 20.68 91.74 6.83
Quicksort 85.37 8.70 93.25 9.10

Average 82.26 13.92 88.35 10.58

Table 10: Detailed test scores for the ET on search algorithms.

Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Binary Search 79.96 11.66 90.84 2.71
Minimum 96.88 1.74 97.94 0.87
Quickselect 12.43 11.72 52.64 22.04

Average 63.00 8.00 80.00 8.54

Table 11: Detailed test scores for the ET on divide and conquer algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Find Max. Subarray Kadande 64.44 2.24 74.70 2.59

Average 64.44 2.24 74.70 2.59

Table 12: Detailed test scores for the ET on dynamic programming algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

LCS Length 88.67 2.05 88.97 2.06
Matrix Chain Order 90.11 3.28 90.84 2.94
Optimal BST 71.70 5.46 74.26 10.84

Average 83.49 3.60 84.68 5.28

Table 13: Detailed test scores for the ET on geometry algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Graham Scan 92.23 2.26 96.09 0.96
Jarvis March 89.09 8.92 95.18 1.46
Segments Intersect 83.35 7.01 77.78 1.16

Average 88.22 6.09 89.68 1.19
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Table 14: Detailed test scores for the ET on graph algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Articulation Points 93.06 0.62 95.47 2.35
Bellman-Ford 89.96 3.77 95.55 1.65
BFS 99.77 0.30 99.95 0.08
Bridges 91.95 10.00 98.28 2.64
DAG Shortest Paths 97.63 0.85 98,43 0.65
DFS 65.60 17.98 57.76 14.54
Dijkstra 91.90 2.99 97.32 7.32
Floyd-Warshall 61.53 5.34 83.57 1.79
MST-Kruskal 84.06 2.14 87.21 1.45
MST-Prim 93.02 2.41 93.00 1.61
SCC 65.80 8.13 74.58 5.31
Topological Sort 98.74 2.24 97.53 2.31

Average 86.08 4.73 89.92 3.02

Table 15: Detailed test scores for the ET on greedy algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

Activity Selector 80.12 12.34 91.72 2.35
Task Scheduling 83.21 0.30 84.85 2.83

Average 81.67 6.34 88.28 2.59

B.4 CLRS test standard deviation

We compare the standard deviation of Deep Sets, GAT, MPNN, PGN, RT, and ET following the
comparison in Diao and Loynd [12]. Table 17 compares the standard deviation over all algorithms in
the CLRS benchmark. We observe that the ET has the lowest overall standard deviation. The table
does not contain results for Triplet-GMPNN [24] since we do not have access to the test results for
each algorithm on each seed that are necessary to compute the overall standard deviation. However,
Table 18 compares the standard deviation per algorithm class between Triplet-GMPNN and the ET.
We observe that Triplet-GMPNN and the ET have comparable standard deviations except for search
and string algorithms, where Triplet-GMPNN has a much higher standard deviation than the ET.

C Runtime and memory

Here, we provide additional information on the runtime and memory requirements of the ET in practice.
Specifically, in Figure 4, we provide runtime scaling of the ET with and without low-level GPU
optimizations in PyTorch on an A100 GPU with bfloat16 precision. We measure the time for the
forward pass of a single layer of the ET on a single graph (batch size of 1) with n ∈ {100, 200, ..., 700}
nodes and average the runtime over 100 repeats. We sample random Erdős-Renyi graphs with edge
probability 0.05. We use an embedding dimension of 64 and two attention heads. We find that the
automatic compilation into Triton [45], performed automatically by torch.compile, improves the
runtime and memory scaling. Specifically, with torch.compile enabled, the ET layer can process
graphs with up to 700 nodes and shows much more efficient runtime scaling with the number of nodes.

Table 16: Detailed test scores for the ET on string algorithms.
Algorithm F1-score(%) Std. dev.(%) F1-score(%)(OOD) Std. dev.(%) (OOD)

KMP Matcher 10.47 10.28 8.67 8.14
Naive String Match 99.21 1.10 93.76 6.28

Average 54.84 5.69 51.21 7.21
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Table 17: Standard deviation of Deep Sets, GAT, MPNN, PGN, RT, and ET (over all algorithms and
all seeds).

Model Std. Dev. (%)

Deep Sets 29.3
GAT 32.3
MPNN 34.6
PGN 33.1
RT 29.6

ET 26.6

Table 18: Standard deviation per algorithm class of Triplet-GMPNN (over 10 random seeds) as
reported in Ibarz et al. [24] and ET (over 10 random seeds). Results in %.

Algorithm class Triplet-GMPNN ET

Sorting 12.16 15.57
Searching 24.34 3.51
Divide and Conquer 1.34 2.46
Greedy 2.95 6.54
Dynamic Programming 4.98 3.60
Graphs 6.21 6.79
Strings 23.49 8.60
Geometry 2.30 3.77

Average 9.72 6.35
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Figure 4: Runtime of the forward pass of a single ET layer in PyTorch in seconds for graphs with up
to 700 nodes. We compare the runtime with and without torch.compile (automatic compilation
into Triton [45]) enabled. Without compilation, the ET goes out of memory after 600 nodes.
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Table 19: Runtime of a single run of the ET in CLRS on a single A100 GPU.
Algorithm Time in hh:mm:ss

Activity Selector 00:09:38
Articulation Points 01:19:39
Bellman Ford 00:07:55
BFS 00:07:03
Binary Search 00:05:53
Bridges 01:20:44
Bubble Sort 01:05:34
DAG Shortest Paths 00:29:15
DFS 00:27:47
Dijkstra 00:09:37
Find Maximum Subarray Kadane 00:15:25
Floyd Warshall 00:12:56
Graham Scan 00:15:55
Heapsort 00:57:14
Insertion Sort 00:10:39
Jarvis March 01:34:40
Kmp Matcher 00:57:56
LCS Length 00:08:12
Matrix Chain Order 00:15:31
Minimum 00:21:25
MST Kruskal 01:15:54
MST Prim 00:09:34
Naive String Matcher 00:51:05
Optimal BST 00:12:57
Quickselect 02:25:03
Quicksort 00:59:24
Segments Intersect 00:03:38
Strongly Connected Components 00:56:58
Task Scheduling 00:08:50
Topological Sort 00:27:40

Table 20: Runtime of a single run on the molecular regression datasets, as well as BREC, on L40
GPUs in days:hours:minutes:seconds.

ZINC (12K) ALCHEMY (12K) ZINC-FULL PCQM4MV2 BREC
ET 00:06:04:52 00:02:47:51 00:23:11:05 03:10:35:11 00:00:08:37
ET+RRWP 00:06:19:52 00:02:51:23 01:01:10:55 03:10:22:06 -

Num. GPUs 1 1 4 4 1

19



Hardware optimizations Efficient compilation of neural networks is already available via program-
ming languages such as Triton [45]. We use torch.compile in our molecular regression experiments.
In addition, we want to highlight FlashAttention [11], available for the standard transformer, as
an example of architecture-specific hardware optimizations that can reduce runtime and memory
requirements.

Runtime per dataset/benchmark Here, we present additional runtime results for all of our datasets.
We present the runtime of a single run on a single L40 GPU of ZINC (12K), ALCHEMY (12K), and
BREC. For ZINC-FULL and PCQM4MV2, we present the runtime of a single run on 4 L40 GPUs;
see Table 20.

On CLRS, the experiments in our work are run on a mix of A10 and A100 GPUs. To enable a fair
comparison, we rerun each algorithm in CLRS in a single run on a single A100 GPU and report the
corresponding runtime in Table 19. Finally, we note that these numbers only reflect the time to run the
final experiments and significantly more time was used for preliminary experiments over the course of
the research project.

D Extended preliminaries

Here, we define our notation. Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use
{{. . . }} to denote multisets, i.e., the generalization of sets allowing for multiple instances for each of
its elements.

Graphs A (node-)labeled graph G is a triple (V (G), E(G), ℓ) with finite sets of vertices or nodes
V (G), edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v} and a (node-)label function ℓ : V (G)→ N. Then
ℓ(v) is a label of v, for v in V (G). If not otherwise stated, we set n := |V (G)|, and the graph is of
order n. We also call the graph G an n-order graph. For ease of notation, we denote the edge {u, v}
in E(G) by (u, v) or (v, u). We define an n-order attributed graph as a pair G = (G,F ), where
G = (V (G), E(G)) and F in Rn×p for p > 0 is a node feature matrix. Here, we identify V (G)
with [n], then F (v) in R1×p is the feature or attribute of the node v ∈ V (G). Given a labeled graph
(V (G), E(G), ℓ), a node feature matrix F is consistent with ℓ if ℓ(v) = ℓ(w) for v, w ∈ V (G) if and
only if F (v) = F (w).

Neighborhood and Isomorphism The neighborhood of a vertex v in V (G) is denoted by N(v) :=
{u ∈ V (G) | (v, u) ∈ E(G)} and the degree of a vertex v is |N(v)|. Two graphs G and H
are isomorphic and we write G ≃ H if there exists a bijection φ : V (G) → V (H) preserving
the adjacency relation, i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H). Then φ is
an isomorphism between G and H . In the case of labeled graphs, we additionally require that
l(v) = l(φ(v)) for v in V (G), and similarly for attributed graphs. Moreover, we call the equivalence
classes induced by ≃ isomorphism types and denote the isomorphism type of G by τG. We further
define the atomic type atp : V (G)k → N, for k > 0, such that atp(v) = atp(w) for v and w in V (G)k

if and only if the mapping φ : V (G)k → V (G)k where vi 7→ wi induces a partial isomorphism, i.e.,
we have vi = vj ⇐⇒ wi = wj and (vi, vj) ∈ E(G) ⇐⇒ (φ(vi), φ(vj)) ∈ E(G).

Matrices Let M ∈ Rn×p and N ∈ Rn×q be two matrices then [M N ] ∈ Rn×(p+q) denotes
column-wise matrix concatenation. We also write Rd for R1×d. Further, let M ∈ Rp×n and
N ∈ Rq×n be two matrices then [

M
N

]
∈ R(p+q)×n

denotes row-wise matrix concatenation.

For a matrix X ∈ Rn×d, we denote with Xi the ith row vector. In the case where the rows of X
correspond to nodes in a graph G, we use Xv to denote the row vector corresponding to the node
v ∈ V (G).

The Weisfeiler–Leman algorithm We describe the Weisfeiler–Leman algorithm, starting with the
1-WL. The 1-WL or color refinement is a well-studied heuristic for the graph isomorphism problem,
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originally proposed by Weisfeiler and Leman [50].1 Intuitively, the algorithm determines if two
graphs are non-isomorphic by iteratively coloring or labeling vertices. Formally, let G = (V,E, ℓ)
be a labeled graph, in each iteration, t > 0, the 1-WL computes a vertex coloring C1

t : V (G) → N,
depending on the coloring of the neighbors. That is, in iteration t > 0, we set

C1
t (v) := recolor

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all vertices v in V (G), where recolor injectively maps the above pair to a unique natural number,
which has not been used in previous iterations. In iteration 0, the coloring C1

0 := ℓ. To test if two
graphs G and H are non-isomorphic, we run the above algorithm in “parallel” on both graphs. If the
two graphs have a different number of vertices colored c in N at some iteration, the 1-WL distinguishes
the graphs as non-isomorphic. It is easy to see that 1-WL cannot distinguish all non-isomorphic
graphs [10].

The k-dimensional Weisfeiler–Leman algorithm Due to the shortcomings of the 1-WL or color
refinement in distinguishing non-isomorphic graphs, several researchers, e.g., Babai [3], Cai et al. [10],
devised a more powerful generalization of the former, today known as the k-dimensional Weisfeiler-
Leman algorithm (k-WL), operating on k-tuples of nodes rather than single nodes.

Intuitively, to surpass the limitations of the 1-WL, the k-WL colors node-ordered k-tuples instead of
a single node. More precisely, given a graph G, the k-WL colors the tuples from V (G)k for k ≥ 2
instead of the nodes. By defining a neighborhood between these tuples, we can define a coloring
similar to the 1-WL. Formally, let G be a graph, and let k ≥ 2. In each iteration, t ≥ 0, the algorithm,
similarly to the 1-WL, computes a coloring Ck

t : V (G)k → N. In the first iteration, t = 0, the tuples v
and w in V (G)k get the same color if they have the same atomic type, i.e., atpk(v) = atpk(u). Then,
for each iteration, t > 0, Ck

t is defined by

Ck
t (v) := recolor

(
Ck

t−1(v),Mt(v)
)
, (5)

with Mt(v) the multiset

Mt(v) :=
(
{{Ck

t−1(ϕ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck
t−1(ϕk(v, w)) | w ∈ V (G)}}

)
, (6)

and where
ϕj(v, w) := (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple v with the node w. Hence, two tuples are
adjacent or j-neighbors if they are different in the jth component (or equal, in the case of self-loops).
Hence, two tuples v and w with the same color in iteration (t− 1) get different colors in iteration t if
there exists a j in [k] such that the number of j-neighbors of v and w, respectively, colored with a
certain color is different.

We run the k-WL algorithm until convergence, i.e., until for t in N
Ck

t (v) = Ck
t (w) ⇐⇒ Ck

t+1(v) = Ck
t+1(w),

for all v and w in V (G)k holds.

Similarly to the 1-WL, to test whether two graphs G and H are non-isomorphic, we run the k-WL in
“parallel” on both graphs. Then, if the two graphs have a different number of nodes colored c, for c in
N, the k-WL distinguishes the graphs as non-isomorphic. By increasing k, the algorithm gets more
powerful in distinguishing non-isomorphic graphs, i.e., for each k ≥ 2, there are non-isomorphic
graphs distinguished by (k + 1)-WL but not by k-WL [10].

The folklore k-dimensional Weisfeiler–Leman algorithm A common and well-studied variant
of the k-WL is the k-FWL, which differs from the k-WL only in the aggregation function. Instead
of Equation (6), the “folklore” version of the k-WL updates k-tuples according to

MF
t (v) := {{(C

k,F
t−1(ϕ1(v, w)), ..., C

k,F
t−1(ϕk(v, w))) | w ∈ V (G)}},

resulting in the coloring Ck,F
t : V (G)k → N, and is strictly more powerful than the k-WL. Specifically,

for k ≥ 2, the k-WL is exactly as powerful as the (k − 1)-FWL [19].
1Strictly speaking, the 1-WL and color refinement are two different algorithms. The 1-WL considers neighbors

and non-neighbors to update the coloring, resulting in a slightly higher expressive power when distinguishing
vertices in a given graph; see [19] for details. For brevity, we consider both algorithms to be equivalent.
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Computing k-WL’s initial colors Let G = (V (G), E(G), ℓ) be a labeled graph, k ≥ 2, and let
v := (v1, . . . , vk) ∈ V (G)k be a k-tuple. Then, we can present the atomic type atp(v) by a k × k
matrix K over {1, 2, 3}. That is, the entry Kij is 1 if (vi, vj) ∈ E(G), 2 if vi = vj , and 3 otherwise.
Further, we ensure consistency with ℓ, meaning that for two k-tuples v := (v1, . . . , vk) ∈ V (G)k and
w := (w1, . . . , wk) ∈ V (G)k, then

Ck
0 (v) = Ck

0 (w),

if and only if, atp(v) = atp(w) and ℓ(vi) = ℓ(wi), for all i ∈ [k]. Note that we compute the initial
colors for both k-WL and the k-FWL in this way.

D.1 Relationship between first-order logic and Weisfeiler–Leman

We begin with a short review of Cai et al. [10]. We consider our usual node-labeled graph
G = (V (G), E(G), ℓ) with n nodes. However, we replace ℓ with a countable set of color rela-
tions C1, . . . , Cn, where for a node v ∈ V (G),

Ci(v)⇐⇒ ℓ(v) = i.

Note that Cai et al. [10] consider the more general case where nodes can be assigned to multiple colors
simultaneously. However, for our work, we assume that a node is assigned to precisely one color, and
hence, the set of color relations is at most of size n. We can construct first-order logic statements
about G. For example, the following sentence describes the existence of a triangle formed by two
nodes with color 1:

∃x1∃x2∃x3

(
E(x1, x2) ∧ E(x1, x3) ∧ E(x2, x3) ∧ C1(x1) ∧ C1(x2)

)
.

Here, x1, x2, and x3 are variables which can be repeated and re-quantified at will. Statements made
about G and a subset of nodes in V (G) are of particular importance to us. To this end, we define a
k-configuration, a function f : {x1, . . . , xk} → V (G) that assigns a node in V (G) to each one of the
variables x1, . . . , xk. Let φ be a first-order formula with free variables among x1, . . . , xk. Then, we
write

G, f |= φ

if φ is true when the variable xi is interpreted as the node f(xi), for i = 1, . . . , k.

Cai et al. [10] define the language Ck,m of all first-order formulas with counting quantifiers, at most
k variables, and quantifier depth bounded by m, and the language Ck =

⋃
m≥0 Ck,m. For example,

the sentence ∀x∃!3y
(
E(x, y)

)
in C2 describes 3-regular graphs; i.e., graphs where each vertex has

exactly 3 neighbors.

We define the equivalence relation ≡k,m over pairs (G, f) made of graphs G and k-configurations f
as (G, f) ≡k,m (H, g) if and only if

G, f |= φ ⇐⇒ H, g |= φ

for all formulas φ in Ck,m whose free variables are among x1, . . . , xk.

We can now formulate a main result of Cai et al. [10]. Let G and H be two graphs, let k ≥ 1 and
m ≥ 0 be non-negative integers, and let f and g be k-configurations for G and H respectively. If
u = (f(x1), . . . , f(xk)) ∈ V (G)k and v = (g(x1), . . . , g(xk)) ∈ V (H)k, then

Ck,F
m (u) = Ck,F

m (v) ⇐⇒ (G, f) ≡k,m (H, g) .

E Proofs

Here, we first generalize the GNN from Grohe [19] to the 2-FWL. Higher-order GNNs with the same
expressivity have been proposed in prior works by Azizian and Lelarge [1]. However, our GNNs have
a special form that can be computed by the Edge Transformer.

Formally, let S ⊆ N be a finite subset. First, we show that multisets over S can be injectively mapped
to a value in the closed interval (0, 1), a variant of Lemma VIII.5 in Grohe [19]. Here, we outline a
streamlined version of its proof, highlighting the key intuition behind representing multisets as m-ary
numbers. Let M ⊆ S be a multiset with multiplicities a1, . . . , ak and distinct k values. We define
the order of the multiset as

∑k
i=1 ai. We can write such a multiset as a sequence x(1), . . . , x(l) where
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l is the order of the multiset. Note that the order of the sequence is arbitrary and that for i ̸= j it is
possible to have x(i) = x(j). We call such a sequence an M -sequence of length l. We now prove a
slight variation of a result of Grohe [19].
Lemma 4. For a finite m ∈ N, let M ⊆ S be a multiset of order m− 1 and let xi ∈ S denote the ith
number in a fixed but arbitrary ordering of S. Given a mapping g : S → (0, 1) where

g(xi) := m−i,

and an M -sequence of length l given by x(1), . . . , x(l) with positions i(1), . . . , i(l) in S, the sum
∑

j∈[l]

g(x(j)) =
∑

j∈[l]

m−i(j)

is unique for every unique M .

Proof. By assumption, let M ⊆ S denote a multiset of order m− 1. Further, let x(1), . . . , x(l) ∈M
be an M -sequence with i(1), . . . , i(l) in S. Given our fixed ordering of the numbers in S we can
equivalently write M = ((a1, x1), . . . , (an, xn)), where ai denotes the multiplicity of ith number in
M with position i from our ordering over S. Note that for a number m−i there exists a corresponding
m-ary number written as

0.0 . . . 1︸︷︷︸
i

. . .

Then the sum,
∑

j∈[l]

g(x(j)) =
∑

j∈[l]

m−i(j)

=
∑

i∈S

aim
−i ∈ (0, 1)

and in m-ary representation

0.a1 . . . an.

Note that ai = 0 if and only if there exists no j such that i(j) = i. Since the order of M is m − 1,
it holds that ai < m. Hence, it follows that the above sum is unique for each unique multiset M ,
implying the result.

Recall that S ⊆ N and that we fixed an arbitrary ordering over S. Intuitively, we use the finiteness
of S to map each number therein to a fixed digit of the numbers in (0, 1). The finite m ensures that
at each digit, we have sufficient “bandwidth” to encode each ai. Now that we have seen how to
encode multisets over S as numbers in (0, 1), we review some fundamental operations about the m-ary
numbers defined above. We will refer to decimal numbers m−i as corresponding to an m-ary number

0.0 . . . 1︸︷︷︸
i

. . . ,

where the ith digit after the decimal point is 1 and all other digits are 0, and vice versa.

To begin with, addition between decimal numbers implements counting in m-ary notation, i.e.,

m−i +m−j corresponds to 0.0 . . . 1︸︷︷︸
i

. . . 1︸︷︷︸
j

. . . ,

for digit positions i ̸= j and

m−i +m−j corresponds to 0.0 . . . 2︸︷︷︸
i=j

. . . ,

otherwise. We used counting in the previous result’s proof to represent a multiset’s multiplicities.
Next, multiplication between decimal numbers implements shifting in m-ary notation, i.e.,

m−i ·m−j corresponds to 0.0 . . . 1︸︷︷︸
i+j

. . . .
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Shifting further applies to general decimal numbers in (0, 1). Let x ∈ (0, 1) correspond to an m-ary
number with l digits,

0.a1 . . . al.

Then,
m−i · x corresponds to 0.0 . . . 0 a1 . . . al︸ ︷︷ ︸

i+1,...,i+l

.

Before we continue, we show a small lemma stating that two non-overlapping sets of m-ary numbers
preserve their uniqueness under addition.

Lemma 5. Let A and B be two sets of m-ary numbers for some m > 1. If

min
x∈A

x > max
y∈B

y,

then for any x1, x2 ∈ A, y1, y2 ∈ B,

x1 + y1 = x2 + y2 ⇐⇒ x1 = x2 and y1 = y2.

Proof. The statement follows from the fact that if

min
x∈A

x > max
y∈B

y,

then numbers in A and numbers in B do not overlap in terms of their digit range. Specifically, there
exists some l > 0 such that we can write

x := 0.x1 . . . xl

y := 0. 0 . . . 0︸ ︷︷ ︸
l

y1 . . . yk,

for some k > l and all x ∈ A, y ∈ B. As a result,

x+ y = 0.x1 . . . xly1 . . . yk.

Hence, x+ y is unique for every unique pair (x, y). This completes the proof.

We begin by showing the following proposition, showing that the tokenization in Equation (4) is
sufficient to encode the initial node colors under 2-FWL.

Proposition 6. Let G = (V (G), E(G), ℓ) be a node-labeled graph with n nodes. Then, there exists a
parameterization of Equation (4) with d = 1 such that for each 2-tuples u,v ∈ V (G)2,

C2,F
0 (u) = C2,F

0 (v)⇐⇒X(u) = X(v).

Proof. The statement directly follows from the fact that the initial color of a tuple u := (i, j) depends
on the atomic type and the node labeling. In Equation (4), we encode the atomic type with Eij and
the node labels with

[Eij Fi Fj ]

The concatenation of both node labels and atomic type is clearly injective. Finally, since there are at
most n2 distinct initial colors of the 2-FWL, said colors can be well represented within R, hence there
exists an injective ϕ in Equation (4) with d = 1. This completes the proof.

We now show Theorem 1. Specifically, we show the following two propositions from which Theorem 1
follows.

Proposition 7. Let G = (V (G), E(G), ℓ) be a node-labeled graph with n nodes and F ∈ Rn×p be
a node feature matrix consistent with ℓ. Then for all t ≥ 0, there exists a parametrization of the ET
such that

C2,F
t (v) = C2,F

t (w)⇐= X(t)(v) = X(t)(w),

for all pairs of 2-tuples v and w ∈ V (G)2.
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Proof. We begin by stating that our domain is compact since the ET merely operates on at most n
possible node features in F and binary edge features in E, and at each iteration there exist at most
n2 distinct 2-FWL colors. We prove our statement by induction over iteration t. For the base case,
we can simply invoke Proposition 6 since our input tokens are constructed according to Equation (4).
Nonetheless, we show a possible initialization of the tokenization that is consistent with Equation (4)
that we will use in the induction step.

From Proposition 6, we know that the color representation of a tuple can be represented in R. We
denote the color representation of a tuple u = (i, j) at iteration t as T (t)(u) and T

(t)
ij interchangeably.

We choose a ϕ in Equation (4) such that for each u = (i, j)

X
(0)
ij =

[
T

(0)
ij

(
T

(0)
ij

)n2
]
∈ R2,

where we store the tuple features, one with exponent 1 and once with exponent n2 and where T (0)
ij ∈ R

and
(
T

(0)
ij

)n2

∈ R. We choose color representations T (0)
ij as follows. First, we define an injective

function ft : V (G)2 → [n2] that maps each 2-tuple u to a number in [n2] unique for its 2-FWL color
C2,F

t (u) at iteration t. Note that ft can be injective because there can at most be [n2] unique numbers
under the 2-FWL. We will use ft to map each tuple color under the 2-FWL to a unique n-ary number.
We then choose ϕ in Equation (4) such that for each (i, j) ∈ V (G)2,

∣∣∣∣T (0)
ij − n−f0(i,j)

∣∣∣∣
F
< ϵ0,

for all ϵ0 > 0, by the universal function approximation theorem, which we can invoke since our

domain is compact. We will use
(
T

(0)
ij

)n2

in the induction step; see below.

For the induction, we assume that

C2,F
t−1(v) = C2,F

t−1(w)⇐= T (t−1)(v) = T (t−1)(w)

and that ∣∣∣∣T (t−1)
ij − n−ft−1(i,j)

∣∣∣∣
F
< ϵt−1,

for all ϵt−1 > 0 and (i, j) ∈ V (G)2. We then want to show that there exists a parameterization of the
t-th layer such that

C2,F
t (v) = C2,F

t (w)⇐= T (t)(v) = T (t)(w) (7)
and that ∣∣∣∣T (t)

ij − n−ft(i,j)
∣∣∣∣
F
< ϵt,

for all ϵt > 0 and (i, j) ∈ V (G)2. Clearly, if this holds for all t, then the proof statement follows.
Thereto, we show that the ET updates the tuple representation of tuple (j,m) as

T
(t)
jm = FFN

(
T

(t−1)
jm +

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2)
, (8)

for an arbitrary but fixed β. We first show that then, Equation (7) holds. Afterwards we show that the
ET can indeed compute Equation (8). To show the former, note that for two 2-tuples (j, l) and (l,m),

n−n2

· n−ft−1(j,l) ·
(
n−ft−1(l,m)

)n2

= n−(n2+ft−1(j,l)+n2·ft−1(l,m)),

is unique for the pair of colors (
C2,F

t ((j, l)), C2,F
t ((l,m))

)

where n−n2

is a constant normalization term we will later introduce with β
n . Note further, that we

have
∣∣∣∣T (t−1)

jl ·
(
T

(t−1)
lm

)n2

− n−(n2+ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< δt−1,

for all δt−1 > 0. Further, n−(ft−1(j,l)+n2·ft−1(l,m)) is still an m-ary number with m = n. As a result,
we can set β = n−n2+1 and invoke Lemma 4 to obtain that

β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m)) =

n∑

l=1

n−(n2+ft−1(j,l)+n2·ft−1(l,m)),
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is unique for the multiset of colors

{{(C2,F
t−1((l,m)), C2,F

t−1((j, l))) | l ∈ V (G)}},

and we have that

∣∣∣∣β
n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

−
n∑

l=1

n−(n2+ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< γt−1,

for all γt−1 > 0. Finally, we define

A :=
{
n−ft−1(j,m) | (j,m) ∈ V (G)2

}

B :=
{β
n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m)) | (j,m) ∈ V (G)2
}
.

Further, because we multiply with β
n , we have that

min
x∈A

x > max
y∈B

y

and as a result, by Lemma 5,

n−ft−1(j,m) +
β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m))

is unique for the pair
(
C2,F

t−1((j,m)), {{(C2,F
t−1((l,m)), C2,F

t−1((j, l))) | l ∈ V (G)}}
)

and consequently for color C2,F
t ((j,m)) at iteration t. Further, we have that

∣∣∣∣T (t−1)
jm +

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

−n−ft−1(j,m)+
β

n
·

n∑

l=1

n−(ft−1(j,l)+n2·ft−1(l,m))
∣∣∣∣
F
< τt−1,

for all τt−1 > 0. Finally, since our domain is compact, we can invoke universal function approximation
with FFN in Equation (8) to obtain

∣∣∣∣T (t)
jm − n−ft(j,m)

∣∣∣∣
F
< ϵt,

for all ϵt > 0. Further, because n−ft(j,m) is unique for each unique color C2,F
t ((j,m)), Equation (7)

follows.

It remains to show that the ET can indeed compute Equation (8). To this end, we will require a single
transformer head in each layer. Specifically, we want this head to compute

h1(X
(t−1))jm =

β

n

n∑

l=1

T
(t−1)
jl ·

(
T

(t−1)
lm

)n2

. (9)

Now, recall the definition of the Edge Transformer head at tuple (j,m) as

h1(X
(t−1))jm :=

n∑

l=1

αjlmV
(t−1)
jlm ,

where

αjlm := softmax
l∈[n]

( 1√
dk

X
(t−1)
jl WQ(X

(t−1)
lm WK)T

)

with

V
(t−1)
jlm := X

(t−1)
jl

[
W V1

1

W V1
2

]
⊙X

(t−1)
lm

[
W V2

1

W V2
2

]
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and by the induction hypothesis above,

X
(t−1)
jl =

[
T

(t−1)
jl

(
T

(t−1)
jl

)n2
]

X
(t−1)
lm =

[
T

(t−1)
lm

(
T

(t−1)
lm

)n2
]
,

where we expanded sub-matrices. Specifically, W V1
1 ,W V2

1 ,W V1
2 ,W V2

2 ∈ R d
2×d. We then set

WQ = WK = 0

W V1
1 = [βI 0]

W V1
2 = [0 0]

W V2
1 = [0 I]

W V2
2 = [0 0].

Here, WQ and WK are set to zero to obtain uniform attention scores. Note that then for all j, l, k,
αjlm = 1

n , due to normalization over l, and we end up with Equation (9) as

h1(X
(t−1))jm =

1

n

n∑

l=1

V
(t−1)
jlm

where

V
(t−1)
jlm =

[
T

(t−1)
jl · βI +

(
T

(t−1)
jl

)n2

· 0 0

]
⊙
[
T

(t−1)
lm · 0+

(
T

(t−1)
lm

)n2

· I 0

]

= β ·
[
T

(t−1)
jl ·

(
T

(t−1)
lm

)n2

0

]
.

We now conclude our proof as follows. Recall that the Edge Transformer layer computes the final
representation X(t) as

X
(t)
jm = FFN

(
X

(t−1)
jm + h1(X

(t−1))jmWO

)

= FFN

([
T

(t−1)
jm

(
T

(t−1)
jm

)n2
]
+

β

n

n∑

l=1

[
T

(t−1)
jl · T (t−1)

lm 0
]
WO

)

=
WO:=I

FFN

([
T

(t−1)
jm

(
T

(t−1)
jm

)n2
]
+
[
β
n

∑n
l=1 T

(t−1)
jl · T (t−1)

lm 0
])

= FFN

([
T

(t−1)
jm + β

n

∑n
l=1 T

(t−1)
jl · T (t−1)

lm

(
T

(t−1)
jm

)n2
])

=
Eq.8

FFN

([
T

(t)
jm

(
T

(t−1)
jm

)n2
])

for some FFN. Note that the above derivation only modifies the terms inside the parentheses and is
thus independent of the choice of FFN. We have thus shown that the ET can compute Equation (8).

To complete the induction, let f : R2 → R2 be such that

f

([
T

(t)
jm

(
T

(t−1)
jm

)n2
])

=

[
T

(t)
jm

(
T

(t)
jm

)n2
]
.

Since our domain is compact, f is continuous, and hence we can choose FFN to approximate f
arbitrarily close. This completes the proof.
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Next, we show the other direction of Theorem 1 under mild and reasonable assumptions. First, we
say that a recoloring function, that maps structures over positive integers into positive integers, is
(effectively) invertible if its inverse is computable. All coloring functions used in practice (e.g., hash-
based functions, those based on pairing functions, etc) are invertible. Second, the layer normalization
operation is a proper function if it uses statistics collected only during training mode, and not during
evaluation mode.
Proposition 8. Let recolor be an invertible function, and let us consider the 2-FWL coloring algorithm
using recolor. Then, for all parametrizations of the ET with proper layer normalization, for all
node-labeled graphs G = (V (G), E(G), ℓ), and for all t ≥ 0:

C2,F
t (v) = C2,F

t (w) =⇒X(t)(v) = X(t)(w),

for all pairs of 2-tuples v and w in V (G)2.

Proof. We first claim that there is a computable function Z : N∗ × N→ Rp, where N∗ = {0} ∪ N,
such that X(t)(v) = Z(t, C2,F

t (v)) for all v ∈ V (G)2, independent of the graph G and its order.
The proof of the claim is by induction on t. For t = 0, by definition, C2,F

0 (v) identifies the atomic
type atp2(v) which defines X(0)(v) (since the atomic type tells if v is an edge in G, and the labels of
the vertices in v).

For t > 0 and v = (i, j), the function Z(t, C2,F
t (v)) proceeds as follows. First, it uses the invertibility

of recolor to obtain the pair
(
C2,F

t−1(i, j), {{
(
C2,F

t−1(i, l), C
2,F
t−1(l, j)

)
| l ∈ V (G)}}

)
.

Then, by inductive hypothesis using the function Z(t− 1, ·), it obtains the pair
(
X(t−1)(i, j), {{

(
X(t−1)(i, l),X(t−1)(l, j)

)
| l ∈ V (G)}}

)
.

Finally, it computes

X(t)(i, j) = FFN

(
X(t−1)(i, j) + TriAttention

(
LN
(
X(t−1)(i, j)

)))

under the assumption that the layer normalization is a proper function. The statement of the proposition
then follows directly from the claim since

X(t)(v) = Z(t, C2,F
t (v)) = Z(t, C2,F

t (w)) = X(t)(w) .

Note that unlike the result in Proposition 7, the above result is uniform, in that the concrete choice
of recolor and the function Z does not depend on the graph size n. Finally, Theorem 1 follows from
Proposition 7 and Proposition 8.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are that the ET has 3-WL expressive power, which we prove
in Theorem 1 and that the ET surpasses theoretically aligned graph models, which we
demonstrate in Table 1 and Table 3. Further, we claim that the ET is competitive with
state-of-the-art models on a variety of tasks, which we demonstrate in Table 5 and Table 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the limitations of the ET, specifically its high
runtime and memory complexity, in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide all proofs in Appendix E, where we state all assumptions in the
respective theorem statements.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the model definition in Section 3, as well as PyTorch-like pseu-
docode for the triplet attention in Algorithm 1. In addition, we provide all experimental
details in Section 6 as well as the chosen hyper-parameters and optimizers in Table 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide full access to the code needed to reproduce our experiments. All
datasets can be downloaded freely and are automatically downloaded and processed within
our code. We provide detailed instructions on installation (including package versions) and
execution of our code in the README file of our codebase.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide information about the data splits and how they were selected in
Section 6. Further, for every dataset and benchmark, we detail the hyper-parameters and the
optimizer used in Table 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the standard deviation over multiple random seeds for all experi-
mental results; see Section 6 and Appendix B for the CLRS benchmark.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We detail compute resources in Section 6 and runtimes needed to reproduce
our experiments in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: This paper conducts foundational research in the area of graph learning. While
certainly our work could be used both for positive and negative societal impact, we do not
foresee any immediate positive or negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We release neither data nor models as part of this work. Further, our experiments
are conducted on comparatively small, curated, task-specific datasets used for benchmarking
graph learning models. Hence, our work does not pose immediate risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide data source and license information in Appendix B.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35


	Introduction
	Related work
	Edge Transformers
	The expressivity of Edge Transformers
	The logic of Edge Transformers
	Experimental evaluation
	Limitations
	Conclusion
	Implementation details
	Node-level readout

	Experimental details
	Data source and license
	Experimental results OOD validation in CLRS
	CLRS test scores
	CLRS test standard deviation

	Runtime and memory
	Extended preliminaries
	Relationship between first-order logic and Weisfeiler–Leman

	Proofs

