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Abstract

Tandem mass spectrometry (MS/MS) is the primary method for char-
acterizing biological and environmental samples at a molecular level.
Despite this, the interpretation of tandem mass spectra remains a chal-
lenge. Existing computational methods for predictions from mass spectra
heavily rely on limited spectral libraries and on hard-coded human exper-
tise. Here we introduce a transformer-based neural network pre-trained
in a self-supervised way on millions of unannotated tandem mass spec-
tra from our new GeMS (GNPS Experimental Mass Spectra) dataset
mined from the MassIVE GNPS repository. We show that pre-training
our model to predict masked spectral peaks and chromatographic reten-
tion orders leads to the emergence of rich representations of molecular
structures, which we name DreaMS (Deep Representations Empower-
ing the Annotation of Mass Spectra). Fine-tuning the pre-trained neural
network to predict spectral similarity, molecular fingerprints, chemical
properties, and the presence of fluorine from tandem mass spectra yields
state-of-the-art performance across all the tasks. This underscores the
practical utility of DreaMS across diverse mass spectrum interpretation
tasks and establishes it as a stepping stone for future advances in the
field. We make our new dataset and pre-trained models available to
the community and release the DreaMS Atlas – a molecular network
of 201 million MS/MS spectra constructed using DreaMS annotations.

Keywords: Mass spectrometry, metabolomics, machine learning,
self-supervised learning, large language models

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2 ORCID: https://orcid.org/0000-0003-1769-1509 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2
https://orcid.org/0000-0003-1769-1509
https://creativecommons.org/licenses/by-nc-nd/4.0/


2

Introduction

The discovery and identification of small molecules and metabolites have a
profound impact on various scientific fields, including drug development [1],
environmental analysis [2], and disease diagnosis [3]. However, only a tiny
fraction of natural small molecules have been discovered to date, estimated
to be less than 10% of those present in the human body or the entire plant
kingdom [4]. The vast majority of the natural chemical space thus remains
unexplored.

Tandem mass spectrometry coupled with liquid chromatography
(LC–MS/MS) is a central analytical technique for investigating the molecu-
lar composition of biological and environmental samples. When analyzing a
sample, the LC–MS/MS system separates molecules through liquid chromatog-
raphy, ionizes them, and records their mass-to-charge ratios (m/z), generating
a series of mass spectra (referred to as MS1). Each MS1 spectrum is acquired at
a specific retention time (RT) and represents the abundance of ions in terms of
their m/z ratios (i.e., peaks). Using a technique referred to as data-dependent
acquisition (DDA), selected ions (referred to as precursor ions) undergo
fragmentation (typically using collision-induced dissociation, CID), yielding
additional tandem mass spectra (referred to as MS2 or MS/MS), where signals
characterize molecular fragments of a single selected ion. Although MS2 and
deeper MSn tandem mass spectra constitute the primary source of structural
information in mass spectrometry, their interpretation remains exceptionally
challenging. In particular, a mere 2% of MS/MS spectra can be annotated with
molecular structures using reference spectral libraries [5, 6], and less than 10%
of MS/MS spectra can typically be annotated using state-of-the-art machine
learning tools [7].

Existing methods for the interpretation of mass spectra can be classified
into three major categories: spectral similarity, forward annotation, and inverse
annotation. Spectral similarity algorithms aim to define a similarity measure
on mass spectra, which reflects the similarity of the underlying molecular
structures. Classic dot-product-based algorithms are optimized for querying
spectral libraries and linking spectra of similar compounds into molecular
networks [8–10]. Unsupervised shallow machine learning methods, MS2LDA
[11] and spec2vec [12], aim to devise more versatile spectral similarities based
on statistical occurrences of spectral peaks. By contrast, recently developed
contrastive learning approaches aim to explicitly approximate similarities in
molecular structures [13–15]. The utility of similarity-based methods is heavily
dependent on the richness of annotated spectral libraries, which are, how-
ever, inherently limited in size [16]. Therefore, forward annotation methods
seek to extend MS/MS datasets with in silico spectra by simulating CID frag-
mentation of molecules via combinatorial optimization based on hand-crafted
priors [17, 18] or graph neural networks [19–21]. Contrastingly, inverse anno-
tation methods aim to directly annotate spectra with molecular structures,
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Fig. 1 The DreaMS neural network overcomes the limitation of mass spectral
libraries. a, Given a biological or environmental sample, the LC–MS/MS system produces
hundreds of mass spectra (MS/MS) per minute, characterizing its molecular composition.
However, less than 10% of MS/MS spectra can typically be assigned with molecular struc-
tures using existing annotation methods. b, Even though the number of publicly available
unannotated experimental mass spectra has been rapidly growing over recent years (left;
green), annotated spectral libraries are still highly limited in terms of both the number of
spectra (left; pink) and the coverage of molecular structures (right; Venn diagram). State-
of-the-art annotation methods rely on spectral libraries as training or retrieval datasets. By
contrast, we base our method on training from vast unannotated MS/MS datasets, assuming
that the molecular coverage of these data surpasses spectral libraries (right; dashed green
shape). c, We propose the DreaMS neural network, which is capable of learning molecular
representations from raw unannotated mass spectra through self-supervised learning. After
being pre-trained in a self-supervised way, DreaMS can be fine-tuned for a wide range of
spectrum annotation problems via supervised transfer learning, leveraging spectral libraries
as well as other sources of annotated data.

either in the approximate form of molecular fingerprints [22], molecular for-
mulas [23, 24], chemical properties [25, 26], or as complete de novo molecular
structures [27, 28].

The most prominent and well-established method for the interpretation
of mass spectra, SIRIUS [29], comprises a pipeline of approximate inverse
annotation tools based on combinatorics, discrete optimization, and machine
learning leveraging mass spectrometry domain expertise. First, it explains a
given MS/MS spectrum with a fragmentation tree by assigning chemical for-
mulas to individual spectral peaks [24]. Then, it employs a series of support
vector machines (SVMs) with kernels, designed to operate on mass spectra
and fragmentation trees. SIRIUS predicts a proprietary CSI:FingerID finger-
print [22], which is used to retrieve a molecular structure from a compound
database such as PubChem [30]. Recently developed competitive methods,
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MIST [31] and MIST-CF [32], replace crucial components of SIRIUS with
neural networks trained on spectral libraries. Both methods employ a similar
transformer architecture which operates on chemical formulas assigned to indi-
vidual peaks as input tokens. Whereas MIST-CF assigns chemical formulas
via energy-based modeling, MIST uses these formulas to predict a molecular
fingerprint and employs it to retrieve a molecular structure from compound
databases. To achieve a level of performance that is competitive with SIRIUS,
both methods employ additional domain-specific computationally demanding
components such as mass decomposition [33], data pseudo-annotation with
the forward annotator MAGMA [34], or the generation of in silico spectral
libraries [31]. The reliance of the state-of-the-art machine learning models on
a variety of auxiliary methods suggests that the capacity of training spec-
tral libraries is the principal bottleneck of the process. In fact, the molecular
structures of the standard training spectral libraries MoNA [35] and NIST20
[36] cover only a limited subset of known natural molecules (Fig. 1b), not to
mention the vastness of the chemical space that remains to be explored.

In this study, we introduce a large self-supervised neural network (with 116
million parameters) trained directly on the repository-scale collection of raw
experimental mass spectra (Fig. 1b,c). Inspired by the remarkable achieve-
ments of large transformer models pre-trained on biological protein sequences
[37–41], text [42, 43], and images [44], we developed a transformer model for
tandem mass spectrometry named DreaMS (Deep Representations Empower-
ing the Annotation of Mass Spectra). Without relying on prior methodologies
or human domain expertise, DreaMS can be easily adapted to a wide range
of spectrum annotation tasks and thus act as a foundation model for tandem
mass spectrometry [45]. To achieve this, we first constructed a high-quality
dataset, GeMS (GNPS Experimental Mass Spectra), comprising up to 700
million MS/MS spectra mined from the GNPS repository [46]. Second, we
designed a transformer neural network and pre-trained it on our GeMS data to
predict masked spectral peaks and chromatographic retention orders. We show
that through optimization towards these self-supervised objectives on unan-
notated mass spectra, our model discovers rich representations of molecular
structures. Specifically, we find that the DreaMS representations are organized
according to the structural similarity between molecules and are robust to mass
spectrometry conditions. Finally, we demonstrate that DreaMS, fine-tuned for
diverse mass spectrum annotation tasks, including the prediction of spectral
similarity, molecular fingerprints, chemical properties, and the presence of flu-
orine, surpasses both traditional algorithms and recently developed machine
learning models.

Results

New datasets of MS/MS spectra for deep learning

Comprehensive and high-quality datasets are essential for effective self-
supervised learning [47–49]. However, spectral libraries of metabolites are
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Fig. 2 GeMS – high-quality datasets of unannotated MS/MS spectra from
GNPS. a, The workflow of mining GeMS datasets from the GNPS repository. MS/MS spec-
tra from metabolomics studies were filtered using experiment- and spectrum-level quality
criteria, clustered with locality-sensitive hashing, and packed into a tensor-like dataset suit-
able for deep learning. b, Quality criteria defining the A, B, and C subsets of GeMS data,
ordered from top to bottom by the sequence of their application. c, Sizes of the nine final
clustered and unclustered GeMS variants. Each cell in the heatmap corresponds to a spe-
cific variant, denoted in the text as, for instance, GeMS-A10, based on the respective axes.
79 million clusters on top represent the fully clustered GeMS-C1 subset. d, All the GeMS
dataset variants are orders of magnitude larger than the union of MoNA and NIST20 spec-
tral libraries and cover a wide range of molecular masses.

limited in size and only cover a tiny fraction of the entire chemical space. To
the best of our knowledge, there are no large standardized datasets of mass
spectra suitable for unsupervised or self-supervised deep learning. Therefore,
we mine the MassIVE GNPS repository [46] to establish a new large-scale and
high-quality dataset comprising hundreds of millions of experimental MS/MS
spectra, which we name GeMS (GNPS Experimental Mass Spectra).

Our mining pipeline consists of five main steps (Fig. 2a): First, we collected
250 thousand LC–MS/MS experiments from diverse biological and environ-
mental studies, covering virtually the entire GNPS part of the MassIVE
repository [46]. Second, we extracted from these experiments approximately
700 million MS/MS spectra. Next, we developed a pipeline of quality control
algorithms allowing us to filter the collected spectra into three subsets: GeMS-
A, GeMS-B, and GeMS-C, each with consecutively larger size at the expense of
quality. The quality criteria include, for example, the estimation of the instru-
ment m/z accuracy associated with a single LC–MS/MS experiment or the
number of high-intensity signals within each spectrum (Fig. 2b). Subsequently,
we addressed redundancy in GeMS by clustering similar spectra using locality-
sensitive hashing (LSH). The LSH algorithm approximates cosine similarity,
a common metric for identifying similar spectra, but operates in linear time,
enabling efficient clustering of our large-scale data. Specifically, we restricted
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the number of spectra per cluster to a certain quantity, such as 10 or 1,000,
resulting in a total of nine different GeMS dataset variants (Fig. 2c). Finally,
we stored the GeMS spectra, including selected LC–MS/MS metadata, in our
compact HDF5-based binary format designed for deep learning (Extended
Data Table 4). Our new GeMS datasets are orders of magnitude larger (Fig. 2d)
than existing spectral libraries and are well organized in a tensor-shaped struc-
ture, unlocking new possibilities for repository-scale metabolomics research
[50, 51]. The details of the data collection and filtering are provided in Online
Methods.

Self-supervised pre-training on tandem mass spectra

Leveraging the GeMS-A10 dataset, our highest-quality subset of GeMS, we
propose DreaMS – a self-supervised model which learns molecular represen-
tations directly from unannotated mass spectra. Self-supervision is a form of
unsupervised learning, where the training objective typically involves a recon-
struction of corrupted data points. This approach has been demonstrated to
yield rich representations (i.e., embeddings) of words, images, or proteins,
which effectively generalize across diverse tasks [38, 42, 44]. However, self-
supervised learning on mass spectra of small molecules has not been explored
yet, primarily because of the absence of large standardized datasets and strong
inductive biases for large-scale learning. We have addressed this challenge by
designing a transformer-based neural network for MS/MS spectra and training
it using our new large-scale data.

The core of our self-supervised approach (Figure 3a) is BERT-style [42]
spectrum-to-spectrum masked modeling. We represent each spectrum as a set
of two-dimensional continuous tokens associated with pairs of peak m/z and
intensity values. Then we mask a fraction (30%) of random m/z ratios from
each set (or spectrum), sampled proportionally to corresponding intensities,
and train the model to reconstruct each masked peak. Additionally, we intro-
duce an extra token, which we refer to as the precursor token. This token is
never masked and contains a precursor ion m/z ratio and a precursor-specific
artificial intensity value, serving as an aggregator of spectrum-level informa-
tion into a single embedding, akin to a sentence-level token or a graph-level
master node in the related language of graph models [42, 52]. Besides masked
m/z prediction, we employ a retention order training objective. Each train-
ing example is formed as a pair of partially masked spectra, sampled from the
same LC–MS/MS experiment, and the neural network simultaneously learns
to reconstruct the masked peaks and to predict which one elutes first in
chromatography.

The backbone of our DreaMS neural network architecture (Figure 3b) is
based on the transformer encoder [53]. It consists of a sequence of multi-head
self-attention blocks, which gradually derive the representations of peaks and
relationships between them. We adjust the standard architecture to handle
high-resolution molecular masses. First, each m/z value is preprocessed with a
modification of Fourier features, a computer vision technique shown to improve
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Fig. 3 The DreaMS neural network discovers molecular structures through self-
supervised learning on mass spectra. a, Self-supervision setup. The DreaMS neural
network is provided with a pair of spectra (blue) from the same LC–MS/MS experiment
along with their precursor m/z values (purple). A portion of m/z ratios in both spectra is
masked (red), and the model is trained to reconstruct these values by predicting a probabil-
ity distribution over m/z ratios for each mask. Additionally, the model learns to predict the
retention order of the two spectra (i.e., the probability that t2 > t1). b, Architecture of the
DreaMS neural network. Initially, input spectral peaks, including precursor m/z with artifi-
cial intensity value, are assigned mass-tolerance Fourier features and processed with shallow
feed-forward neural networks (FFN). The subsequent transformer encoder, equipped with
Graphormer self-attention layers operating on pair-wise mass differences, refines the encoded
peaks into high-dimensional output embeddings. c, Emergence of molecular structures from
self-supervised training. At each self-supervised training step, DreaMS parameters are frozen,
and a separate linear layer is trained to predict interpretable MACCS keys fingerprints from
precursor peak embeddings, allowing the inspection of learned molecular fragments. As the
self-supervised loss decreases (red), the recall in MACCS bits increases (green), indicat-
ing the model’s ongoing discovery of new molecular structures. The MACCS fragments for
individual bits are visually presented on top. d, An example spectrum colored based on
the maximum attention value across all attention heads for each peak (blue indicates high
attention, yellow indicates low attention). DreaMS learns to focus on high-intensity peaks
representing fragments and to ignore noise. Molecules depict fragment annotations produced
by Mass Frontier (Thermo Fisher Scientific); crossed intense peaks lack annotations. e, Prin-
cipal component analysis (PCA) applied to selected precursor embeddings demonstrates
the linear clustering of mass spectra according to molecular structures, remaining robust to
multiple ionization adducts and normalized collision energies (NCE) associated with each
molecule.

the representation of high-resolution details in images [54]. In essence, each m/z
value is decomposed into pre-defined sine and cosine frequencies capturing both
the integer and the floating-point part of a single mass. We additionally pro-
cess the Fourier features with a feed-forward network to enable, for example,
the learning of possible elemental compositions associated with input masses
[55]. We incorporate intensity values by processing them through a shallow
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feed-forward network and then concatenating them with the processed Fourier
features. This combined representation serves as the input for the transformer.
Second, we explicitly feed differences in Fourier features between all pairs of
peaks to self-attention heads, following the Graphormer architecture [56]. This
enables the transformer to attend directly to neutral losses without increasing
computational complexity through the introduction of extra tokens or modi-
fications to the dot-product attention mechanism. Finally, instead of treating
masked m/z prediction as a regression problem, we treat it as classification and
train the model to predict a probability distribution over a binned mass range
for each mask. This approach allows the network to model the uncertainty of
predictions when multiple m/z values could match the same intensity.

We hypothesize that when the DreaMS model is trained to predict masked
m/z ratios and chromatographic retention orders, it implicitly learns to rea-
son in terms of molecular structures. To test this hypothesis empirically, we
first employed a machine learning technique called linear probing [57] to assess
the evolution of learned representations during training. Specifically, when
training a simple linear regression from precursor embeddings to interpretable
MACCS keys fingerprints [58] at each training step, we noted that during
self-supervised training, the model progressively discovers molecular fragments
(Fig. 3c). Second, our analysis of transformer attention heads revealed that
the model learned to prioritize peaks representing molecular structures and
to ignore noise (Fig. 3d). Third, we found that the DreaMS representation
space linearly clustered spectra according to molecular structures, even when
fragmented under different ionization and fragmentation settings (Fig. 3e).
Ablation studies of the DreaMS components indicate that pre-training on
the high-quality GeMS-A10 dataset, mass-tolerance Fourier features, and a
masked m/z objective formulated as classification rather than regression are
key components of our self-supervised approach (Extended Data Fig. 4).

Transfer learning to MS/MS spectrum annotation tasks

The emergence of molecular structures in DreaMS is a result of self-supervised
training from extensive unannotated mass spectral data, without relying on
annotated MS/MS libraries, chemical databases or human expertise. It moti-
vates us to investigate DreaMS as a foundation model possessing a general
understanding of molecules, which can be transferred to various spectrum
annotation tasks. In particular, we have adapted the network to the predic-
tion of spectral similarity, molecular fingerprints, chemical properties, and the
identification of fluorine-containing molecules. For each task, we augment the
pre-trained model with a simple linear head and fine-tune the entire neural
network end to end on annotated spectral libraries. To ensure the generaliza-
tion of fine-tuned models beyond spectral libraries, we halt fine-tuning when
the model’s performance plateaus on validation spectra of molecules with
different Murcko histograms from those in the training set (except for the
fingerprint prediction benchmark established by Goldman et al. [31]). A Mur-
cko histogram is our new molecular representation, generalizing the notion
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Fig. 4 The DreaMS neural network outperforms state-of-the-art methods at
solving a variety of spectrum annotation tasks. a, Zero-shot (i.e., unsupervised) cosine
similarity of DreaMS representations outperforms MS2DeepScore [13] in predicting precursor
Tanimoto similarities. Contrastive fine-tuning further enhances the correlation (fine-tuned
models are referred to simply as DreaMS; Extended Data Fig. 3a). b, Fine-tuned cosine
similarity outperforms standard spectral similarity algorithms in a library retrieval task [9].
c, For a selected query spectrum (green) and a distinct candidate spectrum of the same
molecule (pink), DreaMS retrieves the candidate at a low 8th percentile (in the distribu-
tion of all evaluation pairs) whereas all classic methods fail to recognize these spectra as
representing the same compound (Extended Data Fig. 3c). d, UMAP projection of DreaMS
embeddings reveals the organization of representation space according to molecular formulas.
e, DreaMS fine-tuned to predict Morgan fingerprints (blue) outperforms the MIST finger-
print model [31] (pink), as well as the feed-forward neural network baseline (green), in terms
of compound database retrieval accuracy on the MIST benchmark [31]. f–g, DreaMS outper-
forms existing chemical property prediction models [25, 26] (error bars show 99% confidence
intervals of 1,000 bootstraps). Notably, by predicting Bertz complexity, DreaMS excels on
practically interesting, high-complexity examples. h, DreaMS (blue) surpasses SIRIUS (pink;
two different settings) in detecting fluorinated molecules, achieving almost two-fold greater
90% precision under 57% recall. i, Choosing another threshold for 90% precision in fluo-
rine absence predictions categorizes predictions as certain (95% of DreaMS predictions) or
uncertain. j, Model generalization demonstrated on two similar spectra of nearly identical
molecules with different fluorine annotations. DreaMS confidently predicts correct annota-
tions despite the absence of similar training examples (Extended Data Fig. 3d). The details
on the evaluation datasets and metrics are provided in Online Methods.
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of a Murcko scaffold [59] (described in Online Methods and Extended Data
Fig. 1). This universal transfer learning protocol consistently yields mod-
els with state-of-the-art performance across different tasks, eliminating the
need for constructing task-specific components or extensively tuning model
hyperparameters (Fig. 4).

The first task we tackle is spectral similarity, which can be performed
directly in the space of DreaMS representations. Remarkably, we observe that
even before any fine-tuning, cosine similarity in the embedding space outper-
forms the cutting-edge supervised algorithm MS2DeepScore [13] in terms of
correlation with molecular similarity measures (Fig. 4a). This result empha-
sizes the amount of information captured by self-supervised representations,
especially when considering the fact that MS2DeepScore was explicitly trained
on pairs of annotated spectra to approximate their corresponding molecular
similarities. Nevertheless, we find that simple zero-shot similarity of DreaMS
often lacks sensitivity to small differences in molecular structures (Extended
Data Fig. 3b), which are typically crucial for spectral library retrieval and
molecular networking. To address this limitation, we disentangle the embed-
dings of similar molecules through a short but accurate contrastive fine-tuning
on hard examples. These examples consist of triplets comprising a reference
spectrum, a different positive spectrum of the same molecular structure, and
a negative spectrum of a molecule with a different structure but a similar
mass, differing by no more than 0.05 Da from a reference molecule. Dur-
ing fine-tuning, the model refines DreaMS representations by bringing the
reference-positive pairs closer together than the reference-negative pairs. We
use only a subset of 5,500 molecules from MoNA to avoid biasing the DreaMS
representations towards spectral libraries. In a challenging scenario of retriev-
ing similar or different molecules within the 10-ppm precursor m/z difference,
fine-tuned DreaMS significantly outperforms 44 standard spectral similarity
measures (Figure 4b). The contrastive fine-tuning procedure not only increases
sensitivity to details but also globally enhances the correlation with molecu-
lar similarities, despite not being explicitly optimized for it (Figure 4a). The
analysis of the resultant embeddings with UMAP projections [60] reveals that
the DreaMS representations are organized by chemical formulas and structural
motifs of the underlying molecules (Fig. 4d, Extended Data Fig. 2). Notably,
we find that averaging DreaMS embeddings across samples yields embeddings
capturing the composition of complete metabolic profiles (Fig. 5). To the best
of our knowledge, there are no existing tools that enable the direct comparison
of metabolomes corresponding to different samples or species.

The second problem we address is predicting Morgan fingerprints from mass
spectra and using them to retrieve molecules from PubChem. Importantly,
in contrast to prior work, our method is capable of predicting fingerprints
directly from raw spectra in a single forward pass. This breaks the dependency
of machine learning on computationally-heavy intermediate steps such as the
assignment of chemical formulae to individual input peaks or the combinatorial
generation of fragmentation trees. We find that the fine-tuned DreaMS neural
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Fig. 5 Sample-average DreaMS embeddings enable the sample-level analysis of
metabolomics data, as exemplified on food LC–MS/MS datasets. Each point on
the UMAP plot represents a centroid of DreaMS embeddings (i.e., mean embedding values
across dimensions) of all MS/MS spectra acquired from a certain food sample [61]. Numbered
points indicate selected example samples and refer to their textual descriptions assigned
by the data collectors. The figure demonstrates that the space of sample-level embeddings
correctly captures the taxonomy of food items presented to DreaMS as collections of MS/MS
spectra. Specifically, the space is organized into three major regions predominantly populated
with beverages (purple ellipse), plant food items (green ellipse), and animal food items (pink
ellipse). Beverages are separated into milk beverages (orange) and other beverages (purple).
Animal-based food items are divided into clusters comprising various dairy products (orange)
and types of meat (pink). Plant-based food items show less distinction between categories
and are primarily classified as vegetables (green), fruits (blue), and herbs and spices (grey).
Individual categories (colors) were assigned to sample descriptions using ChatGPT 4 [62].

network outperforms the state-of-the-art deep learning model MIST in the
retrieval of molecular structures using predicted fingerprints (Fig. 4e, Extended
Data Table 1), despite the latter is based on molecular formulae assigned to
individual spectral peaks.

The third problem we tackle is predicting molecular properties of practical
interest. Specifically, fast and precise prediction of pharmaceutically relevant
chemical properties, such as those involved in Lipinski’s rule of five [63], is
essential for the large-scale screening of drug candidates [25]. Similarly, the
prediction of Bertz molecular complexity from mass spectra is a promising
way to search for biosignatures beyond Earth [26]. The rich molecular knowl-
edge encoded in DreaMS and its fast inference time inspire us to explore the
direct prediction of these properties, bypassing the determination of complete
molecular structures. We fine-tune the DreaMS neural network to simulta-
neously predict these and a series of other molecular characteristics. Our
model achieves state-of-the-art performance on the prediction of all properties
considered for fine-tuning (Fig. 4f-g).
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Finally, we address the task of detecting fluorinated molecules from their
mass spectra. Currently, there is no practically applicable method capable of
detecting fluorine with high precision [64]. This task is particularly challenging
because fluorine has only one stable isotope and because fluorinated ions do
not exhibit well-defined fragmentation patterns. The state-of-the-art method
SIRIUS relies on combinatorial search of fragmentation rules, resulting in a
high number of false-positive predictions and requiring extensive runtime. To
overcome this limitation, we fine-tune DreaMS to predict the probability of
fluorine presence. We evaluate our method on 17,000 previously unreported
MS/MS spectra from our in-house library. Whereas SIRIUS does not exceed
a precision value of 0.51, DreaMS achieves a precision of 0.91 with a recall of
0.57 and surpasses SIRIUS in recall at low precision values (Fig. 4h). This high
precision without a significant drop in recall on a large test dataset ensures
the practical applicability of our method, suggesting that fluorine detections
by DreaMS are predominantly correct, and the model confidently identifies
every second fluorinated molecule (Fig. 4i). We additionally demonstrate the
strong generalization capacity of our fine-tuned model by identifying correct
and confident detection of fluorine for spectra of molecules structurally distinct
from all training examples (Fig. 4j).

DreaMS Atlas – repository-scale molecular network

Large-scale metabolomics research is currently constrained by the process-
ing time of spectrum annotation methods. Consequently, the only methods
that are practically applicable on a large scale are variations of MASST
[50, 67], a traditional modified cosine similarity search algorithm optimized
for quickly identifying nearly identical spectra. By contrast, our fully neural
network-based models for interpreting MS/MS spectra are both computa-
tionally efficient and versatile, enabling the annotation of approximately one
million spectra per hour on a GPU machine (8x NVIDIA A100). Therefore,
we utilize our fine-tuned models to annotate 201 million mass spectra from the
MassIVE GNPS repository (covering virtually all positive-mode metabolomics
spectra) with DreaMS predictions and organize them into a comprehensive
molecular network, which we name the DreaMS Atlas (Fig. 6a).

The DreaMS Atlas is constructed as an approximate five-nearest-neighbor
graph based on GeMS mass spectra. Each node represents a DreaMS embed-
ding of a mass spectrum, while each edge represents a DreaMS similarity
between the corresponding nodes. To enhance the representativeness and
reduce redundancy, we compute the graph for a subset of 34 million mass
spectra, which represents 201 million spectra in GeMS-C, clustered based on
LSH hashes and DreaMS similarities (details are provided in Online Methods).
We populate each node with DreaMS molecular property and fluorine pres-
ence predictions, as well as MassIVE metadata such as the study descriptions
and species information. When constructing the graph, we additionally include
nodes corresponding to the embeddings of mass spectra from the MoNA and
NIST20 spectral libraries.
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Fig. 6 The DreaMS Atlas, a molecular network of 201 million MS/MS spectra,
offers a comprehensive systematization of the entire MassIVE GNPS reposi-
tory. The DreaMS Atlas is built as a five-nearest-neighbor NN-Descent graph [65] (5-NN)
from DreaMS embedding similarities between MS/MS spectra from GeMS-C1, MoNA, and
NIST20. Each node includes DreaMS-based property predictions (e.g., druglikeness) and
MassIVE metadata (e.g., species). a, TMAP projection [66] of the 5-NN graph, divided into
five pieces, showcasing the different types of node annotations. A subset of 1 million GeMS-
C1 nodes and all MoNA and NIST20 nodes are shown. b, Each node represents a cluster
of mass spectra. First, GeMS-C1 spectra are GeMS-C LSH cluster representatives (green).
Second, neighborhoods with DreaMS similarity >0.9 were collapsed to single nodes (pink).
The distribution of cluster sizes follows the inverse polynomial trend as the depicted log-log
histograms exhibit a linear trend. c, The DreaMS Atlas is predominantly populated with
high-similarity edges, indicating effective interpolation between spectra of different molecules
via transitive connections (green, pink). Neighborhood clustering effectively eliminated the
vast majority of nearly-identical spectra (pink). d, Spectral libraries are distributed rela-
tively evenly across the DreaMS Atlas, as shown by the median distance of six edges to a
random set of nodes. Combining observations from b, c, d, the DreaMS Atlas systematizes
the dark metabolome of MassIVE GNPS enabling the interpretation of spectra via short
high-similarity paths. e, Directed three-hop neighborhood of a selected node illustrates such
interpretation and highlights the DreaMS Atlas as a research hypothesis generator connect-
ing distinct scientific studies. Specifically, a spectrum from the arm psoriasis study links to
the spectrum of the fungicide azoxystrobin from MoNA, suggesting a potential link between
psoriasis and the fungicide, abundantly found in various other environmental and biological
samples.

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2 ORCID: https://orcid.org/0000-0003-1769-1509 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2
https://orcid.org/0000-0003-1769-1509
https://creativecommons.org/licenses/by-nc-nd/4.0/


14

Moving on to the analysis of the global composition of the DreaMS Atlas,
approximately 33% of nodes represent clusters with more than one spec-
trum. These clusters presumably correspond to individual molecules, with the
largest cluster comprising 393 thousand spectra from 23 thousand distinct
LC–MS/MS experiments. The distribution of cluster sizes follows an inverse
polynomial trend (Fig. 6b). Regarding edges, the network exhibits strong con-
nectivity, with the majority (67%) of edges displaying high similarities (> 0.8),
as depicted in Fig. 6c. Simultaneously, 99.7% of nodes form a single connected
component of the graph, despite a total of sixteen thousand components.
These findings suggest that the DreaMS Atlas enables effective interpolation
between spectra of different molecules through strongly connected transitive
paths between nodes, even when considering only the five closest neighbors.

This observation motivates us to investigate the connectivity between arbi-
trary GeMS spectra and spectral library entries. Despite the limited size of
the libraries, we find that they are distributed relatively evenly across the
DreaMS Atlas. The median distance from a randomly sampled node to any
MoNA or NIST20 spectrum is six edges, compared to the median distance of
five edges to a random subset of nodes of the same size (Fig. 6d). This observa-
tion aligns with the previous analysis of spectral library composition in terms
of molecules, in comparison with natural product structures [68]. Such a dis-
tribution of annotated nodes with respect to DreaMS similarities suggests that
many spectra from MassIVE GNPS can be interpreted by propagating spec-
tral library annotations [69] or interpolating between them. On the other hand,
nodes distant from spectral libraries or arbitrarily sampled nodes (upper box
plot outliers in Fig. 6d) may represent structurally novel molecules [51]. Ulti-
mately, the DreaMS Atlas can function as a database that can be efficiently
queried or populated with new spectra.

We demonstrate the interpretation of a mass spectrum by propagating
through its neighbors in the DreaMS Atlas. In particular, we consider a spec-
trum from an arm psoriasis LC–MS/MS study. Autoimmune diseases such as
psoriasis are characterized by complex etiology, which remains incompletely
understood [70]. We illustrate how the diversity of the DreaMS Atlas facilitates
the exploration of these factors by connecting various scientific studies. Specif-
ically, our analysis reveals a potential association between psoriasis and the
fungicide azoxystrobin (Fig. 6e), which, to the best of our knowledge, has not
been previously reported. The DreaMS Atlas neighbors also suggest that expo-
sure to azoxystrobin may occur through various environmental sources such
as contaminated food, treated trees or mold and mildew-resistant wallboards,
thereby supporting recent hypotheses regarding the origin of the fungicide in
samples from children and pregnant women [71].

Discussion

In this article we introduce DreaMS, a universal transformer model for inter-
preting tandem mass spectra. First, we show that through self-supervised
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pre-training on GeMS, our new large collection of unannotated MS/MS spectra
from the GNPS part of MassIVE, the DreaMS neural network acquires embed-
dings of mass spectra that reflect underlying molecular structures. Second, we
demonstrate the effective fine-tuning capability of DreaMS for a diverse range
of mass spectrum annotation problems, achieving state-of-the-art performance
across all evaluated tasks. Finally, we present DreaMS Atlas – a comprehen-
sive molecular network constructed using DreaMS annotations for 201 million
mass spectra from GeMS.

Although our results strongly indicate the emergence of molecular structure
knowledge from training on raw, unannotated mass spectra, the full potential
of this approach remains to be unlocked. In particular, we trained our model
using only a subset of available mass spectra. Scaling the self-supervised learn-
ing to larger datasets (e.g., by mining spectra from additional repositories such
as MetaboLights [72]) and incorporating more diverse mass spectrometry data
(e.g., including spectra beyond positive ionization modes or singly charged
precursor ions) is expected to yield even richer representations of mass spec-
tra, potentially even more accurately capturing the structures of underlying
molecules. Additionally, our method is focused solely on tandem mass spectra,
disregarding other important features such as MS1 isotopic patterns or adduct
distributions, which are important, for example, for correct chemical formula
determination [23].

Our work opens up new possibilities in two directions of metabolomics-
related research. First, we have introduced a general data-driven transformer
model that can be tailored to virtually any mass spectrum interpretation task,
thereby moving away from traditional hand-crafted or rule-based approaches
for individual problems. Now that we have made our pre-trained model avail-
able to the community, we anticipate that it will serve as a foundational
tool, providing a starting point (i.e., a base model or a feature extractor)
for developing more powerful neural network architectures. Second, we have
introduced the DreaMS Atlas, a comprehensive resource enabling the inter-
pretation of mass spectra by leveraging DreaMS predictions and MassIVE
GNPS metadata for 201 million mass spectra. Treating the DreaMS Atlas as an
approximation of the space of chemically plausible molecular structures offers
new perspectives on various challenges of computational chemistry. For exam-
ple, fragment-based drug design could be addressed by interpolating between
known drugs in the DreaMS Atlas, while the detection of novel structurally
unique compounds with potentially original modes of action can be facili-
tated by identifying sparsely connected regions in the graph structure of the
DreaMS Atlas. Ultimately, annotation of the DreaMS Atlas using a DreaMS
model successfully fine-tuned for de novo structure generation has the poten-
tial to significantly expand our knowledge and understanding of the still largely
unexplored chemical space.
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Data Availability

The GeMS datasets, DreaMS Atlas, and weights of pre-trained models can
be accessed through our GitHub repository (https://github.com/pluskal-lab/
DreaMS). Our in-house data for fluorine detection evaluation is available
under the MassIVE accession number MSV000094528 (https://massive.ucsd.
edu/ProteoSAFe/dataset.jsp?task=676a38e2dd574a15905e807d78cf1e57),
and the food datasets are available at MSV00008490 (https://massive.ucsd.
edu/ProteoSAFe/dataset.jsp?task=ce3254fe529d43f48077d7ad55b7da09).
The MoNA spectral library can be downloaded from the official website
(https://mona.fiehnlab.ucdavis.edu/), while the NIST20 library is not publicly
available due to licensing restrictions.

Code Availability

The source code for data preparation, model training, and experiments is
available at our GitHub repository (https://github.com/pluskal-lab/DreaMS).
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Online Methods

Construction of GeMS dataset

To enable self-supervised learning, we mine new large datasets of metabolite
MS/MS spectra from the GNPS part of MassIVE repository, which we name
GeMS (GNPS Experimental Mass Spectra). MassIVE is a community-driven
resource with billions of mass spectra from various biochemical and environ-
mental studies. However, it primarily focuses on proteomics and often contains
low-quality data as a result of its uncurated nature. Therefore, we have devel-
oped a series of algorithms to identify, filter, and cluster the metabolomics
spectra of MassIVE into high-quality, non-redundant datasets. In this section,
we describe our procedure; a more detailed analysis and statistics are available
in our technical report [73].

Selecting LC–MS/MS experiments from MassIVE

We start the mining of MassIVE by selecting all .mzML and .mzXML data files
from all 4,467 MassIVE datasets (as of November 2022) that are explicitly
marked as metabolomics studies with the “GNPS” prefix in their names. This
selection yields 338,649 distinct files, among which 249,422 contain MS/MS
data with a total of 814 million MS/MS spectra. By filtering out empty or
corrupted spectra with invalid m/z or intensity values (e.g., negative intensity
or multiple identical m/z values), we obtain a complete, unprocessed version
of GeMS, comprising 714 million MS/MS spectra.

Estimating quality of MS data

To obtain higher-quality subsets, we apply file-level and spectrum-level qual-
ity criteria to the collected spectra. File-level criteria assess the ordering of
spectra based on retention times and tandem MS levels. We discard files with
unordered retention times, invalid sequences of MS levels (e.g., MS3 following
MS1 without MS2), missing MS1 data, or fewer than three spectra. Impor-
tantly, we estimate MS instrument accuracy by evaluating the deviation of
similar m/z values within extracted ion chromatograms (XICs). More precisely,
the algorithm constructs a set of XICs for MS1 base peak masses and then
estimates the accuracy of the instrument as the median of standard deviations
within individual XICs (Algorithm 1).

The spectrum-level quality criteria operate in several steps. Initially, spec-
tra with a low number of peaks or low intensity amplitudes (i.e., the maximum
intensity divided by the minimum intensity) are filtered out. Subsequently,
non-single charge precursor ions and spectra with excessively high m/z values
(> 1, 000 Da), are excluded. These steps are crucial for retaining only small
metabolite molecules. We keep only spectra acquired in positive ionization
mode and filter out those estimated to be non-centroided (Algorithm 2).

By varying filtering thresholds, we create three GeMS variants: GeMS A
(42 million spectra), GeMS B (100 million spectra), and GeMS C (201 mil-
lion spectra). GeMS A has a low threshold for estimated instrument accuracy
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Algorithm 1 Estimate the absolute accuracy of a mass spectrometry
instrument

Require: Sequence of MS1 spectra from LC–MS experiment.
Ensure: Estimated absolute accuracy of mass spectrometry instrument.
1: M1 ← M/z values of all base peaks ▷ M/z values for 1st round of XICs
2: M2 ← {} ▷ M/z values for 2nd round of XICs
3: for m ∈M1 do
4: X ← XIC(m, 0.5) ▷ Set of peaks forming XIC for m/z m and 0.5 Da

absolute tolerance
5: if |X| ≥ 5 then
6: M2 ←M2 ∪MedianMz(X)
7: end if
8: end for
9: A← {} ▷ Accuracy estimates within individual XICs

10: for m ∈M2 do
11: X ← XIC(m, 0.01) ▷ XIC with lower 0.01 Da tolerance
12: if |X| ≥ 5 then
13: A← A ∪ StdDevMz(X)
14: end if
15: end for
16: return Median(A)

(approximately four decimal places in m/z ratios). GeMS B is primarily fil-
tered by unknown charge values and is less stringent than GeMS A. GeMS C
further relaxes criteria applied to GeMS B and is mainly filtered based on cri-
teria related to spectral peak values. Fig. 2b provides the details of the applied
filters for each subset.

Clustering mass spectra with locality-sensitive hashing

The filtering pipeline ensures the quality of individual spectra, but it does
not address biases in the entire GeMS datasets related to the natural abun-
dance of metabolites. To tackle this, we employ the random projections
algorithm [74] for efficient clustering and deduplication of mass spectra.
This algorithm, falling under the family of locality-sensitive hashes, enables
linear-time clustering of MS/MS spectra.

In the first step, we vectorize mass spectra via binning. Specifically, each
spectrum is represented as a vector s ∈ Rn with n equal-width bins covering
the range of m/z values of interest. The value of si then corresponds to the
summed intensity of the values contained within the ith bin.

In the subsequent step, for a binned spectrum s ∈ Rn, we calculate the
corresponding hash h(s) using a mapping h : Rn → {0, 1}m defined as

h(s) = [Ws ≥ 0], where W ∈ Rm,n and Wij ∼ N (0, 1),
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Algorithm 2 Estimate the type of a spectrum

Require: Spectrum m/z values m ∈ Rn and intensities i ∈ Rn.
Ensure: Estimated spectrum type.
1: if n < 5 then
2: return CENTROID
3: end if
4: b← argmax i ▷ Index of base peak

5: S ← {s ∈ {1, . . . , n} | (∀s′ ∈ {0, . . . , s− b})(ib+s′ >
ib
2 )}

6: if maxS −minS < 3 or mmaxS −mminS > maxm−minm
1000 then

7: return CENTROID
8: else
9: if (∃i ∈ i)(i = 0) then

10: return PROFILE
11: else
12: return THRESHOLDED
13: end if
14: end if

where [·] indicates an element-wise Iverson bracket, meaning that [xi] = 1 if
xi is true and 0 otherwise. Essentially, each element of the Ws product is
a dot product of s and a random n-dimensional hyperplane. Each of the m
hyperplanes splits the n-dimensional space into two complementary subspaces,
thereby determining the subspace to which s belongs, based on the sign of
each dot product. These signs represent the bits of the resulting m-dimensional
hash. Given that every hyperplane intersects the origin, the likelihood of two
binned spectra si and sj sharing the same hash is a function of their cosine
similarity [74]:

P(h(si) = h(sj)) = 1− arccos

 s⊤i sj
∥si∥∥sj∥︸ ︷︷ ︸

Cosine similarity

 1

π
, (1)

where P denotes the joint probability over random hyperplanes. In essence,
with a sufficient number of hyperplanes, random projections effectively approx-
imate cosine similarity, which is the primary method for comparing mass
spectra.

To cluster the spectra of GeMS, we use m = 1, 000 random hyperplanes and
the window of size 1 binning the range of m/z values from 0 to 1,000 Da (i.e.,
n = 1, 000). By varying the number of retained spectra per cluster, we establish
two additional subsets for each of the A, B, and C variants of GeMS with
at most 10 and 1,000 allowed cluster representatives, denoted with additional
suffixes such as GeMS-A1 or GeMS-B1000. Fig. 2c demonstrates the sizes of
the resulting clustered datasets.
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GeMS data format

We store GeMS datasets in a compressed tensor format using our new .hdf5-
based format, primarily designed for deep learning. Extended Data Table 4
outlines the format specifications, detailing all data and metadata entities
retained from the input .mzML or .mzXML files.

Murcko histograms algorithm for splitting molecular
datasets

A universal and reliable protocol for supervised learning on spectral libraries
is crucial for fine-tuning our pre-trained DreaMS model. The commonly used
technique is to split a spectral library into training and validation folds, ensur-
ing no molecules share identical structures (technically, the first 14 characters
of InChI keys) between the folds. However, we identify three issues with this
protocol which may limit the generalization capabilities and, therefore, the
practical utility of the final fine-tuned model.

First, spectral libraries often contain closely similar structures [73,
Section 4.1], such as those resulting from click chemistry. Consequently,
molecules with minor structural differences are often assigned to different
train-validation folds, introducing a data leakage for tasks such as finger-
print prediction, where small structural details may not significantly impact
performance metrics. Second, structure-disjoint splits are agnostic to the frag-
mentation nature of tandem mass spectrometry. For instance, two molecules
differing only in the length of the carbon chain connecting two subfragments
have distinct structures, yet such chains can be easily fragmented by CID,
resulting in nearly identical spectra. Third, the structure-disjoint approach
often assigns entire molecules and their abundant fragments (such as the frag-
ments of sugars) to different folds, increasing the chance of overfitting to
abundant substructures. To address these issues, we have designed a new algo-
rithm, Murcko histograms, based on the Murcko scaffolds [59], for splitting
molecular structures into training-validation folds.

To address the first issue, we build our method upon coarse-grained Mur-
cko scaffolds. To tackle the second issue of insensitivity to fragmentation,
our method operates on molecular fragments as the primary design principle.
To address the third issue, we define a heavily relaxed notion of molecular
similarity, ensuring that the distinction between folds is well-defined.

In particular, our algorithm computes a histogram defined in terms of the
counts of scaffold substructures (Algorithm 3). Given the Murcko scaffold of a
molecule [59], the algorithm operates on two separate groups of its atoms. The
first group consists of sets of atoms, with each set determining a ring (line 2 in
the algorithm), whereas the second group includes all atoms connecting these
rings (i.e., linkers; line 3). For each ring, the algorithm calculates a pair of
natural numbers: the number of neighboring rings and the number of adjacent
linkers (denoted as r, l in lines 5–9). These pairs define the domain of the
resulting histogram, where the values represent the counts of such pairs within
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Algorithm 3 Definition of a Murcko histogram

Require: Molecular graph G = (V,E), V = {1, . . . , n}, E ⊆ {{u, v} | u, v ∈
V ∧ u ̸= v}.

Ensure: Murcko histogram h.
1: G←MurckoScaffold(G)
2: VR ← {Vr ⊂ V ∧ |Vr| > 3 | Vr contains all atoms of a (fused) ring}
3: VL ← {v ∈ V | deg(v) > 1 ∧ v is not in any ring}
4: h← a map N2 → N initialized as (∀i, j ∈ N2)(h(i, j) = 0)
5: for Vr ∈ VR do
6: r ←

∑
{|Vr ∩ V

′

r /2| | V ′

r ∈ VR \ Vr}
7: l← |Vr ∩ Vl|
8: h(r, l)← h(r, l) + 1
9: end for

10: return h

a molecule (lines 4, 10). Extended Data Fig. 1a shows examples of Murcko
histograms and the corresponding molecular structures.

The Murcko histogram-disjoint train-validation splitting resolves the first
two aforementioned issues by being insensitive to minor atomic details and by
taking into account the fragments of molecular scaffolds instead. We further
address the third issue by defining a way to compare the histograms which is
more relaxed than a simple identity (Algorithm 4). Specifically, we define a dis-
tance on Murcko histograms as the difference in the histogram values solely in
rings, not considering the number of neighboring linkers. Using this definition,
we relocate the samples from validation to train folds if their distance is less
than 5, while not performing the relocation if the minimum number of rings
in one of the molecules is less than 4. Notice that these parameters provide
interpretability for the boundary between train and validation folds, and by
varying them, we can balance between the number of validation examples and
the degree of similarity between train and validation folds in terms of scaffold
substructures.

Unlike structure-disjoint splitting, our method eliminates virtually all near-
duplicate training-validation leaks, resulting in a two-fold reduction in average
Morgan Tanimoto similarity [75] between the molecules corresponding to
training and validation spectra (Extended Data Fig. 1b).

With this approach, we define approximately 90%/10% training-validation
splits for MoNA as well as the union of MoNA and NIST20, which we use
for fine-tuning. Throughout the text, we refer to these splits as the Murcko
histogram-disjoint splits. As mentioned previously, the name originates from
the use of Murcko scaffolds [59] as the basis for the algorithm. We anticipate
that our training-evaluation protocol based on Murcko histograms will stimu-
late further research into the development of a new generation of models with
enhanced generalization towards the undiscovered dark metabolome [5].
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Algorithm 4 Definition of a Murcko subhistogram relation

Require: Two Murcko histograms h1 and h2, a minimum number of rings k
to compute the non-identity relation, and a minimum difference in ring-
only Murcko histogram m to consider the histograms different. The default
values are k = 4 and m = 5.

Ensure: True if one of h1, h2 is a subhistogram of the other in Murcko rings,
False otherwise.

1: if min{
∑

i,j∈N h1(i, j),
∑

i,j∈N h2(i, j)} < k then
2: return h1 = h2

3: end if
4: d←

∑
i∈N|(

∑
j∈N h1(i, j)−

∑
j∈N h2(i, j))|

5: if d < m then
6: return True
7: else
8: return False
9: end if

DreaMS neural network architecture

The DreaMS neural network architecture (Fig. 3b) can be decomposed into
three main consecutive modules. Given a mass spectrum, the model first
encodes each spectral peak into a high-dimensional continuous representation
with PeakEncoder. Then, it processes the entire set of encoded peaks with
SpectrumEncoder – a series of transformer encoder blocks [53]. Each block
learns relationships between peaks and consecutively enriches their represen-
tations. The final task-specific PeakDecoder adjusts the final transformer
representations according to a task-specific training objective. Each of the
modules is described in detail below.

PeakEncoder

We represent each raw mass spectrum as a matrix S ∈ R2,n+1, constructed as

S =

[
m0 m1 m2 . . . mn

1.1 i1 i2 . . . in

]
, (2)

where each column, indexed by j ∈ {1, . . . , n}, corresponds to one of the n
spectral peaks and is represented as the continuous vector [mj , ij ]

⊤ ∈ R×[0, 1],
denoting the pair of m/z and relative intensity values (m/z denoted by m
and intensity denoted by i). Additionally, we prepend a precursor m/z m0

and assign it an artificial intensity of 1.1. We term this additional peak the
precursor token and utilize it as a master node [52] for aggregating spectrum-
level information. If a spectrum has more than n peaks, we select the n most
intense ones; if it has fewer than n peaks, we pad the matrix S with zeros.

Rather than treating each m/z ratio as a single continuous value, we process
it using a mass-tolerant modification of Fourier features Φ : R→ [−1, 1]2B [54],
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dependent on B predefined frequencies b ∈ RB . Specifically, the features are
constructed with sine and cosine functions

Φ(m)i = sin(2πbim), Φ(m)i+1 = cos(2πbim), (3)

where each frequency bi is uniquely associated with either a low frequency
capturing the integer part of a mass m ∈ R or a high frequency capturing its
decimal part, forming together a vector of frequencies

b =
[ 1

mmax
,

1

mmax − 1
, . . .︸ ︷︷ ︸

Low frequencies

,
1

1
,

1

kmmin
,

1

(k − 1)mmin
, . . . ,

1

mmin︸ ︷︷ ︸
High frequencies

]⊤
∈ RB .

(4)

Here, constants mmin ∈ (0, 1) and mmax ∈ (1,∞) represent the minimum
decimal mass of intereset (i.e., the absolute instrument accuracy) and the
maximum integer mass of interest, and k ∈ N is such that kmmin is the clos-
est value to 1. For instance, when training DreaMS on GeMS-A spectra, we
set mmin = 10−4 and mmax = 1000 according to the construction of GeMS
datasets. This schema yields 1000 low frequencies and 5000 high frequencies
(i.e., the overall dimensionality of the vector b is 6000.).

Further, we process the Fourier features given by Equation 3 with a feed-
forward neural network FFNF : R2B → Rdm . We hypothesize that the
sensitivity of Fourier features to both large and small differences in masses
allows FFNF to learn the space of plausible molecular masses given by elemen-
tal compositions. Our instantiation of frequencies outperforms both random
initialization [54] and the log-spaced sinusoidal variant proposed for pro-
teomics [14, 76] (Extended Data Fig. 4; [73]). Notably, since peaks do not form
a sequence of tokens but rather a set, we do not encode their positions, in
contrast with classic positional encoding [53].

The concatenation of the output of FFNF with the output of another
shallow feed-forward network FFNP : R2 → Rdp applied to raw m/z and
intensity values forms the complete PeakEncoder : R2 → Rdm+dp :

PeakEncoder(m, i) = FFNF (Φ(m)) ∥ FFNP (m, i), (5)

where ∥ denotes concatenation. Column-wise application of PeakEncoder
to the matrix S yields a high-dimensional representation of the correspond-
ing spectrum S0 ∈ Rd,n, where d = dm + dp is the dimensionality of the
representation and n is the number of peaks.

SpectrumEncoder

Given the output of PeakEncoder, SpectrumEncoder : Rd,n → Rd,n

updates the representations of peaks by exchanging information between indi-
vidual peaks via the self-attention mechanism. This is achieved through a
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sequence of l transformer encoder layers (i.e., BERT [42]), alternating multi-
head self-attention blocks with peak-wise feed-forward networks. Starting from
S0, each i-th block gradually updates the representation of the spectrum from
Si−1 to Si. Throughout the text, we denote the columns of Sl (i.e., represen-
tations of individual peaks) as s0, . . . , sn. We refer to the first columns of such
matrices, representing precursor tokens, as DreaMS (Deep Representations
Empowering the Annotation of Mass Spectra).

An important property of the transformer encoder is its equivariance to
permutations of tokens [77]. Combined with the position-invariant encoding
of peaks through PeakEncoder, this implies that the same two peaks in
different spectra will have identical attention scores in the first attention layer,
regardless of the total number of peaks or noise signals between these two
peaks. To further strengthen the inductive bias of the transformer towards the
relations between peaks, we explicitly enrich the attention mechanism with all
pairwise m/z differences including neutral losses. In each transformer layer,
the attention score Aij between the i-th and j-th peaks is computed as:

Aij =
q⊤
i kj +

∑2t
k Φ(mi)k − Φ(mj)k√

d
, (6)

where q⊤
i kj is a standard dot-product attention and

∑2t
k Φ(mi)k −Φ(mj)k is

an additional Graphormer-like term [56]. Element-wise differences in Fourier
features enable the transformer to directly attend to precise m/z differences,
enhancing its capacity to learn fragmentation patterns and robustness to shifts
in absolute m/z values. This is particularly important, for instance, in scenarios
where m/z values are shifted due to the masses of ionization adducts.

In contrast to BERT, we use a pre-norm variant of transformer [78], remove
biases in linear layers, and use ReLU activations. We utilize the implementation
of transformer provided by Nguyen et al. [79].

PeakDecoder

Depending on the training objective, we use linear layers of different shapes
(referred to as heads) to refine and project the final hidden representations of
peaks given by the SpectrumEncoder.

For both m/z masking and retention order pre-training objectives, we
employ simple linear projections followed by suitable activation functions,
mapping the representations of peaks into the corresponding domains of
predictions:

ŷmass = softmax(Wmasssk), ŷorder = σ(Worder(s
(i)
0 ∥s

(j)
0 )), (7)

where sk ∈ Rd denotes the hidden representation of a masked peak k ∈M from
a set of masked indices M ⊂ {1, . . . , n}. It is projected by Wmass ∈ Rc,d and
the softmax function to obtain the predicted probability vector ŷmass ∈ Rc

with c classes corresponding to the discretized mass bins to be reconstructed.
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Next, ŷorder denotes the predicted probability that a spectrum i precedes the
spectrum j in chromatography. The probability is predicted by concatenat-

ing two precursor embeddings s
(i)
0 , s

(j)
0 corresponding to the two spectra, and

applying the linear projection Worder ∈ R1,2d followed by the sigmoid function
σ.

For supervised fine-tuning tasks, we emloy two variants of linear heads. The
first variant is given by single linear layers operating solely on the precursor
token representations s0 ∈ Rd:

ŷprops = Wpropss0, ŷF = σ(WFs0), z = Wembs0, (8)

where Wprops ∈ R11,d, WF ∈ R1,d followed by sigmoid σ, and Wemb ∈ Rd,d

yield the predictions of eleven molecular properties ŷprops, the probability of
fluorine presence ŷF, and the spectral embedding z, respectively.

For the task of predicting molecular fingerprints, we find a head with richer
representation capacity to slightly improve the performance:

ŷfp = Wfp1

n∑
i=0

ReLU(Wfp0si). (9)

Here, the projections Wfp0 ∈ Rd,d and Wfp1 ∈ R4096,d are arranged into the
DeepSets-like [80] head to output 4096 fingerprint elements. In this case, the
head operates on the hidden representations of all peaks si rather than solely
on the precursor peak s0 as in Equation 8. The details of pre-training and
fine-tuning objectives are discussed in the following sections.

Self-supervised pre-training

The objective of self-supervised pre-training for DreaMS is defined by mini-
mizing a weighted sum of two losses:

LDreaMS = 0.8Lmass + 0.2Lorder, (10)

where Lmass represents the masked modeling loss, quantifying the error of the
model in reconstructing the masses of randomly masked peaks, and Lorder

denotes the retention order prediction error. Each training example within a
mini-batch consists of sampling two spectra with indices i, j from the same
LC–MS/MS experiment. Here, we further detail the computation of both Lmass

and Lorder losses for the example pair i, j.
To compute the Lmass loss, we randomly sample a predefined ratio of peaks

M (i),M (j) ⊂ {1, . . . , n} from both spectra i and j, proportionally to their
intensities. Then, we replace the masses of the sampled peaks in the spectra
with −1.0, while keeping the intensities unchanged, and utilize the original

mass values m(i) ∈ R|M(i)| and m(j) ∈ R|M(j)| as the prediction labels. Instead
of directly predicting the continuous values m(i),m(j), we categorize them
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into c equal-width bins ranging from 0 to the maximum m/z of the training
dataset (1000 Da for GeMS-A subsets; Fig. 2b) and train the model to predict
the correct bins. This classification approach [81], rather than regression, is
adopted to better capture the inherent uncertainty of mass reconstruction, as
it accounts for the possibility that several masses may be equally plausible for
a masked peak. A regression model may converge at predicting the average
value whereas a classification model would learn to assign equal probability to
each plausible mass.

Specifically, we convert continuous mass values into degenerate categori-

cal distributions, represented by binary matrices Y
(i)
mass ∈ {0, 1}|M

(i)|,c and

Y
(j)
mass ∈ {0, 1}|M

(j)|,c, where rows correspond to masked peaks and columns
correspond to mass bins. The elements of the matrices are ones in bins contain-
ing the corresponding masses and zeros elsewhere. In detail, for a masked peak
l ∈ M (k) in spectrum k ∈ {i, j} and bin b ∈ {0, . . . , c− 1}, the corresponding
matrix element is

y
(k)
mass,l,b =

[
m

(k)
l ∈ [b

1000

c
, (b + 1)

1000

c
)
]
, (11)

where [·] indicates the Iverson bracket, implying [x] = 1 if x is true and 0
otherwise. The terms 1000

c represent the m/z range (0, 1000) discretized into c
bins.

Then, the model is trained to predict a categorical distribution for each of

the masked peaks Ŷ
(i)

mass, Ŷ
(j)

mass (Equation 7, left) and the reconstruction error
is evaluated using the cross-entropy loss in the space of discretized mass values:

Lmass(Ŷ
(i)

mass,Y
(i)
mass, Ŷ

(j)

mass,Y
(j)
mass) = −1

2

∑
k∈{i,j}

∑
l∈M(k)

y
(k)
mass,l

⊤
log (ŷ

(k)
mass,l),

(12)

where the first sum from the left averages the results across two sampled
spectra i and j, and the second sum iterates over all masked peaks M (k) in

spectrum k. The dot product y
(k)
mass,l

⊤
log (ŷ

(k)
mass,l) calculates the cross-entropy

between a ground-truth degenerate distribution y
(k)
mass,l, which contains a one

for the correct mass bin of peak l in spectrum k and zeros elsewhere, and

the corresponding predicted distribution over bins ŷ
(k)
mass,l. Minimizing Lmass

effectively maximizes the likelihood of predicting the correct mass bins, and
the loss is minimal when all the bins are predicted correctly.

The second component of the DreaMS loss, Lorder, is given by a binary
cross-entropy classification loss. The model is trained to predict the retention
order of two spectra i and j within the LC–MS/MS experiment by estimating
the probability ŷorder that spectrum i precedes spectrum j in chromatography
(Equation 7, right). The actual probability yorder is either 0 or 1:

Lorder = −(yorder log(ŷorder) + (1− yorder) log(1− ŷorder)). (13)
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We pre-train DreaMS on the GeMS-A10 dataset and retain the sixty
highest peaks when forming training batches. Additionally, with a 20% prob-
ability, we augment a spectrum by adding a random scalar from (0, 50) to
all its m/z values. Such modification forces the neural network to learn rela-
tionships between spectral peaks rather than memorizing precise masses, a
property important for making the model more robust to, for example, different
ionization adducts.

Linear probing of the emergence of molecular structures

Every 2,500 pre-training iterations, we conduct linear probing – a technique
enabling us to evaluate the gradual emergence of molecular structures dur-
ing self-supervision. Specifically, we freeze a model and train a single linear
layer Wprobe ∈ R166,d to predict 166 MACCS fingerprint bits from precur-
sor token embeddings, utilizing a random subsample of 6,000 examples from
the Murcko histogram split of NIST20 and MoNA. We employ a binary cross-
entropy loss function (Equation 13) for learning individual fingerprint bits.
We select MACCS fingerprints as the probing objective because they offer an
interpretable description of a molecular structure, allowing each predicted bit
to be reconstructed back to a molecular substructure.

We report the average validation recall in predicted bits as a function of pre-
training time (Fig. 3c) to illustrate the model’s progressively improving ability
to discover the substructures of ground truth molecules. For each iteration, we
display the highest recall within 100 probing epochs. Notably, although the
figure depicts only the increase in recall, this improvement is achieved without
any decline in precision. In fact, precision slightly increases from 0.81 to 0.84
within the same evaluation setup.

Transfer learning to spectrum annotation tasks

In this section, we discuss how we transfer the knowledge obtained by the
DreaMS model during the self-supervised pre-training to make predictions
in scenarios of practical interest. Specifically, we describe how we fine-tune
the architecture for different downstream mass spectrometry tasks with task-
specific heads.

Spectral similarity

The cosine similarity on unsupervised DreaMS embeddings exhibits a strong
correlation with Tanimoto similarity (Fig. 4a). However, we observe that it
lacks sensitivity to small structural differences among molecules with nearly
identical masses (Extended Data Fig. 3b). To address this limitation, we refine
the embedding space through contrastive fine-tuning. Specifically, we utilize
triplet margin loss function [82] to disentangle the embeddings of spectra which
share similar molecular masses:

Lemb(z, z+, z−) = max{cos(z, z+)− cos(z, z−) + ∆, 0}, (14)
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where z ∈ Rd denotes the embedding of a randomly sampled reference spec-
trum, z+, z− ∈ Rd are the embeddings of positive and negative examples,
respectively, and ∆ > 0 is the contrastive margin. The positive example is
defined as a spectrum of the same molecule as the reference spectrum (having
the same 14-character prefix in the InChI key) whereas the negative exam-
ple is given by a spectrum corresponding to a different molecule but with
a similar molecular mass (at most 0.05 Da difference). The Lemb loss func-
tion optimizes the embedding space so that the reference spectra are closer
to the positive examples than to the negative ones. The contrastive margin
∆, intuitively, measures the minimum required gap between the correspond-
ing positive and negative distances. The proximity between two embeddings a
and b is measured by cosine similarity:

cos(a,b) =
a⊤b

max{∥a∥∥b∥, ϵ}
, (15)

where ϵ, set to 10−8, is a constant for numerical stability.
The aim of the fine-tuning is to adjust the embedding space using minimal

supervision, yet still retaining the knowledge acquired during self-supervised
pre-training and not introducing biases of spectral libraries scarcity. Therefore,
we conduct contrastive training on a refined subset of MoNA histogram-
disjoint split containing approximately 25,000 spectra corresponding to 5,500
unique InChI connectivity blocks and do not use any spectra from NIST20
for training. To form a subset, we retain only the spectra satisfying A quality
conditions (as shown in Fig. 2b), having [M+H]+ adducts and 60 eV collision
energy. To simulate the performance evaluation on a new spectral library, we
evaluate the cosine similarity in refined embedding space on the high-quality
subset of NIST20 satisfying A filtering conditions. We additionally exclude
from the validation all NIST20 examples whose InChI key connectivity blocks
are present in MoNA. We consider two molecular similarity tasks: estimating
the Tanimoto similarity between Morgan fingerprints of underlying molecules,
and determining the spectra corresponding to the same molecules within the
pool of candidate spectra with similar precursor masses.

Specifically, in the case of the Tanimoto similarity approximation prob-
lem, we measure Pearson correlation between DreaMS cosine similarities and
Tanimoto similarities on binary Morgan fingerprints (number of bits = 4096,
radius = 2) using approximately 82,000 pairs of spectra sampled from NIST20
so that they maximize the entropy of the distribution of ground-truth simi-
larities. We benchmark our method against the official implementation (https:
//github.com/matchms/ms2deepscore) of the state-of-the-art MS2DeepScore
model [13] (as depicted in Fig. 4a).

For the second task of retrieving mass spectra corresponding to the same
molecule, we measure the area under the receiver operating characteristic
curve (AUROC), which evaluates the classification performance under different
similarity thresholds. We sample approximately 750,000 binary classification
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examples from NIST20 in a way that makes positive class examples corre-
spond to pairs of spectra having the same underlying molecular structure
(as measured by the same 14-character prefix in the InChI key) and nega-
tive class examples correspond to pairs of spectra having similar precursor
masses (with at most 10 ppm precursor m/z difference). We benchmark our
method against spectral entropy, the state-of-the-art method, as well as 43
other baseline approaches [9] (as illustrated in Fig. 4b,c). We use the implemen-
tation of all the methods from the official spectral entropy GitHub repository
(https://github.com/YuanyueLi/SpectralEntropy).

For the visualization of fine-tuned embeddings (Fig. 4d, Fig. 5, Extended
Data Fig. 2), we utilize the UMAP algorithm [60], with cosine similarity set
as the metric. Fig. 4d and Fig. 2 display 100,000 random embeddings of
NIST20 spectra, with all precursor InChI keys disjoint from the precursors of
the MoNA subset used for the spectral similarity fine-tuning. Level set plots
in Fig. 2 present ten levels of various molecular properties when binning the
UMAP axes into 200 bins. Sample-average embeddings in Fig. 5 are computed
for 2,810 food samples (i.e., .mzML files; 6 million spectra in total) from the
MSV00008490 dataset (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?
task=ce3254fe529d43f48077d7ad55b7da09), which have textual food descrip-
tions assigned in the metadata table within the dataset repository. We allocate
color categories to individual points by querying ChatGPT 4 [62] to summa-
rize all the individual textual descriptions into a minimal number of categories,
including the “Miscellaneous” category. We drop 948 samples forming this
category, such as the ones containing “supplement” or “extract” in their
descriptions.

Molecular fingerprint prediction

The next problem we tackle with DreaMS is the prediction of molecular fin-
gerprints. We adapt our model via supervised fine-tuning and validate it on
the MIST CANOPUS benchmark [31] to evaluate the performance against the
state-of-the-art model MIST.

In detail, we fine-tune DreaMS to directly predict molecular fingerprints
via the cosine similarity loss function Lfp between true yfp and predicted ŷfp

fingerprints:

Lfp(ŷfp,yfp) = cos(ŷfp,yfp), (16)

where cos is the cosine similarity given by Equation (15), discussed previously
in the context of comparing embeddings of spectra.

For the fine-tuning and evaluation, we use the CANOPUS benchmark
from the official GitHub repository (https://github.com/samgoldman97/
mist). Specifically, we use the MIST codebase to generate fingerprints and
the candidate pools of molecules for the evaluation. Each pool corresponds
to a single spectrum along with positive and negative candidate molecules
mined from PubChem. The positive candidates correspond to molecules in
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PubChem that have the same 14-character prefix in the InChI key as the true
underlying molecule, including the true molecule itself. The negative candi-
dates are given by the molecules sharing the same molecular formula. Then,
the retrieval performance is evaluated using the accuracy at top k metrics for
k ∈ {1, 5, 10, 20, 50, 100, 200}, measuring the number of spectra that have at
least one positive molecule in the top k predictions, sorted by the cosine simi-
larity between the predicted and ground-truth fingerprints (Fig. 4e, Extended
Data Table 1).

Molecular property prediction

Next, we fine-tune DreaMS to predict molecular properties. For this, we repro-
duce the evaluation protocols proposed previously by Voronov et al. [25] and
Gebhard et al. [26].

Specifically, we fine-tune our model to jointly predict r = 11 selected
molecular properties from spectra, averaging the squared error for each of the
properties:

Lprops(ŷprops,yprops) =
1

r
∥ŷprops − yprops∥2, (17)

where yprops ∈ Rr denotes the vector containing ground-truth molecular
properties, such as quantitative estimation of drug-likeness (QED), synthetic
accessibility, and Bertz complexity, (Fig. 4 for the complete list). Because dif-
ferent properties have different scales and are measured in different units, we
normalize them before feeding them to the loss function. In particular, we map
each property to the [0, 1] interval via min-max scaling based on the statistics
from the training data.

For the training, validation and testing, we use the MoNA and NIST20
dataset splits prepared using our Murcko histograms algorithm. First, inspired
by Gebhard et al. [26], we evaluate the performance of DreaMS on predicting
molecular complexity from mass spectra. In detail, we estimate the capability
of DreaMS to predict the Bertz complexity of a molecule from its mass spec-
tum, by measuring its relative prediction error under different minimum true
complexity thresholds of interest. The relative prediction error is defined as
|yBertz− ŷBertz|/yBertz, and measures the performance of predicting complexity
ŷBertz robustly under varying absolute values of the true complexity yBertz [26].
We compare our method against XGBoost [26, 83] trained on 1000-dimensional
binned spectra with 0.1 Da bin size and the state-of-the-art spectra property
predictor MS2Prop [25], reimplemented and retrained to predict Bertz com-
plexity among other properties (Fig. 4f). We also evaluate our method and
XGBoost on predicting ten other properties addressed by MS2Prop (Fig. 4g).
Our reimplementation of MS2Prop uses the hyperparameters described in the
original publication [25] and the same values as DreaMS for the unspecified
hyperparameters (such as batch size and learning rate).

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2 ORCID: https://orcid.org/0000-0003-1769-1509 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-kss3r-v2
https://orcid.org/0000-0003-1769-1509
https://creativecommons.org/licenses/by-nc-nd/4.0/


42

Fluorine detection

We evaluate the performance of DreaMS on detecting fluorinated molecules
from mass spectra.

Our fluorine detector is fine-tuned using a binary cross entropy loss function
LF with additional focal loss terms [84] accounting for class imbalance. For
each training example, the loss is computed as:

LF(ŷF, yF) = −αF (1− pF)γ log pF, (18)

where ŷF is the predicted fluorine presence probability and yF is the 0 or 1
label, depending on the ground-truth presence of fluorine. Next, pF is the
standard binary cross entropy term, and αF and γ are focal loss terms:

pF =

{
ŷF, if yF = 1

1− ŷF, otherwise,
αF =

{
α, if yF = 1

1− α, otherwise,
(19)

where α = 0.8 increases the loss for underrepresented examples, containing flu-
orine, and decreases the loss otherwise (training data contains approximately
80% of examples with fluorine); γ = 0.5 adjusts the predicted probabilities of
correct classes to prioritize misclassified examples.

We fine-tune DreaMS on the spectra from MoNA and NIST using
the Murcko histograms algorithm for training-validation splitting. Subse-
quently, we test the performance of the model on our in-house dataset,
consisting of 17,052 [M+H]+ Orbitrap mass spectra (3,900 spectra of
1,175 unique fluorinated molecules and 13,152 spectra of 4,055 unique non-
fluorinated molecules), by measuring precision and recall under different
thresholds (Fig. 4h). The dataset is available under the MassIVE accession
number MSV000094528 (https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?
task=676a38e2dd574a15905e807d78cf1e57). As a baseline, we use SIRIUS 5.6.3
with the possible adducts set to [M+H]+, the instrument to Orbitrap, and the
maximum number of fluorine elements to 5 (maximum number in the dataset)
[29]. By experimenting with the numbers lower than 5, we observe a significant
drop in recall but no improvement in precision.

We prioritize high precision over recall as we find it the most practically
important metric when searching for new fluorinated molecules for further
wet-lab characterization, considering the difficulty of wet-lab experiments.
Consequently, we estimate the coverage of mass spectra with confident predic-
tions using the model operating in the high-precision regime with the precision
of 90%. Specifically, we set two predicted probability thresholds (0.48 and 0.78)
for classifying spectra containing and not containing fluorine so as to lend the
model 90% precision in both cases. Notably, we find that only 5% of spec-
tra have uncertain predictions (with the predicted probabilities in the [0.47,
0.78] interval), while the rest of the spectra are covered by high-confidence
predictions (Fig. 4i).
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DreaMS Atlas

In this section, we provide a description of how the DreaMS Atlas is con-
structed. We start by outlining the process of selecting and annotating nodes
for the DreaMS Atlas, followed by the process of connecting the nodes to form
a graph structure.

The construction process begins with generating DreaMS embeddings for
76 million spectra comprising GeMS-C1 subset of the GeMS dataset. This
subset represents LSH cluster representatives of 201 million GeMS-C spectra,
covering the entire MassIVE GNPS repository. Spectra from blank samples,
identified by specific suffixes in their names (e.g., “blank”, “no inj”, “noinj”,
“empty”, “solvent”, or “wash”), are excluded. Additionally, we enrich individ-
ual nodes with DreaMS molecular property and fluorine presence predictions,
along with relevant metadata obtained from the MassIVE repository, such
as information about the study species, respective study description, and the
instrument used for spectrum acquisition. Finally, we include embeddings of
mass spectra from the MoNA and NIST20 spectral libraries. To avoid redun-
dancy in the spectral libraries with respect to molecular structures, we merge
spectra sharing identical canonical SMILES but differing in adduct species
from both MoNA and NIST20, resulting in 79 thousand merged spectra from
819 thousand library entries.

Next, we employ the NN-Descent algorithm [65] to compute an approx-
imate five-nearest-neighbor (5-NN) graph, where nodes represent DreaMS
embeddings and edges represent similarities between these embeddings. To
further refine the LSH clustering, 5-NN neighborhoods sharing DreaMS sim-
ilarities above 0.9 are clustered into single nodes, and the k-NN graph is
reconstructed for 34 million nodes representing the clusters. More precisely, to
cluster the nodes, we iterate over all nodes sorted in descending order by their
degrees and run a breadth-first search (BFS) from each node. The BFS stops
if either an edge has a DreaMS similarity smaller than 0.9 or the DreaMS sim-
ilarity between the starting node and the new candidate node is smaller than
0.9. All the nodes aggregated through the BFS are collapsed to a single clus-
ter and are represented by a starting node. This algorithm allows us to cluster
the graph in linear time. It is worth noting that by defining neighborhoods
based on similarity thresholds rather than the number of hops, this algorithm
adjusts the graph topology preventing over-representation of certain spectra.

This procedure results in the creation of a final 5-NN graph representing the
DreaMS Atlas. We utilize the PyNNDescent implementation of NN-Descent
by McInnes et al. (https://github.com/lmcinnes/pynndescent), which provides
functionalities for managing the vector database of the k-NN graph, such as
querying the graph with new DreaMS embeddings not present in the DreaMS
Atlas or extending the DreaMS Atlas with new embeddings.
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Hyperparameters, ablation studies, implementation
details

We report the hyperparameters used for pre-training and fine-tuning in
Extended Data Table 2 and Extended Data Table 3, respectively. Extended
Data Fig. 4 summarizes the key ablation studies highlighting three crucial
features of our method: pre-training on the high-quality GeMS-A10 dataset,
mass-tolerance Fourier features, and a masked m/z objective formulated as
classification rather than regression. For both pre-training and fine-tuning, we
used the Adam optimizer with default parameters [85].

All models were trained using either 4x AMD MI250X GPUs or 8x
NVIDIA A100 GPUs in a distributed data parallel (DDP) mode. The final
DreaMS model was pre-trained for 48 hours, while its fine-tuning runtime never
exceeded several hours. With 8 NVIDIA A100 GPUs, the generation speed of
embeddings (i.e., forward pass through the trained model) averages approxi-
mately 1.2 ± 0.002 million embeddings per hour, where the standard deviation
is calculated based on twelve chunks comprising 79 unique mass spectra from
GeMS-C.

We used matchms [86] and pyOpenMS [87] Python libraries for process-
ing mass spectra. All neural networks were implemented in PyTorch [88] and
trained using PyTorch Lightning [89].
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Extended Data Fig. 1 Our Murcko histograms splitting of spectral libraries
surpasses the structure-disjoint approach. a, Schematic illustration of the Murcko
histogram molecular representations. Different molecular structures shown on the right side
have identical Murcko histograms shown on the left side. The domain of a Murcko histogram
is defined in terms of rings (green structures) of different types based on the number of
neighboring rings and linkers (grey structures). The corresponding values are the counts of
such ring types. b, Evaluation of data leakage on structure-disjoint and Murcko histogram-
disjoint splits of MoNA in terms of the maximum Morgan Tanimoto similarity to each
training example computed for each validation example. Structure-disjoint splitting results
in many leaking near-duplicate examples present in the validation set (maximum Tanimoto
similarity > 0.95) whereas Murcko histograms-based splitting eliminates almost all such
examples. The blue pair of structures represents such leaks, and the green pair demonstrates
that the high-similarity inter-fold examples resulting from Murcko histogram splitting are
rather a result of the imperfectness of Tanimoto similarity than the splitting algorithm. The
mean of the Murcko histogram-disjoint similarity distribution is approximately one-half the
value of the mean of the structure-disjoint-related distribution, implying that our approach
to data splitting is better suited for evaluating model generalization.
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Extended Data Fig. 2 Organization of DreaMS embeddings with respect to
various structural properties of molecules. a-f, UMAP projections of DreaMS embed-
dings for 100,000 spectra from NIST20 visualized as contour plots colored by the number
of atoms of different chemical elements. g–k, Identical projections as in a–f, but colored
with respect to the topology of molecules. The number of rings and the fraction of atoms
with two neighbors characterize the linearity and non-linearity of a molecule. Unlike other
depicted properties, the fraction of double bonds is a property depending purely on the con-
nectivity between atoms. Importantly, we show fractions to keep the coloring insensitive to
the sizes of molecules, which is typically highly correlated with precursor m/z values of the
mass spectra.
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Extended Data Fig. 3 Extended benchmarking results. a, Cosine similarity in the
space of DreaMS embeddings outperforms the supervised method MS2DeepScore and clas-
sic modified cosine and spectral entropy methods, as measured by two metrics: correlation
to Morgan Tanimoto similarity and correlation to the maximum common edge subgraph
distance [68]. b, Fine-tuned DreaMS demonstrates superior performance compared to stan-
dard spectral similarity in retrieving molecules from spectral libraries, considering a pool
of candidates within a 10 ppm mass difference from the query precursor m/z. Importantly,
although zero-shot cosine similarity on DreaMS excels in the correlation metrics presented
in a, it lacks sensitivity to small structural differences among molecules. This observation
motivates us to perform contrastive fine-tuning on challenging examples of molecules with
similar masses. c,d The precursor molecules from the examples presented in Fig. 4c and
Fig. 4j respectively, along with the four most similar training precursor molecules, as mea-
sured by Morgan Tanimoto similarity.
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Extended Data Fig. 4 Ablation study of self-supervised pre-training. The eval-
uated metrics are Pearson correlation coefficients between cosine similarity and Euclidean
similarity (the inverse of Euclidean distance) on DreaMS embeddings with Morgan Tanimoto
molecular similarity. The bars display maximum values of the metrics achieved through the
course of pre-training with each of the model configurations. The underlying dataset com-
prises 5,000 pairs of spectra from NIST20 sampled to maximize the entropy of the Tanimoto
similarity distribution. The error bars represent standard deviations within 1,000 bootstrap
samples. DreaMS represents the final model presented in this work, trained on the GeMS-
A10 dataset using the sixty highest peaks, Graphormer-like attention mechanism, Fourier
features (5 layers for subsequent feed-forward network), m/z shift augmentations, masking
30% of m/z values (not masking intensities) sampled proportionally to corresponding inten-
sities, focal loss with gamma equal to 5, retention order prediction, and a 0.05 bin size for
m/z labels. Sinusoidal embeddings and tokenized m/z refer to peak representations proposed
by Voronov et al. [14, 25].
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Method Top 1 Top 5 Top 10 Top 20 Top 50 Top 100 Top 200 Cos. similarity

FFN fingerprint 17.309 37.121 45.611 54.634 63.946 71.329 77.359 0.537
FFN contrastive 20.632 44.996 54.389 63.536 75.062 80.558 86.095 -
MIST fingerprint 29.368 55.332 63.536 72.231 80.476 85.726 89.418 0.695
MIST contrastive 28.384 55.373 65.217 72.970 81.255 85.480 89.377 -
MIST contrastive + fingerprint 30.703 58.120 68.927 75.709 84.094 87.916 92.355 -
DreaMS fingerprint (ours) 32.731 59.352 67.719 75.390 82.404 87.121 90.771 0.646

Extended Data Table. 1 Full test metrics on MIST PubChem retrieval
benchmark. The “Top k” columns stand for the retrieval accuracy@k metrics reported in
percents (higher is better). “Cos. similarity” shows the cosine similarity (higher is better)
between predicted and ground-truth fingerprints (i.e., inverted test loss). Methods with the
“fingerprint” suffix denote the methods directly predicting molecular fingerprints whereas
“contrastive” means that the training procedure involves batches of PubChem molecules
with the same molecular formula and learns to correctly rank candidates via a noise
contrastive estimation (NCE) loss function [31, 90]. We do not experiment with the
contrastive extension for our model since it outperforms contrastive methods on top 1 and
top 5 metrics without considering additional PubChem molecules. Interestingly, DreaMS
underperforms MIST in terms of the cosine similarity despite performing better in
retrieval. A similar performance on the same benchmark is observed with SIRIUS, which
outperforms MIST in retrieval despite being less accurate in fingerprint prediction [31].
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Hyperparameter Values

Learning rate 5 · 10−5, 9 · 10−5,1 · 10−4, 2 · 10−4, 3 · 10−4

Number of warmup steps [53] 0, 5000, 20000
Batch size 1024, 2048, 4096
Number of transformer layers l 1, 5, 7, 11
Number of attention heads 4, 8, 12, 16
Transformer hidden dimensionality d 512, 768, 1024
Fourier features dimensionality dm 24, 512, 980
Peak dimensionality dp 24, 512, 980
FFNF depth 2, 4, 5
FFNF hidden dimensionality 256, 512
FFNP depth 1, 2, 3
Attention mechanism dot-product, additive [91], Graphormer
Dropout 0.0, 0.1, 0.5
Weight decay 0.0, 1 · 10−5

Fraction of masked peaks 0.1, 0.2, 0.3, 0.4, 0.5
Mask sampling strategy uniform (intensity > 10%), intensity proportional
Deterministic mask sampling True, False
Retention order loss weight 0.0, 0.2, 0.5
Focal loss γ 0, 0.5, 2, 5
Dataset GeMS-A10, GeMS-A1000, GeMS-A, GeMS-B
Training float precision 32 bits, 64 bits

Extended Data Table. 2 Explored pre-training hyperparameters. The optimal
values, used for the extraction of embeddings, zero-shot predictions, and further
fine-tuning, are highlighted in bold.
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Spectral similarity

Hyperparameter Values

Learning rate 3 · 10−6,5 · 10−6, 1 · 10−5

Batch size 32, 64

Head type Linear

Triplet margin ∆ 0.05, 0.1, 0.2, 0.5

Molecular fingerprint prediction

Hyperparameter Values

Learning rate 2 · 10−5, 3 · 10−5,4 · 10−5

Batch size 16, 32, 64

Head type Linear, DeepSets

Molecular property prediction

Hyperparameter Values

Learning rate 3 · 10−4,3 · 10−5

Batch size 128, 512

Head type Linear

Fluorine detection

Hyperparameter Values

Learning rate 3 · 10−5,5 · 10−5

Batch size 64, 128

Head type Linear

Focal loss α 0.5, 0.6, 0.8

Focal loss γ 0.5, 1, 2

Extended Data Table. 3 Explored fine-tuning hyperparameters. The optimal
values, used for test predictions, are highlighted in bold.
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MS2 data Data type

M/z values float64
Intensities float32
MS level int8
RT float32
Charge int8
Polarity int8
Precursor m/z float32
Window lbound float32
Window ubound float32
CID energy float32
Spectrum type int8
Ion injection time float32
Definition string utf-8 str
Precursor id int32

Metadata Data type

File name utf-8 str
Instrument name utf-8 str
MS level order utf-8 str
|X1| int64
|X2| int64
Median(A) float64

Precursor data Data type

M/z values float64
Intensities float32
RT float32
Ion injection time float32
Id int32

Extended Data Table. 4 Specification of the GeMS .hdf5 data format. “MS2

data” and “Precursor data” are .hdf5 groups whereas “Metadata” entities are .hdf5

attributes. All tensors are one-dimensional of the length equal to the number of collected
spectra. The only exception is “M/z values” and “Intensities” which are two-dimensional
arrays of the number of spectra by the number of peaks shape. We retain 128 highest peaks
and pad the array with zeros. |X1|, |X2|, and Median(A) correspond to the intermediate
values and the output of Algorithm 1. “Window lbound” and “Window ubound”
correspond to the lower and upper bounds of the MS1 isolation window. “Definition string”
is a spectrum metadata summary string available in the data from Thermo instrument.
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