
Hierarchical World Models as
Visual Whole-Body Humanoid Controllers

Anonymous Author(s)
Affiliation
Address
email

Figure 1. Visual whole-body control for humanoids. We present Puppeteer, a hierarchical world
model for humanoid control with visual observations. Our method produces natural and human-like
motions without any reward design or skill primitives, and traverses challenging terrain.

Abstract: Whole-body control for humanoids is challenging due to the high-1

dimensional nature of the problem, coupled with the inherent instability of a2

bipedal morphology. Learning from visual observations further exacerbates this3

difficulty. In this work, we explore highly data-driven approaches to visual whole-4

body humanoid control based on reinforcement learning, without any simplifying5

assumptions, reward design, or skill primitives. Specifically, we propose a hi-6

erarchical world model in which a high-level agent generates commands based7

on visual observations for a low-level agent to execute, both of which are trained8

with rewards. Our approach produces highly performant control policies in 8 tasks9

with a simulated 56-DoF humanoid, while synthesizing motions that are broadly10

preferred by humans. Code and videos: https://rlpuppeteer.github.io11

1 Introduction12

Learning a generalist agent in the physical world is a long-term goal of many researchers in AI.13

Among variant agent designs, humanoids stand out as versatile platforms capable of performing14

a wide range of tasks, by integrating whole-body control and perception. However, this is a very15

challenging problem due to the high-dimensional nature of the observation and action spaces, as16

well as the complex dynamics of a bipedal embodiment, and it makes learning successful yet natural17

whole-body controllers with reinforcement learning (RL) extremely difficult. For example, consider18

the task shown in Figure 1, where a humanoid is rewarded for forward progress while jumping19

over gaps. To succeed in this task, a humanoid needs to accurately perceive the position and length20

of oncoming floor gaps, while carefully coordinating full body motions such that it has sufficient21

momentum and range to reach across each gap.22

Due to the sheer complexity of such problems, prior work choose to make simplifying assumptions,23

such as using low-dimensional (privileged) observations and actions [1, 2, 3, 4, 5], or (learned) skill24

primitives [6, 7, 8, 9, 10]. Most related to our work, MoCapAct [3] first learn ∼2600 individual25

tracking policies via RL, then distill them into a multi-clip tracking policy via imitation learning,26

and subsequently train a high-level RL policy to output goal embeddings for the multi-clip policy27

Submitted to the CoRL 2024 Workshop on Whole-Body Control and Bimanual Manipulation. Do not distribute.

https://rlpuppeteer.github.io

to track. While such approaches have been shown to transfer to simple reaching and velocity con-28

trol tasks from proprioceptive inputs, we expect to find a solution that can perform complex, visual29

whole-body control tasks while remaining entirely data-driven and relying on as few assumptions30

as possible. In this paper, we propose to directly learn a visual controller for high-dimensional31

humanoid robot joints via model-based RL and an existing large-scale motion capture (MoCap)32

dataset [11], while requiring several orders of magnitude less interactions to learn new tasks com-33

pared to prior work.34

We propose a data-driven RL method for visual whole-body control that produces natural, human-35

like motions and can perform diverse tasks. Our approach, dubbed Puppeteer, is a hierarchical36

JEPA-style [12] world model that consists of two distinct agents: a proprioceptive tracking agent37

that tracks a reference motion via joint-level control, and a visual puppeteer agent that learns to38

perform downstream tasks by synthesizing lower-dimensional reference motions for the tracking39

agent to track based on visual observations.40

Concretely, the two agents are trained independently in two separate stages using the model-based41

RL algorithm TD-MPC2 [13] as a learning backbone. First, a single tracking world model is42

(pre)trained to track reference motions from pre-existing human MoCap data [11] re-targeted to43

a humanoid embodiment [3]. It learns a single model to convert any reference kinematic motion to44

physically executable actions. This is a departure from previous work that learns multiple low-level45

models [6, 8, 3]. Importantly, this tracking agent can be saved and reused across all downstream46

tasks. In the second stage, we train a puppeteering world model that takes visual observation as in-47

puts and outputs the reference motion for the tracking agent based on the specified downstream task.48

The puppeteer agent is trained with online environment interaction using the fixed tracking agent.49

A key feature of our framework is its striking simplicity: both world models are algorithmically50

identical (but differ in inputs/outputs) and can be trained using RL without any bells and whistles.51

Different from a traditional hierarchical RL setting, our puppeteer agent (high-level policy) outputs52

geometric locations for a small number of end-effector joints instead of a goal embedding. The53

tracking agent (low-level policy) is thus only required to learn joint-level physics. This makes the54

tracking agent easily sharable and generalizable across tasks, leading to an overall small computa-55

tional footprint.56

To evaluate the efficacy of our approach, we propose a new task suite for visual whole-body hu-57

manoid control with a simulated 56-DoF humanoid, which contains a total of 8 challenging tasks.58

We show that our method produces highly performant control policies across all tasks compared59

to a set of strong model-free and model-based baselines: SAC [14], DreamerV3 [15], and TD-60

MPC2 [13]. Furthermore, we find that motions generated by our method are broadly preferred by61

humans in a user study with 51 participants. We conclude the paper by carefully dissecting how62

each of our design choices influence results. Code for method and environments is available at63

https://rlpuppeteer.github.io. Our main contributions can be summarized as follows:64

— Task suite. We propose a new, challenging task suite for visual whole-body humanoid control65

with a simulated 56-DoF humanoid. The task suite has 8 tasks in total, and poses a significant chal-66

lenge for existing state-of-the-art RL algorithms. At present, no such benchmark exists.67

— Hierarchical world model. We propose a simple yet highly effective method for high-68

dimensional continuous control that uses a learned hierarchical world model for planning.69

— Evaluating “naturalness” of controllers. We develop several metrics for quantifying how nat-70

ural and human-like generated motions are across tasks in our suite, including human preferences71

from a user study. To the best of our knowledge, no prior work has explicitly evaluated naturalness72

of learned policies for humanoid control.73

— Analysis & ablations. We carefully ablate each of our design choices, analyze the relative im-74

portance of each component, and provide actionable advice for future work in this area.75

2

https://rlpuppeteer.github.io

MoCap tracking (RL)

Tracking
World Model

Tracking
agent

1. Pretrain tracking agent on MoCap data 2. Train puppeteering agent on downstream tasks

Downstream tasks (RL)

Tracking
World Model

Puppeteer
World Model

Save & Reuse

Puppeteering
agent

+

Figure 2. Approach. We pretrain a tracking agent (world model) on human MoCap data using RL;
this agent takes proprioceptive information qt and an abstract reference motion (command) ct as
input, and synthesizes H low-level actions that tracks the reference motion. We then train a high-
level puppeteering agent on downstream tasks via online interaction; this agent takes both state qt

and visual information vt as input, and outputs commands for the tracking agent to execute.

2 Preliminaries76

Problem formulation. We model visual whole-body humanoid control as a reinforcement learn-77

ing problem governed by an episodic Markov Decision Process (MDP) characterized by the tuple78

(S,A, T , R, γ,∆) where s ∈ S are states, a ∈ A are actions, S : S × A 7→ S is the environment79

transition (dynamics) function, R : S ×A 7→ R is a scalar reward function, γ is the discount factor,80

and ∆: S 7→ {0, 1} is an episode termination condition. We implicitly consider both proprioceptive81

information q and visual information v as part of states s and will only make the distinction clear82

when necessary. We aim to learn a policy π : S 7→ A that maximizes discounted sum of rewards83

in expectation: Eπ

[∑T
t=0 γ

trt

]
, rt = R(st, π(st)) for an episode of length T , while synthesiz-84

ing motions that look “natural”. We informally define natural motions as policy rollouts that are85

human-like, but develop several metrics for measuring the “naturalness” of policies in Section 4.86

TD-MPC2. We build upon the model-based reinforcement learning (MBRL) algorithm TD-MPC287

[13], which represents the state-of-the-art in continuous control and has been shown to outperform88

alternatives in tasks with high-dimensional action spaces [16, 13, 17]. Specifically, TD-MPC2 learns89

a latent decoder-free world model from environment interactions and selects actions by planning90

with the learned model. All components of the world model are learned end-to-end using a combi-91

nation of joint-embedding prediction [18], reward prediction, and temporal difference [19] losses,92

without decoding raw observations. During inference, TD-MPC2 follows the Model Predictive Con-93

trol (MPC) framework for local trajectory optimization using Model Predictive Path Integral (MPPI)94

[20] as a derivative-free (sampling-based) optimizer. To accelerate planning, TD-MPC2 additionally95

learns a model-free policy prior which is used to warm-start the sampling procedure.96

3 A Hierarchical World Model for High-Dimensional Control97

We aim to learn highly performant and “natural” policies for visual whole-body humanoid control98

in a data-driven manner using hierarchical world models. A key strength of our approach is that99

it can synthesize human-like motions without any explicit domain knowledge, reward design, nor100

skill primitives. While we focus on humanoid control due to their complexity, our approach can in101

principle be applied to any embodiment. Our method, dubbed Puppeteer, consists of two distinct102

agents, both of which are implemented as TD-MPC2 world models [13] and trained independently.103

Figure 2 provides an overview of our method. The two agents are designed as follows:104

3

1. A low-level tracking agent that takes a robot proprioceptive state qt and an abstract command105

ct as input at time t, and uses planning with a learned world model to synthesize a sequence of106

H control actions {at,at+1, . . . ,at+H} that (approximately) obeys the abstract command.107

2. A high-level puppeteering agent that takes the same robot proprioceptive state qt as input,108

as well as (optionally) auxiliary information and modalities such as RGB images vt or task-109

relevant information, and uses planning with a learned world model to synthesize a sequence110

of H high-level abstract commands {ct, ct+1, . . . , ct+H} for the low-level agent to execute.111

A unique benefit of our approach is that a single tracking world model can be (pre)trained and112

reused across all downstream tasks. This is in contrast to much of prior work that either learn a113

large number (up to ∼2600) of low-level policies [6, 7, 8, 3], or train policies from scratch on each114

downstream task [2, 5]. The tracking and puppeteering world models are algorithmically identical115

(but differ in inputs/outputs), and consist of the following 6 components:116

Encoder z = h(s) ▷ Encodes state into a latent embedding
Latent dynamics z′ = d(z,a) ▷ Predicts next latent state
Reward r̂ = R(z,a) ▷ Predicts reward r of a state transition
Termination δ̂ = D(z,a) ▷ Predicts probability of termination
Terminal value q̂ = Q(z,a) ▷ Predicts discounted sum of rewards
Policy prior â = p(z) ▷ Predicts an action a∗ that maximizes Q

(1)

where z is a latent state. Because we consider episodic MDPs with termination conditions, we addi-117

tionally add a termination prediction head D (highlighted in Equation 1) that predicts the probability118

of termination conditioned on a latent state and action. Use of termination signals in the context of119

planning with a world model requires special care and has, to the best of our knowledge, not been120

explored in prior work; we introduce a novel method for this in Section 3.3. In the following, we121

describe the two agents and their interplay in the context of visual whole-body humanoid control.122

3.1 Low-Level Tracking World Model123

Figure 3. MoCap tracking.
The low-level tracking agent
is trained to track relative end-
effector (head, hands, feet)
positions of sampled refer-
ence motions in 3D space.

We first train the low-level tracking world model independently124

from the high-level agent and any potential downstream tasks. We125

leverage pre-existing human MoCap data [11] re-targeted to the 56-126

DoF “CMU Humanoid” embodiment [21] during training of the127

tracking model, which (as we will later show empirically) implicitly128

encodes human motion priors. Specifically, we train our tracking129

world model by sampling (st,at, rt, st+1, . . . , rH) sequences from130

MoCapAct [3], an offline dataset that consists of noisy, suboptimal131

rollouts from existing policies trained to track reference motions132

(836 MoCap clips). This is in contrast to prior literature that learn133

per-clip policies or skill primitives [1, 6, 8].134

Observations include humanoid proprioceptive information qt at135

time t, as well as a reference motion (command) ct to track. Dur-136

ing training of the tracking policy, we let ct
.
= (qref

t+1...t+H) where137

each qref corresponds to relative end-effector (head, hands, feet) po-138

sitions of the sampled reference motion at a future timestep; during downstream tasks, we train the139

high-level agent to output (via planning) commands c for the low-level agent to track. Figure 3 il-140

lustrates our low-dimensional reference; the controllable humanoid tracks end-effector positions141

of a reference motion. We label all transitions using the reward function from Hasenclever et al.142

[8]. To improve state-action coverage of the tracking world model, we train with a combination of143

offline data and online interactions, maintaining a separate replay buffer for online interaction data144

and sampling offline/online data with a 50%/50% ratio in each gradient update as in Feng et al. [22].145

We find this to be crucial for tracking performance when training a single world model on a large146

number of MoCap clips.147

4

stand walk run

corridor hurdles walls gaps stairs
Figure 4. Tasks. We develop 5 visual whole-body humanoid control tasks with a 56-DoF simulated
humanoid (bottom), as well as 3 non-visual tasks (top). See Appendix D for more details.

3.2 High-Level Puppeteering World Model148

We now consider training a high-level puppeteering world model via online interaction in down-149

stream tasks. As illustrated in Figure 2, the puppeteering model is trained (using downstream task150

rewards) to control the tracking model via commands c, i.e., we redefine commands to now be151

the action space of the puppeteering agent. The tracking world model remains frozen (no weight152

updates) throughout this process, which allows us to reuse the same tracking model across all down-153

stream tasks. Because the high-level agent uses planning for action selection, it natively supports154

temporal abstraction by outputting multiple commands (ct, ct+1, . . . , ct+H) for the low-level agent155

to execute; we treat the number of low-level steps per high-level step as a hyperparameter k that156

allows us to trade strong motion prior (large k) for control granularity (small k).157

3.3 Planning with Termination Conditions158

We consider episodic MDPs with termination conditions. In the context of humanoid control, a159

common such termination condition is non-foot contact with the floor. Use of termination conditions160

requires special care in the context of world model learning and planning, as both components161

are used to simulate (latent) multi-step rollouts. We extend the world model of TD-MPC2 with a162

termination prediction head D, which predicts the probability of termination at each time step. This163

termination head is trained end-to-end together with all other components of the world model using164

LPuppeteer(θ)
.
= LTD-MPC2(θ) + αCE(δ̂, δ) (2)

where δ̂, δ are predicted and ground-truth termination signals, respectively, CE is the (binary) cross-165

entropy loss, and α is a constant coefficient balancing the losses. We additionally truncate TD-targets166

at terminal states during training. It is similarly necessary to truncate model rollouts and value167

estimates during planning (at test-time). However, we only have access to predicted termination168

signals at test-time, which can be noisy and consequently lead to high-variance value estimates169

for latent rollouts. To mitigate this, we maintain a cumulative weighting (discount) of termination170

probabilities when rolling out the model (capped at 0), such that only a soft truncation is applied.171

4 Experiments172

Our proposed method holds the promise of strong downstream task performance while still syn-173

thesizing natural and human-like motions. To evaluate the efficacy of our method, we propose a174

new task suite for whole-body humanoid control with multi-modal observations (vision and pro-175

prioceptive information) based on the “CMU Humanoid” model from DMControl [21]. Our sim-176

ulated humanoid has 56 fully controllable joints (A ∈ R56), and includes both head, hands, and177

5

0

250

500 Stand

0

250

500 Walk

0

250

500 Run

0

100

200 Corridor

0 1M 2M 3M
0

100

200 Hurdles

0 1M 2M 3M
0

50

100 Walls

0 1M 2M 3M
0

100

200 Gaps

0 1M 2M 3M
0

100

200 Stairs

SAC DreamerV3 TD-MPC2 Puppeteer (ours)
Figure 5. Learning curves. Episode return vs. environment steps on all 8 tasks from our proposed
task suite. Our method generally matches the return of TD-MPC2 on these tasks while producing
more natural motions. We only evaluate SAC and DreamerV3 on proprioceptive tasks as they do
not achieve any meaningful performance. Average of 10 random seeds; shaded area is 95% CIs.

feet. We aim to learn highly performant policies in a data-driven manner without the need for178

embodiment- or task-specific engineering (e.g., reward design, constraints, or auxiliary objectives),179

while synthesizing natural and human-like motions. Code for method and environments is available180

at https://rlpuppeteer.github.io.181

4.1 Experimental Details182

Tasks. Our proposed task suite consists of 5 vision-conditioned whole-body locomotion tasks, and183

an additional 3 tasks without visual input. We provide an overview of tasks in Figure 4; they are184

designed with a high degree of randomization and include running along a corridor, jumping over185

hurdles and gaps, walking up the stairs, and circumnavigating obstacles (walls). All 5 visual control186

tasks use a reward function that is proportional to the linear forward velocity, while non-visual tasks187

reward displacement in any direction. Episodes are terminated at timeout (500 steps) or when a188

non-foot joint makes contact with the floor. We empirically observe that the TD-MPC2 baseline189

degenerates to highly unrealistic behavior without a contact-based termination condition, and thus190

modify TD-MPC2 to support termination as described in Section 3.3. See Appendix D for details.191

0.4% 1.8%

97.8%
Human preference

TD-MPC2
Equal
Ours

Figure 6. Human pref-
erence in humanoid mo-
tions. Aggregate results
from a user study (n = 51)
where humans are presented
with pairs of motions gener-
ated by TD-MPC2 and our
method, and are asked to
provide their preference.

Implementation. We pretrain a single 5M parameter TD-MPC2192

world model to track all 836 CMU MoCap [11] reference motions193

retargeted to the CMU Humanoid model. This in contrast to, e.g.,194

MoCapAct [3] that trains ∼2600 individual tracking policies. Our195

tracking agent is trained for 10M steps using both offline data (noisy196

rollouts) from MoCapAct [3] and online interaction with a new ref-197

erence motion sampled in each episode. We sample 50% of each198

batch from the offline dataset, and 50% from the online replay buffer199

for each gradient update; we did not experiment with other ratios.200

The puppeteering agent is similarly implemented as a 5M parame-201

ter TD-MPC2 world model, which we train from scratch via online202

interaction on each downstream task. Observations include a 212-d203

proprioceptive state vector and 64 × 64 RGB images from a third-204

person camera. Both agents act at the same frequency, i.e., we set205

k = 1. Training the tracking world model takes approximately 12206

days, and training the puppeteering world model takes approximately207

4 days, both on a single NVIDIA GeForce RTX 3090 GPU. CPU and208

RAM usage is negligible.209

Baselines. We benchmark our method against state-of-the-art RL210

algorithms for continuous control, including (1) widely used model-211

free RL method Soft Actor-Critic (SAC) [14] which learns a stochastic policy and value function212

6

https://rlpuppeteer.github.io

hurdles −→

O
ur

s
T

D
-M

PC
2

Figure 7. Qualitative results. Our hierarchical approach, Puppeteer, produces natural human
motions, whereas TD-MPC2 trained end-to-end often learns high-performing but unnatural gaits.

using a maximum entropy RL objective, (2) model-based RL method DreamerV3 [23, 24, 15] which213

simultaneously learns a world model using a generative objective, and a model-free policy in the la-214

tent space of the learned world model, and (3) model-based RL method TD-MPC2 [16, 13] which215

learns a self-predictive (decoder-free) world model and selects actions by planning with the learned216

world model. We refrain from making a direct comparison to MoCapAct [3] and DeepMimic [2] as217

they do not support visual observations and require several orders of magnitude more environment218

interactions to learn downstream tasks. Both our method and baselines use the same hyperparame-219

ters across all tasks, as TD-MPC2 and DreamerV3 have been shown to be robust to hyperparameters220

across task suites [13, 15, 17]. For a fair comparison, we experiment with various design choices221

and hyperparameter configurations for SAC and report the best results that we obtained. We provide222

further implementation details in Appendix C.223

4.2 Main Results224

We first present our main benchmark results, and then analyze and ablate each design choice.225

Benchmark results. We evaluate our method, Puppeteer, and baselines on all 8 whole-body226

humanoid control tasks. Episode return as a function of environment steps is shown in Figure 5.227

We observe that the performance of our method is comparable to that of TD-MPC2 across all tasks228

(except stairs), whereas SAC and DreamerV3 does not achieve any meaningful performance within229

our computational budget of 3M environment steps. As we will soon reveal, TD-MPC2 produces230

better policies in terms of episode return on the stairs task, but far less natural behavior (walking vs.231

rolling up stairs). We conjecture that this is a symptom of reward hacking [25, 26]. Sample videos232

are available at https://rlpuppeteer.github.io.233

Table 1. Proxies for “naturalness”.
Evaluated on the hurdles task. eplen
denotes the average episode length
over the course of training; height is
the average torso height (gait) at end of
training. Mean and std. across 3 seeds.

eplen ↑ height (cm) ↑
TD-MPC2 70.7± 5.5 85.9± 4.7

Ours 100.6± 1.0 96± 0.2

“Naturalness” of humanoid controllers. We conduct a234

user study (n = 51) in which humans are shown pairs235

of short (∼10s) clips of policy rollouts from TD-MPC2236

and our method, and are asked to provide their prefer-237

ence. Participants are undergraduate and graduate students238

across multiple universities and disciplines. Results from239

this study are shown in Figure 6, and Figure 7 shows two240

sample clips from the study. While both methods perform241

comparably in terms of downstream task reward, a super-242

majority of participants rate rollouts from our method as243

more natural than that of TD-MPC2, with only 4% of responses rating them as “equally natural”244

and 0% rating TD-MPC2 as more natural. This preference is especially pronounced in the stairs245

task, where TD-MPC2 achieves a higher asymptotic return (higher forward velocity) but learns to246

“roll” up stairs as opposed to our method that walks. We also report several quantitative measures247

of naturalness in Table 1, which strongly support our user study results. These findings underline248

the importance of a more holistic evaluation of RL policies as opposed to solely relying on rewards.249

See Appendix B for more results.250

7

https://rlpuppeteer.github.io

Pretraining (tracking) Downstream tasks

0 2M 4M 6M 8M
0%

50%

Data mixture

Offline
Online
Offline + online

0%

20%

40%

60%

21.0
35.1

48.6
61.7

MoCap clips

1%
5%
25%
100%

0%

20%

40%

1.6 2.9 6.4

43.0

Hierarchical planning

No planning
Planning high
Planning low
Planning low+high

0 1M 2M
0%

50%

High-level pretraining

Scratch (default)
Pretrained

Figure 8. Ablations. Normalized score for various ablations of Puppeteer during pretraining
(left) and downstream tasks (right). Pretraining benefits from diverse data, as well as both pre-
existing (offline) data and online interactions. We also observe that planning is critical to whole-
body humanoid control. Mean across 3 seeds; downstream ablations are averaged across 5 tasks.

0.1m 0.4m 0.8m 1.2m

Visualization of gap lengths

0.0 0.5 1.0
Gap length

0%

50%

100%

Training
(0.1, 0.4)

Generalization (gaps)

Puppeteer (ours)
Figure 9. Zero-shot generalization to larger gap lengths. (Left) Visualization of gap lengths.
Agent is trained on gaps [0.1, 0.4]m and evaluated on gaps up to 1.2m. (Right) Normalized perfor-
mance as a function of gap length in the visual gaps task. Mean of 3 seeds. Our method achieves
non-trivial performance on gaps up to 3× the training data. CIs omitted for visual clarity.

4.3 Ablations & Analysis251

We ablate each design choice of our method, including both the pretraining (tracking) and down-252

stream task learning stages. Our experimental results are summarized in Figure 8.253

Pretraining (tracking). Our method leverages both offline and online data during pretraining of the254

tracking world model. We ablate this training mixture in two distinct ways: (i) using only offline or255

online data, and (ii) reducing the number of unique MoCap clips seen during training. Interestingly,256

we find that leveraging both data sources leads to better tracking policies overall. We hypothesize257

that this is because offline data may help in learning to track especially difficult motions such as258

jumping and balancing on one leg, while online data improves state-action coverage and thus leads259

to a more robust world model overall. Similarly, training on more diverse MoCap clips also leads260

to better tracking performance. Training on all 836 MoCap clips results in the best tracking world261

model, and we expect tracking to further improve with availability of more MoCap data.262

Downstream tasks. We conduct three ablations that help us better understand the impact of a263

hierarchical approach to downstream tasks: (i) using a learned model-free policy in lieu of planning264

in either level of the hierarchy, (ii) pretraining of the high-level agent in addition to the low-level265

agent, and (iii) evaluating zero-shot generalization to unseen environment variations (gap length in266

the gaps task). The first two ablations are shown in Figure 8, and the latter is shown in Figure 9.267

We find that planning at both levels is critical to effective whole-body humanoid control, which we268

conjecture is due to the high dimensionality of the problem. Next, we pretrain agents on the corridor269

task and independently finetune on each visual control task. While the specific environments and270

motions differ between tasks, we find that our method benefits substantially from finetuning. We271

conjecture that this is because the need to control a low-level tracking agent is shared between all272

high-level agents. Finally, we explore the zero-shot generalization ability of our method to harder,273

unseen variations of the gap task. Interestingly, we observe that our method generalizes to gap274

lengths up to 3× the training data without additional training.275

8

References276

[1] N. Heess, D. Tb, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,277

S. Eslami, et al. Emergence of locomotion behaviours in rich environments. arXiv preprint278

arXiv:1707.02286, 2017.279

[2] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep280

reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):143:1–281

143:14, July 2018. ISSN 0730-0301. doi:10.1145/3197517.3201311. URL http://doi.282

acm.org/10.1145/3197517.3201311.283

[3] N. Wagener, A. Kolobov, F. V. Frujeri, R. Loynd, C.-A. Cheng, and M. Hausknecht. MoCa-284

pAct: A multi-task dataset for simulated humanoid control. In Advances in Neural Information285

Processing Systems, volume 35, pages 35418–35431, 2022.286

[4] Z. Jiang, Y. Xu, N. Wagener, Y. Luo, M. Janner, E. Grefenstette, T. Rocktäschel, and Y. Tian.287

H-gap: Humanoid control with a generalist planner. arXiv preprint arXiv:2312.02682, 2023.288

[5] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: Adversarial motion priors289

for stylized physics-based character control. ACM Transactions on Graphics (ToG), 40(4):290

1–20, 2021.291

[6] J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess.292

Learning human behaviors from motion capture by adversarial imitation. arXiv preprint293

arXiv:1707.02201, 2017.294

[7] J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, G. Wayne, Y. W. Teh, and N. Heess.295

Neural probabilistic motor primitives for humanoid control. arXiv preprint arXiv:1811.11711,296

2018.297

[8] L. Hasenclever, F. Pardo, R. Hadsell, N. Heess, and J. Merel. Comic: Complementary task298

learning & mimicry for reusable skills. In International Conference on Machine Learning,299

pages 4105–4115. PMLR, 2020.300

[9] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. Ase: Large-scale reusable adversarial301

skill embeddings for physically simulated characters. ACM Transactions On Graphics (TOG),302

41(4):1–17, 2022.303

[10] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang. Expressive whole-body control for304

humanoid robots. arXiv preprint arXiv:2402.16796, 2024.305

[11] C. M. U. CMU. Carnegie mellon university graphics lab motion capture database, 2003. URL306

http://mocap.cs.cmu.edu.307

[12] Y. LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open308

Review, 62, 2022.309

[13] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous310

control, 2024.311

[14] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,312

P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. ArXiv, abs/1812.05905,313

2018.314

[15] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world315

models. arXiv preprint arXiv:2301.04104, 2023.316

[16] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control. In317

ICML, 2022.318

9

http://dx.doi.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://mocap.cs.cmu.edu

[17] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel. Humanoidbench: Simulated hu-319

manoid benchmark for whole-body locomotion and manipulation, 2024.320

[18] J.-B. Grill, F. Strub, F. Altch’e, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. Á.321

Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko. Bootstrap322

your own latent: A new approach to self-supervised learning. Advances in Neural Information323

Processing Systems, 2020.324

[19] R. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:325

9–44, 1998.326

[20] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control using327

covariance variable importance sampling. ArXiv, abs/1509.01149, 2015.328

[21] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,329

et al. Deepmind control suite. Technical report, DeepMind, 2018.330

[22] Y. Feng, N. Hansen, Z. Xiong, C. Rajagopalan, and X. Wang. Finetuning offline world models331

in the real world. Conference on Robot Learning, 2023.332

[23] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by333

latent imagination. ArXiv, abs/1912.01603, 2020.334

[24] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.335

International Conference on Learning Representations, 2021.336

[25] J. Clark and D. Amodei. Faulty reward functions in the wild. OpenAI Blog, 2016.337

[26] J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing reward338

gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.339

[27] L. X. Shi, J. J. Lim, and Y. Lee. Skill-based model-based reinforcement learning. 2022.340

[28] V. Caggiano, H. Wang, G. Durandau, M. Sartori, and V. Kumar. Myosuite – a contact-rich341

simulation suite for musculoskeletal motor control, 2022.342

[29] J. Grizzle, J. Hurst, B. Morris, H.-W. Park, and K. Sreenath. Mabel, a new robotic bipedal343

walker and runner. In 2009 American Control Conference, pages 2030–2036, 2009. doi:344

10.1109/ACC.2009.5160550.345

[30] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Robust and versatile346

bipedal jumping control through reinforcement learning. In K. E. Bekris, K. Hauser, S. L.347

Herbert, and J. Yu, editors, Robotics: Science and Systems XIX, Daegu, Republic of Korea,348

July 10-14, 2023, 2023. doi:10.15607/RSS.2023.XIX.052. URL https://doi.org/10.349

15607/RSS.2023.XIX.052.350

[31] BostonDynamics. Atlas, 2024. URL www.bostondynamics.com/atlas.351

[32] Unitree. H1, 2024. URL www.unitree.com/h1.352

[33] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in353

Neural Information Processing Systems 31, pages 2451–2463. Curran Associates, Inc., 2018.354

[34] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine. Solar: Deep struc-355

tured latent representations for model-based reinforcement learning. ArXiv, abs/1808.09105,356

2018.357

[35] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In ICML, 2022.358

10

http://dx.doi.org/10.1109/ACC.2009.5160550
http://dx.doi.org/10.1109/ACC.2009.5160550
http://dx.doi.org/10.1109/ACC.2009.5160550
http://dx.doi.org/10.15607/RSS.2023.XIX.052
https://doi.org/10.15607/RSS.2023.XIX.052
https://doi.org/10.15607/RSS.2023.XIX.052
https://doi.org/10.15607/RSS.2023.XIX.052
www.bostondynamics.com/atlas
www.unitree.com/h1

[36] K.-H. Lee, O. Nachum, M. Yang, L. Y. Lee, D. Freeman, W. Xu, S. Guadarrama, I. S. Fis-359

cher, E. Jang, H. Michalewski, and I. Mordatch. Multi-game decision transformers. ArXiv,360

abs/2205.15241, 2022.361

[37] Y. Xu, N. Hansen, Z. Wang, Y.-C. Chan, H. Su, and Z. Tu. On the feasibility of cross-task362

transfer with model-based reinforcement learning. 2023.363

[38] V. Sobal, J. SV, S. Jalagam, N. Carion, K. Cho, and Y. LeCun. Joint embedding predictive364

architectures focus on slow features. arXiv preprint arXiv:2211.10831, 2022.365

[39] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,366

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to367

robotic control. arXiv preprint arXiv:2307.15818, 2023.368

[40] F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine. Visual foresight: Model-based369

deep reinforcement learning for vision-based robotic control. ArXiv, abs/1812.00568, 2018.370

[41] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-371

hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a372

learned model. Nature, 588(7839):604–609, 2020.373

[42] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari games with limited data.374

Advances in Neural Information Processing Systems, 34:25476–25488, 2021.375

[43] J. SV, S. Jalagam, Y. LeCun, and V. Sobal. Gradient-based planning with world models. arXiv376

preprint arXiv:2312.17227, 2023.377

[44] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,378

C. Finn, P. Kozakowski, S. Levine, R. Sepassi, G. Tucker, and H. Michalewski. Model-based379

reinforcement learning for atari. ArXiv, abs/1903.00374, 2020.380

[45] N. Hansen, Y. Lin, H. Su, X. Wang, V. Kumar, and A. Rajeswaran. Modem: Accelerating381

visual model-based reinforcement learning with demonstrations. 2023.382

[46] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models383

for real-world robot manipulation. arXiv preprint, 2023.384

[47] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills385

by learning from demonstration. In 2009 IEEE International Conference on Robotics and386

Automation, pages 763–768, 2009. doi:10.1109/ROBOT.2009.5152385.387

[48] J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, and388

G. Wayne. Hierarchical visuomotor control of humanoids. arXiv preprint arXiv:1811.09656,389

2018.390

[49] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. Why does hierarchy (sometimes)391

work so well in reinforcement learning? arXiv preprint arXiv:1909.10618, 2019.392

[50] D. Hafner, K.-H. Lee, I. Fischer, and P. Abbeel. Deep hierarchical planning from pixels.393

Advances in Neural Information Processing Systems, 35:26091–26104, 2022.394

[51] C. Gumbsch, N. Sajid, G. Martius, and M. V. Butz. Learning hierarchical world models with395

adaptive temporal abstractions from discrete latent dynamics. In The Twelfth International396

Conference on Learning Representations, 2023.397

[52] C. Chen, F. Deng, K. Kawaguchi, C. Gulcehre, and S. Ahn. Simple hierarchical planning with398

diffusion. arXiv preprint arXiv:2401.02644, 2024.399

[53] D. Yarats and I. Kostrikov. Soft actor-critic (sac) implementation in pytorch. https:400

//github.com/denisyarats/pytorch_sac, 2020.401

[54] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning402

fast without a model. International Conference on Learning Representations, 2021.403

11

http://dx.doi.org/10.1109/ROBOT.2009.5152385
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

A Related Work404

Learning whole-body controllers for humanoids is a long-standing problem at the intersection of405

the machine learning and robotics communities. Humanoids are of particular interest to the learning406

community because of the high-dimensional nature of the problem [1, 6, 2, 7, 8, 3, 27, 28, 17], and407

to the robotics community because it is a promising morphology for general-purpose robotic agents408

[29, 30, 31, 32, 10]. Prior work predominantly focus on learning control policies for individual tasks409

using model-free reinforcement learning algorithms, with human MoCap data [11] incorporated via410

either adversarial reward terms [2, 5, 9] or learned skill encoders [1, 7, 8, 27, 3]. While adversarial411

reward terms can produce natural behavior, this class of methods suffer from poor sample-efficiency412

as they learn a control policy from scratch for each downstream task. Our work is most similar to the413

latter class of methods, which enables reuse of the low-level policy and/or skill encoder across tasks.414

Most related to ours, MoCapAct [3] first learn∼2600 individual tracking policies via RL, then distill415

them into a multi-clip tracking policy via imitation learning, and subsequently train a high-level RL416

policy to output goal embeddings for the multi-clip policy to track. Their resulting representation417

is used to perform simple reaching and velocity control tasks from privileged state information in418

approx. 150M environment steps. Our method trains a single world model to track the entire MoCap419

dataset, and is reused to learn a variety of visual whole-body control tasks in ≤ 3M environment420

steps. Concurrent to our work, HumanoidBench [17] similarly introduce a whole-body control421

benchmark using the less expressive Unitree H1 [32] embodiment. Our contributions differ in two422

important ways: (1) we develop a method for synthesizing natural human motions with a highly423

expressive humanoid model while Sferrazza et al. [17] benchmark existing methods for online RL424

without regard for naturalness, and (2) HumanoidBench solely considers tasks with privileged state425

information in their experiments (i.e., no visual observations).426

World models (and model-based RL more broadly) are of increasing interest to researchers due to427

their strong empirical performance in an online RL setting [33, 15, 13], as well as their promise of428

generalization to structurally similar problem instances [34, 35, 36, 37, 12, 38, 39]. Existing model-429

based RL algorithms can broadly be categorized into algorithms that select actions by planning with430

a learned world model [40, 41, 42, 43, 13], and algorithms that instead learn a model-free policy431

using imagined rollouts from the world model [44, 15]. We build upon the TD-MPC2 [13] world432

model, which uses planning and has been shown to outperform existing algorithms for continuous433

control [45, 46, 22, 17]. We demonstrate that planning is key to success in the high-dimensional434

continuous control problems that we consider.435

Hierarchical RL offers a framework for subdividing a complex learning problem into more ap-436

proachable subproblems, often by, e.g., leveraging (learned or manually designed) skill primi-437

tives [47, 6, 48, 27] or facilitating learning over long time horizons via temporal abstractions438

[49, 12, 50, 51, 52]. Our method, Puppeteer, is also hierarchical in nature, but does not rely on439

skill primitives nor temporal abstraction for task learning. Instead, we learn a single low-level world440

model that can be reused across a variety of downstream tasks, and instead introduce a hierarchy in441

terms of data sources and input modalities.442

12

B Additional Qualitative Results443

corridor −→
O

ur
s

T
D

-M
PC

2

gaps −→

O
ur

s
T

D
-M

PC
2

walls −→

O
ur

s
T

D
-M

PC
2

hurdles −→

O
ur

s
T

D
-M

PC
2

13

gaps −→

O
ur

s
T

D
-M

PC
2

stairs −→

O
ur

s
T

D
-M

PC
2

walls −→

O
ur

s
T

D
-M

PC
2

C Implementation Details444

MoCap dataset. We use the “small” offline dataset provided by MoCapAct [3], which is available at445

https://microsoft.github.io/MoCapAct. This dataset contains 20 noisy expert rollouts from446

each of 836 expert policies trained to track individual MoCap clips, totalling (suboptimal) 16,720447

trajectories. Trajectories are variable length and are labelled with the CoMiC [8] tracking reward448

which we use throughout this work. We solely use this dataset during (pre)training of the low-level449

tracking agent; the high-level puppeteering agent is trained independently of the tracking agent using450

only online interaction data and task rewards.451

Puppeteer. We base our implementation off of TD-MPC2 and use default design choices and hy-452

perparameters whenever possible. We experimented with alternative hyperparameters but did not453

observe any benefit in doing so. All hyperparameters are listed in Table 3. Our approach introduces454

only two new hyperparameters compared to prior work: loss coefficient for termination prediction455

(because our task suite has termination conditions; we add this to the TD-MPC2 baseline as well),456

and the number of low-level steps to take per high-level step (temporal abstraction).457

TD-MPC2. We use the official implementation available at https://github.com/458

nicklashansen/tdmpc2, but modify the implementation to support multi-modal observations and459

termination conditions as discussed in Section 3. We empirically observe that TD-MPC2 degener-460

ates to highly unrealistic behavior without a contact-based termination condition.461

SAC. We benchmark against the implementation from https://github.com/denisyarats/462

pytorch_sac [53] due to its strong performance on lower-dimensional DMControl tasks as well463

as its popularity among the community. We modify the implementation to support early termina-464

14

https://microsoft.github.io/MoCapAct
https://github.com/nicklashansen/tdmpc2
https://github.com/nicklashansen/tdmpc2
https://github.com/nicklashansen/tdmpc2
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

tion. We experiment with a variety of design choices and hyperparameters as we find vanilla SAC465

to suffer from numerical instabilities on our task suite (presumably due to high-dimensional ob-466

servation and action spaces), but are unable to achieve non-trivial performance. The ablation in467

Figure 8 (hierarchical planning) strongly suggests that planning is a key driver of performance in468

Puppeteer and TD-MPC2, while SAC is a model-free method incapable of planning. Design choices469

and hyperparameters that we experimented with are as follows:470

Table 2. List of SAC design choices and hyperparameters. We experiment with a variety of
design choices and hyperparameters, but find that they all fail to achieve non-trivial performance.

Design choice Values
Number of Q-functions 2, 5
TD-target Default, REDQ [54]
Activation ReLU, Mish, LayerNorm + Mish
MLP dim 256, 512, 1024
Batch size 256, 512
Learning rate 3× 10−4, 1× 10−3

DreamerV3. We use the official implementation available at https://github.com/danijar/471

dreamerv3, and use the default hyperparameters recommended for proprioceptive DMControl472

tasks. A key selling point of DreamerV3 is its robustness to hyperparameters across tasks (rela-473

tive to SAC), but we find that DreamerV3 does not achieve any non-trivial performance on our task474

suite. While DreamerV3 is a model-based algorithm, it does not use planning, which the ablation in475

Figure 8 (hierarchical planning) finds to be a key driver of performance in Puppeteer and TD-MPC2.476

15

https://github.com/danijar/dreamerv3
https://github.com/danijar/dreamerv3
https://github.com/danijar/dreamerv3

Table 3. List of hyperparameters. We use the same hyperparameters across all tasks, levels (high-
level and low-level), and across both Puppeteer and TD-MPC2 when applicable. Hyperparameters
unique to Puppeteer are highlighted .

Hyperparameter Value
Planning
Horizon (H) 3
Iterations 8
Population size 512
Policy prior samples 24
Number of elites 64
Temperature 0.5
Low-level steps per high-level step 1

Policy prior
Log std. min. −10
Log std. max. 2

Replay buffer
Capacity 1, 000, 000
Sampling Uniform

Architecture
Encoder dim 256
MLP dim 512
Latent state dim 512
Activation LayerNorm + Mish
Number of Q-functions 5

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Termination prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Gradient clip norm 20
Discount factor 0.97
Seed steps 2,500

16

D Task Suite477

We propose a benchmark for visual whole-body humanoid control based on the “CMU Humanoid”478

model from DMControl [21]. Our simulated humanoid has 56 fully controllable joints (A ∈ R56),479

and includes both head, hands, and feet. Actions are normalized to be in [−1, 1]. Our task suite con-480

sists of 5 vision-conditioned whole-body locomotion tasks (corridor, hurdles, walls, gaps, stairs), as481

well as 3 tasks that use proprioceptive information only (stand, walk, run). All 8 tasks are illustrated482

in Figure 4.483

Observations always include proprioceptive information, as well as either visual inputs (high-level484

agent) or a command (low-level agent). The proprioceptive state vector is 212-dimensional and485

consists of relative joint positions and velocities, body velocimeter and accelerometer, gyro, joint486

torques, binary touch (contact) sensors, and orientation relative to world z-axis. Visual inputs are487

raw 64 × 64 RGB images captured by a third-person camera (as seen in Figure 4) without any488

preprocessing steps, and tracking commands are 15-dimensional vectors (corresponding to 5 points489

in 3D space) with values in [−1, 1].490

Downstream task reward functions are based on the humanoid reward functions in DMControl with491

minimal modification to fit our higher DoF embodiment. All 5 visual tasks use the same reward492

function, which is proportional to forward velocity of the humanoid and is bounded to always be493

non-negative:494

R(s)
.
= clip(linvelx, [0, vtarget]) (3)

where linvelx is linear velocity along the x-axis, and the clip operator bounds the reward value to495

always be non-negative and at most that of a target velocity vtarget which we set to 6 in all tasks. The496

3 proprioceptive tasks use a similar reward function, except that the agent is rewarded for velocity497

in any XY -direction, and has an additional term that encourages an upright pose:498

R(s)
.
= min(|linvelxy|, vtarget) + α · headposz (4)

where α is a constant coefficient balancing the two reward terms, and headposz is the height of499

the humanoid head in the world frame. The additional height reward term is adopted from the500

stand, walk, and run run tasks that DMControl implement with a simplified humanoid model501

(A ∈ R24). We find that the TD-MPC2 baseline produces very unrealistic behaviors without the502

additional reward term, so we choose to keep the term to make comparison more fair.503

E User Study504

To compare the “naturalness” of policies learned by our method vs. TD-MPC2, we design a user505

study in which humans are asked to watch short (∼10s) pairs of clips of simulated humanoid motions506

generated for each of our 5 visual whole-body humanoid control tasks. Each user is presented with507

2 such pairs per task, totalling 10 pairs per user. Sample clips used in the user study are available at508

https://rlpuppeteer.github.io, as well as in Appendix B. Pairs are generated by converged509

Puppeteer and TD-MPC2 agents. We generate 5 rollouts per task for each of two separately trained510

agents (random seed 1 and 2) using the same method (i.e., Puppeteer or TD-MPC2), and select the511

clips with median episode return for each of the two random seeds. We use clips generated by two512

unique random seeds to ensure that diversity in behavior due to inter-seed variability is captured513

in the user study, and we select the median clip to ensure that we neither favor nor disadvantage a514

method due to outliers. The concrete instructions provided to users in the study are as follows:515

Instructions516

In this study, you will watch pairs of short (∼10 seconds) clips of simulated humanoid motions. For517

each pair, you are asked to determine which of the two clips appear more "natural" and "human-like"518

to you, i.e., which clip looks more like the behavior of a real human.519

Users are then provided with each of the 10 pairs of clips, and prompted to answer questions of the520

form:521

17

https://rlpuppeteer.github.io

Figure 10. Screenshot of a question from the user study. Users are shown two clips side-by-side
and are asked to provide their preference.

Q1: Which of the following two motions appear more "natural" and "human-like"?522

1. ← LEFT is more natural523

2. → RIGHT is more natural524

3. LEFT and RIGHT are equally natural525

The order of clips is selected at random for each pair. Aggregate results from the user study are526

provided in Table 4, and Figure 10 shows a sample question from the user study. Participants527

are sourced from undergraduate and graduate student populations across multiple universities and528

disciplines on a volunteer basis. We do not collect personal or otherwise identifiable information529

about participants, and all participants have provided written consent to use of their responses for530

the purposes of this study.531

18

Table 4. Results from the user study. We summarize results from our user study (n = 51) be-
low by reporting per-pair aggregate numbers. Higher is better ↑. Clips generated by our method,
Puppeteer, are considered more natural by a super-majority of participants.

Pair TD-MPC2 Equal Ours
Corridor
Pair 1 0 0 51
Pair 2 0 2 49

Hurdles
Pair 1 0 0 51
Pair 2 0 0 51

Walls
Pair 1 1 2 48
Pair 2 0 0 51

Gaps
Pair 1 0 0 51
Pair 2 0 0 51

Stairs
Pair 1 0 2 49
Pair 2 1 3 47

Aggregate 0.4% 1.8% 97.8%

19

	Introduction
	Preliminaries
	A Hierarchical World Model for High-Dimensional Control
	Low-Level Tracking World Model
	High-Level Puppeteering World Model
	Planning with Termination Conditions

	Experiments
	Experimental Details
	Main Results
	Ablations & Analysis

	Related Work
	Additional Qualitative Results
	Implementation Details
	Task Suite
	User Study

