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Abstract

Multi-agent path planning is important in both multi-agent path finding and multi-agent
reinforcement learning areas. However, continual group-wise multi-agent path planning that
requires the agents to perform as a team to pursue high team scores instead of individually is
less studied. To address this problem, we propose a novel graph potential field-based neural
network (GPFNN), which models a valid potential field map for path planning. Our GPFNN
unfolds the T-step iterative optimization of the potential field maps as a T-layer feedforward
neural network. Thus, a deeper GPFNN leads to more precise potential field maps without
the over-smoothing issue. A potential field map inherently provides a monotonic potential
flow from any source node to the target nodes to construct the optimal path (w.r.t. the
potential decay), equipping our GPFNN with an elegant planning ability. Moreover, we
incorporate dynamically updated boundary conditions into our GPFNN to address group-wise
multi-agent path planning that supports both static targets and dynamic moving targets.
Empirically, experiments on three different-sized mazes (up to 1025 × 1025 sized mazes) with
up to 1,000 agents demonstrate the planning ability of our GPFNN to handle both static
and dynamic moving targets. Experiments on extensive graph node classification tasks on
six graph datasets (up to millions of nodes) demonstrate the learning ability of our GPFNN.

1 Introduction

Multi-agent navigation and tracking on a graph is a challenging problem in the field of artificial intelligence,
machine learning and robotics, as it requires coordination and cooperation among multiple agents to achieve
a common goal while avoiding collisions. In this problem, multiple agents corporately move on the graph and
track their (static or dynamic) targets while avoiding collisions with each other (Sharon et al., 2015; Stern
et al., 2019; Lin et al., 2022; Surynek, 2022). The goal is to reduce the total moving cost while catching
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as many targets as possible. It has many practical applications, such as in warehouse management, traffic
control, unmanned aerial vehicles (UAVs) navigation, and package delivery (Lin et al., 2022; Surynek, 2022).

The multi-agent pathfinding (MAPF) is a key subarea of multi-agent navigation and tracking on graphs. It
focuses on constructing a valid path for each agent to its targets without collisions (Surynek, 2022; Felner
et al., 2017). One of the main limitations of current research on the multi-agent tracking problem is scalability.
The multi-agent pathfinding problem is known to be NP-hard, and many of the existing algorithms for solving
it have exponential time complexity in the worst case (Sharon et al., 2015; Goldenberg et al., 2014; Gordon
et al., 2021). This means that these algorithms may not be able to handle large-scale problems with many
agents or complex environments.

Moreover, most of the current research on multi-agent pathfinding focuses on solving path planning for
pre-assigned one-to-one agent-target pairs (Sharon et al., 2015; Goldenberg et al., 2014; Gordon et al., 2021;
Tang et al., 2024). However, in practice, many situations require the agents to perform as a team instead of
individually. Moreover, it requires the agents continually to search the remaining targets instead of stopping
after reaching a target, e.g., package delivery from the same company. As a result, there is an increasing
demand for continual group-wise multi-agent path planning. Current methods designed for one-to-one MAPF
cannot be easily extended to continual group-wise multi-agent path planning because of their exponential
time complexity and the requirement of an additional target assignment procedure. Finding the optimal
target assignment itself is a very challenging combination optimization problem. In addition, in real-world
applications, the targets can move over time, and the agents may need to adapt their paths accordingly.
Many of the existing algorithms (Sharon et al., 2015; Goldenberg et al., 2014; Tang et al., 2024; Felner et al.,
2017; Surynek, 2022; Lin et al., 2022) for MAPF assume a static target, which can limit their applicability in
practical settings.

To address the continual group-wise multi-agent path planning problem, we propose a novel graph potential
field neural network method. Our method builds upon the graph potential field (Masoud, 2008). In contrast to
the scalar value formulation for static planning from the start node to the target node in (Masoud, 2008), we
first formulate the graph potential field in a matrix form to handle multi-agents explicitly. Based on our matrix
formulation, we develop our graph potential field neural network that unfolds the iterative optimization of
the potential field as a T-layer feedforward neural network. Furthermore, we employ a nonlinear log-sum-exp
aggregation as the nonlinear activation function instead of a linear aggregation. This not only reduces the
numeric error but also increases the learning ability of our GPFNN. Moreover, we incorporate dynamically
updated boundary conditions into our GPFNN to address group-wise multi-agent path planning that supports
both static targets and dynamic moving targets. In addition, we further investigate the learning ability of
our GPFNN on node classification tasks.

Our contributions are summarized as follows:

• To the best of our knowledge, we developed the first graph potential field-based neural network
(GPFNN) with planning ability. Our GPFNN unfolds a T-step iterative optimization of the potential
field maps as a T-layer feedforward neural network. Thus, a deeper GPFNN leads to more precise
potential field maps. A valid potential field map provides a monotonic potential flow from any source
node to the target nodes to construct the optimal path (w.r.t. the potential decay), equipping our
GPFNN with a planning ability. Moreover, we incorporate dynamically updated boundary conditions
into our GPFNN to address group-wise multi-agent path planning that supports both static targets
and dynamic moving targets.

• Our GPFNN provides a general framework for both graph path planning tasks and graph learning
tasks (e.g., node classification), which demonstrates both the planning ability and learning ability.
This may suggest that our GPFNN may have the potential to serve as a useful neural network
architecture for downstream tasks that require both planning ability and learning ability, e.g.,
multi-agent reinforcement learning.

• Empirically, extensive experiments with up to 1, 000 agents on up to 1025 × 1025 large maps with
both static targets and dynamic targets demonstrate the planning ability of our GPFNN to handle
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group-wise multi-agent path planning. Moreover, extensive experiments on node classification tasks
up to millions of nodes demonstrate the learning ability of our GPFNN.

2 Related Works

2.1 Multi-agent Navigation and Tracking on Graph

The goal of multi-agent navigation and tracking on a graph is to find a set of collision-free paths for multiple
agents to reach their respective goal locations while avoiding collisions with each other and any obstacles
in the environment. Multi-agent navigation and tracking on a graph has applications in various domains,
including robotics, transportation, and logistics. The problem is challenging due to the combinatorial nature
of the search space and the need to ensure that the solutions satisfy complex constraints and objectives.

2.1.1 Multi-agent Pathfinding (MAPF)

The multi-agent pathfinding (MAPF) is a key subarea of multi-agent navigation and tracking. The multi-agent
pathfinding problem involves finding a collision-free path for a group of agents from their initial positions
to their respective goal positions while avoiding collisions with each other. This problem is known to be
NP-hard and is of practical importance in domains such as robotics, transportation, and logistics.

Recent advances in this field have led to the development of efficient algorithms for solving multi-agent
navigation and tracking on a graph problems, such as Conflict-Based Search (CBS) (Sharon et al., 2015;
Boyarski et al., 2015; Barer et al., 2014), Enhanced Partial Expansion A* (EPEA*) (Goldenberg et al., 2014),
and Independence Detection (ID) (Silver, 2005).

Conflict-Based Search (CBS) (Sharon et al., 2015) is a widely used algorithm for solving the multi-agent
pathfinding problem (MAPF). However, it has some limitations that can affect its performance in certain
scenarios. CBS has a worst-case time complexity that is exponential in the number of agents, which can make
it computationally infeasible for large-scale problems with many agents. This severely limits the practical
usage of CBS for large-scale multi-agent navigation and tracking on a graph. Moreover, CBS can not handle
the MAPF with dynamic targets.

Surynek (2021) introduce a multi-goal multi agent path finding method by extending CBS. Specifically, the
approach is based on the decoupling of the problem into two stages: a goal vertex ordering stage, where the
ordering of goal vertices is determined, and a pathfinding stage, where paths for each agent are computed
based on the determined ordering. Despite its success to some extent, it is relying on CBS, which is not
salable to large-scale multi-goal multi agent path finding problems.

Some recent works try to address different setting of MAPF. Ma et al. (2018) propose to address time-
constrained MAPF problems. Dergachev & Yakovlev (2022) try to address MAPF problems with different
sized agents. Švancara et al. (2019) and Ma (2021) study the online MAPF problems. For a more detailed
recent survey of MAPF, one can check (Surynek, 2022; Lin et al., 2022). In addition, one may check (Stern
et al., 2019) for different setting and variants of MAPF problems.

A closely related subarea is the target assignment and path finding (TAPF) (Ma & Koenig, 2016). Different
from the pre-determined agent-target assignment in MAPF, TAPF considers the anonymous agents case (also
known as the unlabeled MAPF) that performs the assignment of each target to each agent to minimize the
cost (Ma & Koenig, 2016; Hoenig et al., 2018; Yu & LaValle, 2012). Along this line, Ma & Koenig (2016)
study the TAPF problem such that agents are partitioned into teams. Each team is given the same number
of unique targets (goal locations) as there are agents in the team. Each agent has to move to exactly one
target given to its team such that all targets are visited. A conflict-based min-cost-flow algorithm is proposed
to minimize the cost. Hoenig et al. (2018) propose to solve TAPF by leveraging K-best target assignments
to create multiple search trees and employing Conflict-Based Search to resolve collisions in each tree, the
proposed method is named as CBS-TA. The authors further extend CBS-TA and provide a suboptimal
method, called ECBS-TA, for fast approximation. Recently, Tang et al. (2023) argue that CBS-TA suffers
from poor scalability as the number of agents or targets increases. An incremental Target Assignment CBS
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algorithm is proposed for acceleration. Besides the above methods, Okumura & Défago (2021) studied the
offline and online TAPF, and proposed a sub-optimal algorithm, named as TSWAP, for fast computation.

Although these methods achieve good performance for TAPF problems, the problems they studied are
different from our focus. The TAPF setting requires the agent to stop once it reaches the target. In contrast,
we focus on the continual group-wise planning problems in which the agents that achieve (reach) the target
can continue to search for the remaining targets. Moreover, our method supports handling dynamic moving
targets, while most TAPF methods cannot.

Besides the research on MAPF and TAPF, many potential field based methods have been proposed for robot
navigation in physical 2D-Euclidean space (Barraquand et al., 1992; Wray et al., 2016; Daily & Bevly, 2008b;
Wang & Chirikjian, 2000; Masoud, 2012). In particular, the harmonic potential field methods take advantage
of the property of no local optima for path planning (Kim & Khosla, 1991; Connolly et al., 1990; Daily &
Bevly, 2008a; Panati et al., 2015; Szulczyński et al., 2011) However, few of them are developed for graph
planning (Masoud, 2008). More importantly, how to explore multi-agent graph planning is still unexplored.

2.2 Graph Neural Networks

Recently, graph neural networks (GNN) (Wu et al., 2020) have emerged as state-of-the-art models for graph
representation learning, e.g. convolutional graph neural networks (Kipf & Welling, 2017; Veličković et al.,
2018) for node classification tasks. Spectral-based convolutional graph neural network is one important types
of convolutional graph neural networks. Spectral-based convolutional neural networks develop from graph
signal processing (Shuman et al., 2013). The key idea of this stream of methods is performing convolution in
spectral domain. One typical spectral-based method is graph convolutional network (GCN)(Kipf & Welling,
2017). It uses the first-order approximation to define graph convolution operation, which is fast and scalable
on graphs.

However, over-smoothing (Li et al., 2018; Oono & Suzuki, 2019; Chen et al., 2020; Huang et al., 2020) is
found as a common issue with graph neural networks (GNNs). Namely, as the depth of GNN grows, the
feature of each node tends to be the same. Some methods have been proposed to tackle this issue from
different perspectives. Upon vanilla GCN, GCNII (Chen et al., 2020) solves over-smoothing by adding a skip
connection from the input at each layer and adding an identity matrix to the weight matrix. RevGNN (Li
et al., 2021) employs reversible connections in the design of deep GNNs, which are free of memory consumption
bottlenecks. (Xu et al., 2018) proposes the jumping knowledge network to adaptively concatenate the learned
representations from each intermediate layer. (Rong et al., 2020) proposes IncepGCN that borrows the
inception (Szegedy et al., 2016) network structure in computer vision into GNNs model design. Recently, Li
et al. (2019; 2020b); Dai et al. (2022); Zhou et al. (2024) employ the GNN to address the MAPF problems.
Unlike these methods, our work is focused on group-wise MAPF problems. Additionally, our GPFNN is
capable of handling dynamic targets, whereas existing GNN-based methods are limited to static targets.
Furthermore, our GPFNN can scale to highly complex 1025x1025 mazes with dense obstacle configurations, a
level of scalability that the experiments in these prior works have not achieved.

3 Graph Potential Field Neural Network

3.1 Graph Potential Field

In this section, we first introduce the graph potential field in (Masoud, 2008). Then, we formulate the graph
potential field in a matrix form to handle multi-agents. Then, we show how to construct valid potential field
features of all nodes on the graph by adding virtual boundary nodes.

Given an undirected graph G = (V, E). Let cij denote the cost weight associated with edge eij ∈ E (the cost
of moving between node i and node j ). Suppose cij > 0 for ∀eij ∈ E . Let ui denote the potential associated
with node i for 1 ≤ i ≤ |V| = n. The balance condition is defined as∑

j∈N (i)

ui − uj

cij
= 0, (1)
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(a) 11x11-sized Maze (b) Potential Field Map on the Maze. The
brighter the color is, the closer to the exit.

(c) An Equivalent Graph

Figure 1: Illustration of a 11×11-sized maze, the potential field constructed by our GPFNN, and an equivalent
graph of the maze.

where N (i) denote the neighbour of node i, i.e., N (i) := {j|∃eij ∈ E}.

We first formulate the potential field in a matrix form. Let the matrix C with element Cij = 1
cij

, and the
diagonal matrix D with diagonal element Dii =

∑
j∈N (i)

1
cij

. A generalized graph Laplacian matrix can be
defined as

L = I − D
−1

C. (2)

The balance condition of graph potential filed in a matrix form is given in Eq.(3)

Lu =
(
I − D

−1
C
)
u = 0. (3)

We can see that Eq.(3) has a trivial solution u = u1, which is the key reason of the over-smoothing issue of
GNNs to construct a non-degenerate potential field. (We will discuss this with more details in section 3.3)

To get a non-degenerate graph potential field for path planning, it needs to satisfy the boundary condition
besides the balance condition. We associate a virtual node v̂i with each node i in the original graph G. Let
O, T denote the set of virtual obstacle nodes and virtual target nodes, respectively. The boundary condition
for all virtual nodes is

ûi =
{

b if the virtual node v̂i belongs to the obstacle set O
0 if the virtual node v̂i belongs to the target set T

(4)

where b > 0 is an upper bound of the potential, i.e., ∀ui ∈ [0, b] for i ∈ {1, · · · , n} .

Combine both boundary condition and balance condition, we get

ui =
{∑

j∈N (i) wijuj + λib if v̂i ∈ O∑
j∈N (i) wijuj if v̂i ∈ T

, (5)

where wij =
1

cij

1+
∑

j∈N (i)
1

cij

is the normalized diffusion weight, and λi = 1
1+
∑

j∈N (i)
1

cij

is the weight associated

with the virtual node. We can see that λi +
∑

j∈N (i) wij = 1.

We formulate the above conditions of a non-degenerate graph potential field in a matrix form as(
I − D̂−1C

)
u = λ ⊙ û, (6)

where D̂ is a diagonal matrix with diagonal element D̂ii = 1 +
∑

j∈N (i)
1

cij
, vector λ = [λ1, · · · , λn]⊤ denotes

the diffusion weight of virtual nodes, and vector û = [û1, · · · , ûn]⊤ denotes the potential of virtual boundary
nodes , and ⊙ denotes the element-wise product operation.
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According to the property of graph potential field in (Masoud, 2008), given a non-degenerate graph potential
field, we can find a global minimum of potential (target node) from any source node greedily without suffering
from local optimum.

3.2 Architecture of GPFNN

In this section, we first present a general architecture form of our GPFNN. Then, we show a particual form
of our GPFNN has a linear rate of convergence to the valid potential field maps.

Our GPFNN have a general architecture form as Eq.(7)

U t+1 = σ
(

(1 − α)U tW t
1 + α

(
MU t + Λ ⊙ Û

)
W t

2

)
, (7)

where Û = [û1, · · · , ûd] ∈ Rn×d denotes the potential of the virtual boundary nodes in d virtual maps , and
Λ = [λ1, · · · , λd] denotes the diffusion weights associated with the virtual nodes. and M = D̂−1C denotes
the propagation matrix. And W t

1 , W t
2 ∈ Rd×m denotes trainable weight matrix at tth layer (it can be shared

across layers). The σ(·) denote an activation function, and α is a hyper-parameter such that 0 ≤ α ≤ 1.

It is worth noting that each column vector ûj in Û can be constructed by randomly assigning the type of
virtual nodes (v̂ ∈ O or v̂ ∈ T ) or by design based on domain knowledge. Moreover, the sparse diffusion
weight wij w.r.t. each edge in M can either be learned or fixed as a prior.

Now, we show a particular form of GPFNN for path planning, To construct a valid potential field map, we
set W t

1 = W t
2 = I for t ∈ {1, · · · , T}, and set σ(·) as Identity map, then we obtain a simple feed-forward NN

architecture as Eq.(8):

U t+1 = (1 − α)U t + α
(

MU t + Λ ⊙ Û
)

. (8)

We can see that Eq.(8) is the Richardson update with a step-size α for solving linear equation (9).(
I − D̂−1C

)
U = Λ ⊙ Û . (9)

Let U∗ denote the solution of the linear equation 9. According to the property of Richardson update (Hack-
busch, 1994), we know that for T -step update (a T -layered NN), we can achieve the following linear rate of
convergence:

∥UT +1 − U∗∥F ≤ (∥(1 − α)I + αD̂−1C∥2)T ∥U1 − U∗∥F (10)
≤ e−(1−ρ)T ∥U1 − U∗∥F ,

where ∥·∥2 and ∥·∥F denote the spectral norm and Frobenius norm, respectively. And ρ = ∥(1−α)I+αD̂−1C∥2.
When ρ = ∥(1 − α)I + αD̂−1C∥2 < 1, Eq.(10) shows a linear rate of convergence.

It is worth remarking that despite the simple NN architecture in Eq.(8), we can still learn the diffusion
parameter wij in M to adjust the cost weights associated with the edges in graph G. This can adjust the
distance between nodes because even nodes connected by an edge may belong to different classes. A nice
property of this simple neural network is that it maintains the linear convergence to U∗ despite the learning
parameters in M .

3.3 Relationship with current GNNs

In this section, we compare our GPFNN with current GNNs, and show that a related form of current GNNs
converge linearly to a trivial feature map. In contrast, our GPFNN converge linearly to a valid potential field
map by satisfying boundary conditions.

Given an undirected graph G = (V, E) with adjacency matrix A and diagonal degree matrix D. The GNN
layer has a general form (may have other similar variants (Wu et al., 2020)) as follows:

U t+1 = σ
(
(1 − α)U tW t

1 + αD−1AU tW t
2
)

. (11)
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When we set W t
1 = W t

2 = I for t ∈ {1, · · · , T}, and set σ(·) as Identity map same as the setting of our
GPFNN, then we have the following NN architecture:

U t+1 = (1 − α)U t + αD−1AU t, (12)
which is the Richardson update for solving linear equation (13).(

I − D−1A
)
U = 0. (13)

We can see that U = 1z⊤ is a solution of Eq.(13), which means that all embedding feature vectors are same,
i.e., z1 = · · · = zn = z. According to the property of Richardson update (Hackbusch, 1994), we know it
converge linearly to the trivial solution U = 1z⊤ as follows

∥UT +1 − U∥F ≤ (∥(1 − α)I + αD−1A∥2)T ∥U1 − U∥F (14)
≤ e−(1−ρ)T ∥U1 − U∥F ,

where ρ = ∥(1 − α)I + αD−1A∥2. This shows a over-smoothing issue in current GNNs for constructing a
valid potential field map.

Compared our GPFNN in Eq.(8) with GNNs in Eq.(11), our GPFNN includes a boundary condition on
virtual nodes, which is the key to solve the over-smoothing issue. Moreover, our GPFNN can learn the
diffusion weights to handle weighted graph, while maintains the linear rate of convergence to a valid potential
field map.

3.4 Optimization Property for GPFNN with Nonlinear Aggregation

In previous subsection, we discuss the optimization property for GPFNN with linear activation σ(·). In this
section, we show how our GPFNN maintain the optimization property with a nonlinear aggregation.

To be simple, we assume the the cost cij = 1 for all edges eij ∈ E . Then, we have λi = 1
1+di

, where di denotes
the degree of the node i.

When fix the weight matrix W t
1 = W t

2 = I, the update rule for node i with linear activation is given as
follows

ut+1
i = (1 − αi)ut

i + αi

1 + di

∑
j∈N (i)

ut
j + αi

1 + di
ûi. (15)

By setting an adaptive step size αi for each node i as

αi = 1 + di

2 + di
, (16)

we can achieve that

ut+1
i =

ut
i +
∑

j∈N (i) ut
j + ûi

2 + di
. (17)

Let qi = log(ui) be a mapping between qi and ui for all nodes i ∈ {1, · · · , n}, then we have

qt+1
i = log

(
exp(qt

i) +
∑

j∈N (i) exp(qt
j) + exp(q̂i)

2 + di

)
. (18)

The connection between update rule in Eq.(17) and update rule in Eq.(18) is shown in Proposition 1. The
proof of Proposition 1 is presented in the Appendix A.

Proposition 1. Let the boundary condition of potential in original space be ûi =
{

1 if i ∈ O
0 if i ∈ T

. Let Eq.(19)

be a mapping between the log-potential qi (q̂i) and potential ui (ûi) for i ∈ V (i ∈ V̂).

qt
i = log

((
1 − ut

i

)
(1 − δ) + δ

)
, (19)

where 0 < δ < 1 denotes a small constant. Then, mapping a Richardson update (Eq.(17)) in original space by
Eq.(19) is equivalent to a Richardson update Eq.(18) in the log-space.
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Remarks: Eq.(18) is a Log-Mean-Exp nonlinear aggregation, it enables us to update the potential in the
log space instead of the original potential space. In practice, only qt

i for i ∈ {1, · · · , n} is updated in the
log-space. We do not need to compute the potential ut

i in the original potential space explicitly by taking
advantage of Log-Sum-Exp trick. This updating scheme can reduce the numeric issue of float reported in
(Wray et al., 2016).

With the update rule in Eq.(18), our GPFNN maintains the optimization property. Namely, it performs a
T -step Richardson update in the log-space. It is worth to remark that this nonlinear update can reduce the
numeric error compared with a linear update in original potential space. Thus, our nonlinear update can
maintain significantly smaller accumulation numeric error compared linear update, especially when T is large.

4 Graph Learning Framework

In this section, we present a simple architecture in GPFNN family for graph learning. We fix the weight
matrix W t

1 = W t
2 = I for all the T -layers, and apply the non-linear aggregation in Eq.(18) with adaptive

stepsizes α = [α1, · · · , αn]⊤ that automatically computed by Eq.(16). Remarkably, our adaptive stepsize
scheme is more flexible to update each node. Moreover, it greatly saves the human efforts regarding fine-tuning
the hyperparameter [α1, · · · , αn] for each node.

For graph learning problems, we learn the parameters of the initial potential neural network and the visual
node potential neural network. Details are shown in the following subsections.

4.1 Simple Structure of GPFNN for Graph Learning

4.1.1 Initial Potential Neural Network

The initial potential of the nodes (U0) can be learned using a neural network. The architecture of the
Initial Potential Neural Network (IPNN) can either be a simple linear mapping, or a complex neural network
depends on the tasks.

To compatible with the potential update Eq.(18) in log space, we employ the Log-Sigmoid function as the
activation function of the last layer of IPNN:

σ(z) = log
(

1
1 + exp(−z)

)
= z − log (1 + exp(z)) . (20)

In this work, we employ a three layer architecture as our IPNN given below:

U0 = σ (ZWa) , (21)

where Z = [Z1, · · · , Zm] denotes a concatenation of m blocks. The ith block Zi is given as follows:

Y
(1)

i = Dropout(X2i−1) (22)

Y
(2)

i = ReLU(Y (1)
i W i

a1) + Y
(2)

i−1 − Mean(Y (2)
i−1) (23)

Zi = LayerNorm(Y (2)
i ), (24)

where X2i−1 denotes the input feature of nodes after (2i − 1)-hop message passing. X0 denotes the
initial input node features. The ReLU(·), Dropout(·), Mean(·), and LayerNorm(·) denote the ReLU
activation function, dropout, mean function and layer normalization function respectively. In addition, we set
Y

(2)
0 = LayerNorm(ReLU(Y (1)

0 W i
a1)).

4.1.2 Visual Node Potential Neural Network

The potential of the visual nodes (Û) can also be learned using a neural network. The architecture of the
Visual Node Potential Neural Network (VNPNN) can either be same as IPNN, or a more complex neural
network as a teacher model.
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(a) Euclidean neighbors of
node i

(b) Graph neighbors of node i (c) Graph neighbors of node i
with boundary condition

(d) d-Feature map with different
boundary conditions

Figure 2: Illustration of the neighbors of node i in the Euclidean topology and the graph topology, and a
d-dimensional feature map with different boundary condition on each dimension.

To compatible with the potential update Eq.(18) in log space, we employ the Log-Sigmoid function as the
activation function of the last layer of VNPNN:

σ(z) = log
(

1
1 + exp(−z)

)
. (25)

In this work, we employ a three layer architecture as our VNPNN given below

Û = σ
(
Z̄Wb

)
, (26)

where Z̄ = [Z̄1, · · · , Z̄m] denotes a concatenation of m blocks. The ith block Z̄i is given as follows:

Ȳ
(1)

i = Dropout(X2i−2) (27)

Ȳ
(2)

i = ReLU(Ȳ (1)
i W i

b1) + Ȳ
(2)

i−1 − Mean(Ȳ (2)
i−1) (28)

Z̄i = LayerNorm(Ȳ (2)
i ), (29)

where X2i−2 denotes the input feature of nodes after (2i−2)-hop message passing. X0 denotes the initial
input node features. In addition, we set Ȳ

(2)
0 = LayerNorm(ReLU(Ȳ (1)

0 W i
b1)).

4.2 Contrastive Regularization between Visual Node Potential and Initial Potential

We provide a regularization technique by introducing a regularization loss between the Visual Node Potential
and Initial Potential. The contrastive loss is given as follows:

ℓc(U0, Û) = ∥U0 − Û∥2
F . (30)

The contrastive loss ℓc regularize the Frobenius-norm between the initial log-potential and the Visual Node
log-potential. It forces the initial log-potential close to the Visual Node log-potential, which provides a good
prior initial log-potential that leads to fast converge (for graph Richardson update). This is a nice protery
that enables us to use a small number of (Richardson update) layers to achieve a near stationary global
potential field.

Moreover, when the input feature representation of the same nodes for the IPNN and VNPNN are different
as section 4.1, our loss can be viewed as a contrastive learning scheme. This provides a way to learn useful
representations of nodes that are semantically meaningful and invariant to certain transformations of the
input graph.

5 Fast GPFNN on Grid Worlds

In this section, we show how to apply our GPFNN on grid worlds, and achieve a neat parallel local update
for fast computation. The 2D-grid worlds relate to a sparse graphs with maximum degree no larger than

9
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Figure 3: Illustration of Network Architecture of Action Decoder

eight. See Figure 1 for an illustration. We can see that the maze in Fig 1(a) has an equivalent graph in
Fig 1(c). Thus, computing a valid potential field on the maze (Fig 1(b)) leads to a valid potential field on
graph in Fig 1(b) (with boundary condition on virtual nodes). The walls and targets on mazes plays a role of
virtual nodes of the embedded equivalent graph.

5.1 Neat parallel local update for fast computation on grids

For a 2D-grid world, the cost weight cij = 1. We set the hyper-parameter α = 8
9 . This leads to the following

neat parallel local update rule similar to a masked 2D average pooling (with a 3 × 3 kernel size) :

ut+1
i =

ut
i +
∑

j∈N (i) 1(j ∈ V)ut
j + 1(j ∈ V̂)ûj

9 , (31)

for all i ∈ V, where V denotes the node-set with free update potential parameter, V̂ denotes the node-set of
boundary condition, and 1(·) denote indicator function. See an illustration in Fig 2(c). The green nodes
denote the free updated nodes that belong to node-set V, and the black nodes denote the boundary nodes
that belongs to the node-set V̂.

When we employ the Log-Mean-Exp aggregation, i.e., σ(x) = log 1
9
∑

k exp (xk) instead of an average map,
we have update rule in a log-space for all i ∈ V as Eq.(32).

qt+1
i =log

(exp(qt
i)+

∑
j∈N (i)exp

(
1(j ∈ V)qt

j +1(j ∈ V̂)q̂j

)
9

)
. (32)

The update rule in Eq.(32) can be implemented by Conv2D and Log-Sum-Exp that are fast and stable in
modern deep learning toolboxes.

5.2 Cooperative actions for d agents
To take cooperative actions for d agents, we construct d maps, one for each agent. The walls and target sets
are the boundary conditions same for all agents. Further, for each agent i, we add other agents’ position as
the obstacle nodes to boundary conditions of the ith map. This results in a d × w × h sized 3D-tensor, where
w, h denotes the width and height of the grid map. See Figure 2(d) for an illustration.

We employ the T -step update in Eq.(32) as a T -layer feedforward neural network, it outputs the feature map
UT as a d × w × h sized 3D-tensor, where w, h denotes the width and height of the grid map. The feature
map UT is then fed into an action decoder network compute each agent’s action in parallel. The action
decoder network computes one-step lookahead of all the agents to avoid a collision. The unsafe lookahead
action will be rollback.

Our model can leverage the user preference of the priority of each agents. When several agents take action to
the same position, the agent with the highest priority (largest ID in default) will indeed take action to move,
and the others’ lookahead action will be rollback and stay hold on.
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An illustration of the architecture of the action decoder network is shown in Figure 3. The agent-position-mask
is the one-hot representation of the agents’ current positions. The action decoder computes the collision
map based on agents’ one-step lookahead action. Then, it constructs a safe-agent-mask. Agents with
safe-agent-mask one perform the lookahead action, while agents with safe-agent-mask zero remain in the old
position. The action networks consists of a MaxPooling2D layer, a MaxUnPool2D layer. The MaxPooling2D
layer enables to compute the maximum potential in a parallel way. The MaxUnPool2D layer is used to find
the one-step lookahead position for each agent in parallel.

It is worth to noting that our GPFNN never lead to edge conflict (two agents came across the same edge).
This is because each agent treat other agents’ as obstacle nodes, its original position always has a lower
potential than the obstacle nodes. Thus, the agent will stay at the original node instead of moving to other
agents along with the directly connected edge. This avoids the edge conflict.

6 Experiments

6.1 Continual Group-wise Multi-agent Path Planning for Static Targets

To evaluate the planning ability of our GPFNN, we first perform empirical studies on group-wise multi-agent
path planning tasks with static targets. More specifically, in our experiments, a group of agents navigate on
the map to catch a group of static targets. The agents are moving in parallel during each time step. The
agents perform as a team to catch as many targets as possible while using as few time steps as possible. We
evaluate our GPFNN on complex 2D grid mazes. We create three different-sized 2D mazes for evaluation, i.e.,
129 × 129-sized mazes, 401 × 401-sized mazes, and 1025 × 1025-sized mazes. Each size contains 100 mazes.

We run one trial for each maze among the 100 same-sized mazes with randomly generated non-overlapped
targets and agents’ initialized positions. For 129 × 129-sized mazes, and 401 × 401-sized mazes, we test four
cases with different numbers of agents, namely, 50 agents cases, 100 agents cases, 500 agents cases, and 1000
agents cases. For the large 1025 × 1025-sized mazes, we test 50 agents and 100 agents cases. The number of
static targets is the same as the number of agents.

We compare GPFNN with related methods: Conflict-Based Search (Sharon et al., 2015), Enhanced Conflict-
Based Search (ECBS) (Barer et al., 2014) and Prioritized Planning (P-Planning) (Čáp et al., 2015). For all
the baselines, we use the C++ codes in the Multi Robot Planning toolbox 1. For all baselines, we employ
random agent-target pair assignment. In all the experiments, we set the number of layers of GPFNN to 1000.
The maximum moving step for GPFNN is set to 2000. The "Time out" parameter of CBS is set to 72, 000
seconds.

We employ three metric to measure the effectiveness of different methods. The metric employed are listed
below:

• Scores: The score of each trail is defined as the number of targets been caught in the trail. We
report the mean scores ± Standard Deviation over all trails for evaluation.

• Success Rate: The success rate is defined as the percentage of the success trails over the total
trails, i.e., SR := Number of Success T rails

T otal Number of T rails . We said a success trail when all the targets in this trail
have been caught.

• Finishing Time Steps: The finishing time step of a target is the time step that the target has
been caught. We report the mean Finishing Time Step ± Standard Deviation over all targets caught
in all trails for evaluation.

The mean scores ± std of different methods for 50 agents, 100 agents, 500 agents and 1000 agents cases
on different sized mazes are shown in Table 1. We can observe that GPFNN attains near the maximum
scores for each number of agent cases. It significantly outperforms CBS, ECBS and P-Planning regarding
the scores. Moreover, we can see that CBS, ECBS and P-Planning obtain large scores on the small mazes,

1https://github.com/whoenig/libMultiRobotPlanning
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Table 1: Mean Score ± std for different number of agents on different maps (larger is better)
Number of Agents GPFNN CBS ECBS P-Planning

129x129-maze

50 50 ± 0.00 0 35.55 ± 3.46 37.46 ± 3.54
100 100 ± 0.00 0 70.63 ± 5.21 73.83 ± 5.96
500 500 ± 0.00 0 0 377.72 ± 17.43
1000 1000 ± 0.00 0 0 845.11 ± 26.76

401x401-maze

50 50 ± 0.00 0 5.25 ± 1.56 4.90 ± 1.79
100 100 ± 0.00 0 0 9.56 ± 2.88
500 499.92 ± 0.80 0 0 55.89 ± 7.13
1000 1000 ± 0.00 0 0 27.19 ± 6.12

1025x1025-maze 50 49.92 ± 0.27 0 0 7.68 ± 2.79
100 99.50 ± 4.97 0 0 15.21 ± 3.49

while they only achieve very small scores on the challenging large-sized mazes, i.e., 401 × 401 sized mazes and
1025 × 1025 sized mazes. This shows that these baselines cannot scale up to large-sized maps.

More experiment results on continual group-wise path planning for static targets and dynamic targets can be
found in section C and section D in the Appendix, respectively. Furthermore, we evaluate GPFNN in the
TAPF setting. The experimental results are shown in section E. Moreover, we further evaluate the learning
ability of our GPFNN in section F in the Appendix. The results on six graph datasets (up to millions of
nodes) demonstrate that our GPFFN achieves competitive node classification accuracy with a very small
number of parameters.

7 Limitation

Currently, our work focuses on path planning for homogeneous agents. Path planning for multiple heteroge-
neous agents presents a more challenging problem that needs further investigation. One potential approach is
to adopt a hierarchical planning strategy. At the high level, our GPFNN could be utilized to perform abstract
planning in a homogeneous way, while at the low-level, high-resolution grids could be employed to perform a
more precise, high-resolution planning tailored to the specific characteristics of the heterogeneous agents.
Another limitation is that our GPFNN can not perform real-time applications that require performing path
planning in seconds.

8 Conclusion and Future Work

This paper proposed a graph potential field-based neural network (GPFNN) for the group-wise homogeneous
multi-agent path planning. Our GPFNN unfolds the optimization steps of the potential field as a T-layer
feedforward neural network. Theoretically, our GPFNN has a linear convergence rate to a valid potential
field map w.r.t. the depth despite learning the diffusion weights. Empirically, our GPFNN achieves superior
performance for up to 1000 agents group-wise path planning on 129 × 129-sized and 401 × 401-sized complex
mazes and up to 100 agents on the large-sized 1025 × 1025 mazes. Moreover, our GPFNN supports catching
dynamic moving, even adversarial moving targets for 500 agents’ cooperative planning on 129 × 129-sized and
401 × 401-sized complex mazes, and 50 agents’ cooperative planning on the large-sized 1025 × 1025 mazes.
The experiments on planning tasks demonstrate our GPFNN’s strong group-wise path-planning ability.

In addition, we empirically evaluated the learning ability of our GPFNN on graph node classification tasks.
The experiments on six graph datasets demonstrate the learning ability of our GPFNN with a small number
of parameters. This may show the potential of our GPFFN to handle the tasks that require both planning
ability and learning ability, e.g., multi-task learning that supports multi-agent path planning and node action
prediction (node classification). Moreover, GPFNN may be a useful component in multi-agent reinforcement
learning in tasks requiring path planning and team-wise cooperative actions, e.g., multi-agent RL in city
package delivery, multi-agent RTS/MOBA games, etc. We leave these interesting applications as one of our
future works.
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Appendix

A Proof of Proposition 1

Proposition. Let the boundary condition of potential in original space be ûi =
{

1 if i ∈ O
0 if i ∈ T

. Then, mapping

a Richardson update (Eq.(17)) in original space by Eq.(19) is equivalent to a Richardson update Eq.(18) in
the log-space.

Proof. We first check the boundary condition. When i ∈ O, from the mapping Eq.(19), we know that

q̂i = log ((1 − ûi)(1 − δ) + δ)
= log

((
1 − 1

)
(1 − δ) + δ

)
= log(δ) (33)

When i ∈ T , we know that

q̂i = log
((

1 − ûi

)
(1 − δ) + δ

)
= log

((
1 − 0

)
(1 − δ) + δ

)
= log(1) = 0 (34)

When i belongs to the free node set, i.e., i ∈ V , from the mapping Eq.(19) and update rule Eq.(17), we know
that

qt+1
i = log

(
(1 − ut+1

i )(1 − δ) + δ
)

= log
((

1 −
ut

i +
∑

j∈N (i) ut
j + ûi

di + 2

)
(1 − δ) + δ

)
=log

(( 1
di + 2 + di + 1

di + 2 −
ut

i +
∑

j∈N (i) ut
j + ûi

di + 2

)
(1 − δ)+δ

)
(35)

= log
((1 − ut

i

di + 2 +
∑

j∈N (i) (1 − ut
j) + 1 − ûi

di + 2

)
(1 − δ) + δ

)
(36)

= log
( (1 − ut

i)(1 − δ)
di + 2 +

∑
j∈N (i) (1 − ut

j)(1 − δ) + (1 − ûi)(1 − δ)
di + 2 + δ

)
(37)

= log
( (1 − ut

i)(1 − δ) + δ

di + 2 +
∑

j∈N (i)
(
(1 − ut

i)(1 − δ) + δ
)

+ (1 − ûi)(1 − δ) + δ

di + 2

)
(38)

Note that exp (qt
j) = (1 − ut

j)(1 − δ) + δ for j ∈ N (i), and exp (qt
i) = (1 − ut

i)(1 − δ) + δ, and q̂i =
log ((1 − ûi)(1 − δ) + δ) , it follows that

qt+1
i = log

(exp (qt
i)

di + 2 +
∑

j∈N (i) exp (qt
j) + exp (q̂i)

di + 2

)
(39)

= log
(exp (qt

i) +
∑

j∈N (i) exp (qt
j) + exp (q̂i)

di + 2

)
(40)

B Demonstration of Potential Filed Constructed by GPFNN

We first show a demonstration of the potential field constructed by GPFNN in Figure 4. The number of
layers of GPFNN is set to 1000 to construct the potential field. From both the Figure 4(a) and Figure 4(b),
we can observe that the brighter the color is, the closer to the exit in the right-down corner. which shows
that the potential field provides an monotonic guide from any position to the exit (if connected). This is
vitally important for multi-agent path planning to construct cooperatively moving action toward the targets.
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(a) Potential Field Map on a 129 × 129 sized Maze (b) Potential Field Map on a 401 × 401 sized Maze

Figure 4: Demonstration of the potential field maps constructed by our GPFNN on a 129 × 129-sized maze
and a 401 × 401-sized maze. The brighter the color is, the closer to the exit.

C Continual Group-wise Multi-agent Path Planning for Static Targets

The success rate of 50 agents, 100 agents, 500 agents, and 1000 agents cases on different sized mazes are
shown in Table 2. We can observe that CBS, ECBS and Prioritized Planning fail to catch all the targets in
any trail. This is because these methods are designed for one-to-one agent-target pair path planning. They
cannot perform group-wise multi-agent path planning as a team. The planned path for each individual agent
may always have a conflict for complex and dense maps. As a result, they all fail to catch all targets in any
trial on complex mazes with dense obstacles. In contrast, our GPFNN performs group-wise multi-agent path
planning as a team. Our GPFNN implicitly assigns the target to the nearby agent according to the potential
field. Thus, our GPFNN can handle path planning with a large number of agents, while other baselines
cannot.

The mean finishing time steps ± std for 50 agents, 100 agents, 500 agents and 1000 agents cases on different
sized mazes are shown in Table 3. We can observe that GPFNN achieves smaller and smaller mean finishing
time steps as the number of agents increases. This demonstrates the ability of GPFNN to plan multi-agent
paths as a whole team instead of individually. Thus, when the number of agents in a team gets larger,
GPFNN can find better path planning that catches the targets with fewer steps. In contrast, the baselines
CBS, ECBS and P-Planning all perform the multi-agent path planning for the one-to-one agent-target pairs
individually instead of cooperating as a team. They only perform planning to avoid a collision but fail to
cooperate as a team to catch the group-wise targets. As a result, they perform worse as the number of agents
increases for group-wise multi-agent path planning. This can be observed in Table 1 and Table 2, in which,
CBS failed to output a path for all cases inside the time limitation (72,000 seconds). In addition, both CBS
and ECBS fail to output a path for more than 100 agents on all three sized mazes within the time limitation
(72,000 seconds).

In addition, we can see that P-Planning obtains smaller mean finishing time steps from Table 3. Note that
P-Planning has a zero Success Rate to catch all the targets in each trial from Table 2 and achieves small
scores from Table 1. This shows that P-Planning may prioritize catching the easy targets (the closed targets)
and fail to catch the challenging ones (far away targets). As a result, the mean finishing time steps over the
targets successfully caught are small.

D Continual Group-wise Multi-agent Path Planning for Dynamic Targets

In this section, we employ our GPFNN to address the multi-agent group-wise dynamic path planning on 2D
mazes. This task is very challenging because it requires planning as a team instead of achieving individual
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Table 2: Success Rate for Different Number of Agents on Different Maps
GPFNN CBS ECBS P-Planning

129x129-maze

50 100% 0 0 0
100 100% 0 0 0
500 100% 0 0 0
1000 100% 0 0 0

401x401-maze

50 100% 0 0 0
100 100% 0 0 0
500 99% 0 0 0
1000 100% 0 0 0

1025x1025-maze 50 92% 0 0 0
100 99% 0 0 0

Table 3: Mean Finishing Time Steps ± Std for different number of Agents on different maps (Smaller is
better)

GPFNN CBS ECBS P-Planning

129x129-maze

50 22.43 ± 2.50 - 116.18 ± 79.84 122.47 ± 46.80
100 15.44 ± 1.28 - 128.21 ± 78.11 121.22 ± 43.63
500 5.65 ± 0.27 - - 72.43 ± 68.97
1000 3.59 ± 0.10 - - 36.0 ± 55.73

401x401-maze

50 118.89 ± 17.56 - 59.5 ± 107.33 24.36 ± 69.07
100 82.66 ± 7.73 - - 11.67 ± 50.56
500 35.35 ± 37.76 - - 14.87 ± 53.67
1000 20.08 ± 0.79 - - 9.07 ± 43.22

1025x1025-maze 50 328.46 ± 32.07 - - 122.68 ± 269.53
100 243.25 ± 17.51 - - 46.16 ± 180.13

goals. More importantly, the targets are dynamically moving, even adversarially moving, on the 2D mazes
with dense obstacles.

D.1 2D-Grid World Problems Setup

In the experiments, N agents are assigned to groups A and B, respectively. Both groups A and B agents
are dynamically moving on the maze. The mission of group A is to catch the agents in group B. Once an
agent in group A gets in the same position as an agent in group B, group A’s score plus one, and the agent of
group B in this position is removed. The mission of group B is to catch N static targets. The static targets
of group B do not move. Once an agent of group B catches a static target, group B’s score plus one, and the
target is removed. The group that first attains a N score wins the game.

Both 129 × 129-sized mazes, 401 × 401-sized mazes, and the large 1025 × 1025-sized mazes are employed for
evaluation. For 129 × 129-sized mazes and 401 × 401-sized mazes, we employ 100 mazes for evaluation, for the
large 1025 × 1025-sized mazes, we employ 50 mazes for evaluation. For experiments on 129 × 129-sized mazes,
401 × 401-sized mazes, we set the number of agents(targets) to 500, i.e., N = 500. For experiments on the
large 1025 × 1025-sized mazes, we set N = 50. For group A, we employ the policy generated by our GPFNN.
For group B, three kinds of policy are employed for comparison: (1) adversarial policy using GPFNN planning
to targets with group A’s position information, (2) unaware policy using GPFNN planning to targets without
group A’s position information, (3) random moving policy with one-step look-ahead collision checking (stay
hold on if collision will happen).

At each round (time step), group A’s agents first move in parallel, then group B’s agents move in parallel.
The initialed position of group A’s agents, group B’s agents, and the static targets of group B are randomly
assigned without overlap and collision.
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Table 4: Mean Scores ± std for Group A (GPFNN) and Group B with different Policy
GPFNN vs Random Group B GPFNN vs Unaware Group B GPFNN vs Adversarial Group B

Group A’s Score Group B’s Score Group A’s Score Group B’s Score Group A’s Score Group B’s Score
129x129-maze 500 ± 0 34.13 ± 6.21 500 ± 0 237.13 ±11.60 500 ± 0 251.37 ± 13.49
401x401-maze 500 ± 0 14.31 ± 4.12 500 ± 0 258.49±11.40 500 ± 0 311.04 ± 33.59

1025x1025-maze 50 ± 0 0.08 ± 0.27 50 ± 0 36.30 ± 4.73 49.00 ± 3.58 47.04 ± 2.12

Table 5: Mean Finishing Time Steps ± std of Group A (GPFNN) against Group B with different Policy
GPFNN vs Random Group B GPFNN vs Unaware Group B GPFNN vs Adversarial Group B

129x129-maze 37.12 ± 10.28 22.25 ± 3.79 31.75 ± 6.07
401x401-maze 180.10 ± 39.97 125.03 ± 19.44 191.54 ± 40.11

1025x1025-maze 1057.68± 227.93 1191.74 ± 208.76 1704.12 ± 429.23

D.2 Experimental Results for Group-wise Multi-agent Path Planning with Dynamic Targets

The mean scores of Group A against Group B with different policies are shown in Table 4. From Table 4,
we can observe that Group A with GPFNN planning attains the full scores on all the cases except the case
against the Adversarial Group B on 1025 × 1025-sized mazes, which shows the power of GPFNN perform the
duty of Group A. Note that Group A has an advantage over Group B because of Group A can remove Group
B’s agents, but Group B can not remove Group A’s agents. This advantage is more significant for the dense
agents’ cases on 129 × 129-sized mazes and 401 × 401-sized mazes.

Moreover, we can observe that Group B with GPFNN planning (Unaware Group B and Adversarial Group
B) achieves significantly higher scores compared with Random Group B, which shows the importance of
planning. Moreover, as the maze size increases, the score of random policy decreases. Particularly, Random
Group B attained almost zero scores on the large 1025 × 1025-sized mazes, which shows that random walk
cannot perform well on large-sized mazes. In addition, the Adversarial Group B attains higher scores on
all-sized mazes than Unaware Group B, which shows the ability of GPFNN to take advantage of Group A’s
position information to increase the scores.

The mean finishing time of Group A catching all N targets against Group B with different policies is shown
in Table 5. From Table 5, we can see that the fishing time step increases as the size of the maze increases.
Moreover, the Adversarial Group B cases attain larger mean finishing steps compared with Unaware Group
B, especially on the large 1025 × 1025-sized mazes, which shows that GPFNN’s adversarial planning ability
(with Group A’s position information) to increase the survival time of Group B.

We provide the GIF video demonstrations of GPFNN Group A against Adversarial GPFNN Group B in the
supplementary materials. In the demonstrations, each red point denotes each Group A’s agent, each blue
point denotes each Group B’s agent, and each green point denotes each static target of Group B. In the demo
of 10 agents on the 129x129-sized maze, group B (blue) first catches all the static targets (green) and wins
the game. In the demo of 20 agents, 50 agents, and 100 agents case on the 129x129-sized maze, group A (red)
first catches all Group B’s agents (blue) and wins the game. In the demo of 500 agents on the 401x401-sized
maze, group A (red) first catches all Group B’s agents (blue) and wins the game. From these demos, we can
see that for the dense agents’ cases, Group A has more advantage than Group B because Group A can remove
Group B’s agents during the game process, but Group B can not remove Group A’s agents. For the sparse
agents’ case, Group B with GPFNN still has a chance to win Group A with GPFNN, e.g., 10 agents case.
More interestingly, we can observe Group A’s team behavior in that agents cooperatively besiege Group B’s
agents from different roads(directions) on the mazes instead of performing catching individually as a queue.

E Evaluation planning ability in TAPF setting
We further evaluate the planning ability of our GPFNN in the TAPF setting. Compared with our continual
group-wise planning problems studied in section C and section D, the TAPF setting requires the agent to
stop once it reaches the target. In contrast, in our continual group-wise planning problems, the agents that
achieve (reach) the target can continue to search for the remaining targets.
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Table 6: Success Rate for Different Number of Agents on Different Maps(larger is better)
GPFNN CBS-TA ECBS-TA

54x54-maze

10 100% 97% 97%
50 100% 3% 87%
100 97% 0 76%
200 74% 0 57%

250x250-maze

10 100% 0 0
50 100% 0 0
100 100% 0 0
200 100% 0 0

Table 7: Mean Finishing Time Steps ± Std for different number of Agents on different maps (Smaller is
better)

GPFNN CBS-TA ECBS-TA

54x54-maze

10 178.89 ± 62.56 70.89 ± 11.07 70.95 ± 11.02
50 233.12 ± 50.62 91.01 ± 4.32 83.63 ± 7.63
100 239.33 ± 60.30 - 87.94 ± 6.47
200 274.35 ± 74.01 - 94.87 ± 6.77

250x250-maze

10 289.66 ± 84.48 - -
50 411.36 ± 89.12 - -
100 458.43 ± 98.40 - -
200 502.65 ± 103.76 - -

We compare GPFNN with Conflict-Based Search with Optimal Task Assignment (CBS-TA) (Hoenig et al.,
2018) and Enhanced Conflict-Based Search with Optimal Task Assignment (ECBS-TA). For all the baselines,
we use the C++ codes in the Multi Robot Planning toolbox 2. In all the experiments, we set the number of
layers of GPFNN to 1000. The maximum moving step for GPFNN is set to 3000. The "Time out" parameter
of CBS-TA and ECBS-TA is set to 72, 000 seconds.

We evaluate all methods on 54 × 54 sized maze and 250 × 250 sized maze. The mazes used here have wider
roads compared with the mazes in our continual group-wise planning setting. For each maze, we test four
cases with different numbers of agents, namely, 10 agents cases, 50 agents cases, 100 agents cases, and 200
agents cases. The number of targets is set to the same number as that of the agents. For each case, we
perform 100 independent trials with randomly initialized agents’ and targets’ positions.

The success rate for different numbers of agents on different maps are reported in Table 6. We can observe
that GPFNN achieve a consistently higher success rate compared with CBS-TA and ECBS-TA. In addition,
we can see that in the 10-agent case on the 54 × 54 sized maze, both GPFNN and baselines achieve a high
success rate. It shows that all the methods can perform well on the small mazes with a small number of agents.
Moreover, the success rate of CBS-TA and ECBS-TA decrease fast as the number of agents increases. More
importantly, CBS-TA and ECBS-TA obtain zero success rates on the 250 × 250 sized maze, while GPFNN
achieves 100% success rate. This demonstrates the planning ability of GPFNN on large maps compared with
CBS-TA and ECBS-TA.

The mean finishing time steps for different numbers of agents on different maps are shown in Table 7. Because
the CBS-TA and ECBS-TA only output transitory files for the success cases, i.e., all targets have been
caught. The mean finishing time steps for both GPFNN and baselines are computed over all success trials.
From Table 7, we see that CBS-TA and ECBS-TA achieve smaller mean finishing time steps compared with
GPFNN on the small maze. This may show that CBS-TA and ECBS-TA can find better paths on the small
mazes. Moreover, we can see that CBS-TA and ECBS-TA can not plan for the 250 × 250 sized maze.

2https://github.com/whoenig/libMultiRobotPlanning
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F Evaluation of Learning Ability

Table 8: Graph dataset details for graph node classification.
Name #Nodes #Edges Metric
Cora 2,708 5,429 Accuracy

CiteSeer 3,327 4,732 Accuracy
PubMed 19,717 44,338 Accuracy

ogbn-arxiv 169,343 1,166,243 Accuracy
ogbn-products 2,449,029 61,859,140 Accuracy
ogbn-proteins 132,534 39,561,252 ROC-AUC

We have evaluated the planning ability of our GPFNN in the previous section. In this section, we further
evaluate the learning ability of our GPFNN on the graph node classification tasks. The goal is to show
that our GPFFN has the learning ability and, thus, it may have the potential to handle tasks that require
both learning ability and planning ability. We employ simple three-layer neural networks to learn the initial
potential and visual node potential in our GPFNN.

We first evaluate our GPFNN on three large graph datasets. Namely, the ogbn-arxiv, ogbn-products, and
ogbn-proteins graph datasets. The ogbn-arxiv dataset represents a citation network between all computer
science papers on arXiv, where each node represents a paper and each edge represents a citation between
papers. The ogbn-products dataset is an Amazon product co-purchasing network, where each node represents
a product sold on Amazon, and each edge represents that the products are purchased together. The ogbn-
proteins dataset is an undirected graph, where each node represents a protein, and each edge indicates
different types of biologically meaningful associations between proteins.

To evaluate our GPFNN, we compare with GCN (Kipf & Welling, 2017), DeeperGCN (Li et al., 2020a), and
RevGNN (Li et al., 2021). The classification accuracy and the number of parameters are shown in Table 9. We
report the classification accuracy and the number of parameters of GCN, DeeperGCN and RevGNN from their
paper. From Table 9, we can observe that GPFNN obtains a consistently higher classification accuracy and a
smaller number of parameters compared with GCN. Moreover, GPFNN achieves a competitive classification
accuracy on ogbn-products and ogbn-arxiv datasets, while it has a very small number of parameters compared
with RevGNN. In addition, although GPFNN has a significantly smaller number of parameters compared with
DeeperGCN, it obtains a higher classification accuracy on ogbn-products and ogbn-arxiv than DeeperGCN.

The experiments of node classification on large datasets show the potential of GPFNN on learning tasks even
beyond the primary focus of GPFNN on graph path planning tasks. It is interesting to extend GPFNN on
multi-task learning that supports multi-agent path planning and node action prediction (node classification).
Such extension may naturally form a backbone for multi-agent reinforcement learning in tasks requiring path
planning and cooperation, e.g., multi-agent RL in city package delivery, multi-agent games, etc. We leave
this interesting application as one of our future works.

Table 9: Node Classification Accuracy % (ROC-AUC) and # Parameter of Model
ogbn-arxiv ogbn-products ogbn-proteins

GPFNN Acc 72.19 ± 0.14 81.70 ± 0.42 74.45 ± 0.17
#Parameter 22780 20106 13756

GCN (Kipf & Welling, 2017) Acc 71.74 ± 0.29 75.64 ± 0.21 72.51± 0.35
#Parameter 110120 103727 96880

DeeperGNN (Li et al., 2020a) Acc 71.92 ± 0.16 80.98 ± 0.20 85.80 ± 0.17
#Parameter 491176 253743 2374568

RevGNN (Li et al., 2021) Acc 73.01 ± 0.31 83.07 ± 0.30 87.74 ± 0.13
#Parameter 262000 2945007 20031384
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Table 10: Summary of classification accuracy (%) results with various depths.

Dataset Method Layers Std
2 4 8 16 32 64

GCN 81.1 80.4 69.5 64.9 60.3 28.7 19.25
JKNet - 80.2 80.7 80.2 81.1 71.5 4.06

Cora Incep - 77.6 76.5 81.7 81.7 80.0 2.37
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3 1.86
GPFNN 82.46 82.31 83.20 83.20 82.81 83.38 0.44
GCN 70.8 67.6 30.2 18.3 25.0 20.0 24.05
JKNet - 68.7 67.7 69.8 68.2 63.4 2.45

Citeseer Incep - 69.3 68.4 70.2 68.0 67.5 1.08
GCNII* 66.1 67.9 70.6 72.0 73.2 73.1 2.91
GPFNN 69.88 70.46 70.58 70.37 70.44 70.9 0.33
GCN 79.0 76.5 61.2 40.9 22.4 35.3 23.30
JKNet - 78.0 78.1 72.6 72.4 74.5 2.80

Pubmed Incep - 77.7 77.9 74.9 OOM OOM 1.68
GCNII* 77.7 78.2 78.8 80.3 79.8 80.1 1.07
GPFNN 78.87 80.23 79.54 79.09 79.31 79.09 0.49

We further evaluate the effect of the number of layers of GPFNN on three small graph datasets. Specifically,
the Cora, CiteSeer and PubMed (Sen et al., 2008) are employed. Cora, CiteSeer and PubMed (Sen et al.,
2008) are citation networks, where each node is a paper with bag-of-words attributes, and each edge indicates
the citation relationship between papers. All the details of datasets employed are summarized in Table 8.

We compare GPFNN with GCN (Kipf & Welling, 2017), JKNet (Xu et al., 2018) IncepGCN (Rong et al., 2020)
and GCNII (Chen et al., 2020). The number of layers in the empirical studies are set to {2, 4, 8, 16, 32, 64}.
The detailed classification accuracy of different methods with different layers are shown in Table 10. From
Table 10, we can observe that the classification accuracy of GCN and JKNet drop as the depth increases.
Moreover, we can see that GPFNN achieves a competitive classification accuracy compared with the state-of-
the-art method GCNII. To measure the stability of each method over different depths of models, the standard
deviation of the classification accuracy over different layers is shown in the last column in Table 10. It’s easy
to find that the performance of GPFNN is more stable than all baselines when the depth increases.

G Additional Related Works about Multi-agent Reinforcement Learning

Recently, several deep multi-agent reinforcement learning (MARL) methods are proposed to cooperative
control of multi agent systems. In (Lowe et al., 2017), the authors propose a deep reinforcement learning
algorithm called MAAC for multi-agent pathfinding (MAPF) in mixed cooperative-competitive settings.
(Foerster et al., 2016) proposes a novel approach for multi-agent reinforcement learning by introducing
communication between agents using a continuous message passing mechanism. The authors introduce a new
architecture called CommNet, which consists of a shared policy network and a communication module that
enables agents to send and receive messages.

Recent work has explored using deep multi-agent reinforcement learning to learn policies for solving MAPF.
In (Sartoretti et al., 2019) the authors propose a method for multi-agent pathfinding (MAPF) that combines
reinforcement learning and imitation learning. The authors introduce a new algorithm called PRIMAL,
which leverages both individual and collective rewards to learn effective policies for MAPF. The PRIMAL
algorithm consists of two phases: a reinforcement learning phase and an imitation learning phase. In the
reinforcement learning phase, each agent learns an individual policy that maximizes its own reward. In the
imitation learning phase, agents learn a collective policy by imitating the actions of an expert agent, which is
a centralized planner that produces paths for all agents. However, it can not scale to large sized problems. In
addition, it can not deal with dynamic targets.
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In (Ma et al., 2021), the authors propose a distributed heuristic approach to the (MAPF) problem. The
approach is based on a centralized search that is distributed among the agents, who communicate with each
other to coordinate their actions. The proposed algorithm consists of two main phases: a communication
phase and a planning phase. In the communication phase, each agent broadcasts its current state and receives
the states of its neighbors. Based on this information, the agents construct a communication graph that
reflects the current state of the environment. In the planning phase, each agent computes a local plan using a
heuristic search algorithm that takes into account the current communication graph. Although the proposed
method improves the scalability compared with PRIMAL, the scale of the problems is still limited. Most
recently, some works (van Knippenberg et al., 2021) try to employ MARL for time-Constrained MAPF on
general graphs. Recent work (Li et al., 2022) combines MARL with a proposed Prioritized Communication
Learning framework that uses a centralized communication network to facilitate communication between
agents. The agents prioritize their communication channels based on the current state of the environment,
and use the prioritized communication channels to exchange information about their current plans and goals.

Although Deep MARL methods are general and flexible to handle different tasks including MAPF problems,
they suffer from scalability issue that arises when dealing with large numbers of agents. As the number of
agents increases, the complexity of the joint action space grows exponentially, making it challenging to find
good solutions. Moreover, current MARL methods often suffer from slow learning rates and poor sample
efficiency, which can limit their applicability in real-world settings.
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