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Abstract
Adapters have been positioned as a parameter-001
efficient fine-tuning (PEFT) approach, whereby002
a minimal number of parameters are added to003
the model and fine-tuned. However, adapters004
have not been sufficiently analyzed to under-005
stand if PEFT translates to benefits in train-006
ing/deployment efficiency and maintainabil-007
ity/extensibility. Through extensive experi-008
ments on many adapters, tasks, and languages009
in supervised and cross-lingual zero-shot set-010
tings, we clearly show that for Natural Lan-011
guage Understanding tasks, the parameter ef-012
ficiency in adapters does not translate to effi-013
ciency gains compared to full fine-tuning of014
models. More precisely, adapters are relatively015
expensive to train and have slightly higher de-016
ployment latency. Furthermore, the maintain-017
ability /extensibility benefits of adapters can be018
achieved with simpler approaches like multi-019
task training via full fine-tuning, which also020
provide relatively faster training times. We,021
therefore, recommend that for moderately sized022
models practitioners should rely on full fine-023
tuning or multi-task training rather than using024
adapters.025

1 Introduction026

Pretraining followed by fine-tuning (Devlin et al.,027

2019; Liu et al., 2019b) is the most commonly used028

paradigm in NLP, but as pre-trained models grow in029

size, fine-tuning the entire model (full fine-tuning)030

becomes costly. Maintaining a copy of the model031

for each task is costly, and parameter efficient fine-032

tuning (PEFT) has become an active area of re-033

search that focuses on fine-tuning a minimal num-034

ber of parameters while still achieving comparable035

performance as of full fine-tuning. Fine-tuning036

adapters (Houlsby et al., 2019), which typically in-037

volves fine-tuning tiny feed-forward layers injected038

into the model, is the most popular PEFT approach.039

Given the significantly lesser number of parameters040

that need to be fine-tuned, adapters are very use-041

ful in situations where the pre-trained model is too042

Figure 1: A comparison of 10 different adapters with
simpler baselines like full fine-tuning (FT) and multi-
task learning (MTL). In the top figure the y-axis shows
the zero-shot performance averaged across all tasks and
all languages. In the bottom figure, the y-axis shows
the En performance averaged across all tasks. The ab-
breviations used are-‘H’ - Houlsby, ‘B’ - Bapna, ‘HP’
- Houlsby Parallel1, ‘BP’- Bapna Parallel, ‘PT’- Prefix
Tuning, ‘L’- LoRA, ‘C’ - Compacter, ‘AD’- Adapter
Drop, ‘AF’ - Adapter Fusion, ‘ME’ - MADX-en, ‘MH’
- MADX-hi, ‘FT’ - Fine-tuning, ‘MTL’- Multi-task-
learning.

large to perform fine-tuning of all its parameters. 043

Furthermore, the availability of frameworks such 044

as Adapter-hub (Pfeiffer et al., 2020a), which is 045

built on top of Transformers (Wolf et al., 2020), 046

has made it easy for researchers to experiment with 047

PEFT methods and deploy their models. 048

While adapters are clearly parameter efficient, 049

we argue that, in practice, there is more to efficiency 050

than just the number of parameters being fine-tuned. 051

For example, a parameter-efficient model will re- 052

quire more floating-point operations (FLOs), owing 053

to the additional parameters added and this will af- 054

fect latency. Additionally, the number of steps till 055

1HP is overlapped by PT in this figure.
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convergence will lead to compute inefficiency - we056

find that adapters take more steps to converge as057

compared to full fine-tuning. Although adapters058

can be easily used to extend an existing model to059

new tasks, efficiency in terms of the total cost over060

incorporating multiple tasks is often not studied.061

We thus believe that a thorough study of adapters062

in comparison with simpler baselines is needed to063

answer the following question: What are adapters064

really efficient at?065

We recommend that to answer this question one066

should look beyond the number of parameters and067

consider other indicators of efficiency, such as, (i)068

training time and compute (FLOs), (ii) deployabil-069

ity via inference latency (iii) and maintainability.070

Existing studies have looked at one or more of071

the above metrics but a thorough study comparing072

multiple popular adapters on different tasks across073

languages, especially in a cross-lingual setting, is074

missing. A simpler baseline is multi-task learning075

(MTL) (Liu et al., 2019a), where a single model076

is jointly trained for all tasks via task specific clas-077

sification heads. Most works on adapters do not078

compare against MTL, making it hard to get a clear079

picture of the real utility of adapters.080

In this work, we try to build a clearer picture by081

experimenting with 10 different adapters and 6 Nat-082

ural Language Understanding (NLU) tasks span-083

ning 11 Indian languages. We focus on zero-shot084

transfer, wherein we fine-tune models only on the085

English training data. We compare adapters with086

full fine-tuning and multi-task learning (MTL) and087

find that, quite contrary to popular beliefs, these088

simpler baselines are more efficient along multi-089

ple axes. Our work also lays down a framework090

for evaluating adapters along multiple dimensions.091

The key findings of our work along these dimen-092

sions, as summarized in Figure 1 are as follows:093

Compute efficiency: Adapters are compute ineffi-094

cient and need on average 325.6% more compute095

(measured in FLOs) than full fine-tuning, mainly096

because they take 20.2% longer time to converge.097

Inference overhead: Adapters insert new layers098

and thus the amount of computation as well as099

the size of the deployed model slightly increases100

compared to full fine-tuning.101

Maintainability and Extensibility: We find that102

rather than adding a new adapter for a new task,103

using MTL, where we combine the new task’s data104

with 10% of the previous tasks’ data, not only105

gives a comparable performance but is also com-106

putationally comparable while benefitting from the 107

cross-task transfer. As MTL only needs a new task 108

specific classification head, it can be an excellent 109

maintainable and extensible alternative to adapters. 110

Task Performance. We show that both adapters 111

and MTL can achieve comparable performance 112

to full fine-tuning in both in-language and cross- 113

language zero-shot settings. Our findings provide 114

a realistic picture of adapters for NLU and show 115

that while they are indeed parameter efficient, they 116

suffer from compute limitations that can be ad- 117

dressed using approaches like MTL. We hope that 118

our observations will spur further investigations 119

into adapters and help in the development of PEFT 120

approaches addressing the existing limitations of 121

adapters. 122

2 Related Work 123

Parameter Efficient Fine-Tuning (PEFT): Zoph 124

et al. (2016) was one of the earliest to work on 125

PEFT by showing that fine-tuning a part of a pre- 126

trained model reduces memory requirements and 127

helps to avoid overfitting. Despite its simplicity, 128

determining what part of the model should be fine- 129

tuned involves exhaustive searching. However, 130

this has spurred research into injecting fine-tunable 131

components into the pre-trained model, the most 132

prominent being works on Adapters (Houlsby et al., 133

2019; Bapna and Firat, 2019; Hu et al., 2022) which 134

are tiny feed-forward layers injected after the self- 135

attention and/or feed-forward layers of Transformer 136

models (Vaswani et al., 2017). Learnable prompts 137

(Li and Liang, 2021), which are parameters ap- 138

pended to the key and values of the attention layers, 139

can also be considered as adapters via a simple re- 140

formulation (He et al., 2022). Works such as com- 141

pacters (Mahabadi et al., 2021) and IA3 (Liu et al., 142

2022) further focus on reducing the size of adapters. 143

On the other hand, works on AdapterFusion (Pfeif- 144

fer et al., 2021), and MAD-X (Pfeiffer et al., 2020b) 145

focus more on the transfer learning capabilities of 146

adapters. However, these works mainly focus on 147

parameter efficiency and leave out other aspects 148

of efficiency, such as training time, deployability, 149

maintainability, and cross-lingual transfer effective- 150

ness. AdapterDrop (Rücklé et al., 2021) proposes 151

to reduce adapter training time but ignores other 152

aforementioned aspects, a gap which we fill in this 153

paper. 154

Multilingual Pre-trained Models: Ever since the 155

introduction of BERT (Devlin et al., 2019), which 156
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is a pre-trained model which leverages monolin-157

gual data, there has been a steep improvement in158

the performance of downstream NLP tasks such as159

sentiment analysis, question answering and natural160

language inference. This was followed by mas-161

sively multilingual pre-trained models such as the162

language group agnostic model XLM-R (Conneau163

et al., 2020), and language group specific models164

IndicBERT (Doddapaneni et al., 2022; Kakwani165

et al., 2020), IndoBERT (Koto et al., 2020), AfriB-166

erta (Ogueji et al., 2021), etc. Multilingual models167

enable cross-lingual transfer, allowing models to168

be fine-tuned on one language and be evalauted in169

a zero-shot on other languages. The efficiency of170

transfer via fine-tuning has not received due atten-171

tion, and our work focuses on this aspect both in172

full fine-tuning and PEFT paradigms.173

Multi-Task Learning (MTL): MTL focuses on174

fully-fine tuning one model for multiple tasks175

(Caruana, 1993) but has only recently seen sig-176

nificant adoption (Wei et al., 2021; Muennighoff177

et al., 2022). MTL benefits from cross-task trans-178

fer, which we also analyzed in this paper (§4.4). A179

general overview of MTL in deep learning can be180

found in Ruder (2017) and Zhang et al. (2022).181

3 Experimental Setup182

We now describe the fine-tuning approaches, tasks,183

datasets, languages, pre-trained models, and train-184

ing settings.185

3.1 Fine-Tuning Methodologies186

Following are the fine-tuning approaches we exper-187

iment with.188

3.1.1 Non-Adapter Approaches189

Full Fine-Tuning (Devlin et al., 2019) is the stan-190

dard approach, where all parameters are updated.191

Multi-Task Learning (Liu et al., 2019a) is simi-192

lar to full fine-tuning, except that it uses a shared193

encoder for all tasks, with each task having a task-194

specific “head”.195

3.1.2 Adapter Approaches196

Houlsby Adapter (Houlsby et al., 2019) involves197

insertion of additional bottleneck feed-forward lay-198

ers, after the self-attention and FFN sub-layers.199

We experiment with both, sequential and parallel200

(Houlsby sequential and Houlsby parallel) adapters201

(He et al., 2022) .202

Bapna Adapter (Bapna and Firat, 2019) inserts203

adapters only after FFN sub-layer. We again use204

both the sequential and parallel versions (Bapna 205

sequential and Bapna parallel). 206

LoRA (Hu et al., 2022) inserts trainable low-rank 207

matrices for the query and value matrices in the self- 208

attention block to approximate the weight updates. 209

Compacter (Mahabadi et al., 2021) adapts the 210

weights of neural networks using compact low-rank 211

hypercomplex adapter layers. 212

Prefix-Tuning (Li and Liang, 2021) is inspired 213

from textual prefixes. Here, k trainable prefix vec- 214

tors are prepended to the Keys (K) and values (V) 215

in the self-attention block. 216

MAD-X (Pfeiffer et al., 2020b) is a method 217

for cross-lingual transfer learning that pre-trains 218

language-specific adapters for cross-lingual testing 219

and task-specific adapters for the target task. 220

AdapterFusion (Pfeiffer et al., 2021) uses adapters 221

trained on other tasks for transfer learning as addi- 222

tional layers in the model for the downstream task. 223

The fused layer is trained for the target task. 224

AdapterDrop (Rücklé et al., 2021) aims to reduce 225

the computational cost of training adapters by ran- 226

domly dropping a subset of the adapters during 227

each training iteration. 228

While LoRA and prefix-tuning are not originally 229

considered as adapters, He et al. (2022) have shown 230

that they can be reformulated as adapters and thus 231

all PEFT approaches we study in this paper are 232

essentially adapters. 233

3.2 Tasks, Datasets and Languages 234

We focus on 6 cross-lingual natural language un- 235

derstanding tasks from the IndicXTREME bench- 236

mark (Doddapaneni et al., 2022) spanning 18 lan- 237

guages from 4 language families. These tasks can 238

be broadly classified into sentence classification 239

(4), token classification (1), and question answer- 240

ing (1). We give an overview in Table 1, including 241

corpora sizes and metrics (Accuracy or F1) used 242

for evaluation. Unless explicitly mentioned, we 243

only train and validate on English data and evalu- 244

ate on English test sets (supervised/in-language) as 245

well as Indian language test sets in IndicXTREME 246

(zero-shot). Please refer to Appendix 8.1 for details 247

of tasks and languages. 248

3.3 Pre-Trained Models 249

We mainly experiment with IndicBERT v2 (Dod- 250

dapaneni et al., 2022) which is trained on the Indic- 251

Corp v2 corpus and supports 23 Indian languages 252

and English. It is trained with the Masked Lan- 253

guage Modeling (MLM) (Devlin et al., 2019) ob- 254
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Task Category Train Data Test Data |Train| |Test| |Lang| Metric

Sentence
Classification

Amazon Multi Reviews IndicSentiment 160k 1000 11 Acc.

MultiNLI IndicXNLI 392k 5000 11 Acc.

SocialIQA IndicCOPA 33k 500 11 Acc.

PAWS IndicParaphrase 49k 2002 10 Acc.

Token Classification CoNLL-2003 Naamapadam 11k 607-1080 11 F1

Question Answering SQuAD IndicQA 87k 1517-2017 11 F1

Table 1: A summary of the tasks and datasets used. |Test| denotes the size of Test Data. |Train| is the size of English
training sets. |Lang| denotes the number of languages for which we have evaluated its cross-lingual performance.

jective. We also perform ablations with the BASE255

and LARGE versions of XLM-R (Conneau et al.,256

2020) on the chosen subset of languages.257

Pretraining MAD-X language adapter is done us-258

ing the IndicCorp v2 (Doddapaneni et al., 2022)259

dataset with MLM objective for the 11 Indic lan-260

guages and English with 6.5M sentences sampled261

per language.262

3.4 Training Details263

All models are trained with Adapter-hub (Pfeiffer264

et al., 2020a). All experiments are performed on265

Nvidia A100-SXM4 40GB GPUs and the results266

are reported by doing single run. We use the recom-267

mended/default settings in Adapter-hub but wher-268

ever possible, we performed hyperparameter tuning269

on the development set to determine optimal hyper-270

parameters. Table 2 gives the search space and best271

performing hyperparameters for Houlsby, Bapna,272

LoRA and Prefix-Tuning. For MAD-X, we have273

used the default configuration as in Adapter-hub for274

both language and task adapters, as shown in Ta-275

ble 2. For Adapter-fusion we have trained each task276

adapter in ST-A (single task adapter) style (Pfeiffer277

et al., 2021).278

For all the tasks using the IndicBERT model, we279

train models for a maximum of 50 epochs with an280

early stopping patience of 3 epochs. We use 2,000281

warmup steps for all tasks and settings, except for282

MTL, where we use 20,000 warmup steps due to283

the increased size of the training data. For a fair284

comparison across all settings, we use a batch size285

of 32 examples with a learning rate of 3e-5 and286

weight decay of 0.1. For MTL, we found that a287

weight decay of 0.01 gave the best results. For all288

the experiments FLOs reported are provided by the289

HF transformers library (Wolf et al., 2020).290

Method Hyperparameter Search Space

Houlsby r = 16 r = 2, 4, 8, 16
Bapna r = 16 r = 2, 4, 8, 16
LoRA r = 8, α = 16 r = 2, 4, 8, 16
Prefix-Tuning l = 30 l = 10, 20, 30, 40, 50

Table 2: This table reports the optimal reduction fac-
tor (r), prefix length (l) and LoRA α we have set for
adapters. For those not listed in this table, we have used
the default AdapterHub configurations.

4 Results 291

We now report results comparing various efficiency 292

aspects of adapter and non-adapter approaches. Ta- 293

bles 3 and 5 respectively show the in-language 294

(train and test on English) and cross-lingual (train 295

on English and test on Indic) results averaged 296

across Indic languages. See Appendix 8.2 for per- 297

language performances. We present our key obser- 298

vations in the following sub-sections. 299

4.1 Parameter Efficiency 300

Adapters are parameter-efficient, but no single 301

adapter is best: It is clear that there is no single 302

adapter that performs best in all the tasks. This ob- 303

servation holds true in both in-language and cross- 304

lingual settings, where one method performs best 305

in the in-language setting but might not be the best 306

in the cross-lingual setting. Compacter and LORA 307

consistently give the lowest performance, possibly 308

due to the small number of parameters they fine- 309

tune (they add only 0.2% - 0.3% tunable parameters 310

to the model). On the other hand, Adapter Fusion, 311

Prefix Tuning, and MADX add between 1.1% to 312

7.9% tunable parameters but still perform poorly as 313

compared to the Houlsby adapter, which only adds 314

0.9% parameters. In general, we recommend the 315

Houlsby adapter as it tends to perform well across 316

multiple tasks and languages on average. 317
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# Method AMR XNLI COPA PAWS CoNLL
2003 SQuAD Avg. % ↑

FLOs

% ↑
Inference

time

% ↑
#Param.

1 Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 83.9 311.7 44.0 0.9
2 Bapna 93.3 81.9 59.9 91.4 91.0 80.9 83.1 264.7 28.3 0.5
3 Houlsby Parallel 93.1 82.5 61.4 90.6 92.2 82.0 83.6 185.1 41.5 0.9
4 Bapna Parallel 93.1 82.7 60.5 91.3 91.1 81.4 83.4 199.9 21.2 0.5
5 Prefix Tuning 93.8 82.6 61.1 92.2 91.5 81.0 83.7 186.5 33.8 3.8
6 LoRA 93.4 80.3 57.4 90.2 90.4 79.5 81.8 226.2 23.1 0.3
7 Compacter 92.8 74.8 50.8 72.7 89.2 73.0 75.5 371.4 100.5 0.2
8 Adapter Drop 92.7 80.6 52.3 75.0 90.4 70.7 77.0 97.6 27.5 0.7
9 Adapter Fusion 93.2 79.9 59.9 92.2 92.0 81.9 83.2 492.5 178.1 7.9

10 MAD-X - en 93.6 82.1 56.9 91.0 91.5 81.1 82.7 1042.5 56.6 1.1
11 MAD-X - hi 93.0 79.3 58.4 90.6 91.1 79.4 82.0 1025.7 56.6 1.1

Best Adapter # 1 4 1 1 3 3 1 8 2 7

12 FT 93.8 83.0 62.3 93.0 92.8 82.1 84.5 - - -
13 MTL 93.5 80.9 61.4 91.5 91.0 82.1 83.4 20.2 0.0 0.0

Best method # 1 12 12 12 12 12, 13 12 12 12,13 12,13

Table 3: Comparison on in-language (train and test on English) performance of FT and adapters for IndicBERT.
We report F1 scores for CoNLL-2003 & SQuAD, and accuracy for the other tasks. The abbreviation "AMR" refers
to the Amazon Multilingual Review Dataset. The last three columns show the percent increase in FLOs, inference
time, and the number of fine-tuned parameters compared to full fine-tuning respectively. Here, "best method # "
reports the best performing row for the respective task and "best adapter # " reports the best performing adapter for
the respective task.

Method Sentiment XNLI COPA Paraphrase NER QA Total

Houlsby 249.8 208.5 376.6 88.5 19.8 599.0 311.7
Bapna 185.2 246.5 321.0 43.6 77.7 456.7 264.7
Houlsby Parallel 105.3 208.5 274.2 -5.8 88.0 275.0 185.1
Bapna Parallel 62.9 205.4 185.7 52.6 26.9 389.4 199.9
Prefix Tuning 190.9 237.2 179.4 96.2 77.4 198.1 186.5
Lora 223.2 203.1 168.0 93.6 143.6 402.9 226.2
Compacter 363.9 121.7 650.9 25.9 252.4 735.6 371.4
Adapter Drop 124.3 225.6 136.4 -40.6 19.8 1.9 97.6

Table 4: This table reports percentage increase of FLOs for several adapters across tasks with respect to full
fine-tuning. Column "Total" reports the percentage increase in total FLOs for each method with respect to full
fine-tuning (FLOs are added across all tasks). Since, for Adapter Fusion and MAD-X, task adapters and language
adapters, respectively, are shared across tasks, training FLOs are also shared across tasks. Thus, for these two
approaches, FLOs cannot be reported accurately for individual tasks.

4.2 Compute Efficiency318

We calculated the total number of FLOs for all319

methods for all tasks and report percentage in-320

creases relative to full fine-tuning in Table 4. Task321

specific details of model convergence and absolute322

FLOs (Tables 8) are available in the Appendix.323

Full fine-tuning is the fastest by a significant mar-324

gin. While adapters methods are parameter effi-325

cient, they are not computationally efficient when326

fine-tuning. In practice, they consume more FLOs327

to converge and achieve performance comparable328

to full fine-tuning. AdapterDrop (row 8 in Table 3)329

exhibits the least increase in FLOs (97.6%) but330

also suffers from reduced performance. MAD-X331

(rows 10, 11) is the costliest (1042.5%-1025.7%) in 332

terms of FLOs but still gives poor results compared 333

to full fine-tuning. The best performing adapter 334

(Houlsby, row 1) is also computationally very ex- 335

pensive. These results clearly show that adapters 336

are computationally very costly while achieving 337

comparable or worse performance compared to full 338

fine-tuning. 339

MTL is a cost-efficient alternative to adapters given 340

that it only uses 20% more FLOs than full fine- 341

tuning while achieving performance comparable 342

to the best adapter (Houlsby gives 83.9% & MTL 343

gives 83.4%). Further, MTL exhibits the best av- 344

erage cross-lingual performance with respect to 345

adapters as well as full fine-tuning. It should be 346
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# Method Indic
Sentiment

Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg.

1 Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 66.6
2 Bapna 89.0 72.1 60.9 55.9 65.2 48.6 65.3
3 Houlsby Parallel 90.3 72.4 63.7 55.8 66.7 49.2 66.4
4 Bapna Parallel 89.9 72.5 61.4 56.3 64.7 48.9 65.6
5 Prefix Tuning 88.2 73.5 65.3 55.8 67.1 48.4 66.4
6 Lora 85.7 70.7 60.7 55.0 63.3 47.4 63.8
7 Compacter 88.5 69.9 63.2 50.8 61.3 46.4 63.4
8 Adapter Drop 87.8 72.0 61.8 52.9 64.4 44.4 63.9
9 Adapter Fusion 89.3 70.8 59.3 56.3 66.9 48.7 65.2

10 MAD-X - en 89.6 72.4 62.6 55.9 66.0 47.6 65.7
11 MAD-X - hi 88.6 70.8 63.1 56.5 64.1 47.4 65.1

Best Adapter # 3 5 5 1 5 1 1

12 FT 90.9 72.9 62.5 57.3 66.7 49.3 66.6
13 MTL 90.2 70.7 65.3 74.3 65.3 45.5 68.6

Best method # 12 5 5, 13 13 5 1 13

Table 5: Comparison on cross-lingual (train on English test on Indic) performance of FT and adapters for
IndicBERT. We report F1 scores for Naamapadam & IndicQA, and accuracy for the other tasks. Here, "best method
# " reports the best performing row for the respective task and "best adapter # " reports the best performing adapter
for the respective task.

noted that MTL significantly benefits the paraphras-347

ing task via cross-task transfer, exhibiting a perfor-348

mance increase of 16.9% accuracy over full fine-349

tuning in a cross-lingual setting (experiments in350

further sections show that paraphrasing benefits351

from the NLI task). Thus, if the full set of tasks352

to be supported is known a priori, MTL is simpler353

and equivalent to adapters in downstream perfor-354

mance, while being more cost-efficient. Sanh et al.355

(2022) show that MTL enables zero-shot task gen-356

eralization, further enhancing the attractiveness of357

MTL over adapters.358

4.3 Inference Overhead359

Table 3 also shows the increase in inference time360

for different approaches compared to full fine-361

tuning. MTL does not add any overhead over full362

fine-tuning since no new parameters are added to363

the model. On the other hand, adapters have a364

non-trivial overhead in inference time due to addi-365

tional parameters. The Bapna parallel and LoRA366

methods show least increase in inference time (of367

21.2% and 23.1%, respectively), since they are368

parallel adapters. Bapna parallel has lesser infer-369

ence time than Houlsby parallel as it has almost370

half the number of parameters. The adapter fusion371

method has the highest inference time as it com-372

bines all six task adapters and has an additional373

fused layer. It also has the maximum number of374

additional parameters. Although Compacter has375

the least number of parameters, its inference time is376

100.5% more than fine-tuning because the compact 377

low-rank hypercomplex weight matrices are con- 378

verted to high-rank ones via the Kronecker product. 379

These high-rank matrices are actually used during 380

the forward pass and this two-step process slows 381

down inferencing2. 382

4.4 Maintainability and Extensibility 383

The primary advantage of adapters is the ability 384

to ‘plug-and-play’ modules, thus making it easy to 385

extend a pre-trained model to new tasks without 386

having to make a copy for the new task or im- 387

pacting performance on other tasks. This reduces 388

memory requirements at inference time and makes 389

the system more modular, maintainable and exten- 390

sible. We have already seen that MTL models offer 391

the same performance with no additional parame- 392

ters and at a lower computational cost compared to 393

adapters. To see if they can also be easily extensi- 394

ble, we experiment with the following setup. 395

We hold out one task (the target task) and fine- 396

tune the pre-trained model on the remaining tasks 397

(resulting in model MTL−1). Next, we continue 398

fine-tuning the model on the target task as well 399

as 10% data from the tasks the model has already 400

seen. A sample from the older tasks is included in 401

the fine-tuning mix to avoid catastrophic forgetting 402

(McCloskey and Cohen, 1989; French, 1999). For 403

2The current implementation does not pre-compute the
high-rank matrices and thus there is a possibility of reducing
the inference time of Compacter, although it will not be faster
than the Houlsby adapter to which it is architecturally similar.
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Target
Task Step Indic

Sentiment
Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg -1 Avg % ↑

FLOs

Baseline Full FT 90.9 72.9 62.5 57.3 66.7 49.3 - 66.6 -
MTL 88.5 71.2 64.9 74.0 65.8 45.4 - 68.3 20.2

Best Adapter Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 - 66.6 311.7

Sentiment MTL−1 - 71.5 64.8 74.8 65.1 46.9 64.6 - -
MTL+tgt+old 90.2 70.8 61.9 72.9 66.1 48.8 64.1 68.4 2.3
MTL+tgt 89.1 54.9 52.2 67.3 40.4 34.9 50.0 56.5 1.7

XNLI MTL−1 90.5 - 67.8 56.7 63.6 47.4 65.2 - -
MTL+tgt+old 90.8 71.2 63.6 68.7 59.6 48.3 66.2 67.0 20.5
MTL+tgt 86.0 70.5 64.5 73.3 56.2 15.1 59.0 60.9 12.1

COPA MTL−1 88.8 72.3 - 73.7 65.0 48.4 69.7 - -
MTL+tgt+old 88.3 69.7 65.6 74.8 65.4 43.9 68.4 67.9 15.3
MTL+tgt 89.5 66.4 66.0 75.5 62.7 46.4 68.1 67.7 9.3

Paraphrase MTL−1 86.0 70.2 64.4 - 65.0 45.0 66.1 - -
MTL+tgt+old 87.4 69.8 64.2 77.8 65.0 45.4 66.4 68.3 32.4
MTL+tgt 81.1 66.0 64.4 73.1 30.1 42.5 56.8 59.5 24.1

NER MTL−1 88.0 72.5 65.7 77.3 - 47.7 70.3 - -
MTL+tgt+old 86.7 71.2 64.4 76.3 65.2 45.1 68.7 68.1 68.2
MTL+tgt 83.8 67.9 62.3 57.3 68.5 39.8 62.2 63.2 59.8

QA MTL−1 89.2 72.3 64.9 74.9 65.4 - 73.3 - -
MTL+tgt+old 85.9 71.1 63.9 75.7 62.3 46.8 71.8 67.6 25.8
MTL+tgt 84.9 68.2 65.9 66.9 23.7 46.6 61.9 59.4 21.2

Table 6: This table reports cross-lingual (train on English test on Indic) performance for maintainability of MTL.
"Target task" is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing
MTL−1 model. MTL+tgt+old represents continual fine-tuning of the MTL−1 model on the target task dataset and
10% of the existing task dataset. MTL+tgt represents continual fine-tuning of the MTL−1 model on the target task
dataset. "Avg -1 " reports the cross-lingual performance averaged over the tasks included in MTL−1 step. "Avg"
reports the cross-lingual performance averaged over all 6 task. Here, column "%↑FLOs" reports the relative percent
increase in the total computation cost for adding all 6 task to the model with respect to the total computation cost of
fine-tuning. Here, text bold indicates the best value in the column and colored cell represent MTL is performing
better than the Best Adapter method.

comparison, we also perform continued fine-tuning404

on the target task only (model: MTL+tgt) as well405

as fine-tuning on all available tasks (model: MTL).406

The results of these experiments are shown in407

Table 6 for cross-lingual settings (and Table 9 in408

Appendix for in-language settings). We see that409

the target task’s performance is comparable to both410

full fine-tuning and MTL with all tasks. Thus, new411

tasks can be added to an existing MTL model while412

retaining the same performance as full FT or MTL.413

Moreover, we see that the MTL+tgt+old model414

also retains performance for the older tasks. We415

also see that if sample data from the already sup-416

ported tasks is not used, the model suffers from417

catastrophic forgetting (model: MTL+tgt). Thus,418

a simple adaptation of MTL can support multiple419

tasks in an extensible manner.420

The fine-tuning computational cost for421

MTL+tgt+old is the sum of computational costs422

for (a) fine-tuning MTL−1 and (b) continued423

fine-tuning required to extend model for the target 424

task. In Table 6, column "%↑FLOs" reports the 425

percentage increase in total FLOs(sum of (a) and 426

(b)) with respect to total fine-tuning FLOs(i.e. 427

Fine-tuning FLOs sum over all task). As observed, 428

holding out sentiment task, and then continual 429

learning of sentiment task along with 10% data of 430

existing tasks takes only 2.3% more relative FLOs. 431

The maximum cost is taken by NER task with 432

68.2% more relative FLOs. Holding out one task 433

and then adding the held out task on an average 434

takes 27.4% more relative FLOs, while adding 435

all tasks at once takes 20.2% more relative FLOs. 436

Nonetheless, this is still more cost-effective than 437

the best-performing adapter methods. For instance, 438

the Houlsby adapter requires around 311% more 439

computation compared to full fine-tuning. Thus, 440

we see maintainability of MTL cost-effective. 441

However, average cross-lingual performance 442

for MTL maintainability (as shown in Table 6), 443
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XL XLMR-Base XLMR-Large

Method NER XNLI QA Avg. %↑FLOs NER XNLI QA Avg. %↑FLOs

Houlsby 61.0 72.6 72.5 68.7 484.3 64.6 76.2 78.6 73.1 200.5
Bapna 58.3 71.3 71.0 66.8 547.1 64.3 76.7 78.0 73.0 139.9
Houlsby parallel 59.2 72.8 71.2 67.8 197.0 65.3 78.7 77.8 73.9 143.3
Bapna parallel 57.1 70.3 69.7 65.7 409.1 63.1 78.8 77.6 73.2 168.6
Prefixtuning 58.5 69.9 68.8 65.7 256.5 64.7 78.7 77.6 73.7 287.3
LORA 58.6 70.5 68.4 65.8 734.7 62.3 76.9 77.1 72.1 270.0
Compacter 55.1 66.8 64.1 62.0 805.3 58.5 76.4 75.3 70.1 490.1
Adapter drop 60.5 70.2 71.3 67.3 345.1 64.6 78.8 78.5 74.0 214.1
FT 61.7 73.7 70.8 68.7 - 63.9 77.0 78.0 73.0 -

Table 7: Comparison on cross-lingual performance of FT and adapters for XLMR-Base and XLMR-Large model.
"Avg." reports the average cross-lingual perfromance across all task. "%↑FLOs" reports the relative increase in
FLOs with respect to fine-tuning.

is slightly inflated due to the inclusion of the444

paraphrase task. If the average MTL performance445

is calculated without the paraphrase task (i.e. only446

considering the remaining five tasks), a slight447

decrease in performance is observed.448

4.5 Effect of Model Size449

To further study the effect of model size on differ-450

ent adapters, we experiment with two different pre-451

trained models trained on the same pretraining data452

but differing only in model size. Specifically, we453

compare the XLMR-base and XLMR-large models454

(Conneau et al., 2020) which have 270M and 550M455

parameters, respectively. We evaluate the adapters456

on the XNLI, XQuAD and NER tasks from the457

XTREME benchmark (Hu et al., 2020). We use458

the English dataset for training and test the cross-459

lingual zero-shot performance on 14 languages for460

XNLI and WikiANN and 11 languages for XQuAD.461

The results are shown in Table 7. We can see that462

as the model size increase, the adaptation time rel-463

ative to full fine-tuning time reduces. Thus, for464

large language models, we might see a trend of465

adapters being increasingly cost-efficient. In fact,466

recent work on large language models have shown467

adapters to be promising (Yong et al., 2022). How-468

ever, larger models still need heavy compute and469

deploying them is still challenging. In this case,470

there is a line of work that distills LLMs which can471

then be fine-tuned (Ganesan et al., 2021). Given472

that adapters do not have much compute efficiency473

in smaller models, full-fine tuning or MTL are ex-474

cellent contenders.475

4.6 Key Takeaway476

Fig 1 shows a unified summary of task performance477

and fine-tuning compute required for the various ap-478

proaches discussed in the paper. Summarizing ob- 479

servations previously discussed, we see that MTL 480

outperforms or is comparable to all adapters in 481

in-language and cross-language zero-shot settings 482

(particularly for smaller models). Hence, we rec- 483

ommend that MTL should be considered as an al- 484

ternative to adapters in constrained scenarios where 485

relatively smaller models are preferred, computa- 486

tional budgets are limited and extensibility is im- 487

portant. 488

5 Conclusion 489

In this paper, we have conducted a comprehen- 490

sive analysis of adapters across different languages 491

and tasks to evaluate their advantages in terms of 492

training/deployment efficiency and maintainabil- 493

ity/extensibility. We compared adapters with sim- 494

pler baseline methods, including fine-tuning and 495

multi-task learning, in supervised/in-language as 496

well as zero-shot cross-lingual settings, and found 497

that these simpler methods are more computation- 498

ally efficient and have better deployment efficiency, 499

while achieving the comparable performance as 500

that of adapters. Additionally, we conducted exten- 501

sive experiments to show that multi-task learning 502

is a relatively more cost-effective alternative to the 503

adapters in terms of maintainability, as it allows the 504

model to be extended for new tasks at a lower cost 505

than adapters. Therefore, we suggest that simpler 506

baselines be used for moderately sized models, as 507

they are more efficient than adapters. 508

6 Limitations 509

We identify the following limitations of our work: 510

• Our study is limited to NLU and some of our 511

observations might not apply in Natural Lan- 512
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guage Generation (NLG) settings. While for513

NLU cross-lingual transfer through full fine-514

tuning is as effective as adapters, in NLG full515

fine-tuning for zero-shot cross-lingual NLG516

is unreliable due to the risk of catastrophic517

forgetting. Therefore, adapters might be more518

important for NLG (Vu et al., 2022).519

• We primarily focus on smaller pre-trained520

models because larger models require signif-521

icant computing resources that not everyone522

may have access to, and therefore, our find-523

ings may not be applicable to larger models524

with billions of parameters. However, active525

research on compressing pre-trained models526

indicates that fine-tuning compact pre-trained527

models will remain a significant area of re-528

search.529

• Our analyses focus on 6 NLG tasks, which is530

relatively fewer compared to the total number531

of tasks in benchmarks such as BIG-Bench532

(Srivastava et al., 2022). Although focusing533

on a larger number of tasks will increase the534

credibility of our studies, our focus on cross-535

lingual performance means that we are cur-536

rently limited by the availability of bench-537

marking data in other languages for these538

large number of tasks.539

7 Ethics Statement540

All of the datasets used in this study were publicly541

available, and no annotators were employed for542

data collection. We confirm that the datasets we543

used did not contain any harmful content. We have544

cited the datasets and relevant works used in this545

study.546

References547

Ankur Bapna and Orhan Firat. 2019. Simple, scal-548
able adaptation for neural machine translation. In549
Proceedings of the 2019 Conference on Empirical550
Methods in Natural Language Processing and the551
9th International Joint Conference on Natural Lan-552
guage Processing (EMNLP-IJCNLP), pages 1538–553
1548, Hong Kong, China. Association for Computa-554
tional Linguistics.555

Rich Caruana. 1993. Multitask learning: A knowledge-556
based source of inductive bias. In Machine Learning,557
Proceedings of the Tenth International Conference,558
University of Massachusetts, Amherst, MA, USA,559
June 27-29, 1993, pages 41–48. Morgan Kaufmann.560

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 561
Vishrav Chaudhary, Guillaume Wenzek, Francisco 562
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 563
moyer, and Veselin Stoyanov. 2020. Unsupervised 564
cross-lingual representation learning at scale. In Pro- 565
ceedings of the 58th Annual Meeting of the Asso- 566
ciation for Computational Linguistics, pages 8440– 567
8451, Online. Association for Computational Lin- 568
guistics. 569

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 570
Kristina Toutanova. 2019. BERT: Pre-training of 571
deep bidirectional transformers for language under- 572
standing. In Proceedings of the 2019 Conference of 573
the North American Chapter of the Association for 574
Computational Linguistics: Human Language Tech- 575
nologies, Volume 1 (Long and Short Papers), pages 576
4171–4186, Minneapolis, Minnesota. Association for 577
Computational Linguistics. 578

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham 579
Ramesh, Shreya Goyal, Mitesh M. Khapra, Anoop 580
Kunchukuttan, and Pratyush Kumar. 2022. Indicx- 581
treme: A multi-task benchmark for evaluating indic 582
languages. CoRR, abs/2212.05409. 583

Robert M. French. 1999. Catastrophic forgetting in con- 584
nectionist networks. Trends in Cognitive Sciences, 585
3(4):128–135. 586

Vinod Ganesan, Gowtham Ramesh, and Pratyush Ku- 587
mar. 2021. Supershaper: Task-agnostic super pre- 588
training of BERT models with variable hidden di- 589
mensions. CoRR, abs/2110.04711. 590

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 591
Kirkpatrick, and Graham Neubig. 2022. Towards a 592
unified view of parameter-efficient transfer learning. 593
In International Conference on Learning Representa- 594
tions. 595

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 596
Bruna Morrone, Quentin De Laroussilhe, Andrea 597
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 598
Parameter-efficient transfer learning for NLP. In 599
Proceedings of the 36th International Conference 600
on Machine Learning, volume 97 of Proceedings 601
of Machine Learning Research, pages 2790–2799. 602
PMLR. 603

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 604
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 605
Weizhu Chen. 2022. Lora: Low-rank adaptation of 606
large language models. In The Tenth International 607
Conference on Learning Representations, ICLR 2022, 608
Virtual Event, April 25-29, 2022. OpenReview.net. 609

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra- 610
ham Neubig, Orhan Firat, and Melvin Johnson. 611
2020. XTREME: A massively multilingual multi- 612
task benchmark for evaluating cross-lingual general- 613
ization. CoRR, abs/2003.11080. 614

Divyanshu Kakwani, Anoop Kunchukuttan, Satish 615
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M. 616

9

https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2212.05409
https://doi.org/10.48550/arXiv.2212.05409
https://doi.org/10.48550/arXiv.2212.05409
https://doi.org/10.48550/arXiv.2212.05409
https://doi.org/10.48550/arXiv.2212.05409
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
http://arxiv.org/abs/2110.04711
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080


Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:617
Monolingual corpora, evaluation benchmarks and618
pre-trained multilingual language models for Indian619
languages. In Findings of the Association for Com-620
putational Linguistics: EMNLP 2020, pages 4948–621
4961, Online. Association for Computational Lin-622
guistics.623

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.624
Smith. 2020. The multilingual amazon reviews cor-625
pus. In Proceedings of the 2020 Conference on Em-626
pirical Methods in Natural Language Processing,627
EMNLP 2020, Online, November 16-20, 2020, pages628
4563–4568. Association for Computational Linguis-629
tics.630

Fajri Koto, Afshin Rahimi, Jey Han Lau, and Timo-631
thy Baldwin. 2020. IndoLEM and IndoBERT: A632
benchmark dataset and pre-trained language model633
for Indonesian NLP. In Proceedings of the 28th Inter-634
national Conference on Computational Linguistics,635
pages 757–770, Barcelona, Spain (Online). Interna-636
tional Committee on Computational Linguistics.637

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:638
Optimizing continuous prompts for generation. In639
Proceedings of the 59th Annual Meeting of the Asso-640
ciation for Computational Linguistics and the 11th641
International Joint Conference on Natural Language642
Processing (Volume 1: Long Papers), pages 4582–643
4597, Online. Association for Computational Lin-644
guistics.645

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-646
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.647
2022. Few-shot parameter-efficient fine-tuning is648
better and cheaper than in-context learning. CoRR,649
abs/2205.05638.650

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-651
feng Gao. 2019a. Multi-task deep neural networks652
for natural language understanding. In Proceedings653
of the 57th Annual Meeting of the Association for654
Computational Linguistics, pages 4487–4496, Flo-655
rence, Italy. Association for Computational Linguis-656
tics.657

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-658
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,659
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.660
Roberta: A robustly optimized BERT pretraining661
approach. CoRR, abs/1907.11692.662

Rabeeh Karimi Mahabadi, James Henderson, and Se-663
bastian Ruder. 2021. Compacter: Efficient low-rank664
hypercomplex adapter layers. In Advances in Neural665
Information Processing Systems 34: Annual Confer-666
ence on Neural Information Processing Systems 2021,667
NeurIPS 2021, December 6-14, 2021, virtual, pages668
1022–1035.669

Michael McCloskey and Neal J. Cohen. 1989. Catas-670
trophic interference in connectionist networks: The671
sequential learning problem. volume 24 of Psychol-672
ogy of Learning and Motivation, pages 109–165. Aca-673
demic Press.674

Arnav Mhaske, Harshit Kedia, Sumanth Doddapa- 675
neni, Mitesh M. Khapra, Pratyush Kumar, V. Rudra 676
Murthy, and Anoop Kunchukuttan. 2022. Naama- 677
padam: A large-scale named entity annotated data 678
for indic languages. CoRR, abs/2212.10168. 679

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, 680
Adam Roberts, Stella Biderman, Teven Le Scao, 681
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai- 682
ley Schoelkopf, Xiangru Tang, Dragomir Radev, Al- 683
ham Fikri Aji, Khalid Almubarak, Samuel Albanie, 684
Zaid Alyafeai, Albert Webson, Edward Raff, and 685
Colin Raffel. 2022. Crosslingual generalization 686
through multitask finetuning. 687

Kelechi Ogueji, Yuxin Zhu, and Jimmy Lin. 2021. 688
Small data? no problem! exploring the viability 689
of pretrained multilingual language models for low- 690
resourced languages. In Proceedings of the 1st Work- 691
shop on Multilingual Representation Learning, pages 692
116–126, Punta Cana, Dominican Republic. Associa- 693
tion for Computational Linguistics. 694

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 695
Kyunghyun Cho, and Iryna Gurevych. 2021. 696
AdapterFusion: Non-destructive task composition 697
for transfer learning. In Proceedings of the 16th Con- 698
ference of the European Chapter of the Association 699
for Computational Linguistics: Main Volume, pages 700
487–503, Online. Association for Computational Lin- 701
guistics. 702

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya 703
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8 Appendices973

8.1 Details of Tasks and Languages974

Sentence Classification tasks are Natural Lan-975

guage Inference (NLI), sentiment classification,976

paraphrase detection and Choice Of Plausible Al-977

ternatives (COPA). For NLI we use the MultiNLI978

(Williams et al., 2018) dataset for training and test979

performance on IndicXNLI for 11 languages. For980

sentiment classification, we train on the Amazon981

Multilingual Reviews (AMR) dataset (Keung et al.,982

2020) and test on IndicSentiment for 11 languages.983

For paraphrase detection, we train on the PAWS-X984

(Yang et al., 2019) dataset and test on IndicXPara-985

phrase for 10 languages. For the COPA task, which986

involves selecting one of two alternatives that more987

plausibly has a causal relation with a given premise,988

we train on SocialIQA (Sap et al., 2019) and test989

on IndicCOPA for 11 languages.990

Token Classification task uses the CoNLL-2003991

(Tjong Kim Sang and De Meulder, 2003) dataset992

for training and Naamapadam (Mhaske et al., 2022)993

for testing for 11 languages.994

Question Answering We use the SQuAD (Ra-995

jpurkar et al., 2016) data for training and test on996

the IndicQA benchmark (Doddapaneni et al., 2022)997

available in 11 Indian languages.998

8.2 Task-level sensitivity999

The efficiency of training is also affected by the1000

task, as shown in Table 4, where the QA task re-1001

quires relatively more FLOs compared to the para-1002

phrase task. However, across all tasks the trend1003

remains the same.1004

1005

1006

8.3 MTL maintainability1007

MTL is maintainable as discussed in sec 4.4, as1008

the MTL model can be extended to new tasks by1009

continually learning with the new task’s data along1010

with 10% of the existing tasks’ data. We analyze1011

the impact of performance and computational cost1012

by changing the percentage of an existing task for1013

continual learning of new task as presented in Ta-1014

ble 10 and 11. We tested two additional setups: (a)1015

using 5% data from previously seen tasks (MTL−1)1016

instead of 10%, as reported in the "MTL+tgt+old5"1017

row and (b) using the minimum of either 10% of1018

the existing task dataset or the new task dataset, re-1019

ported in the row "MTL+tgt+old+min10", and simi-1020

larly, using the minimum of either 5% of the exist-1021

ing task dataset or the new task dataset, reported in 1022

the row "MTL+tgt+old+min5". Our findings show 1023

that cross-lingual performance is better when us- 1024

ing a higher percentage of the existing task dataset, 1025

while in-language performance is better when us- 1026

ing a lower percentage of the existing task dataset. 1027

In terms of computational efficiency, using 5% of 1028

the existing dataset requires fewer FLOs compared 1029

to using 10%. 1030
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Method Sentiment XNLI COPA Paraphrase NER QA Total

Houlsby 1.8E+17 4.0E+17 3.8E+17 1.5E+17 4.2E+15 7.3E+17 1.8E+18
Bapna 1.5E+17 4.5E+17 3.3E+17 1.1E+17 6.2E+15 5.8E+17 1.6E+18
Houlsby Parallel 1.1E+17 4.0E+17 3.0E+17 7.4E+16 6.6E+15 3.9E+17 1.3E+18
Bapna Parallel 8.6E+16 3.9E+17 2.3E+17 1.2E+17 4.4E+15 5.1E+17 1.3E+18
Prefix Tuning 1.5E+17 4.4E+17 2.2E+17 1.5E+17 6.2E+15 3.1E+17 1.3E+18
Lora 1.7E+17 3.9E+17 2.1E+17 1.5E+17 8.5E+15 5.2E+17 1.5E+18
Compacter 2.4E+17 2.9E+17 5.9E+17 9.8E+16 1.2E+16 8.7E+17 2.1E+18
Adapter Drop 1.2E+17 4.2E+17 1.9E+17 4.6E+16 4.2E+15 1.1E+17 8.8E+17
FT 5.3E+16 1.3E+17 7.9E+16 7.8E+16 3.5E+15 1.0E+17 4.5E+17

Total 1.3E+18 3.3E+18 2.5E+18 9.8E+17 5.6E+16 4.1E+18 1.2E+19

Table 8: The table reports the total FLOS for FT and various adapters on IndicBERT, across each of the tasks. Total
corresponds to the total FLOS summed over all the tasks for a particular fine-tuning method.

Target
Task Step Amazon Multi

Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg -1 Avg

Baseline Full FT 93.8 83.0 62.3 93.0 92.8 82.1 - 84.5
MTL (full) 93.5 80.9 61.4 91.5 91.0 82.1 - 83.4

Best Adapter Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 - 83.9

Sentiment MTL−1 - 81.6 63.0 91.5 92.5 82.5 82.2 -
MTL+tgt+old 93.1 79.0 60.7 89.0 91.4 81.3 80.3 82.4
MTL+tgt 93.5 58.6 47.1 71.4 78.3 71.7 65.4 70.1

XNLI MTL−1 94.1 - 60.5 91.5 91.9 82.4 84.1 -
MTL+tgt+old 92.9 79.0 58.7 88.3 87.7 78.6 81.2 80.9
MTL+tgt 90.7 79.6 52.8 56.5 85.4 36.4 64.4 66.9

COPA MTL−1 93.8 81.9 - 91.6 91.0 81.5 88.0 -
MTL+tgt+old 93.5 79.0 62.5 90.8 90.9 78.7 86.6 82.6
MTL+tgt 92.4 73.8 62.2 87.8 89.8 79.2 84.6 80.9

Paraphrase MTL−1 93.9 80.1 62.4 - 91.9 80.9 81.8 -
MTL+tgt+old 93.9 79.8 60.2 89.7 91.7 80.9 81.3 82.7
MTL+tgt 92.9 73.9 59.8 92.2 77.4 73.8 75.5 78.3

NER MTL−1 94.0 82.1 62.2 92.7 - 82.6 82.7 -
MTL+tgt+old 93.4 80.8 61.0 91.2 91.4 81.0 81.5 83.1
MTL+tgt 93.1 74.1 59.9 74.5 92.1 71.6 74.6 77.6

QA MTL−1 94.1 81.6 62.9 93.4 92.0 - 84.8 -
MTL+tgt+old 93.5 80.0 59.7 91.4 89.9 81.2 82.9 82.6
MTL+tgt 92.4 77.5 61.0 73.0 63.5 82.5 73.5 75.0

Table 9: This table reports in-language (train and test on English) performance for maintainability of MTL.
"Target task" is held out task i.e. pre-trained IndicBERT model is fine-tuned on the remaining 5 task representing
MTL−1 model. MTL+tgt+old represents continual fine-tuning of the MTL−1 model on the target task dataset and
10% of the existing task dataset. MTL+tgt represents continual fine-tuning of the MTL−1 model on the target task
dataset. "Avg -1 " reports the in-language performance averaged over the task included in MTL−1 step. "Avg"
reports the in-language performance averaged over all 6 task. Here, text bold indicates the best value in the column
and colored cell represent MTL is performing better than the Best Adapter method.
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Target
Task Step Indic

Sentiment
Indic
XNLI

Indic
COPA

Indic
XPara

Naama-
padam IndicQA Avg -1 Avg % ↑

FLOs

Baseline Full FT 90.9 72.9 62.5 57.3 66.7 49.3 - 66.6 -
MTL 88.5 71.2 64.9 74.0 65.8 45.4 - 68.3 20.2

Best Adapter Houlsby 89.7 72.9 64.1 57.4 65.5 50.0 - 66.6 311.7

Sentiment MTL−1 - 71.5 64.8 74.8 65.1 46.9 64.6 -
MTL+tgt+old10 90.2 70.8 61.9 72.9 66.1 48.8 64.1 68.4 2.3
MTL+tgt+old5 90.5 69.1 62.3 74.2 62.2 47.3 63.0 67.6 -0.4
MTL+tgt 89.1 54.9 52.2 67.3 40.4 34.9 50.0 56.5 1.7

XNLI MTL−1 90.5 - 67.8 56.7 63.6 47.4 65.2 -
MTL+tgt+old10 90.8 71.2 63.6 68.7 59.6 48.3 66.2 67.0 20.5
MTL+tgt+old5 90.5 70.6 64.7 61.9 63.5 47.3 65.6 66.4 -2.6
MTL+tgt 86.0 70.5 64.5 73.3 56.2 15.1 59.0 60.9 12.1

COPA MTL−1 88.8 72.3 - 73.7 65.0 48.4 69.7 -
MTL+tgt+old10 88.3 69.7 65.6 74.8 65.4 43.9 68.4 67.9 15.3
MTL+tgt+old5 90.5 71.1 64.6 73.0 63.7 44.9 68.6 68.0 3.5
MTL+tgt+old+min10 85.5 69.7 66.5 74.6 63.6 45.7 67.8 67.6 10.4
MTL+tgt+old+min5 90.0 69.8 65.7 73.9 63.8 46.2 68.7 68.2 10.8
MTL+tgt 89.5 66.4 66.0 75.5 62.7 46.4 68.1 67.7 9.3

Paraphrase MTL−1 86.0 70.2 64.4 - 65.0 45.0 66.1 -
MTL+tgt+old10 87.4 69.8 64.2 77.8 65.0 45.4 66.4 68.3 32.4
MTL+tgt+old5 86.2 70.0 64.8 78.0 64.2 42.7 65.6 67.7 25.3
MTL+tgt 81.1 66.0 64.4 73.1 30.1 42.5 56.8 59.5 24.1

NER MTL−1 88.0 72.5 65.7 77.3 - 47.7 70.3 -
MTL+tgt+old10 86.7 71.2 64.4 76.3 65.2 45.1 68.7 68.1 68.2
MTL+tgt+old5 88.4 70.4 63.9 73.2 65.7 45.7 68.3 67.9 66.6
MTL+tgt+old+min10 87.6 71.2 64.7 73.5 66.2 43.7 68.1 67.8 66.6
MTL+tgt+old+min5 87.8 71.2 65.4 71.3 65.4 45.8 68.3 67.8 63.1
MTL+tgt 83.8 67.9 62.3 57.3 68.5 39.8 62.2 63.2 59.8

QA MTL−1 89.2 72.3 64.9 74.9 65.4 - 73.3 -
MTL+tgt+old10 85.9 71.1 63.9 75.7 62.3 46.8 71.8 67.6 25.8
MTL+tgt+old5 87.9 71.6 64.4 75.1 65.6 45.0 72.9 68.3 22.1
MTL+tgt 84.9 68.2 65.9 66.9 23.7 46.6 61.9 59.4 21.2

Table 10: Table reports cross-lingual performance (train on English test on Indic). Row MTL+tgt+old10
and

MTL+tgt+old5
denotes adding 10% and 5% of existing task data combine with new task dataset respectively.

MTL+tgt+old+min10
denotes combining the existing task dataset size minimum(10% data , target task dataset

size) i.e. to ensure the existing task dataset is less or equal to new task dataset when combined. similarly
MTL+tgt+old+min5 denote combining the existing task dataset size as minimum(5% data , target task dataset size).
"Avg -1 " reports the cross-lingual perfromance averaged over the task included in MTL−1 step. "Avg" reports the
cross-lingual performance averaged over all 6 task. Here, column "%↑FLOs" reports the relative percent increase in
the total computation cost for adding all 6 task with respect to the total computation cost of fine-tuning. Note, we
have MTL+tgt+old+min10

and MTL+tgt+old+min5
only for NER and COPA dataset, as dataset size for NER and

COPA is less. Here, text bold indicates the best value in the column and colored cell represent MTL is performing
better than the Best Adapter method.
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Target
Task Step Amazon Multi

Reviews XNLI COPA PAWS CoNLL2003 SQuAD Avg -1 Avg

Baseline Full FT 93.8 83.0 62.3 93.0 92.8 82.1 - 84.5
MTL (full) 93.5 80.9 61.4 91.5 91.0 82.1 - 83.4

Best Adapter Houlsby 94.0 82.4 61.5 92.3 91.5 81.7 - 83.9

Sentiment MTL−1 - 81.6 63.0 91.5 92.5 82.5 82.2 -
MTL+tgt+old10 93.1 79.0 60.7 89.0 91.4 81.3 80.3 82.4
MTL+tgt+old5 93.0 78.7 60.2 91.0 91.7 81.0 80.5 82.6
MTL+tgt 93.5 58.6 47.1 71.4 78.3 71.7 65.4 70.1

XNLI MTL−1 94.1 - 60.5 91.5 91.9 82.4 84.1 -
MTL+tgt+old10 92.9 79.0 58.7 88.3 87.7 78.6 81.2 80.9
MTL+tgt+old5 93.1 77.1 59.0 86.1 89.1 79.9 81.4 80.7
MTL+tgt 90.7 79.6 52.8 56.5 85.4 36.4 64.4 66.9

COPA MTL−1 93.8 81.9 - 91.6 91.0 81.5 88.0 -
MTL+tgt+old10 93.5 79.0 62.5 90.8 90.9 78.7 86.6 82.6
MTL+tgt+old5 93.7 80.8 58.6 90.8 91.7 81.1 87.6 82.8
MTL+tgt+old+min10 93.2 79.3 62.2 91.9 91.0 81.1 87.3 83.1
MTL+tgt+old+min5 93.8 79.6 63.2 90.8 90.9 80.6 87.1 83.1
MTL+tgt 92.4 73.8 62.2 87.8 89.8 79.2 84.6 80.9

Paraphrase MTL−1 93.9 80.1 62.4 - 91.9 80.9 81.8 -
MTL+tgt+old10 93.9 79.8 60.2 89.7 91.7 80.9 81.3 82.7
MTL+tgt+old5 94.2 80.3 61.5 92.4 90.8 80.7 81.5 83.3
MTL+tgt 92.9 73.9 59.8 92.2 77.4 73.8 75.5 78.3

NER MTL−1 94.0 82.1 62.2 92.7 - 82.6 82.7 -
MTL+tgt+old10 93.4 80.8 61.0 91.2 91.4 81.0 81.5 83.1
MTL+tgt+old5 93.8 80.5 62.3 92.1 91.6 80.4 81.8 83.4
MTL+tgt+old+min10 93.7 79.8 60.5 91.3 92.0 81.8 81.4 83.2
MTL+tgt+old+min5 93.6 80.3 62.2 91.0 90.8 81.6 81.7 83.2
MTL+tgt 93.1 74.1 59.9 74.5 92.1 71.6 74.6 77.6

QA MTL−1 94.1 81.6 62.9 93.4 92.0 - 84.8 -
MTL+tgt+old10 93.5 80.0 59.7 91.4 89.9 81.2 82.9 82.6
MTL+tgt+old5 94.0 81.1 62.1 91.2 90.8 81.6 83.8 83.5
MTL+tgt 92.4 77.5 61.0 73.0 63.5 82.5 73.5 75.0

Table 11: The table reports performance score on in-language (en). Row MTL+tgt+old10
andMTL+tgt+old5

denotes
adding 10% and 5% of existing task data combine with new task dataset respectively.MTL+tgt+old+min10

denotes
combining the existing task dataset size minimum(10% data , target task dataset size) i.e. to ensure the existing
task dataset is less or equal to new task dataset when combined. similarly MTL+tgt+old+min5

denote combining
the existing task dataset size as minimum(5% data , target task dataset size). Here, column "%↑FLOs" reports the
relative percent increase in the total computation cost for adding all 6 task with respect to the total computation
cost of fine-tuning. "Avg -1 " reports the in-language performance averaged over the task included in MTL−1 step.
"Avg" reports the cross-lingual performance averaged over all 6 task. Note, we have MTL+tgt+old+min10

and
MTL+tgt+old+min5

only for NER and COPA dataset, as dataset size for NER and COPA is less. Here, text bold
indicates the best value in the column and colored cell represent MTL is performing better than the Best Adapter
method.
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Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 94.0 87.7 90.7 89.5 92.0 90.5 88.3 89.4 89.7 92.0 88.0 89.0 89.7
Bapna 93.3 87.0 90.1 89.2 91.8 89.1 87.0 88.6 88.5 90.2 88.1 88.9 89.0
Houlsby Parallel 93.1 88.1 91.8 90.5 93.0 91.0 88.7 90.3 90.3 91.7 88.2 90.0 90.3
Bapna Parallel 93.1 87.1 91.1 90.1 92.7 90.0 88.5 89.3 90.2 91.2 88.3 90.2 89.9
Prefix Tuning 93.8 85.1 88.9 88.4 91.7 88.7 86.2 89.0 87.7 90.3 85.7 88.9 88.2
Lora 93.4 83.6 86.3 85.5 85.3 85.6 82.3 86.8 87.1 86.2 86.1 88.4 85.7
Compacter 92.8 87.0 90.1 89.0 89.2 89.2 88.1 86.2 88.0 89.6 87.8 89.2 88.5
Adapter Drop 92.7 85.5 89.3 88.2 89.1 87.0 86.2 87.3 88.4 90.3 86.8 88.1 87.8
Adapter Fusion 93.2 87.4 91.0 89.6 91.3 89.9 87.1 88.7 89.2 91.4 87.7 88.7 89.3
MADX - en 93.6 88.2 90.4 89.0 91.4 90.3 88.4 89.5 88.9 91.8 89.1 89.0 89.6
MADX - hi 93.0 86.2 88.1 88.2 89.0 87.8 87.9 89.2 90.1 91.0 88.6 88.1 88.6

FT 93.8 89.3 91.7 91.8 93.2 91.7 89.1 91.4 90.3 92.4 88.2 91.1 90.9
MTL 93.5 87.2 90.2 90.5 92.9 89.4 87.8 90.6 90.6 91.3 86.0 88.9 90.2

Table 12: Results on IndicSentiment with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average
cross-lingual zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 82.4 69.3 74.0 73.3 75.2 74.1 72.9 70.6 71.5 74.6 73.4 72.8 72.9
Bapna 81.9 68.7 73.3 71.1 73.4 73.3 73.0 69.3 71.5 73.9 72.9 72.8 72.1
Houlsby Parallel 82.5 69.2 73.0 72.7 73.8 73.6 72.6 70.2 71.7 74.4 72.6 72.7 72.4
Bapna Parallel 82.7 69.7 73.7 71.9 73.2 73.5 73.0 69.7 72.2 74.2 73.5 73.0 72.5
Prefix Tuning 82.6 70.9 74.3 73.7 75.6 74.0 73.5 72.1 72.6 75.2 73.1 73.4 73.5
Lora 80.3 68.1 71.7 69.8 72.5 72.2 70.5 68.5 69.5 72.7 70.7 71.3 70.7
Compacter 74.8 68.1 71.0 70.5 72.1 70.2 69.1 66.7 69.6 71.8 69.9 69.7 69.9
Adapter Drop 80.6 69.7 71.8 71.7 74.4 73.1 72.1 70.0 71.1 73.7 72.5 72.4 72.0
Adapter Fusion 79.9 68.0 71.6 70.2 72.8 71.9 71.8 68.2 70.0 73.0 70.9 69.9 70.8
MADX -en 82.1 69.9 73.3 72.9 73.8 73.0 72.4 69.5 70.7 74.2 73.2 73.0 72.4
MADX - hi 79.3 68.3 72.1 70.1 72.5 71.5 70.5 68.7 70.3 73.2 70.9 71.1 70.8

FT 83.0 69.4 73.1 73.5 75.1 74.4 72.6 71.0 71.4 75.0 72.8 73.0 72.9
MTL 80.9 67.4 71.9 71.5 72.9 71.7 69.9 68.9 69.8 72.9 70.0 70.6 70.7

Table 13: Results on IndicXNLI task with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average
cross-lingual zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 61.5 63.0 66.4 64.7 66.4 63.8 62.2 63.3 59.2 63.2 66.2 66.6 64.1
Bapna 59.9 61.4 66.4 60.5 58.6 60.2 59.2 62.1 59.6 59.6 61.4 60.4 60.9
Houlsby Parallel 61.4 61.2 65.6 63.2 61.7 62.2 62.6 65.5 60.8 63.6 68.0 66.8 63.7
Bapna Parallel 60.5 60.4 63.0 61.6 59.0 60.4 61.4 64.4 59.8 60.2 64.2 61.4 61.4
Prefix Tuning 61.1 62.2 65.6 67.4 66.8 66.6 61.8 61.9 65.2 64.2 69.6 67.2 65.3
Lora 57.4 60.0 64.2 58.7 62.1 64.6 60.0 61.5 58.0 58.4 59.2 60.8 60.7
Compacter 50.8 59.8 66.6 62.9 63.5 64.0 63.0 63.3 58.2 62.4 66.0 66.0 63.2
Adapter Drop 52.3 59.6 64.0 61.2 60.4 64.6 62.4 61.7 57.2 61.6 64.0 63.0 61.8
Adapter Fusion 59.9 57.6 65.2 58.5 58.4 58.8 57.8 61.0 58.8 59.4 58.6 58.4 59.3
MADX -en 56.9 60.8 65.8 61.8 63.3 62.8 57.8 64.8 60.0 62.8 63.6 64.8 62.6
MADX - hi 58.4 62.2 67.2 62.3 63.5 63.0 59.4 63.0 60.2 64.0 66.0 63.4 63.1

FT 62.3 61.2 65.2 60.5 59.5 61.8 62.0 60.8 61.0 63.4 68.0 63.8 62.5
MTL 61.4 64.6 66.6 62.5 64.4 66.6 64.4 67.3 65.8 64.6 65.4 66.6 65.3

Table 14: Results on IndicCOPA with IndicBERT. Metric: Accuracy. Column "Avg.XL" reports average cross-
lingual zero-shot performance.
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Method en as bn gu hi kn ml mr or pa te Avg.XL

Houlsby 92.3 57.8 50.8 75.7 51.2 59.7 57.4 54.6 57.6 53.8 55.5 57.4
Bapna 91.4 56.5 49.6 72.6 49.9 57.2 56.0 53.0 55.8 54.0 54.6 55.9
Houlsby Parallel 90.6 56.6 49.8 71.2 50.3 57.2 55.8 53.1 55.9 53.9 54.2 55.8
Bapna Parallel 91.3 56.7 50.0 72.8 50.7 57.6 56.4 53.0 56.6 53.8 55.1 56.3
Prefix Tuning 92.2 55.3 49.1 73.8 49.7 55.5 54.8 53.6 55.2 57.1 53.7 55.8
Lora 90.2 54.8 50.0 70.0 50.0 55.8 54.6 51.8 53.8 54.9 53.9 55.0
Compacter 72.7 49.6 47.0 63.9 48.3 45.1 46.3 48.9 47.1 59.8 52.5 50.8
Adapter Drop 75.0 50.8 49.5 68.1 50.2 47.7 49.6 50.2 49.6 58.6 54.6 52.9
Adapter Fusion 92.2 57.1 49.8 73.5 50.4 57.0 56.6 52.9 56.6 54.2 55.0 56.3
MADX -en 91.0 56.5 49.9 72.5 50.4 56.5 55.2 53.2 55.2 54.9 54.9 55.9
MADX - hi 90.6 57.1 49.6 73.4 50.3 58.4 55.7 53.5 56.7 54.9 54.9 56.5

FT 93.0 56.8 50.9 76.5 51.1 57.8 56.5 55.0 56.7 56.2 55.0 57.3
MTL 91.5 70.7 88.3 81.3 81.7 74.7 73.6 75.9 66.2 58.7 71.6 74.3

Table 15: Results on IndicXParaphrase with IndicBERT. Metric: Accuracy.Column "Avg.XL" reports average
cross-lingual zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 91.5 41.7 69.2 77.5 78.3 71.8 77.6 76.5 16.4 63.9 68.8 79.1 65.5
Bapna 91.0 37.5 70.0 78.3 76.2 70.9 78.3 77.9 16.1 65.1 67.9 79.3 65.2
Houlsby Parallel 92.2 46.2 72.0 77.2 75.9 74.1 79.7 77.9 17.3 63.1 69.1 81.2 66.7
Bapna Parallel 91.1 34.6 70.5 76.9 75.7 72.3 78.2 74.8 16.9 62.6 69.1 79.6 64.7
Prefix Tuning 91.5 42.6 72.1 77.7 76.2 75.0 79.7 78.1 17.3 68.6 69.1 81.2 67.1
Lora 90.4 40.7 70.7 75.0 72.7 71.0 75.6 74.1 17.1 60.0 61.4 78.3 63.3
Compacter 89.2 38.5 65.8 73.9 72.6 67.0 72.5 71.1 16.6 59.4 64.1 73.1 61.3
Adapter Drop 90.4 30.2 71.2 76.3 75.4 71.4 77.4 78.3 16.8 66.7 65.4 79.1 64.4
Adapter Fusion 92.0 42.6 71.8 79.2 75.1 76.2 79.4 78.5 16.5 66.3 69.8 80.7 66.9
MADX -en 91.5 43.6 69.1 78.9 75.3 73.9 78.8 76.6 16.2 63.8 68.7 81.1 66.0
MADX - hi 91.1 34.6 69.9 76.6 75.6 70.8 76.8 74.2 17.0 63.5 66.7 79.3 64.1

FT 92.8 38.7 71.6 77.4 77.8 75.3 79.3 78.7 17.1 65.6 70.7 81.6 66.7
MTL 91.0 34.0 69.8 78.3 76.0 74.2 77.9 78.4 16.1 66.9 66.7 79.7 65.3

Table 16: Results on IndicNER task with IndicBERT. Metric: F1 Score. Column "Avg.XL" reports average
cross-lingual zero-shot performance.

Method en as bn gu hi kn ml mr or pa ta te Avg.XL

Houlsby 81.7 44.7 52.9 45.2 54.9 46.7 46.2 48.9 51.8 52.4 44.9 60.9 50.0
Bapna 80.9 44.1 51.4 44.0 55.6 46.4 42.5 45.9 49.8 52.4 43.0 60.0 48.6
Houlsby Parallel 82.0 43.9 52.6 44.4 55.2 47.5 43.9 46.2 50.7 53.2 43.6 60.3 49.2
Bapna Parallel 81.4 44.2 52.0 43.6 55.6 47.2 43.6 45.4 50.8 52.8 43.4 59.7 48.9
Prefix Tuning 81.0 43.0 50.9 43.9 52.7 46.8 43.2 46.5 51.1 50.8 43.5 59.9 48.4
Lora 79.5 41.9 50.6 43.9 52.9 44.3 43.0 44.3 48.8 51.4 43.1 57.8 47.4
Compacter 73.0 40.8 48.5 42.3 50.9 43.9 41.6 45.1 46.8 49.6 42.0 59.2 46.4
Adapter Drop 70.7 38.3 46.8 40.9 50.1 42.3 40.3 43.0 46.3 47.4 38.1 55.2 44.4
Adapter Fusion 81.9 44.4 51.9 43.9 55.8 46.0 42.8 45.5 50.1 52.1 43.6 59.5 48.7
MADX-en 81.1 41.4 50.6 43.3 53.8 45.3 42.4 44.8 49.8 52.1 42.5 58.1 47.6
MADX-hi 79.4 41.1 50.2 43.7 54.9 44.9 41.9 44.3 49.0 51.4 41.5 58.6 47.4

FT 82.1 44.4 52.8 44.9 54.6 46.9 44.6 46.5 51.3 52.0 43.9 60.3 49.3
MTL 82.1 39.8 49.1 42.6 48.9 42.9 42.2 43.6 48.1 47.3 39.7 56.2 45.5

Table 17: Results on IndicQA task with IndicBERT. Metric: F1 score. Column "Avg.XL" reports average cross-
lingual zero-shot performance.
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Method en as bn gu hi kn ml mr or pa ta te

Houlsby 83.9 60.7 67.4 71.0 69.7 67.8 67.4 67.2 57.7 66.7 68.3 70.7
Pfeiffer 83.1 59.2 66.8 69.3 67.6 66.2 66.0 66.1 56.9 65.9 66.7 69.3
Houlsby Parallel 83.6 60.8 67.4 69.9 68.3 67.6 67.2 67.2 57.8 66.6 68.3 70.9
Pfeiffer Parallel 83.4 58.8 66.7 69.5 67.8 66.8 66.8 66.1 57.8 65.8 67.7 69.8
Prefix Tuning 83.7 59.9 66.8 70.8 68.8 67.8 66.5 66.9 58.2 67.7 68.2 70.7
Lora 81.8 58.2 65.6 67.1 65.9 65.6 64.3 64.5 55.7 63.9 64.1 68.4
Compacter 75.5 57.3 64.8 67.1 66.1 63.2 63.4 63.5 54.4 65.4 66.0 68.3
Adapter Drop 77.0 55.7 65.4 67.7 66.6 64.3 64.7 65.1 54.9 66.4 65.3 68.8
Adapter Fusion 83.2 59.5 66.9 69.1 67.3 66.6 65.9 65.8 56.9 66.1 66.1 68.7
MADX - en 82.7 60.1 66.5 69.7 68.0 67.0 65.8 66.4 56.8 66.6 67.4 70.1
MADX - hi 82.0 58.3 66.2 69.0 67.7 66.1 65.4 65.5 57.2 66.3 66.7 69.2
FT 84.5 60.0 67.6 70.8 68.6 68.0 67.4 67.2 58.0 67.4 68.7 70.8

Table 18: This table compares the performance of various adapters and FT with results averaged across all tasks.

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 1.8E+17 249.8 17 240
Bapna 1.5E+17 185.2 14 180
Houlsby Parallel 1.1E+17 105.3 10 100
Bapna Parallel 8.6E+16 62.9 8 60
Prefix Tuning 1.5E+17 190.9 13 160
Lora 1.7E+17 223.2 16 220
Compacter 2.4E+17 363.9 23 360
Adapter Drop 1.2E+17 124.3 11 120
FT 5.3E+16 0.0 5 0
Avg Adapter 1.5E+17 188.2 14 180

Table 19: This table report the total computation cost on Sentiment task for FT and various adapters using IndicBERT.
Here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent
increase of epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 4.0E+17 208.5 15 200
Bapna 4.5E+17 246.5 17 240
Houlsby Parallel 4.0E+17 208.5 15 200
Bapna Parallel 3.9E+17 205.4 15 200
Prefix Tuning 4.4E+17 237.2 15 200
Lora 3.9E+17 203.1 15 200
Compacter 2.9E+17 121.7 11 120
Adapter Drop 4.2E+17 225.6 16 220
FT 1.3E+17 0.0 5 0
Average Adapter 4.0E+17 207.1 14.88 197.5

Table 20: This table report the total computation cost on XNLI task for FT and various adapters using IndicBERT..
here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent
increase of epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 3.8E+17 376.6 28 366.7
Bapna 3.3E+17 321.0 25 316.7
Houlsby Parallel 3.0E+17 274.2 22 266.7
Bapna Parallel 2.3E+17 185.7 17 183.3
Prefix Tuning 2.2E+17 179.4 15 150.0
Lora 2.1E+17 168.0 16 166.7
Compacter 5.9E+17 650.9 45 650.0
Adapter Drop 1.9E+17 136.4 14 133.3
FT 7.9E+16 0.0 6 0.0
Average Adapter 3.1E+17 286.5 22.75 279.2

Table 21: This table report the total computation cost on COPA task for FT and various adapters using IndicBERT..
here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent
increase of epoch relative to epoch of FT
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Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 1.5E+17 88.5 22 83.3
Bapna 1.1E+17 43.6 17 41.7
Houlsby Parallel 7.4E+16 -5.8 11 -8.3
Bapna Parallel 1.2E+17 52.6 18 50.0
Prefix Tuning 1.5E+17 96.2 21 75.0
Lora 1.5E+17 93.6 23 91.7
Compacter 9.8E+16 25.9 15 25.0
Adapter Drop 4.6E+16 -40.6 7 -41.7
FT 7.8E+16 0.0 12 0.0
Total Adapter 1.1E+17 44.2 16.75 39.6

Table 22: This table report the total computation cost on Paraphrase task for FT and various adapters using
IndicBERT. here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch
reports percent increase of epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 4.2E+15 19.8 14 16.7
Bapna 6.2E+15 77.7 21 75.0
Houlsby Parallel 6.6E+15 88.0 22 83.3
Bapna Parallel 4.4E+15 26.9 15 25.0
Prefix Tuning 6.2E+15 77.4 19 58.3
Lora 8.5E+15 143.6 29 141.7
Compacter 1.2E+16 252.4 42 250.0
Adapter Drop 4.2E+15 19.8 14 16.7
FT 3.5E+15 0.0 12 0.0
Average Adapter 6.6E+15 88.2 22 83.3

Table 23: This table report the total computation cost on NER task for FT and various adapters using IndicBERT.
here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent
increase of epoch relative to epoch of FT

Method FLOP % ↑ FLOS Epoch % ↑ Epoch

Houlsby 7.3E+17 599.0 41 583.3
Bapna 5.8E+17 456.7 33 450.0
Houlsby Parallel 3.9E+17 275.0 22 266.7
Bapna Parallel 5.1E+17 389.4 29 383.3
Prefix Tuning 3.1E+17 198.1 16 166.7
Lora 5.2E+17 402.9 30 400.0
Compacter 8.7E+17 735.6 50 733.3
Adapter Drop 1.1E+17 1.9 6 0.0
FT 1.0E+17 - 6 -
Avg Adapter 5.0E+17 382.3 28.4 372.9

Table 24: This table report the total computation cost on QA task for FT and various adapters using IndicBERT.
here % ↑ FLOS refers to the percent increase of FLOs relative to FLOs of FT, similarly % ↑ Epoch reports percent
increase of epoch relative to epoch of FT

Method XLMR-Base XLMR-Large
Houlsby 484.3 200.5
Bapna 547.1 139.9
Houlsby Parallel 197.0 143.3
Bapna Parallel 409.1 168.6
Prefixtuning 256.5 287.3
Lora 734.7 270.0
compacter 805.3 490.1
Adapter drop 345.1 214.1

Table 25: This table reports the percentage increase in total FLOs with respect to FT for both XLMR-Base and
XLMR-Large model
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XLMR-Base XLMR-Large

Method WikiANN XNLI XQuAD Total WikiANN XNLI XQuAD Total

Houlsby 506.4 483.1 484.0 484.3 316.4 75.6 299.6 200.5
Bapna 439.4 464.6 582.0 547.1 172.3 73.7 194.3 139.9
Houlsby Parallel 270.3 483.1 86.0 197.0 103.8 126.8 160.0 143.3
Pfeiffer Parallel 643.4 409.2 401.0 409.1 71.1 167.5 175.9 168.6
Prefixtuning 157.4 237.7 267.0 256.5 200.6 226.3 344.9 287.3
Lora 474.3 404.0 869.0 734.7 332.1 57.9 446.9 270.0
Compacter 905.8 818.2 797.0 805.3 528.9 336.8 618.4 490.1
Adapter drop 281.9 409.2 323.0 345.1 617.0 153.1 240.0 214.1

Table 26: This table reports the percentage increase in computational cost with respect to FT for XLM-R model for
task NER, XNLI and QA. "Total" reports the percentage increase of total FLOs for the method relative to total FT
FLOs

EN XLMR-Base XLMR-Large

Method NER XNLI QA Average NER XNLI QA Average

Houlsby 81.0 82.7 84.1 82.6 83.5 85.9 88.2 85.9
Bapna 79.9 81.3 83.2 81.5 83.1 86.4 87.4 85.7
Houlsby parallel 80.5 83.5 83.7 82.6 83.0 87.9 88.0 86.3
Bapna parallel 80.8 80.9 82.8 81.5 82.5 88.0 87.7 86.1
Prefixtuning 79.0 79.5 81.7 80.1 83.2 88.2 88.3 86.5
Lora 78.6 79.7 81.7 80.0 81.7 85.6 86.9 84.7
compacter 72.3 76.4 76.6 75.1 76.1 85.6 85.0 82.2
Adapter drop 81.1 80.3 82.7 81.4 82.6 88.0 88.0 86.2
FT 82.3 83.1 83.3 82.9 82.8 87.3 88.0 86.0

Table 27: Overall performance on English for XLMR-B and XLMR-L model

XL XLMR-Base XLMR-Large

Method NER XNLI QA Average NER XNLI QA Average

Houlsby 61.0 72.6 71.5 68.4 64.6 76.2 78.6 73.1
Bapna 58.3 71.3 69.9 66.5 64.3 76.7 78.0 73.0
Houlsby Parallel 59.2 72.8 70.1 67.4 65.3 78.7 77.8 73.9
Bapna Parallel 57.1 70.3 69.7 65.7 63.1 78.8 77.6 73.2
Prefixtuning 58.5 69.9 67.7 65.4 64.7 78.7 77.6 73.7
Lora 58.6 70.5 68.4 65.8 62.3 76.9 77.1 72.1
Compacter 55.1 66.8 64.1 62.0 58.5 76.4 75.3 70.1
Adapter drop 60.5 70.2 71.3 67.3 64.6 78.8 78.5 74.0
FT 61.7 73.7 70.8 68.7 63.9 77.0 78.0 73.0

Table 28: Overall cross-lingual performance for XLMR-B and XLMR-L model

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 83.5 45.6 81.6 79.3 79.9 76.2 78.7 71.1 68.0 68.2 0.6 82.0 69.1 77.5 26.2 64.6
Bapna 83.1 41.0 81.4 78.1 77.2 77.0 78.7 73.2 71.5 68.3 2.0 79.3 69.1 76.8 26.2 64.3
houlsby parallel 83.0 46.4 83.1 79.2 79.2 76.1 79.0 70.0 71.4 70.4 0.6 82.0 75.6 76.6 24.7 65.3
Bapna parallel 82.5 48.3 79.3 77.9 77.9 72.7 78.3 66.5 71.5 68.8 1.4 80.0 63.3 75.0 22.2 63.1
prefixtuning 83.2 48.5 79.2 77.8 79.1 76.8 79.8 73.5 69.1 66.5 4.3 79.9 71.1 75.6 24.6 64.7
lora 81.7 46.0 80.0 77.9 76.9 68.7 77.8 66.9 67.9 66.6 2.5 76.4 65.7 76.8 21.5 62.3
compacter 76.1 38.8 75.5 75.5 74.8 73.8 74.8 62.7 58.7 60.2 1.2 75.9 65.5 69.1 12.2 58.5
Adapter drop 82.6 48.0 82.0 78.5 78.7 75.0 79.8 68.0 69.4 68.1 1.0 80.0 75.0 76.4 24.0 64.6
FT 82.8 49.3 81.6 79.1 76.6 77.7 81.1 70.6 70.9 66.9 0.4 78.3 60.7 77.7 23.1 63.9

Table 29: Results on WikiANN task with XLM-R Large model, metric: F1 score
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Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 81.0 44.4 76.0 73.6 74.3 71.6 76.1 70.1 61.7 69.3 1.5 75.8 65.5 68.9 25.2 61.0
Bapna 79.9 41.7 73.2 72.3 73.0 73.7 74.9 62.9 59.2 67.6 2.0 72.6 56.2 62.7 23.6 58.3
houlsby parallel 80.5 44.7 75.8 73.3 73.8 67.7 74.7 66.4 62.1 66.7 1.8 74.0 57.5 64.8 26.0 59.2
Bapna parallel 80.8 42.1 74.3 72.4 70.6 70.3 74.3 62.0 61.1 61.7 1.0 71.3 51.3 62.6 24.4 57.1
prefixtuning 79.0 46.5 75.9 70.0 70.6 72.8 74.8 62.4 59.7 62.3 1.1 70.8 64.2 67.4 20.2 58.5
lora 78.6 42.8 74.6 71.2 70.7 71.7 74.1 62.4 57.8 67.0 2.9 70.6 63.0 68.0 23.7 58.6
compacter 72.3 42.0 72.9 70.2 68.3 61.6 67.6 59.9 54.4 62.8 0.7 69.0 56.8 63.5 21.6 55.1
Adapter drop 81.1 45.7 76.8 73.8 74.5 69.2 74.7 66.1 62.4 66.0 1.9 74.8 65.7 67.4 27.1 60.5
FT 82.3 48.5 77.0 73.3 74.7 75.3 75.7 67.7 63.0 69.2 3.8 76.6 64.7 69.8 24.1 61.7

Table 30: Results on WikiANN task with XLM-R Base model, metric: F1 score

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 85.9 75.0 80.0 80.4 78.8 81.2 80.0 73.4 76.8 69.7 74.1 76.2 68.3 76.8 75.4 76.2
Bapna 86.4 75.5 80.3 81.0 79.2 81.2 80.6 73.8 77.8 69.7 74.9 76.3 70.4 77.1 76.3 76.7
houlsby parallel 87.9 77.7 82.3 82.6 80.9 83.7 82.3 77.1 79.6 71.2 77.0 78.3 72.1 78.5 78.8 78.7
Bapna parallel 88.0 78.4 82.9 82.7 81.2 84.0 82.7 76.1 79.5 71.3 76.4 78.4 72.2 78.7 78.1 78.8
prefixtuning 88.2 78.4 82.3 81.6 81.6 83.3 82.7 76.0 79.6 71.1 77.3 78.5 72.6 78.9 78.3 78.7
lora 85.6 75.3 80.8 80.5 79.7 81.7 80.9 74.5 78.5 70.0 75.1 76.9 70.1 77.0 76.3 76.9
compacter 85.6 74.2 80.2 80.5 78.9 80.7 80.5 74.7 77.3 69.7 74.9 75.9 69.7 76.5 76.4 76.4
Adapter drop 88.0 77.7 82.8 82.5 82.1 84.0 82.6 76.1 80.1 72.2 76.7 78.8 71.3 79.0 77.6 78.8
FT 87.3 76.1 81.9 80.5 79.5 82.3 81.7 73.9 79.5 65.5 75.7 76.0 68.7 78.4 78.4 77.0

Table 31: Results on XNLI task with XLM-R Large model, metric: Accuracy

Method en ar bg de el es fr hi ru sw th tr ur vi zh Avg.XL

houlsby 82.7 70.9 77.1 76.3 74.7 77.9 77.9 68.6 74.3 64.5 71.1 71.8 65.5 73.4 72.5 72.6
Bapna 81.3 68.8 75.3 74.2 73.4 76.7 75.8 67.6 73.5 64.0 69.7 71.2 64.0 72.8 71.2 71.3
houlsby parallel 83.5 70.3 77.0 75.9 74.8 78.0 77.7 69.6 74.7 65.1 71.3 71.7 65.4 74.8 73.1 72.8
Bapna parallel 80.9 68.0 74.7 73.2 72.1 76.2 75.0 67.2 72.4 63.2 68.1 70.1 62.3 71.5 69.8 70.3
prefixtuning 79.5 68.7 73.7 72.6 71.7 74.1 74.2 66.3 71.3 62.9 69.5 69.1 62.9 72.0 70.1 69.9
lora 79.7 68.4 75.0 73.6 72.2 75.3 74.5 66.6 72.2 63.6 68.1 70.9 63.6 71.4 71.3 70.5
compacter 76.4 64.1 70.7 70.6 69.4 72.8 71.8 61.7 70.0 60.4 63.4 67.4 59.0 68.1 66.5 66.8
Adapter drop 80.3 68.1 74.4 73.6 71.1 75.9 75.3 67.2 72.1 63.3 68.9 69.9 62.1 71.7 70.0 70.2
FT 83.1 71.3 78.0 76.6 75.3 78.6 76.9 71.3 75.4 64.0 73.0 73.0 67.5 75.6 74.7 73.7

Table 32: Results on XNLI task with XLM-R Base model, metric: Accuracy

Method en ar de el es hi ro ru th tr vi zh Avg.XL

houlsby 88.2 77.3 81.2 80.3 83.3 77.0 85.0 80.8 74.3 75.2 80.0 70.1 78.6
Bapna 87.4 75.7 79.9 80.5 82.6 75.6 84.1 80.7 75.6 73.9 79.8 69.7 78.0
houlsby parallel 88.0 75.3 81.4 80.4 81.9 76.2 84.2 79.9 74.2 74.2 79.2 68.7 77.8
Bapna parallel 87.7 75.2 80.4 80.4 82.0 75.6 84.1 79.9 73.7 73.7 79.4 69.4 77.6
prefixtuning 88.3 75.4 81.5 80.5 82.3 75.6 83.0 79.3 74.5 73.9 78.6 68.8 77.6
lora 86.9 75.8 80.6 78.5 81.2 75.0 82.5 79.1 75.2 72.7 77.9 69.4 77.1
compacter 85.0 73.7 77.7 77.6 79.5 74.7 80.9 78.3 70.8 70.5 76.9 68.2 75.3
Adapter drop 88.0 76.1 81.3 81.1 83.2 76.7 85.1 80.7 74.3 74.6 80.3 69.6 78.5
FT 88.0 76.3 80.7 80.3 81.8 76.2 84.2 79.6 75.0 74.4 79.8 69.7 78.0

Table 33: Results on Squad, XQAUD task with XLM-R Large model, metric: F1 score
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Method en ar de el es hi ro ru th tr vi zh Avg.XL

houlsby 84.1 67.0 75.0 73.3 76.8 69.8 79.0 72.6 68.3 66.6 73.8 64.6 71.5
Bapna 83.2 64.5 73.6 71.0 75.1 66.1 77.5 72.6 65.6 66.3 72.9 63.4 69.9
houlsby parallel 83.7 65.9 74.6 72.0 75.5 66.5 77.9 72.8 64.4 66.5 71.9 62.9 70.1
Bapna parallel 82.8 64.4 73.2 72.6 74.0 65.4 77.4 73.0 65.0 65.4 72.0 63.9 69.7
prefixtuning 81.7 63.1 71.3 70.0 72.1 64.4 75.3 70.2 62.6 63.5 69.9 62.1 67.7
lora 81.7 61.4 71.8 71.2 72.9 65.4 76.7 71.9 63.1 65.4 71.3 61.0 68.4
compacter 76.6 60.7 67.0 64.9 68.8 62.4 70.3 66.8 58.6 59.5 68.9 57.3 64.1
Adapter drop 82.7 66.6 74.3 73.6 75.3 70.2 77.0 74.6 68.2 66.8 74.5 62.8 71.3
FT 83.3 66.5 74.6 72.2 75.1 66.8 77.5 73.4 66.8 67.5 73.2 65.4 70.8

Table 34: Results on SQUAD, XQUAD task with XLM-R Base model, metric: F1 score
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