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ABSTRACT

Text-to-image diffusion models can synthesize high-quality images, yet the out-
come is notoriously sensitive to the random seed: different initial seeds often
yield large variations in image quality and prompt–image alignment. We re-
visit this “seed effect” and show that early-stage attention dynamics over prompt
core tokens—the content-bearing words—strongly predict final generation qual-
ity. Building on this observation, we introduce ADSS—Attention-Driven Seed Se-
lection—a training-free, plug-and-play method that tracks cross-attention to core
tokens during sampling to rank and select seeds for a fixed prompt, requiring no
finetuning or latent changes and globally ranking the entire seed pool rather than
using a fixed threshold. Since it operates purely at inference time, ADSS can also
serve as a lightweight add-on preselection step before existing seed-optimization
pipelines, enabling additional gains without extra training or code changes. Exten-
sive experiments on three benchmarks show consistent improvements in prompt
faithfulness and visual quality across Stable Diffusion variants, as reflected by
human preference and alignment metrics. Our results highlight ADSS as a sim-
ple and effective route to more controllable generation by leveraging prompt core
token attention for robust seed preselection.

1 INTRODUCTION

Text-to-Image Synthesis (T2I) has rapidly evolved into a central topic in generative modeling, aim-
ing to produce realistic and semantically consistent images directly from natural language prompts.
Early approaches widely leveraged text-conditioned generative adversarial networks (Reed et al.,
2016; Zhang et al., 2017; Xu et al., 2018), conditional variational autoencoders (Sohn et al., 2015),
and autoregressive models (Ramesh et al., 2021) to improve semantic alignment and diversity of gen-
erated images. Diffusion models (Ho et al., 2020; Song et al., 2021b; Liu et al., 2024a) have driven
a paradigm shift in generative modeling, establishing themselves as the leading approach through
their stable training process and exceptional output quality. In particular, combining diffusion mod-
els with large-scale language/vision–language representations has driven major breakthroughs in
T2I synthesis (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022;
Podell et al., 2023; Balaji et al., 2022).

Despite recent advances, diffusion-based T2I systems remain highly sensitive to the seed-defined
initial latent, often yielding noticeably variable results. Even small perturbations to this initializa-
tion can significantly affect output fidelity, aesthetics, and semantic alignment (Mao et al., 2023; Li
et al., 2025). To mitigate this issue, prior work modifies the initial random latent determined by seed
to improve generation quality. We refer to studies in this line of research as seed optimization. Ap-
proaches include reward-based optimization with preference-guided objectives (Eyring et al., 2024;
Miao et al., 2024), attention-guided refinement via cross-/self-attention control (Hong et al., 2023;
Chefer et al., 2023; Guo et al., 2024), and controllable rollback techniques using inversion-based
backtracking (Bai et al., 2024; Mao et al., 2025; Qi et al., 2024). In contrast, seed selection oper-
ates over a large pool of random seeds and focuses on identifying a subset that produces consistently
high-quality outputs. For example, Xu et al. (2024b) introduced the concept of Golden Seeds by run-
ning extensive generation trials on validation set and selecting seeds that consistently yield superior
results, which are then applied to the target set. Similarly, Li et al. (2025) identified high-performing
seeds from generated datasets and reused them for fine-tuning a frozen diffusion model.
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Contribution. In this paper, we focus on the seed selection problem. Unlike existing seed selection
methods that rely on auxiliary datasets, which incurs additional seed curation/fine-tuning costs , our
approach distinguishes between good and bad seeds1 during the denoising process itself, particularly
in the early stages. Our key contributions can be summarized as follows:

• We propose ADSS (Attention-Driven Seed Selection) — a training-free, plug-and-play pro-
cedure for selecting seeds at inference time, leveraging the denoising process itself without
requiring any external supervision.

• We reveal a key insight: early-stage cross-attention on core tokens is a strong predictor of final
prompt alignment and image quality, providing the base for deriving a simple yet effective
criterion for screening and early stopping of low-quality seeds.

• We validate ADSS through extensive experiments on three benchmarks and multiple Stable
Diffusion variants, demonstrating consistent gains, by widely used metrics in both semantic
alignment and correlation with human judgments..

2 RELATED WORK

Text-to-Image Diffusion Models. T2I diffusion models have rapidly become one of the most pow-
erful generative model families, capable of synthesizing highly diverse and photorealistic images
conditioned on natural language descriptions (Saharia et al., 2022; Rombach et al., 2022). These
models typically incorporate pretrained language encoders—such as CLIP (Radford et al., 2021),
T5 (Raffel et al., 2020), or more recently large language models (Balaji et al., 2022)—to transform
textual inputs into dense representations. The encoded information is then injected into the genera-
tive process via cross-attention layers, which serve as the primary mechanism for aligning semantics
between text and image (Vaswani et al., 2017; Rombach et al., 2022). While this architecture has
achieved remarkable success in controllable generation, the outputs can be highly sensitive to the
initial random seeds, leading to significant quality disparity between good and bad seeds; typical
failures include missing objects/parts, inappropriate overlaps or misplacements, and even spurious
text artifacts in inpainting (Xu et al., 2024b; Shen et al., 2025). Moreover, T2I models are known
to suffer compositional errors—e.g., incorrect counts, positions, and attribute binding—yet recent
evidence shows that a substantial portion of these failures is in fact seed-dependent (Li et al., 2025;
Gokhale et al., 2023; Liu et al., 2024b; Ban et al., 2025).

Seed Optimization in Text-to-Image Diffusion Models. Recent work aims to remedy inferior
generations by optimizing the seed-defined initial latent. A prominent line of research (Hertz et al.,
2023) pursues attention-guided refinement, leveraging cross-attention maps to better align images
with prompts—tokens receiving higher attention are encouraged to be more strongly expressed.
Attend-and-Excite introduces a normalized attention loss that iteratively updates the latent to mit-
igate subject neglect (Chefer et al., 2023). Follow-ups further reweight token attention or enforce
coverage/consistency—without retraining—to reduce seed-specific failure modes (Agarwal et al.,
2023; Rassin et al., 2023; Meral et al., 2024; Guo et al., 2024; Qiu et al., 2025).

Complementary to attention guidance, Z-sampling (Bai et al., 2024; Mao et al., 2025) mitigates
inference-time suboptimality by inserting controlled “back” moves—partial inversion or noise re-
injection—into the denoising trajectory to escape poor basins; Ctrl-Z Sampling invokes these roll-
backs under a reward signal before continuing refinement. Crucially, each rollback-retrack cycle
reconditions the trajectory with additional signals (e.g., refreshed attention/saliency or reward feed-
back), effectively increasing the informational conditioning available to the sampler and stabilizing
quality across seeds. Relatedly, Golden Noise (Zhou et al., 2024) learns a prompt-conditioned “noise
prompt” that transforms a random seed into a golden seed via a lightweight NPNet, improving align-
ment and aesthetics across various stable diffusion backbones while remaining plug-and-play.

Different from prior approaches that optimize the initial latent, we consider the seed selection prob-
lem (Xu et al., 2024b; Li et al., 2025). Specifically, we perform early-stage screening of the seed
pool, discarding those that are unlikely to yield faithful generations. This selection relies on the
body token of the prompt—the core semantic anchor of the description—ensuring that only seeds
aligned with the main concept are preserved, leading to more reliable and efficient T2I synthesis.

1Good seeds are initial latents that reliably yield high-fidelity, prompt-aligned, compositionally grounded,
and globally coherent images; bad seeds fail to do so (See Figure 1).
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Figure 1: Illustrative examples of diffusion models initialized with good and bad random seeds.
Good seeds typically generate coherent and faithful images aligned with text prompts, bad seeds
may result in ghosting artifacts or images that are inconsistent with the intended description.

3 PRELIMINARIES AND MOTIVATIONS

In this section, we first introduce the preliminaries of stable diffusion model, illustrate the impact of
seed, and then illustrate the motivations of our paper.

Stable Diffusion. Stable Diffusion (SD) (Rombach et al., 2022) is a widely used text-to-image
generative model. Unlike conventional diffusion approaches that operate directly in pixel space (Ho
et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Song et al., 2021a;a), SD performs
generation in the latent space of a pretrained autoencoder. This design enables high-resolution syn-
thesis while substantially reducing computational cost, particularly during inference. Specifically,
let E(·) denote an encoder mapping an image x to a latent code z = E(x), and let D(·) denote
the corresponding decoder that reconstructs the image, such that D(E(x)) ≈ x. After training the
autoencoder, a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) is trained in this
latent space. The DDPM iteratively denoises a noisy latent zt at each timestep t, conditioned on
c, which in text-to-image scenarios corresponds to the text prompt. In SD, c is produced by a pre-
trained CLIP text encoder (Radford et al., 2021) that maps the user’s prompt to a vector. During
training, clean latents are corrupted with Gaussian noise, and the denoisier is trained to predict the
noise added at each timestep given the noisy latent, the timestep index, and c. This objective is im-
plemented by minimizing the mean-squared error between the true and predicted noise. At inference
time, an initial latent zT ∼ N (0, I) is sampled with the specific initial sample latent determined by
a fixed seed s, where T is the number of total timestipe. The denoiser then refines this latent step by
step under the guidance of c until finally a clean latent z0 is obtained, which is then decoded by the
pretrained decoder D(·) to produce the synthesized image D(z0).

Impact of the Initial Seeds in SD. A growing body of evidence (Xu et al., 2024b; Li et al., 2025)
demonstrates that the initial seed—by fixing the starting noise—substantially steers the denoising
trajectory and, in turn, the final image. Seeds induce systematic biases in outputs, affecting object ar-
rangements (typical relative placement patterns), global style and tone, subject presence or absence,
and even spurious artifacts. Consequently, the same text prompt can yield consistently good or poor
results depending solely on the seed. As illustrated in Figure 1, for the same text prompt on SD 1.5
and SD 2.1, varying seeds produce outcomes that are visibly superior or inferior. This observation
has motivated a line of work (Chen et al., 2024; Qu et al., 2023; Zheng et al., 2023; Couairon et al.,
2023; Jia et al., 2024; Lian et al., 2024; Xu et al., 2023) that tackles generation quality from the seed
side—often framed as seed optimization or seed-aware guidance.

Motivations. The motivation of this paper stems from two key aspects. First, as we illustrated
above, seeds play a substantial role in shaping the quality of outputs in SD. Second, from a practical
standpoint, a single text prompt typically requires multiple generated outputs for users to evaluate,
compare, and select from. Consequently, there is a strong demand for a large pool of good seeds
that can consistently produce high-quality images. Unlike prior studies on seed optimization or
seed-aware training, this work focuses on the seed selection problem: given a collection of random
seeds, how can we identify those that are likely to generate high-quality outputs?
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4 ADSS:ATTENTION-DRIVEN SEED SELECTION

Figure 2: A. Trends of cross-attention on body
token ”dog” for 100 seeds throughout the de-
noising process. Red/blue curves represent
high/low-quality outputs. Notably, as early as
t = 200, good and bad seeds become roughly
separable based on their cross-attention. B. In-
termediate images of the best and worst seed.

In this section, we present our method for seed
selection in SD. A central challenge is that the
quality of a seed, whether it is good or bad, can
typically be assessed only after completing the
entire diffusion process, which makes seed se-
lection computationally expensive and logically
problematic. To address this issue, we propose to
monitor the diffusion process itself, with a partic-
ular focus on its early stages, to predict whether a
given seed has the potential to generate desirable
outputs. Specifically, we first analyze the evolu-
tion of attention patterns during denoising, which
serve as a critical signal shaping the final image.
Building on these observations, we then introduce
our attention-driven seed selection method.

4.1 OBSERVATION DURING DENOISING

Intuitively, the entire denoising process can be
viewed as a form of continuous image optimiza-
tion, where each intermediate image is iteratively
refined. We therefore conjecture that a success-
ful generation should begin by establishing the
main outline—capturing the body tokens that cor-
respond to the head noun(s) denoting the primary
subject(s) expected to occupy the central visual mass—followed by progressive refinement of de-
tails. By body tokens, we specifically refer to the core subject terms (e.g., cat and dog in “a cat
and a purple dog,” or turtle in “a fisheye lens view of a turtle in a forest”), rather than modifiers
or contextual descriptors. In other words, high-quality seeds should prioritize anchoring the dom-
inant subjects before attending to secondary attributes and contextual information. By contrast,
low-quality seeds disperse attention prematurely across modifiers and background tokens, which is
associated with missing or undersized subjects, incorrect counts, and style-dominated artifacts.

Motivated by these insights, we consider seed selection by executing only a small number of denois-
ing steps and evaluating whether the process prioritizes the body tokens early on. To achieve this
idea, we leverage cross-attention (Guo et al., 2024; Chefer et al., 2023) on the body tokens as the cri-
terion for early-stage seed selection. As illustrated in Figure 2, across diverse timesteps, good seeds
(red curves) consistently allocate higher attention weights to body tokens from the very beginning
of the denoising trajectory, whereas bad seeds (blue curves) fail.

4.2 METHOD

Figure 3 illustrates the framework of our proposed Attention-Driven Seed Selection (ADSS). ADSS
is a lightweight and flexible seed selection method that can be seamlessly integrated into any existing
SD pipeline. It identifies promising seeds by evaluating whether the intermediate images effectively
capture the body tokens through the cross-attention mechanism. In the following sections, we first
define the aggregated cross-attention map, and then describe how it is used to rank and select seeds.

Aggregated Cross-attention Map. Text–image alignment in SD is achieved through cross-
attention (Hertz et al., 2023), which integrates textual semantics into the denoising process. A
text prompt y is first encoded by CLIP into a conditional embedding c, formulated as c = fCLIP(y),
where c ∈ Rn×d with n denoting the maximum token length and d the embedding dimension. The
conditional embedding c is then linearly projected to obtain keys K and values V , while queries Q
are derived from UNet activations. For a single cross-attention layer with one head and a seed s
sampled from the seed pool, the attention map is computed as

As = softmax

(
QK⊤
√
d

)
. (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Framework of our proposed Attention-Driven Seed Selection (ADSS). The upper pathway
illustrates the standard text-to-image generation pipeline with N seeds. After a few denoising steps
(t steps), ADSS is applied to evaluate whether the intermediate feature maps effectively capture the
body tokens at an early stage. It then selects the top-K intermediate feature maps based on cross-
attention and continues the remaining denoising steps with them.

Given a specific seed s, the element As
t [h,w, i] represents the attention weight assigned to token

i among all tokens at spatial location (h,w) in the intermediate feature map at timestep t. Higher
values indicate stronger emphasis on token i.

Note that the UNet architecture in SD has multiple blocks with different resolutions (commonly
64, 32, 16, 8), which leads cross-attention multi-head. To effectively aggregate prompt-conditioned
attention, we define the aggregated cross-attention map: at a chosen spatial resolution with seed s,
we collects cross-attention maps from the down/mid/up UNet blocks, stack all heads (and relevant
blocks), reshape from the native (batch×heads, q, n) format (with q = h · w) to (−, h, w, n), and
average over the stacked dimension. This yields a single aggregated map Ās

t ∈ Rh×w×n. We then
apply a temperature-scaled softmax along the token axis to sharpen the distribution,

Ãs
t [h,w, i] =

exp
(
β Ās

t [h,w, i]
)∑n

j=1 exp
(
β Ās

t [h,w, j]
) ,

where β is usually set to be 100. By this means, for every spatial location (h,w) we obtain a
well-normalized probability distribution over tokens.

Body-token Sorting: slicing, smoothing, averaging. Given the aggregated attention map
Ãs

t [h,w, i] for seed s, we focus on a subset of tokens indexed by B. Let B ⊆ {0, . . . , n−1} be
the set of body-token indices under the original prompt indexing, including BOS/EOS (index 0 for
BOS, n−1 for EOS). For each i ∈ B, we take the spatial slice, smooth it on the (h,w) grid, and
average it:

Ms
t,i[h,w] = Ãs

t [h,w, i], M̂s
t,i = Gσ ∗refl Ms

t,i.

Here Gσ is a normalized (2k+1)× (2k+1) Gaussian kernel, and ∗refl denotes 2D discrete convolu-
tion with reflection padding at the boundaries. Pooling over space and average all body tokens gives
the final body-token concentration at step t:

Ms
t (B) =

1

|B|HW

∑
i∈B

H∑
h=1

W∑
w=1

M̂s
t,i[h,w].

Empirically, we use Ms
t (B) in ADSS to pre-screen seeds. Consider the prompt “a dog and a cat

walking on the street” (illustrated in Figure 3). Given a candidate pool S = {s1, . . . , sN}, where
N is the total number of seeds, we run only the first few denoising steps for each seed to obtain
the aggregated cross-attention map Ã s

t [h,w, i], and then compute Ms
t (B) for the body tokens dog

and cat at the last of these early steps. We rank seeds by this score, retain the top-K to complete
the remaining generation, and discard the rest. For the top-K seeds, we continue the remaining
denoising steps and obtain K output images.
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Table 1: Mean at k = 50 on three datasets with four metrics (HPS, IR, PickScore, CLIP). For each
metric, we bold the larger value between RANDOM, GOLDEN, and ADSS.

DrawBench InitNO Pick-a-Pic

Version Method HPS ↑ IR ↑ PickScore ↑ CLIP ↑ HPS ↑ IR ↑ PickScore ↑ CLIP ↑ HPS ↑ IR ↑ PickScore ↑ CLIP ↑

1.4
RANDOM 0.2448 -0.2192 20.5789 0.2561 0.2701 0.0025 21.7426 0.2729 0.2431 -0.1648 20.2141 0.2561
GOLDEN 0.2474 -0.1852 20.6060 0.2568 0.2760 0.1249 21.8152 0.2745 0.2461 -0.1043 20.2748 0.2569
ADSS 0.2481 -0.1774 20.6004 0.2581 0.2763 0.1512 21.8163 0.2758 0.2455 -0.1318 20.2356 0.2573

1.5
RANDOM 0.2431 -0.2547 20.5598 0.2559 0.2688 -0.0428 21.7167 0.2729 0.2469 -0.1381 20.2204 0.2568
GOLDEN 0.2460 -0.2248 20.5782 0.2558 0.2735 0.0153 21.7458 0.2723 0.2474 -0.1311 20.2637 0.2568
ADSS 0.2467 -0.2204 20.5784 0.2568 0.2742 0.0178 21.7582 0.2736 0.2479 -0.1301 20.2202 0.2571

2.0
RANDOM 0.2559 0.1398 21.0411 0.2683 0.2847 0.8185 22.2372 0.2916 0.2639 0.1583 20.5948 0.2652
GOLDEN 0.2582 0.1730 21.0691 0.2689 0.2864 0.8317 22.2778 0.2922 0.2665 0.2489 20.6858 0.2672
ADSS 0.2591 0.1911 21.0692 0.2703 0.2867 0.8324 22.2662 0.2925 0.2668 0.2285 20.6946 0.2675

2.1
RANDOM 0.2595 0.1609 21.1050 0.2629 0.2908 0.9992 22.3022 0.2918 0.2678 0.2587 20.7687 0.2695
GOLDEN 0.2617 0.1877 21.1285 0.2636 0.2934 0.9384 22.4706 0.2922 0.2698 0.3014 20.8023 0.2694
ADSS 0.2620 0.2018 21.1289 0.2645 0.2938 1.0023 22.4165 0.2929 0.2699 0.2722 20.7902 0.2698

5 EMPIRICAL ANALYSIS

We first introduce our experimental setting and conduct extensive experiments and evaluate the
effectiveness and generality of ADSS through three guiding questions: Q1: How does ADSS com-
pare with baseline seed-selection strategies? We benchmark ADSS against random seeding se-
lection strategies and report the average of top-k performance. Q2: Can ADSS serve as a plug-in
to boost state-of-the-art seed or initial-noise optimization methods? We use ADSS as a seed fil-
ter while keeping each downstream optimizer unchanged to assess additive gains. Q3: Is focusing
solely on body tokens sufficient to improve performance? We ablate non-body tokens and test
whether body-token-only yields consistent improvements without additional token-level modeling.

5.1 EXPERIMENTAL SETTING

Datasets. We evaluate on three prompt suites: DrawBench2 (Saharia et al., 2022), a broad suite
covering compositionality, commonsense, spatial relations, and fine-grained attributes; InitNO (Guo
et al., 2024); and Pick-a-Pic (Kirstain et al., 2023), a large-scale human-preference–oriented bench-
mark used for alignment studies. These datasets jointly stress both semantic faithfulness and aes-
thetic preference, enabling a balanced assessment of text–image generation quality.

Metrics. We report total four preference-oriented metrics: HPS (v2.1) (Wu et al., 2023), IR (Im-
ageReward), and PickScore (Kirstain et al., 2023), (Xu et al., 2024a)—trained on large-scale human-
preference data and shown to correlate well with human judgments. We also include CLIP (Cherti
et al., 2023; Schuhmann et al., 2022; Radford et al., 2021) text–image similarity as a proxy for
semantic alignment between the prompt and the generated image. Higher values indicate better
performance for all reported metrics.

Implementation Details. We use four Stable Diffusion backbones—SD 1.4 (CompVis, 2022),
SD 1.5 (RunwayML, 2022), SD 2.0 (Stability AI, 2022a), and SD 2.1 (Stability AI, 2022b). Start-
ing from SD 1.4 as a widely used 512 baseline, SD 1.5 improves prompt following and aesthetics.
Transitioning to the 2.x line, SD 2.0 adopts an updated text encoder and supports higher native
resolutions; SD 2.1 further tightens alignment and detail under the same recipe. For every back-
bone, all non–seed–related sampling hyperparameters—scheduler, guidance scale, and number of
steps—are held fixed and identical across methods so that observed differences stem solely from
the seed-selection strategy. For each text prompt, we keep the seed pool for our ADSS at 100, set
the timestep to 200 for computing Ms

t (B), and retain the top-k = 50. Metrics are computed as
averages over these 50 generated images. We collect cross-attention maps from all layers and heads
at a resolution of 16× 16 pixels for SD 1.4/1.5 and 24× 24 pixels for SD 2.0/2.1.

5.2 COMPARISON WITH BASELINE SEED SELECTION (Q1)

We compare against two seed-selection baselines to answer Q1. RANDOM sampling draws distinct
seeds uniformly at random per prompt and uses them for generation. GOLDEN Seeds (Xu et al.,

2To improve readability, we format dataset names in italics and algorithm names in small caps.
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Figure 4: Qualitative comparative cases from three datasets. Images in the same column are gener-
ated from the same prompt. Orange dashed rectangles indicate problematic generated regions.

2024b) selects a small validation split of prompts per dataset, evaluates a candidate pool of seeds
by their average HPS rank on the validation split, and then fixes the top k seeds for all remaining
prompts in that dataset. Table 1 presents the quantitatively comparative results and Figure 4 provides
the generated images for three methods. Across SD 1.4/1.5/2.0/2.1 and three datasets, ADSS con-
sistently outperforms RANDOM, with its largest, most reliable gains on IR and solid gains on HPS.
On DrawBench with SD 1.4, IR rises from −0.2192 to −0.1774 (change 0.0418) and HPS rises
from 0.2448 to 0.2481 (change 0.0033); PickScore is effectively tied. A similar pattern holds for
SD 1.5 (IR increases by 0.0343, HPS by 0.0036). For SD 2.0/2.1 on DrawBench, ADSS attains the
strongest mean at k=50 across metrics (e.g., SD 2.1: HPS 0.2620, IR 0.2018, PickScore 21.1289).
On InitNO (SD 1.4/1.5), IR rises from 0.0025 to 0.1512 (change 0.1487) with consistent HPS gains.

Figure 5: Performance and running time of
ADSS on InitNO with different timesteps.

Compared with GOLDEN, ADSS outperforms almost
consistently on DrawBench and InitNO. On Pick-a-
Pic, ADSS still improves HPS but margins shrink
and IR, likely due to heterogeneous, highly composi-
tional prompts (style/content/layout/post-processing)
that spread a fixed k=50 seed budget across many
competing modes and align better with a globally cu-
rated seed list. Importantly, where ADSS matches or
surpasses GOLDEN, the win is meaningful: GOLDEN
is a post-hoc, validation-driven global curation of good
seeds reused across prompts, whereas ADSS is in-
loop and per-prompt—scoring seeds at an early diffu-
sion step, adapting without any validation split, adding
only ∼2.16 minutes per prompt with total 50 images —showing that early-step signals are predictive
of final quality and that adaptive selection can rival or exceed post-processing–style seed curation
while being simpler and more data-efficient.

We also present qualitative examples of generated images in Figure 4 using three meth-
ods—RANDOM, GOLDEN, and ADSS. As highlighted by the orange dashed boxes, it is common
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for certain seeds to produce images whose content is incomplete, malformed, or focused on irrel-
evant objects. In contrast, ADSS substantially mitigates these failure modes, yielding images that
align more faithfully with the intended textual descriptions.

To further validate ADSS based on the observations in Figure 2, we compare the ADSS seed-
ranking list with the ground truth HPS ranking using (i) the overlap rate—the proportion of seeds
common to both lists—and (ii) Normalized Discounted Cumulative Gain (NDCG) (Järvelin &
Kekäläinen, 2002), which assesses how closely an ordering matches the ideal one while applying
position-based discounts. ADSS achieves an NDCG of 0.93 and an overlap rate of 0.68, indicating
that it effectively prioritizes valuable seeds and closely approximates the ground truth ranking.

We also investigate ADSS at different timesteps and observe that performance metrics generally
improve as denoising progresses. As illustrated in Figure 5, HPS increases from 0.2742 to 0.2757
and IR from 0.0178 to 0.2416 when ADSS is evaluated at timesteps ranging from 200 to 800. This
trend aligns with intuition: later denoising steps provide stronger signals for seed selection but incur
higher computational costs. By selecting timestep t = 200, ADSS achieves a favorable trade-off
between performance and efficiency, enabling practical early-stage seed selection.

Figure 6: Comparison between random seeds and ADSS seeds for further seed optimization by
INITNO to tackle the subject mixing and subject neglect issues.

5.3 PLUG-IN TO SEED/INITIAL-NOISE OPTIMIZATION (Q2)

Table 2: Plug-in performance with ADSS selected seeds
Method Dataset Version HPS ↑ IR ↑ PickScore ↑ CLIP ↑
INITNO InitNO 1.4 0.2678 -0.0510 21.6202 0.2671
+ ADSS InitNO 1.4 0.2701 -0.0062 21.6531 0.2696

INITNO InitNO 1.5 0.2673 -0.0524 21.6281 0.2672
+ ADSS InitNO 1.5 0.2689 -0.0083 21.6441 0.2686

ZIGZAG DrawBench XL 0.2947 0.7817 22.3633 0.2812
+ ADSS DrawBench XL 0.2974 0.8026 22.4048 0.2817

ZIGZAG Pick-a-Pic XL 0.3125 1.0142 22.1336 0.2873
+ ADSS Pick-a-Pic XL 0.3151 1.0344 22.1473 0.2878

In the previous section, we showed that
ADSS is training-free and essentially
zero cost, selecting high-quality seeds
and outperforming other seed-selection
methods. Here we test whether ADSS
can be combined with state-of-the-art
initial latent optimization to provide an
extra boost. We consider two recent
methods as baselines. INITNO (Guo
et al., 2024) explicitly optimizes the initial noise per prompt under a chosen objective and then
samples from the optimized initialization. ZIGZAG Diffusion Sampling (Bai et al., 2024) adds self-
reflection to iteratively revise the sampling trajectory—including the starting latent—via alternating
zigzag updates, improving prompt faithfulness and image quality without retraining. In our integra-
tion, ADSS serves only as a seed filter; baseline pipelines keep their default losses, schedulers, and
hyperparameters—we simply replace uniform random seeds with ADSS-selected seeds.

Overall, plugging ADSS into both INITNO and ZIGZAG yields consistent improvements. For SD 1.4
with INITNO, ADSS raises semantic and preference metrics, with PickScore increasing by 0.0329
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(21.6202 to 21.6531) and IR by 0.0448 (-0.0510 to -0.0062), while HPS and CLIP stay nearly un-
changed. For SD XL with Zigzag on DrawBench, the largest gain is in PickScore, up by 0.0415
(22.3633 to 22.4048), alongside an IR increase of 0.0209 (0.7817 to 0.8026), with perceptual scores
essentially stable. These examples indicate that ADSS supplies better starting latents and comple-
ments both optimization and trajectory-refinement pipelines.

In Figure 6, we show examples where, even after INITNO optimization, certain seeds still exhibit
subject neglect (the primary subject does not appear) or subject mixing (two or more objects are
conflated). For instance, in the horse–pink-chair case: without optimization the horse and chair
are entangled; after optimization a pink “chair–horse” emerges; and in the missing-subject case the
horse remains absent despite optimization. Our ADSS mitigates these failures by filtering such bad
seeds, thereby solved such problem and strengthening INITNO or other pipelines.

5.4 ABLATION ON TOKEN TYPE (Q3)

Figure 7: Examples of generated images when fo-
cusing on the different token types.

Beyond body tokens, we also investigate other
token types to answer Q3. We ablate non-body
tokens and test whether scoring based solely
on body tokens yields consistent improvements
without additional token-level modeling. For
example, given the prompt “A cat with black hat
yawns under the window,” we categorize tokens
as follows: black — adjective; cat — body to-
kens; yawns — verb; under— compostion. To
test whether emphasizing body tokens outper-
forms variants that target adjectives or verbs,
we run ADSS with alternative token subsets
on DrawBench, which contains abundant adjec-
tive, verb, and body tokens. We compare three
SD-1.4 variants: ADSSadj (adjectives only),
ADSSverb (verbs only), and ADSSbody (our
default, body tokens). As shown in Table 3, fo-
cusing on body tokens yields the best overall
performance, achieving higher HPS and better
IR than using adjectives or verbs alone.

Table 3: Performance of ADSS with differ-
ent token types on DrawBench with SD 1.4

Method HPS ↑ IR ↑ PickScore ↑ CLIP ↑
ADSSadj 0.2440 -0.2374 20.8490 0.2617
ADSSverb 0.2438 -0.2272 20.8345 0.2609
ADSSbody 0.2473 -0.2195 20.8702 0.2619

We also investigate the visualization effects of the
generated images when ADSS focuson different
type of tokens. Figure 7 shows that focusing ADSS
on verbs (e.g., “yawns,” “licks”) encourages action-
specific motion cues, but often omits or degrades
key object details, yielding incomplete subjects and
lower HPS. Focusing on adjectives (e.g., “black,”
“pink”) propagates color/style broadly—bleeding into nearby objects and background—while the
main body becomes less faithful. Emphasizing composition improves relative placement (win-
dow/plate context) but increases missing or fragmented foreground objects. In contrast, early
focusing on body tokens preserves subject integrity and semantics, leading to the strongest
HPS—answering Q3: ADSS only needs early attention on body tokens.

6 CONCLUSION

We revisited the seed effect in T2I and showed that early cross-attention to core tokens strongly
predicts prompt alignment and image quality. Building on this, we proposed ADSS, a training-free,
plug-and-play procedure that globally ranks seeds via a body-token concentration score and works
across SD variants. Experiments on three benchmarks demonstrated consistent gains in faithful-
ness and visual quality, improving human preference and alignment metrics with minimal overhead.
ADSS also serves as a lightweight preselection layer that complements seed-optimization and roll-
back/refinement pipelines. These results positioned attention-driven seed selection as a practical
primitive for robust, cost-efficient T2I at scale.

9
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REPRODUCIBILITY STATEMENT

We release our code and implementation at https://anonymous.4open.science/r/
ADSS-11DE/README.md. All experiments were conducted on a Linux server equipped with
40× NVIDIA V100 (32 GB) GPUs. For experiments, we used the first 100 prompts of Initno and
drawbench, and the first 50 prompts of Pick-a-Pic, as the validation set for GOLDENM; the remain-
ing prompts were used to run experiments for the three methods.

ETHICS STATEMENT

This study investigates seed selection for text-to-image diffusion and involves no interaction with
human subjects and no collection of new personally identifiable information. All benchmarks used
(e.g., Initno, drawbench, Pick-a-Pic) are publicly available and used under their respective licenses.
We report implementation details to support reproducibility and mitigate misuse by filtering prompts
that could produce harmful, unsafe, or discriminatory content. We do not train or fine-tune any
models; thus computational resources and associated emissions are modest. We will release code to
enable scrutiny and responsible reuse. Large language models were used solely to polish the writing
of this paper, no use for the paper submission form, and for no other purpose. The authors declare
no competing interests. We affirm adherence to the ICLR Code of Ethics.
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