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ABSTRACT

In the federated learning (FL) framework, clients participate in collaborative learn-
ing tasks under the coordination of a central server. Clients train local submodels
using their own data and share gradients with the server, which aggregates the
gradients to achieve privacy protection. However, recent research has revealed
that gradient inversion attacks (GIAs) can leak private data from the shared gradi-
ents. Prior work has only demonstrated the feasibility of recovering input data
from gradients under highly restrictive conditions, such as when dealing with
high-resolution face datasets, where GIAs often struggle to initiate attacks effec-
tively, and on object datasets like Imagenet, where they encounter limitations,
primarily manifested in their ability to handle only small batch sizes and high
time costs. As a result, we believe that implementing GIAs on high-resolution
face datasets with large batch sizes is a challenging task. In this work, we intro-
duce Fast Gradient Leakage (FGL), which enables rapid image recovery across
various network models on complex datasets, including the CelebA face dataset
(1000 classes, 224×224 px). We also introduced StyleGAN as prior knowledge
for images and achieved FGL with a batch size of 60 in experiments (constrained
by experimental hardware). We further propose a joint gradient matching loss,
where multiple distinct matching losses collectively contribute to clarifying the
attack direction and enhancing the efficiency of the optimization process. Exten-
sive experimentation validates the feasibility of our approach. We anticipate that
our proposed method can serve as a valuable tool to advance the development of
privacy defense techniques.

1 INTRODUCTION

Federated Learning (FL) (Li et al. (2020), McMahan et al. (2016)) aims to train high-quality global
models while ensuring client privacy. In this framework, clients only use their local data (Melis et al.
(2019), Shokri et al. (2017)) for training and share weights or gradients to update the global model,
reducing the flow of user data and enhancing data privacy and security (Tan et al. (2022), Karim-
ireddy et al. (2020), Chilimbi et al. (2014), Konený et al. (2016), Yang et al. (2019b)). Therefore,
FL can be applied in privacy-sensitive domains such as medical data (Brisimi et al., Sadilek et al.
(2020)). Hospitals can obtain a collaboratively trained global model without the need to share pa-
tient data. This approach addresses critical concerns such as data privacy, data security, data access
control, and heterogeneous data access, enabling multiple participants to create a shared, powerful
machine learning model without sharing data.

In most cases, the federated learning framework is considered an effective method to prevent privacy
leakage. Nevertheless, recent research (Geiping et al. (2020), Yin et al. (2021), Zhao et al. (2020)
Zhu & Han (2020), Wen et al. (2022)) has shown that the shared gradients contain a significant
amount of sensitive information, and attackers can exploit gradient leakage to obtain client’s private
data. This type of attack, known as gradient inversion attacks (GIAs), has evolved to the point
where it can achieve pixel-level image reconstruction. This poses a severe threat to privacy security
in federated learning. While GIAs have made some progress in FL attacks, they still face limitations.
For instance, using CNN models makes it challenging to carry out attacks on high-resolution face
datasets (Yin et al. (2021)). Additionally, they encounter difficulties in conducting attacks with large
batch sizes, along with issues related to low attack efficiency and high time costs.
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We propose a GAN-based GIAs method called Fast Gradient Leakage (FGL) to address the chal-
lenges mentioned earlier. Our technique is inspired by the field of model inversion attacks (MIAs)
(Fredrikson et al. (2015), Zhang et al. (2020), He et al. (2019)), which shares similarities with our
domain, yet MIAs have a longer research history, with many techniques being ahead of Gradient
Inversion Attacks (GIAs). MIAs utilize GANs as prior knowledge for images, avoiding the need
to synthesize images from noise; instead, the optimization process fine-tunes existing images until
the target image is reached. Moreover, MIAs significantly improve attack success rates through
strategies like rotation transformations and image selection. In a white-box setting, PPA (Struppek
et al.) achieves large-batch and high-accuracy attacks on face datasets, a feat challenging for GIAs.
Inspired by MIAs, we introduce related techniques into GIAs.

Building upon previous research, we conceptualize GIAs attacks as an optimization problem (Yin
et al. (2021)). However, due to the difficulty in optimizing high-resolution images with GIAs’
gradient matching losses, our main challenge lies in overcoming the tendency for the optimization
process to fall into local optima. To address this challenge, we break away from the limitations
of previous studies and propose the concept of a joint gradient matching loss function. Different
gradient matching losses guide the optimization process from different perspectives, allowing for
simultaneous optimization from multiple angles, thereby making the optimization results more likely
to approach the global optimum.

Our goal is to quickly recover private images from clients. To reduce time overhead, we adopt
StyleGAN (Karras et al. (2019), Karras et al. (2020)) as prior knowledge for images, allowing ini-
tial images to be fine-tuned rather than synthesized from noise, significantly reducing time costs.
By introducing our proposed joint gradient matching loss function, the attack epoch is significantly
reduced, making the optimization process simpler and faster. The combination of these two fac-
tors enhances attack efficiency. Additionally, with the optimization process becoming simpler, the
batch size of attacks has also increased. Compared to previous methods, our approach has achieved
significant improvements in both attack time and batch size.

Compared to GI, we introduced pre-trained StyleGAN as prior knowledge for images, combined
with a joint gradient matching loss. This approach allowed convergence within a very small number
of epochs (70 in our experiments), significantly reducing the time overhead. More importantly, we
successfully conducted attacks on high-resolution (224×224px) face images for the first time under
CNN architecture, with a batch size of up to 60 (limited by hardware).

The main contributions are summarized as follows:

• For the first time, we have employed an optimization-based approach on a CNN architec-
ture to achieve the reconstruction of high-resolution facial datasets.

• We propose a joint gradient matching loss that combines multiple advantages and signifi-
cantly improve reconstruction quality.

• We have introduced a selection strategy that, when combined with multi-seed optimization
strategies, enhances the quality of reconstructed images.

2 RELATED WORK

2.1 IMAGE SYNTHESIS.

The task of synthesizing images from neural networks has been a long-standing challenge, and Gen-
erative Adversarial Networks (GANs) (Zeng & Long (2022), Radford et al. (2015), Salimans et al.
(2016), Brock et al. (2018), Gulrajani et al. (2017)) have achieved remarkable success in this field.
The initial GAN (Zeng & Long (2022)) often faced issues with instability and training difficulties.
However, techniques proposed by (Radford et al. (2015)) have addressed the stability problems in
GAN training, and the improved WGAN (Gulrajani et al. (2017)) has enhanced training stability
while mitigating issues like mode collapse. Despite these improvements, WGAN still generated
low-quality images, prompting the proposal of WGAN-GP (Gulrajani et al. (2017)) as a further
enhancement. DCGAN (Radford et al. (2015)) introduced a more stable architecture for training
GANs and demonstrated that adversarial networks can learn meaningful image representations for
supervised learning tasks. StyleGAN (Karras et al. (2019)) introduced style transfer, enabling intu-
itive control over synthesis at various scales. Building on these advancements, StyleGAN2 (Karras
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et al. (2020)) addressed several image quality issues in StyleGAN, resulting in further improve-
ments in image synthesis.StyleGAN3 (Karras et al. (2021)) made significant progress by addressing
the reliance on absolute pixel coordinates in the typical synthesis process of GANs, thus opening
new possibilities for video and animation synthesis. Additionally, BigGANs (Brock et al. (2018))
achieved a breakthrough by training GANs on the complex ImageNet (Deng et al. (2009)) dataset,
significantly advancing the state-of-the-art in GAN research. The significant progress in GANs has
brought about a revolution in image synthesis, enabling diverse applications ranging from art gener-
ation to the production of highly realistic images. However, certain challenges persist, such as op-
timizing GANs for specific tasks, ensuring scalability, and effectively handling large-scale datasets.
As the research in GANs continues to advance, we can anticipate even more thrilling developments
in the realm of image synthesis and generation.

2.2 PRIVACY LEAKAGE VIA GRADIENT

Recently, the field of privacy attacks in federated learning has seen significant advancements.(Zhu
& Han (2020)) proposed a gradient-based privacy attack method, allowing attackers to reconstruct
users’ private data by matching exchanged gradients in the federated learning scenario. This poses
substantial challenges to privacy and security in federated learning (Konený et al. (2016), Wang
et al. (2019), Reisizadeh et al. (2019),). Building on this work, (Zhao et al. (2020)) improved the
method by introducing a label inference technique, enhancing the attack efficiency. However, both
methods are only applicable to shallow networks (Lecun et al. (1998)) trained on low-resolution
data (Krizhevsky (2009)). Previous GIAs commonly utilized the L2 norm for gradient matching.
(Geiping et al. (2020)) proposed cosine similarity for gradient matching, achieving promising re-
sults and revealing vulnerabilities even in large-scale datasets trained on non-smooth networks like
ResNet-152 (He et al. (2016)).(Zhu & Blaschko (2021)) introduced a novel method that advanced
the understanding of GIAs. (Yin et al. (2021)) further improved label inference with GradInversion,
incorporating an image regularization term to enhance image fidelity. Their approach demonstrated
success in revealing privacy images with batch size ranging from 8 to 48 on large networks trained
on ImageNet. In the pursuit of stronger attacks, (Huang et al. (2021)) evaluated the work of (Yin
et al. (2021)) and pointed out two strong assumptions (BatchNorm statistics and private labels),
suggesting that relaxing these assumptions significantly reduces the attack capability.(Hatamizadeh
et al.) further demonstrated the feasibility of GIAs on vision transformers (ViTs). More recently, (Li
et al.) proposed a GAN-based gradient inversion attack, capable of revealing privacy images under
various gradient defenses while maintaining good image quality.

3 METHODOLOGY

In this section, we provide a detailed introduction to the FGL method. We first establish a threat
model in Section 3.1. Then, we explain the definition of our objective function and the optimization
methods employed in Section 3.2. Finally, we present a comprehensive overview of the innovative
components in our approach in Section 3.3. The overall architecture is illustrated in Figure 1.

3.1 THREAT MODEL

In both federated learning algorithms, FedSGD and FedAvg, we assume that the attacker functions as
an honest but curious server. The attacker is endowed with the capability to receive model weights w
and gradients 4W transmitted by the clients. The adversary’s goal is to deduce sensitive information
from the client’s private data by scrutinizing these parameters. It is crucial to emphasize that the
server is prohibited from unilaterally modifying the initial model sent to the client (Fowl et al.,
Boenisch et al.). Additionally, the adversary may leverage publicly available resources such as
common datasets and openly accessible pre-trained models, but their computational resources are
limited.

3.2 OBJECTIVE FUNCTION

Considering a network with weight parameters W and a gradient update 4W obtained from a batch
of ground truth images x∗ and their corresponding labels y∗, our optimization algorithm (Eqn.1 -

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of our proposed FGL method. Our proposed FGL method comprises three main
stages. In the sampling stage, we adopt a multi-seed optimization approach, where we simultane-
ously perform optimization with multiple random seeds. During the optimization stage, we leverage
a novel joint gradient matching loss function and gradient normalization technique.In the final se-
lection stage, we carefully choose the most representative and successful results from the optimized
set.

Eqn.4) aims to find an optimal solution.

x̂ = Ttrans(Sinit(G(z))) (1)

ẑ∗seed = argmin
z

Mgrad(x̂;Ngrad(∆W,∆W ′)) (2)

ẑ∗best = Sfinal(ẑ
∗
seed1

, ẑ∗seed2
, ẑ∗seed3

. . . ẑ∗seedn
) (3)

x̂∗
best = G(ẑ∗best) (4)

In this context, we provide the following terminological explanations: z represents the latent space,
G(·) denotes the GAN, Sinit(·) signifies the initial point selection strategy, Ttrans(·) stands for
increasing robustness by transformations, Ngrad(·) indicates the gradient normalization operation,
and Mgrad(·) is our proposed new gradient matching loss. ẑ∗seed(·) refers to the initial seed result,
while Sfinal(·) represents the strategy for selecting the optimal result ẑ∗best. Ultimately, we use the
synthesized x̂∗

best as the outcome of the attack.

3.3 FAST GRADIENT LEAKAGE

In this section, we will systematically present our contributions and technical details, following the
process of the GIAs.

Selection Strategy. The selection of the initial point plays a crucial role in GIAs. To exploit the
potential of the initial point, we propose four selection strategies, which consist of both initial point
selection and corresponding representative result selection strategies that need to be applied together.

The first strategy involves selecting points with high confidence scores F (x) according to the target
model as the initial points and final points. The second strategy entails choosing points with a small
L2 distance between the pseudo-gradient 4W ′ and the true gradient 4W as the initial points and
final points. The third strategy entails selecting points with a cosine similarity close to one between
the pseudo-gradient 4W ′ and the true gradient 4W as the initial points and final points. The fourth
strategy involves selecting points with both a small L2 distance between the pseudo-gradient 4W ′

and the true gradient 4W and a cosine similarity close to one as the initial points and final points.

Among these strategies, the first initial point strategy yields the best results in our work. It is worth
noting that the first strategy requires the use of a model that has already converged, while the other
three strategies are applicable to all models.

label inference. After selecting highly attack-oriented initial points, the next step is the label in-
ference (Qu et al. (2019), Fu et al.), where successfully obtaining the true labels greatly enhances
the success rate of the attack. Based on the analysis of (Zhao et al. (2020)), under the premise of
using cross-entropy as the loss function, it is possible to infer the true labels using shared gradients.
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Assuming there are n classes in the dataset, denoting the i-th output of the model as zi , the loss as
∂L (F (x∗) , y∗). The label inference function can be expressed as follows:

ŷ = argsort (5zL (F (x∗) , y∗) [: 1]) (5)

The above analysis is based on the scenario where batch size one. However, when batch size is
greater than one, there is information loss due to gradient summation. Using the label inference
based on the batch size one leads to a higher error rate. To address this issue, (Yin et al. (2021))
proposed batch label restoration. Based on the observation that |Vc| � |Vi 6=c| (the absolute value of
the negative gradient term for class i = c is larger than the absolute value of the positive gradient
terms for i 6= c), the label inference function can be written as follows:

ŷ = argsort
(
min
m

5WFC
n,i

L(F (x∗) , y∗)
)
[: K] (6)

In batch label restoration, we identify the rows with the smallest values in the fully connected layer
and sort them. The top-k rows correspond to the restored labels.

Gradient Matching Loss. Even if the true label ŷ∗ is inferred, attacking high-resolution facial
images remains highly challenging. Previous research works have predominantly used loss functions
such as L2 norm (Zhu & Han (2020), Zhao et al. (2020), Yin et al. (2021)) and Cosine Distance
(Geiping et al. (2020)). In our work, we propose a novel loss function design strategy comprising
two parts. Firstly, we define a loss function between the target function output Y ′ and the inferred
label Y . Secondly, we introduce the gradient matching loss between 4W ′ and 4W . We select the
Poincaré distance (Struppek et al.) as the loss function for the first part. The Poincaré loss function
is used to measure the distance between two tensors y and y∗, and it is defined as follows:

LPoincare = d (y, y∗)

= arcosh

(
1 +

2||y − y∗||2

(1− ||y||22 )( 1− ||y∗||22)

)
(7)

In the second part, we propose a joint loss function given by Mgrad = α1L2 + α2Cosine +
α3L1 , where α1 , α2, and α3 are hyperparameters.The expressions for L2, Cosine, and L1

are shown :L2(∆W,∆W ′) = ||∆W − ∆W ′||22, Cosine(∆W,∆W ′) = 1 − <∆W,∆W ′>
||∆W ||2·||∆W ′||2 ,

L1(∆W,∆W ′) = ||∆W −∆W ′||.
Gradient Normalization. In some scenarios, the values of the true gradient 4W can be extremely
small, making it difficult for the pseudo gradient 4W ′ to approximate the true gradient 4W accu-
rately. Consequently, the loss value struggles to converge, leading to suboptimal attack performance.
To address this issue and enhance the effectiveness of our approach, we apply gradient normalization
(Xu et al. (2019), Xiong et al. (2020), Yang et al. (2019a)). By normalizing both the true gradient
4W and the pseudo gradient 4W ′ to the same scale, we can accelerate the convergence of the loss
function and enhance the attack capability of our method as in Figure 2.

Increasing Robustness by Transformations. To enhance the robustness of our algorithm, we in-
troduce image transformations (Hu et al., Athalye et al. (2017), Struppek et al.) to stabilize the
attack process. We define t as a single transformation operation, which can include rotations, trans-
lations, cropping, resizing, and more. T represents a combination of multiple t operations, given by
Ttrans(x) = t1(x) · t2(x) · · · tn(x) . Instead of using the original image x directly, we employ the
transformed image x′ = Ttrans(x) during the attack.

Multi-Seed Optimization Strategies. Although we have applied the Selection Strategy, it is in-
evitable that some initial points may get trapped in local optima.

To enhance the robustness of our attack method, we propose a multi-seed optimization strategy. We
sample initial point combinations using different Seeds (Seed1 ,Seed2, Seed3, ..., Seedn), where
each set of initial points exhibits a relatively consistent optimization direction. By employing a
multi-seed optimization strategy, we have expanded the attack exploration range of FGL, conse-
quently enhancing its attack stability.
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Figure 2: Gradient regularization for resetting gradient space.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In all experiments (Apart from experimenting with different datasets and model architectures.), we
employed the StyleGAN2 (Karras et al. (2020)) model pretrained on the FFHQ dataset to attack
the target model ResNet-18 trained on the CelebA dataset, thus simulating the setting of federated
learning. Additional details and attack parameters about the experimental can be found in the Appx.
5.

To demonstrate the effectiveness of our proposed approach, we conducted ablation experiments as
detailed in Section 4.2. Subsequently, we compared our FGL method with some state-of-the-art
approachesin GIAs to highlight its advantages in 4.3 . Additionally, we performed experiments on
large-batch GIAs in 4.4 and time cost to validate the effectiveness of our method in 4.5.

Evaluation Metrics. Diverging from earlier GIAs, FGL’s aim is not to replicate private images,
but rather to synthesize images with akin features. Consequently, conventional metrics like SSIM,
MSE, and PSNR, commonly used to determine if two images are identical, find limited applicability
in our attack. In order to precisely assess the faithful representation of privacy image features in
synthesized images, we introduce three corresponding evaluation metrics. (i) The Top-1 and Top-5
accuracy rates computed by Inception-v3. (ii) The feature distance Dinc between synthesized and
real images computed by Inception-v3. (iii) The feature distance Dface between synthesized and
real images computed by FaceNet.

4.2 ABLATION STUDIES

The purpose of the ablation experiments is to analyze the roles of different components in our pro-
posed method. We progressively incorporate our proposed method into the optimization objective
function and conduct quantitative analysis of the data in Table 1 as well as qualitative analysis based
on visual observations Figure 3. We conducted a more detailed ablation study on the joint gradient
matching function in Appx. 5.

Lgrad(x̂;4W,4W ′)
Image Reconstruction Metric

TOP-1 ↑ TOP-5↑ Dinc↓ Dface↓
L2 0.0 0.0 1.0 1.52
+Sinit 0.0 0.0 0.92 1.20
+Sfinal 0.12 0.2 0.82 1.16
+Ttrans 0.16 0.28 0.88 0.92
+Mgrad 0.60 0.80 0.66 0.82
+Ngrad 0.72 0.76 0.74 0.72
+Mseed 0.88 0.96 0.72 0.72

Table 1: a quantitative comparison of different components of FGL.

Adding Sinit. Choosing multiple initial points enhances the robustness of FGL, resulting in a more
stable attack. This approach mitigates the impact of random initial points and improves the success
rate of the attacks.

6
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Figure 3: In the ablation study, we qualitatively compared the effects of adding each proposed loss
to the optimization objective function.

Adding Sfinal. By introducing Sfinal, we can select the best-performing result from multiple initial
points as the final output.

Adding Ttrans. Adding transformation operations to images can enhance their robustness.Among
these operations, image cropping plays a major role by removing background interference and en-
hancing the recognition accuracy of the target model.

Adding Mgrad. We have improved the attack effectiveness by replacing the previous L2-only
approach with a novel gradient matching function. By employing a joint loss function, such as
α1L2 + α2Cosine + α3L1 as the gradient matching function, the optimization process aims to
minimize not only the L2 distance but also maximize the cosine similarity close to one, while min-
imizing the L1 distance. These combined optimization angles enable the points to approach global
optima instead of being trapped in local optima.

Adding Ngrad. Being able to attack images that are inherently difficult to attack, thereby increasing
the overall attack success rate.

Adding Mseed. Taking into account the varying optimization difficulties among different seeds, the
use of a multi-seed strategy provides an alternative perspective for enhancing the robustness of FGL.

Different network architectures. We investigate the impact of different network architectures on
our method by conducting batch size 5 GIAs on ResNet-18 (He et al. (2016)), ResNet-152 (He
et al. (2016)), and DenseNet-169 (Huang et al. (2017)), as shown in Figure 4. We observed that the
shallowest model, ResNet-18, performed the best, followed by ResNet-152 with 152 layers, and the
worst performance was exhibited by DensNet-169.

Figure 4: We conducted attacks on different network architectures and observed their visual perfor-
mance.

7
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4.3 COMPARISON WITH THE STATE-OF-THE-ART

Methon Image Reconstruction Metric
Top-1↑ Top-5↑ Dinc ↓ Dface ↓

DLG 0.0 0.0 1.00 1.82
GI 0.0 0.0 0.31 1.68
Fishing 0.0 0.0 0.36 1.63
GIAS 0.0 0.0 0.32 1.62
FGL(Ours) 1.0 1.0 0.21 0.83

Table 2: GIAs on CelebA Dataset: A Comparative Study with State-of-the-Art Methods.

Figure 5: CelebA batch gradient inversion for ResNet-18 visual comparison with state-of-the-art
methods.Our method outperforms others in terms of overall image quality and capturing fine details.

To ensure the optimal performance of the baseline method, we conducted attacks with a batch size of
one. We summarize both qualitative (Figure 4) and quantitative results (Table 2). We also validated
the performance of FGL on ResNet-152 and DenseNet-169 in Appx. 5. Additionally, to verify the
effectiveness of FGL under various data distributions, we selected two extreme cases with entirely
different data distributions for attack experiments in Appx. 5 .

Attack Baselines. We compare our method against four existing approaches: (i) Deep Leakage
from Gradients (DLG) (Zhu & Han (2020)), (ii) GradInversion (GI) (Yin et al. (2021)), (iii) Fishing
for User Data (Fishing) (Wen et al. (2022)) and (iiii) GIAS (Jeon et al.). GIAS (iiii) constitutes
a generative method, serving as a closely aligned baseline model to FGL. In line with FGL’s at-
tack configuration, we also employed StyleGAN, trained on the FFHQ dataset, to generate images
suitable for the CelebA dataset, thereby simulating distribution shift scenarios. To ensure a fair

8
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comparison, I employed a ResNet-18 model with an accuracy of 86.38% on the CelebA dataset as
the target model for each approach. I conducted an equivalent number of runs for the remaining
methods, following the same selection strategy as FGL, utilizing different random seeds each time.
The best-performing result among these runs was ultimately chosen as the conclusive outcome.

Through qualitative and quantitative comparisons, we can clearly observe FGL outperforms prior
art both visually (Figure 4)) and numerically (Table 2) on the facial dataset. Previous methods rarely
focused on attacking high-resolution facial images, and when we attempted to apply these methods
to facial datasets, achieving remarkable attack performance was challenging. Among the four com-
parative methods, only the GI (Yin et al. (2021)) and Fishing (Wen et al. (2022)) method managed
to capture the outline of the images, providing a rough representation of facial features, albeit with
incorrect positions and lacking details. The synthesized images from the other methods DLG (Zhu
& Han (2020)) only consisted of indistinguishable pixels. Compared to similar methods (Jeon et al.)
that did not demonstrate effective attacks when faced with distributional shifts, our proposed novel
unified matching loss makes the optimization direction more explicit. This approach proves to be
more adept at avoiding local optima. Additionally, employing multiple seed optimization strategies
enables us to transcend the limitations of single-seed optimization. By incorporating a selection
strategy, we can identify results that are more representative.

Figure 6: The impact of changing the batch size on different evaluation metrics. For the convenience
of observing the variation trend of Dinc, we normalized it.

4.4 EFFECT OF SCALING UP THE BATCH SIZE

In our method, we conducted attacks with a batch size 60 on randomly selected CelebA images. The
data results are shown in Figure 6 and Figure 13, illustrating the effectiveness of our approach.

It can be observed that at batch size 20, some images prove challenging to attack, resulting in a
decline in performance. However, as we increase the batch size to 30, the performance stabilizes
and rebounds. Even with a batch size 60 attack, our method achieves a Top-1 accuracy of 0.483,
demonstrating its consistent and strong performance.

Figure 7: Time cost of our method for GIAs at different batch size.

4.5 TEMPORAL COST ANALYSIS

To evaluate the time cost, we conducted detailed statistics, as shown in Figure 7. DLG struggled to
attack the CelebA dataset, so we used the Cifar-10 dataset where they performed well as an example.
For DLG, attacking with a batch size of 4 required 1173 iterations and took approximately 17.56
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minutes. On the other hand, GI required 10000 iterations and 23.99 minutes to attack the CelebA
dataset with a batch size one, while Fishing required 24000 iterations and 23.17 minutes for the same
setting. GIAS requires 4800 iterations to complete one attack, taking 24 minutes. However, for a
batch size one attack under the same conditions, our method only took 2.58 minutes to complete.

Importantly, even when using a large batch size 60 for the attack, the required time cost did not
exponentially increase but only amounted to 13.99 minutes. Our method consistently exhibited
lower time costs at each stage compared to the other methods, emphasizing the efficiency advantage
of our approach in attacks.

5 CONCLUSIONS

In this work, we proposed FGL, which allows for the rapid disclosure of a large amount of privacy in-
formation across different data distributions. These experimental findings underscore the significant
potential of GAN-based GIAs in the field of privacy protection. We believe that our contributions
will stimulate advancements in the field of privacy-preserving deep learning and contribute to the
construction of more secure and privacy-aware deep learning systems.
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