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Abstract

Fine-grained Entity Typing (FET) has made001
great progress based on distant supervision but002
still suffers from label noise. Existing FET003
noise learning methods rely on prediction dis-004
tributions in an instance-independent manner,005
which causes the problem of confirmation bias.006
In this work, we propose a clustering-based loss007
correction framework named Feature Cluster008
Loss Correction (FCLC), to address these two009
problems. FCLC first train a coarse backbone010
model as a feature extractor and noise estimator.011
Loss correction is then applied to each feature012
cluster, learning directly from the noisy labels.013
Experimental results on three public datasets014
show that FCLC achieves the best performance015
over existing competitive systems. Auxiliary016
experiments further demonstrate that FCLC is017
stable to hyperparameters and it does help miti-018
gate confirmation bias. We also find that in the019
extreme case of no clean data, the FCLC frame-020
work still achieves competitive performance.021

1 Introduction022

Fine-grained entity typing (FET) is the task of clas-023

sifying named entity mentions in a sentence over024

the given class set (typically a hierarchical class025

structure as shown in Fig. 1. FET serves as an026

important component in many down-stream NLP027

applications, e.g., relation extraction (Liu et al.,028

2014), entity linking (Raiman and Raiman, 2018)029

and question answering (Dong et al., 2015). FET030

task has a more wide range of entity types (usu-031

ally over 100 classes) compared to entity typing,032

and hence neural-based FET systems require large-033

scale annotated training corpus.034

Recent studies apply distant supervision to label035

the corpora automatically by linking mentions to036

knowledge base entities and using all entity types037

as the ground-truth labels. Although large-scale038

annotated data is provided, it brings about label039

noises in training. To overcome the problem of040

Figure 1: An Example of noisy labels and feature space
illustration in FET task.

noisy label, some works directly pruned noisy in- 041

stances (Gillick et al., 2014; Onoe and Durrett, 042

2019a). The others retain noisy training data but 043

further improve by choosing (Ren et al., 2016a; Xu 044

and Barbosa, 2018), weighting (Wu et al., 2019), 045

and relabeling (Zhang et al., 2020) noisy labels 046

using the prediction distribution. 047

However, these noise combating methods have 048

two major limitations. 1) They rely on the predic- 049

tion distribution. As a result, they ought to cope 050

with instance-agnostic noise better. The previous 051

works expirically show (Zheng and Yang, 2021) 052

that the prediction distribution is more likely to be 053

affected by noisy instances and suffer from confir- 054

mation bias. This bias problem is also verified in 055

our Sec. 3.5. The limitation leads to the intriguing 056

question: Besides prediction distribution and en- 057

tropy, what other information can we use to model 058

label noise? 059

2) They mostly aim to modify each instance iso- 060

latedly and only use instance-level information. 061

Meanwhile, typical anti-noise machine learning 062

(Patrini et al., 2017; Hendrycks et al., 2018) uses 063

instance-agnostic global statistics. The latter is 064

more robust to noise but might be too general. Lo- 065

cal information is potentially more informative. For 066

example, when the distant supervision introduces 067

similar noise in some instances, these noises form 068
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a locality in feature space. The noisy instances are069

near to each other and are separate from instances070

with the same but true labels. Our experiment result071

is similar to Fig. 1, even when the feature extractor072

is trained to fit noisy labels, they are still easily073

separable due to underlying semantic differences.074

These two limitations are inter-related, causing075

noise-learning-based FET methods to still suffer076

from distantly supervised noise. To alleviate the077

label noise and avert these limitations, we propose078

a novel framework FCLC for noisy label learn-079

ing inspired by weighted training and loss correc-080

tion (Hendrycks et al., 2018) in machine learning.081

Our method utilizes feature representations from082

the model and learns global (local) information, i.e.083

a cluster-level label confusion matrix. Firstly, we084

use a backbone learner on noisy data. It serves as a085

feature extractor and a noise estimator. Secondly,086

all training data, including noisy data and a small087

portion of clean data are clustered. The clean data088

serve as anchors in the feature space to estimate089

label corruption and sample quality of each clus-090

ter. Finally, label corruption and sample quality are091

used for label correction.092

Our main contributions are three-fold: (i) This093

study provides fresh insight into instance depen-094

dant label noise in FET. We pointed out a novel095

training method to further exploit feature space and096

global information. (ii) We designed a framework097

with feature clustering, estimating cluster-level con-098

fusion matrix, and loss correction. (iii) We exper-099

imented the proposed method on three datasets.100

Results show that we made significant improve-101

ments over previous state-of-the-art, thus proving102

the effectiveness of our model. Ablation studies103

further prove the robustness and wide applicability104

of our framework.105

2 Framework106

2.1 Definition107

Given a finite set of types, T = {t1, t2, ..., t|T |},108

where |T | denotes the number of candidate types.109

The task is to assign appropriate types to each men-110

tion under context. Formally, an instance is a triplet,111

(m, c,y). c = {w1, w2, ..., wn} is the context ofm,112

usually the original sentence. m = {wp1 , ..., wpl}113

is the mention. obviously, m is a continuous sub-114

sequence of c.115

Y ⊆ T denotes appropriate types for (m, c). For116

convenience, denote Y ’s vector form y ∈ {0, 1}|T |,117

yj = 1 means tj ∈ Y .118

When the instance is produced with crowd- 119

sourcing or distant supervision, annotated labels 120

might contain so-called noise. We denote labels 121

with noise ỹ. The instance is thus (m, c, ỹ). De- 122

note the corpus with noisy instances D̃, the corpus 123

with trusted instances Dt.1 The two corpus form 124

the whole training corpus D. 125

The task is to predict the appropriate types for 126

given (m, c). 127

2.2 Training Procedure 128

As shown in Fig. 2, the FCLC framework consists 129

of the following steps : 130

Step 1. (Phase 1) Train the backbone model with 131

noisy data D̃ for e1 epochs and get M1. It serves 132

as a feature extractor and a noise estimator. (Sec. 133

2.3) 134

Step 2. Cluster all training samples D with the 135

feature extracted byE1, and estimate confusion ma- 136

trix for each cluster with predictions of M1. (Sec. 137

2.4) 138

Step 3. (Phase 2) The calculated clustering- 139

aware confusion matrix and FCLC loss are used to 140

continue training the backbone model. (Sec. 2.5) 141

2.3 Backbone 142

For fair comparison, the backbone of our model 143

has the same structure as NFETC (Xu and Barbosa, 144

2018). 145

For an instance (m, c,y), for each word wi in c, 146

word embedding is ewi ∈ Rdw looked up in word 147

embedding matrix W ∈ Rdw×|V |. 148

A position embedding epi ∈ Rdp is used to 149

model the context word position i and mention 150

position (p1, pl) by looking up relative position in 151

position embedding matrix P ∈ Rdp×2N . The final 152

embedding is the concatenation ei = [ewi , e
p
i ]. 153

Context Representation A Bi-LSTM (Hochre- 154

iter and Schmidhuber, 1997) is used to model the 155

context representation. Feeding the embedding of 156

c i.e. {e1, e2, ..., en} into BiLSTM gets the two 157

directional hidden states
−→
hi and

←−
hi for each word 158

wi. Word level attention following (Zhou et al., 159

2016) is applied on hi = [
−→
hi ⊕

←−
hi], resulting in 160

the final context representation rci . 161

Mention Representation The average encoder 162

of a mention takes word embeddings of the mention 163

{ep1 , ep2 , ..., epl} and takes the average: rw = 164

1Normally |Dt| ≪ |D̃|, as in all the datasets we reported
in this paper.
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Figure 2: Model architecture.

1
l

∑l
k=1 epk . The LSTM encoder of a mention165

takes an extended mention with one more token166

before and after the original mention and produces167

hidden state features {hp1−1, ...,hpl+1}. Take168

the last output hpl+1 as rl. The final representa-169

tion of the mention is rm = [ra, rl]170

Classification Softmax classifier and cross-171

entropy are used based on the feature rm,c =172

[rc, rm] of x:173

s(x) = Wrm,c + b (1)174

p̂(y|x) = softmax(s(x)) (2)175

ℓ(x,y; θ) = −log(p̂(y|x)) (3)176

With a given dataset D, the model is trained with177

all samples (x,yl) in D. For baseline, D = D.178

For FCLC step 1, D = D̃:179

Lbase(θ) =
1

|D|
∑

(x,y)∈D

ℓ(x,y; θ) (4)180

2.4 Feature Clustering181

We make the assumption that the noise (y, ỹ)forms182

locality in the feature space, especially when the183

feature is calculated from the original mention and184

context(m, c), (m, c) determines y, and the feature185

is trained with ỹ.186

We adopt clustering to utilize local statistics as187

smaller-grained feature information. To be specific,188

we perform k-means with rm,c on the whole train-189

ing set D, and separate D into K clusters. Denote190

the k-th cluster C̄k, Ct−k = C̄k ∩ Dt, C̃k = C̄k ∩ D̃.191

We mainly utilize the two following statistics: 192

τk =
|Ck|
D

(5) 193

τk estimates the quality of the cluster k it act as a 194

soft cluster sieving. 195

Ĉijk =
1

|Aik|
∑

(x,y)∈Aik

p̂(yj = 1|x) (6) 196

where Aik = {(x,y)|(x,y) ∈ Ct−k and yi = 1}, 197

estimates the probability in cluster k to annotate 198

noise j for true label i. 199

2.5 Loss Correction 200

The idea of forward loss correction is proposed by 201

Patrini et al. (2017). The basic idea is to modify the 202

loss with the noise transition matrix T . Such that 203

the minimizer under the new loss with noisy labels 204

is the same as the minimizer of the original loss 205

under clean labels. The modification relies on the 206

assumption that the label noise is independent from 207

instances, i.e. ỹ ⊥ x | y. Hendrycks et al. (2018) 208

proposed to estimate T with a small set of clean 209

labels, under the assumption that ỹ ⊥ y | x. While 210

these assumptions do not hold globally for distantly 211

supervised FET, they hold better in clusters. We 212

introduce the cluster-wise loss correction in the 213

following sections. 214

Transition Matrix Estimation Assuming the 215

backbone model is well trained, i.e. p̂(ỹj = 1|x) 216

is close enough to p(ỹj = 1|x). We use the pre- 217

dicted probability on trusted instances in cluster-k 218
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to estimate the transition probability.219

Cijk = p(ỹj = 1 | yi = 1, x ∈ C̃k)
≈ p(ỹj = 1 | yi = 1, x ∈ Ct−k)

≈ 1

|Aik|
∑

(x,y)∈Aik

p̂(ỹj = 1|x)

= Ĉijk

(7)220

Forward Loss Correction Cross-entropy is com-221

posite (Reid and Williamson, 2010),denote it as ℓψ,222

its inverse link function ψ−1 is softmax.223

Notice Cijk can bridge the loss with noisy label224

ỹ, (x ∈ C̃k, ỹi = 1), to predictions for the true225

label:226

−log(p̂(ỹ|x)) ≈ − log
c∑
j=1

Cjikp̂(y = ej | x)

(8)227

Let Tk = C∗∗k, define the forward loss as:228

ℓ→ψ (s(x)) = ℓψ(T
⊤
k s(x)) (9)229

The property holds on each cluster similar as in230

(Patrini et al., 2017), with all x ∈ C̃k, training with231

noisy label ỹ on ℓ→ψ is the same as with true label232

y on the original loss ℓψ :233

argmin
h

Ex,ỹℓ
→
ψ (s(x)) = argmin

s
Ex,yℓψ(s(x))

(10)234

Different from global forward loss correction,235

the parameters that minimize the loss in each clus-236

ter are not the same. We balance the clusters with237

τk. The trusted samples (x, y) ∈ D are also used.238

The loss of the full model is:239

LFCLC =
∑

(x,y)∈Dt
ℓψ(h(x))240

+β
∑K

k=1 τk
∑

(x,ỹ)∈C̃k ℓ
→
ψ (h(x)))241

+(1− β)
∑K

k=1 τk
∑

(x,ỹ)∈C̃k ℓψ(h(x))) (11)242

Where β is the hyperparameter to balance FCLC243

loss and the original loss.244

Our introduced framework has several advan-245

tages: 1) Lightweight. This method does not in-246

clude extra trainable parameters to the backbone247

model. 2) Stable. The framework involves two248

hyperparameters, β and phase-1 train epochs e1249

and we empirically find them stable. 3) Flexibility.250

Our improvement is orthogonal to the backbone251

model. It only requires that the backbone model252

is sufficiently expressive and uses an appropriate253

composite loss (Reid and Williamson, 2010). Thus,254

it is pluggable to a large number of FET models.255

3 Experiments 256

We evaluate the proposed model on three different 257

FET datasets and compare it to several state-of- 258

the-art models. In addition, to support our claims 259

we also conduct several subsidiary experiments to 260

analyze the impacts of our proposed module in 261

detail. 262

Wiki OntoNotes BBN
types 113 89 47
hierarchy depth 2 3 2
mentions-train 2009898 253241 86078
⊢mentions-train-trusted 9999 2202 642
⊢mentions-train-noisy 1999899 251039 85436
mentions-test 563 8963 12845
one label train data (%) 64.46 73.13 75.92
one label test data (%) 88.28 94.00 100

Table 1: Fine-Grained Entity Typing datasets Statistics.

3.1 Datasets 263

The datasets are described below, we use ex- 264

actly the same train/dev/test split with previous 265

works (Ren et al., 2016a; Chen et al., 2019). 266

Detailed statistics of the three datasets are also 267

shown in Table 1. BBN It contains sentences 268

extracted from the Wall Street Journal and dis- 269

tantly labeled by DBpedia Spotlight (Weischedel 270

and Brunstein, 2005). OntoNotes It was con- 271

structed using sentences in the OntoNotes cor- 272

pus and distantly supervised by DBpedia Spot- 273

light (Weischedel et al., 2013). Wiki/FIGER It 274

was derived from Wikipedia articles and news re- 275

ports, entities of the training samples are distantly 276

annotated using Freebase (Ling and Weld, 2012). 277

Hyper-parameters Wiki OntoNotes BBN
Learning Rate 0.0002 0.0006 0.0007
Batch Size 512 512 512
LSTM Layer 0 2 1
hidden Size (ds) - 700 560
Word Emb Size (dw) 300 300 300
Pos Emb Size (dp) 85 70 20
Phase 1 Epochs (e1) 5 14 20
#Clusters (k) 116 104 42
LC Loss Weight (β) 0.25 0.35 0.95

Table 2: Hyper-parameters chosen for the three datasets.

3.2 Evaluation Metrics 278

We follow prior work and use the strict accuracy 279

(Acc), Macro F1 (Ma-F1), and Micro F1 (Mi-F1) 280

scores. During the experiment, all these metrics 281

are calculated by running the model five times and 282

computing the mean and standard deviation values. 283
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Model Wiki OntoNotes BBN
Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1 Strict Acc Macro F1 Micro F1

AFET(2016a) 53.3 69.3 66.4 55.3 71.2 64.6 68.3 74.4 74.7
Attentive(2016) 59.7 80.0 75.4 51.7 71.0 64.91 48.4 73.2 72.4
NFETC(2018) 56.2±1.0 77.2±0.9 74.3±1.1 54.8±0.4 71.8±0.4 65.0±0.4 73.8±0.6 78.4±0.6 78.9±0.6

w/ hier 68.9±0.6 81.9±0.7 79.0±0.7 60.2±0.2 76.4±0.1 70.2±0.2 73.9±1.2 78.8±1.2 79.4±1.1
CLSC(2019) - - - 59.6±0.3 75.5±0.4 69.3±0.4 74.7±0.3 80.7±0.2 80.5±0.2

w/ hier - - - 62.8±0.3 77.8±0.3 72.0±0.4 73.0±0.3 79.8±0.4 79.5±0.3
NFETC-AR(2020) 58.1±1.1 79.0±0.4 76.1±0.4 62.8±0.4 77.8±0.4 71.8±0.5 76.7±0.2 81.4±0.3 81.5±0.3

w/ hier 70.1±0.9 83.2±0.7 80.1±0.6 64.0±0.3 78.8±0.3 73.0±0.3 74.9±0.6 80.4±0.6 80.3±0.6
NFETC-VAT(2020) - - - 63.8 78.7 73.0 76.7 80.7 80.9
CLSC-VAT(2020) - - - 63.9 78.6 73.1 76.9 81.2 81.4
ML-L2R(2020) 69.1 82.6 80.8 58.7 73.0 68.1 75.2 79.7 80.5
Box(2021) - 81.6 77.0 - 77.3 70.9 - 78.7 78.0
FCLC 58.0±1.7 77.8±0.8 76.2±0.8 62.7±1.1 77.5±0.7 71.4±0.7 82.0±0.8 86.2±0.7 86.7±0.7
FCLChier 71.3±1.1 82.2±0.7 81.1±0.6 65.3±0.2 79.6±0.3 74.0±0.3 79.0±0.5 84.2±0.5 84.8±0.5
w/o τk 70.9±1.6 81.8±1.0 80.7±1.1 64.6±0.2 78.8±0.2 73.1±0.3 81.6±0.4 85.9±0.4 86.5±0.4
w/o loss correction 70.4±1.4 81.6±1.0 80.5±0.9 64.2±0.3 78.4±0.3 72.6±0.5 76.5±0.5 81.0±0.4 81.2±0.4
w/o cluster 71.3±0.4 82.0±0.6 80.9±0.5 64.6±0.3 79.2±0.3 73.4±0.2 79.2±0.6 83.2±0.5 83.7±0.6
w/ reinit 69.7±2.4 81.2±1.2 80.1±1.3 62.4±0.3 77.8±0.7 71.7±0.7 79.9±0.9 84.2±0.9 84.6±0.6

Table 3: Performance results on three benchmark datasets.

3.3 Baselines284

We consider the following competitive FET sys-285

tems as our baselines: (1) AFET (Ren et al.,286

2016a); (2) Attentive (Shimaoka et al., 2016);287

(3) NFETC/NFETChier (Xu and Barbosa, 2018);288

(4) CLSC/CLSChier (Chen et al., 2019); (5)289

NFETC-AR/NFETC-ARhier (Zhang et al., 2020);290

(6) NFETC-VAT/CLSC-VAT (Shi et al., 2020); (7)291

Multi Level Learning to Rank (ML-L2R) (Chen292

et al., 2020); (8) Box (Onoe et al., 2021).293

These baselines are compared with several vari-294

ants of our proposed model: (1) FCLC: proposed295

model without the hierarchical loss; (2) FCLChier296

proposed model with the hierarchical loss; (3)297

FCLC(without τk) our proposed model trained298

without cluster quality estimation, i.e. τ = 1 for299

all clusters; (4) FCLC(without loss correction) our300

proposed model without loss correction, only clus-301

ter quality estimation working; (5)FCLC(without302

cluster) our proposed model without clustering, i.e.303

calculated a globally-uniform confusion matrix; (6)304

FCLC(with reinit): our proposed model with fresh305

parameters before the start of step 3 as suggested306

by Patrini et al. (2017).307

3.4 Implementation Details308

To make an equal comparison, following (Xu and309

Barbosa, 2018; Chen et al., 2019; Zhang et al.,310

2020), we use exactly the same pre-trained 300-311

dimensional GloVe word embeddings (Pennington312

et al., 2014) and fix the embedding vectors during313

training. The model parameters are optimized us-314

ing the Adam (Kingma and Ba, 2014) optimizer.315

All of our models are implemented in Tensorflow. 2 316

As NFETC and NFETChier are our backbone mod- 317

els, we follow the hyper-parameters of the back- 318

bone except for our introduced hyper-parameters 319

β and e1. The detailed hyper-parameter settings 320

on the three datasets are shown in Table 2, we also 321

report hyper-parameter impact curves in Fig. 3. 322

3.5 Results and Analysis 323

Main Result Table 3 shows the results of our 324

proposed approach (FCLC) and several compet- 325

itive FET systems. We highlight the statistically 326

significant best scores of each metric in bold. Ac- 327

cording to the experimental results, we make two 328

main observations: 329

(1) The performances of our proposed model sur- 330

pass the backbone NFETC model by a remarkable 331

large margin (improving Micro F1 by 2.1%, 3.8%, 332

and 7.8% separately), demonstrating the benefits of 333

the proposed two-phase FCLC module. The rela- 334

tive performance improvements are consistent with 335

or without the hierarchy loss (compared FCLC and 336

FCLChier to the corresponding baselines). 337

(2) Compared to other noisy learning methods 338

such as CLSC, NFETC-AR, and VAT, our model 339

still achieves considerable improvements under 340

most metrics when using the same backbone and 341

very similar hyper-parameter settings. For exam- 342

ple, compared to NFETC-AR, our model improves 343

Micro-F1 by 1.25% to 6.38% on three datasets. It 344

indicates that, by utilizing both the feature space 345

representations and the global and local statistical 346

2The implementation of our model will be released pub-
licly for further study.
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information, the model can reduce the impact of347

noisy labels more effectively.348

Ablation Study To study the detail of our mod-349

els, we explore the performances of three main350

model variants, shown in the last several rows of351

Table 3. We find that the cluster quality τk, the loss352

correction module and the feature cluster process353

are all critical to model performances in some sit-354

uations. Specifically, as shown in FCLC (without355

cluster), feature clustering has minor impacts on356

Wiki and Ontonotes. This is probably because the357

noisy distribution on these two datasets is relatively358

simple and the global confusion matrix is sufficient.359

Moreover, we observe that the re-initialization be-360

fore Step 3 has a great impact on all metrics. Star-361

ing Step 3 with a fresh re-initialized FET model362

degrades the accuracy by 3.2% on Ontonotes. It363

denotes that the learner trained in the first phase is364

beneficial for the noisy robust learning process, by365

providing optimal parameters initialization.366
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Figure 3: Performance change with respect to β and e1
on the Ontonotes (sub-figure a, c) and BBN (sub-figure
b, d) dataset. The horizontal lines hereinafter denotes
for previous SOTA performances and our reported per-
formances.

Sensitivity of the introduced hyper-parameters367

Using the same setting for model training, Fig. 3368

analyses the sensitivity of FCLC to the introduced369

hyper-parameters: the FCLC objective weight β,370

the Step-1 training epochs e1 . Fig. 3(a, b) shows371

the performance trend on the Ontonotes and BBN372

datasets when changing β. While selecting a proper373

ratio between loss-correction loss and the original374

loss is important, the performance near optimum375

β is stable and steadily outperforms the baseline.376

Fig. 3(c, d) analyses the sensitivity with respect377

to e1. the Micro-F1 improves as e1 increases but378

stops improving and become unstable when e1 is 379

large enough, since the model starts to overfit noise. 380

It is also reasonable that the optimal range of β and 381

e1 in BBN and Ontonotes are different as they have 382

different training set sizes and different distance 383

supervision noise distribution. 384
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Figure 4: Performance curves with different trusted
instance set Dt sizes on three datasets.

Will cluster number affect performance? We 385

investigate how much the FCLC model benefits 386

from different values of feature cluster number k. 387

Fig. 5 demonstrates that under a reasonable feature 388

cluster range (near |T |), the model can achieve 389

competitive and similar performances. 390
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Figure 5: Performance curves under different feature-
cluster numbers k on the Ontonotes (a) and BBN (b),
#∆cluster represents k − |T |.

How many trusted instances does the model 391

need? We examine the robustness of the model to 392

the amount of clean data by comparing the perfor- 393

mances with 5% to 100% trusted instances. Refer 394

to Fig. 4, we observe that due to the differences 395

of the training set, our model achieves comparable 396

accuracy with 30%, 40%, and 70% Dt samples on 397

Wiki, Ontonotes, and BBN separately. With only a 398

very small size of trusted instances, e.g. 20% BBN 399

trusted set, or 128 samples, the model begins to 400

improve significantly. 401
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What if we did not have any trusted instances?402

Although a small number of clean samples is al-403

ways practical to obtain or relabel with an expert,404

we push the limit to no trusted instances at all.405

What performance can our model achieve in such a406

situation? We performed the "no clean training set"407

experiment to test the robustness of our model. In408

Table 4, FCLC (w/o Dt) indicates for the variant409

that the trusted instances are not used for phase 2410

training but only in feature clustering and confusion411

matrix calculation. In that situation, our approach412

still has similar performances with previous SotA413

models on most metrics3.414

FCLC (w/ pl) variant means that, during the clus-415

tering process, instead of using the trusted instance416

set Dt split from the training set, we introduce a417

simple and classic pseudo labeling method (Lee418

et al., 2013) to generate the labels needed by clus-419

tering and training. We find that compared to the420

baseline method, FCLC with pseudo labeling still421

achieves much better performances.422

It is proved by results in Table 4 that FCLC does423

not rely on a clean training subset, thus having a424

wide range of applications.425

Models
Wiki Ontonotes

Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1
Backbone 68.9 81.9 79.0 60.2 76.4 70.2

NFETC-AR 70.1 83.2 80.1 64.0 78.8 73.0
FCLC 71.3 82.2 81.1 65.3 79.6 74.0

w/o Dt in phase 2 70.0 81.3 80.2 64.6 79.0 73.3
w/o Dt & w/ pl 71.3 82.1 81.0 64.2 78.7 72.9

Table 4: The model performances with no trusted in-
stances on phase 2 (w/o Dt) or on the whole training
process (w/ pl).

Visualization of the representations We ana-426

lyze the role of FCLC module by visualizing the427

feature vectors.428

Fig. 6 illustrates samples in a cluster (circled429

in all 4 sub-figures). From Fig. 6(a), we observe430

that the backbone model fails to distinguish some431

samples of class A (/ORGANIZATION/GOVERN-432

MENT, red) and class B (/GPE/COUNTRY, blue),433

due to noisy labels. Fig. 6(b) shows that our model434

learns to correct these instances. With FCLC435

the classifier is corrected to predict the right la-436

bel. Meanwhile, in feature space, the boundary be-437

tween these samples and the confusing class is also438

clearer, which means FCLC also helps to refine439

3It is worth pointing out that it means our model is trained
with fewer instances than previous SOTA, since Dt is not only
a part but a precious trusted part from the training set they use.

feature extraction with loss correction. Fig. 6(e) 440

shows the row of ’/GPE/COUNTRY’. Managing 441

to notice the confusion from ’/GPE/COUNTRY’ to 442

’/ORGANIZATION/GOVERNMENT’ enables our 443

model to perform the appropriate correction. Due 444

to this, FCLC are resistant to the noisy labels. 445

(a) (b)

(c) (d)

(e)

Figure 6: (a, b): the feature representations of backbone
and FCLC model on BBN test set; (c, d): clusters
denoted by colors according to samples in (a, b); (e):
the row of ’/GPE/COUNTRY’ in the circled cluster’s
confusion matrix.

Quantitative Results of Confirmation Bias To 446

further verify our claim that our model can alle- 447

viate the confirmation bias in the noisy FET task, 448

we analyze the prediction confidence on test set 449

samples, as shown in Fig. 7. The average confi- 450

dence of correct and wrong test samples is calcu- 451

lated after each training epoch. The results show 452

that, on the Wiki dataset, after phase one the wrong 453

sample average confidence is 0.700 but the back- 454

bone model reached 0.833 at the end of the training 455

(with early stopping). Also, after phase two FCLC 456

improves the correct sample confidence from back- 457
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Figure 7: Average prediction confidence over negative
predicted samples on three datasets.

bone’s 0.939 to 0.950 on Wiki.458

4 Related Work459

4.1 Noisy Learning460

The usage of datasets collected with distant supervi-461

sion often results in so-called noisy labels. Several462

studies have investigated deep learning approaches463

with noise. Existing noisy learning methods in-464

clude designing robust loss functions (Wang et al.,465

2019), designing robust architectures by adding466

noise adaptation layers (Chen and Gupta, 2015;467

Goldberger and Ben-Reuven, 2017), selecting sam-468

ples (Onoe and Durrett, 2019b), and adding noise-469

robust regularization (Shi et al., 2020). Among470

them, Patrini et al. (2017) and Hendrycks et al.471

(2018) proposed forward loss correction. It avoided472

explicit relabeling and matrix inversion. These473

noisy learning methods are mostly restricted to the474

noise that is conditionally independent of the data475

features (Frénay and Verleysen, 2014). However,476

in real-world applications such as FET, noise distri-477

butions are more complex and instance-dependent,478

requiring more powerful noisy learning methods.479

4.2 Fine-Grained Entity Typing480

FET is studied based on the distant supervision481

training data (Mintz et al., 2009; Ling and Weld,482

2012). Various features (Yogatama et al., 2015;483

Xu and Barbosa, 2018), network structures (Dong484

et al., 2015; Shimaoka et al., 2016), and feature485

space (Ali et al., 2021; Onoe et al., 2021)are ex-486

plored to refine the mention and type representa-487

tion. Label inter-dependency (Lin and Ji, 2019)488

and type hierarchy (Chen et al., 2020) are often489

used, added by relations among instances and la-490

bels (Ali et al., 2020; Li et al., 2021; Liu et al.,491

2021). Label noise is the main problem brought492

by distance supervision. Besides common noisy 493

learning methods discussed in Sec. 4.1 (Onoe and 494

Durrett, 2019b; Shi et al., 2020; Wu et al., 2019), 495

FET-specific noise combat methods are proposed. 496

Ren et al. (2016a,b) utilized partial-label embed- 497

ding. Xu and Barbosa (2018) modified hierarchical 498

loss to cope with overly-specific noise. Zhang et al. 499

(2020) automatically generated pseudo-truth label 500

distribution for each sample. Additional resource 501

also help to improve the performance. The resource 502

include external knowledge base (Xin et al., 2018; 503

Dai et al., 2019), and with BERT-like pipeline (Pa- 504

tel and Ferraro, 2020; Ding et al., 2021). Choi et al. 505

(2018) proposed a way to utilize more distance 506

supervision and crowd source, followed by Onoe 507

and Durrett (2019b). Apart from the above, (Chen 508

et al., 2019) and (Ali et al., 2020) are the closest 509

to our proposed method. They both select some 510

instances by feature distance to modify labels or 511

refine mention representation for noisy instances. 512

However, their refinement is still explicit and iso- 513

lated to each instance. Thus the quality relies on the 514

instances they retrieve for label propagation/men- 515

tion reference. Different from these studies, we do 516

not rely on any of these external resources and aim 517

to impose label noise with only the original data 518

without explicit sieving or label changing. 519

5 Conclusion 520

In this work, in order to tackle the instance- 521

dependent label noise in fine-grained entity typ- 522

ing tasks, we present a neural FET noisy learning 523

framework that utilizes the feature space informa- 524

tion and global information jointly. Experimental 525

results on three publicly available datasets demon- 526

strate that our proposed model achieves the best per- 527

formance compared with competitive existing FET 528

systems. Furthermore, based on extensive auxiliary 529

experiments, we study the impact of our proposed 530

noisy learning framework in-depth with qualitative 531

and quantitative analysis. In the future, the pro- 532

posed approach can motivate the need for further 533

understanding of the relationships between dataset 534

noise distribution estimation and the instance fea- 535

tures. More work can be done towards this direc- 536

tion. In addition, performances of the proposed 537

framework under different backbone models can 538

be dug to validate the flexibility of the framework. 539
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