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ABSTRACT

Neural image compression, necessary in various edge-device scenarios, suffers
from its heavy encode-decode structures and inflexible compression level switch.
The primary issue is that the computational and storage capabilities of edge devices
are weaker than those of servers, preventing them from handling the same amount
of computation and storage. One solution is to downsample images and reconstruct
them on the receiver side; however, current methods uniformly downsample the
image and limit flexibility in compression levels. We take a step to break up
this paradigm by proposing a conditional uniform-based sampler that allows for
flexible image size reduction and reconstruction. Building on this, we introduce
a lightweight transformer-based reconstruction structure to further reduce the
reconstruction load on the receiver side. Extensive evaluations conducted on a
real-world testbed demonstrate multiple advantages of our system over existing
compression techniques, especially in terms of adaptability to different compression
levels, computational efficiency, and image reconstruction quality.

1 INTRODUCTION

The need for advanced lossy image compression is raised by the explosive development of edge
devices equipped with high-resolution cameras, such as industrial-inspections (George et al., 2019),
wildlife observation (wil, 2023), and autonomous driving (Ananthanarayanan et al., 2017). Neural-
Network (NN) based compressor can satisfy this need, which outperform traditional image com-
pression techniques like JPEG (Group, 1986) and BPG (Bellard, 2014). However, due to its heavy,
symmetric encoding and decoding structure and inflexible compression rate adjustment, current
NN-based methods have not yielded practical use on resource-constrained edge devices (Dasari et al.,
2022).

Given the paucity of computational ability on edge devices in general (Fut, 2020; ope, 2018; aws,
2023; Li et al., 2023a;b), a huge gap would exist in the edge compression/decompress and transmission
latency. As shown in Fig. 1a, encoding an image can take as long as 18 seconds on high-end devices
like the NVIDIA Jetson TX2. Downsampling image size at the sender and restoring it on the receiver
is one way to alleviate this problem (Yin et al., 2023; Cheng et al., 2024). However, these solutions
usually employ super-resolution, which uniformly downsample and restore images to fixed sizes,
lacking flexibility for dynamic and complex compression needs in real-world applications.

We take a fresh look at this problem and introduce Easz, a lightweight compression enhancement
framework that operates efficiently at the edge-sender with near-zero computational demand, while
also maintaining efficiency on the receiver. Easz is compatible with all existing compression al-
gorithms. The intuition of Easz is an implicit assumption undermined in current solutions: the
image need to be uniformly downsampled. Easz includes an erase-and-squeeze process, which
relaxes this assumption by designing a conditional uniform-based sampler. This technique provides
a more adaptable and fine-grained compression level but also loses the chance to employ efficient
reconstruction through convolution or the fast Fourier transform techniques. We then propose a
receiver-side lightweight transformer architecture for efficient, high-quality reconstruction of erased
patches. This involves a two-stage image patchify process to limit the scope of attention correlation
calculations and a four-layer transformer model for pixel-level local image reconstruction. As shown
in Figure 1b, Easz surpasses both the NN-based compressor and the traditional compressor.

The key contributions of this paper are:
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Figure 1: (a) NN-based compressors face challenges on edge devices like the Jetson TX2, where
loading and encoding an image can take over 10 seconds compared to a transmission latency of about
0.1 seconds. (b) Easz is more efficient than other methods under the same image quality. Memory
consumption is indicated by circle size; green circles represent GPU execution, while others indicate
CPU execution.

• Generalized Erase-and-Squeeze Process: A new paradigm is introduced that offers more
refined and flexible image reduction ratios;

• Receiver-Side Lightweight Transformer Architecture: A lightweight(8.7MB) transformer
architecture is designed for efficient and high-quality reconstruction of erased patches;

• Compatibility with Existing Algorithms: Easz is compatible with all existing image com-
pression algorithms and can also function independently;

• Enhanced Compression Flexibility and Efficiency: Easz offers significant compression
flexibility and efficiency improvements. For the sender-side, Easz requires almost no
additional computational cost with a controllable compression ratio, and on the reciever-
side, Easz’s reconstruction model is also lightweight, making it well-suited for real-world
applications with varying and complex compression needs.

2 RELATED WORK

Learned-based image compression is experiencing significant growth, with advancements in end-
to-end training, hyperprior structures, entropy models, and encoder-decoder improvements Notable
developments include the introduction of auto-regressive components (Minnen et al., 2018), Gaussian
Mixture Models for probability estimation (Cheng et al., 2020), and a general-purpose lossless
compression paradigm using lightweight neural networks (Mao et al., 2022b;a; 2023). Attention
mechanisms have been incorporated through Informer (Jun-Hyuk et al., 2022), while Transformers
and Swin architectures are replacing traditional CNNs in encoding/decoding tasks (Yinhao Zhu and
Cohen, 2022; He et al., 2021).

Despite progress, real-world applications still face challenges such as inflexibility in switching models
and high latency at the edge. Deep-learning-based compression methods take about 1∼20 second per
image (512x768) on NVIDIA Jetson TX2, and many real-life endpoints are less potent than the TX2
(considering Raspberry Pi 4) but still need to compress images. A primary issue is that most NN-
based image compressors require a model switch when changing compression levels. One approach
involves downsampling images at the edge and using super-resolution techniques to reconstruct them
on the server (Yin et al., 2023; Cheng et al., 2024). These methods reduce computational load at the
edge, but applying super-resolution directly in this context results in an inflexible downsizing rate
and can degrade reconstruction performance (Laroche et al., 2023; Jin et al., 2022).

3 SYSTEM DESIGN

The paper presents Easz, a novel edge-optimized image compression framework. It applies the
erase-and-squeeze technique at the sender with a lightweight transformer-powered reconstruction

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Whole structure

Decompressor

nxn nx(n-b)

nx(n-b) nxn

When compress, we  transmit a “partially erased” image, which will lead to directly compression ratio increase.
When decompress, we recover the erased components utilizing auto-encoder. 
This will enhance all kinds of current compressors, with no extra computational costs during compression stage. 

Compressor

Encoder

Decoder

Un-erased sub-patch vector

Zero vector

nxn

Erase Squeeze

Erase-and-squeeze

ReconstructionServer

EdgeImage Patch Squeezed Image Patch

Erased Sub-Patch( bxb)

Decompressed Squeezed
Image Patch

Reconstructed
Image Patch

Un-erased Sub-Patch (bxb)

Figure 2: Easz system overview.

on the receiver side, outperforming conventional codecs like JPEG and other neural network-driven
compressors. The default compressor used is JPEG due to its common use and prevalence. The
whole framework is illustrated in Fig. 2. Next, we’ll present our design step-by-step following the
dataflow shown in Fig. 2. A detailed flexibility analysis is presented in §3.2.4.

3.1 IMPLICIT ASSUMPTION IN PREVIOUS METHODS

Previous image enhancement frameworks usually employ super-resolution as the downsample-
reconstruction technique (Yin et al., 2023; Cheng et al., 2024). We point out that this introduces an
implicit assumption and limits its flexibility.

The standard super-resolution (SR) model with multiple degradations typically posits that the low-
resolution image is a degraded representation of a high-resolution image, characterized explicitly as a
blurry, noisy, and sub-sampled version of the original.

y = (x⊛ k) ↓s +ϵ with ϵ ∼ N (0, σ2)

In this formulation, let x denote the high-resolution image, y represent its low-resolution counterpart,
k be the blur kernel, ↓s signify the subsampling operator with scale factor s, and ϵ denote the additive
noise. This model operates under the assumption that the blur kernel is uniform across the entire
image, allowing for efficient computation of the low-resolution image through convolution or fast
Fourier transform techniques, as highlighted in recent studies (Laroche et al., 2023; Jin et al., 2022).
However, when this model is directly implemented within an edge image-enhancement framework,
the implicit assumption of uniformity introduces a constraint on the downsampling ratio, which in
turn restricts the framework’s flexibility. This limitation underscores the need for more adaptable
techniques to accommodate varying degradation patterns, limiting the framework’s flexibility.

Next, we will explain how to relax this assumption. The uniformly downsampled assumption is
critical for applying efficient super-resolution-based reconstruction through convolution or fast Fourier
transform techniques. By challenging this assumption, direct random pixel prediction becomes costly
(see §3.3.2). We then propose a two-stage patchify process with a lightweight transformer to solve
this problem.

3.2 ERASE-AND-SQUEEZE ALGORITHM

3.2.1 PROBLEM FORMULATION

Let X ∈ RH×W×C be a high-resolution image of an arbitrary size H,W,C. A sampler G takes X
as input and computes a downsampled image X̂ = G(X), where X̂ ∈ Rh×w×C .
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Consider a coordinate system such that X[u, v] is the pixel value of X where u, v ∈ [0, H − 1] and
[0,W − 1], respectively. X̂[i, j] is the pixel value of X̂ at coordinates (i, j) for i ∈ {1, 2, . . . h}, j ∈
{1, 2, . . . w}. Essentially, the sampler G computes a mapping between (i, j) and (u, v). Practically,
sampler G contains two functions

{
g0, g1

}
such that:

X̂[i, j] := X
[
g0(i, j), g1(i, j)

]
The uniform approach will have a sampler

Gu =
{
g0u(i, j) = (i− 1)/(h− 1), g1u(i, j) = (j − 1)/(w − 1)

}
.

3.2.2 CONDITIONAL UNIFORM-BASED SAMPLER

In this section, we aim to propose an effective sampler that challenges the implicit assumption
discussed in Section 3.1. We treat each pixel as a sampling unit, though this can also be extended
to patches (See §3.2.4). We initially introduce a Uniform-based sampler for row-based random
sampling and subsequently impose constraints on it. Row-based sampling is employed to ensure that
the sampled image can be reassembled into a rectangular format.

Random Sampler Definition. The random sampler Gr computes a mapping between the coordinates
(i, j) of the downsampled image X̂ and the relative coordinates (u, v) of the original image X. In
this sampler, each row i of the image is processed sequentially, and within each row, the column
coordinate j is selected using a uniform random sampler. The sampler is defined by two functions,
g1r , which governs the random column selection from X, while g0r(i) represents the current row:

X̂[i, j] = X[g0r(i), g
1
r(i, j)]

where g0r(i) is a deterministic function representing row selection, and g1r(i, j) is a random mapping
for the column coordinate within row i.

Uniform Random Selection in Each Row. To ensure uniform random sampling within each row
of the original image X, the row coordinate g0r(i) is fixed as i, and the column selection function
g1r(i, j) samples a pixel uniformly from the width W for each row i. The random sampler Gr is
described as follows:

Gr =
{
g0r(i) = i, g1r(i, j) = Uniform(0,W − 1)

}
Here, the row index i remains fixed for each row, and the uniform random sampler g1r(i, j) selects
random column coordinates for each pixel j in row i. This ensures uniform random selection across
columns within each row while maintaining a structured row-based approach.

Applying this sampler directly results in poor compression ratios and reconstruction performance,
as shown in Fig. 3(a). Quantitative analysis reveals that this issue stems from the adjacent sampled
areas (see Fig. 3(b)). To address this problem, we introduce two constraints on the sampler.

Constraints for Row-based Random Sampling. When sampling from a matrix X ∈ RH×W , where
each row is sampled T times, the new sample xi,t+1 is subject to the following conditions:

1. Intra-row constraint (avoid proximity to previous samples in the same row):

g1r(i, t+ 1) ∼ Uniform(0,W − 1) subject to
∣∣g1r(i, t+ 1)− g1r(i, t)

∣∣ > δ

Here, δ is a threshold distance that ensures the newly sampled column g1r(i, t + 1) is sufficiently
distant from the previously selected columns {g1r(i, 0), . . . , g1r(i, t)}. This constraint guarantees a
diverse selection of columns within each row, preventing the samples from clustering too closely
together.

2. Inter-row constraint (minimize adjacency to prior samples from the preceding row):

g1r(i, t+ 1) ∼ Uniform(0,W − 1) subject to
∣∣g1r(i, t+ 1)− g1r(i− 1, T )

∣∣ > ∆

Similarly, ∆ represents a minimum separation between the newly sampled column in row i and the
previously selected columns {g1r(i− 1, 0), . . . , g1r(i− 1, T )} from row i− 1. This prevents adjacent
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Auto-encoder structure on decoding stage

• After decompressing and retaining the squeezed portion, we proceed to reconstruct the erased parts to restore the entire image.

• The model we utilize consists of two main components: an encoder and a decoder. The encoder takes the existing non-erased blocks and 
encodes them into a high-dimensional feature space. Then, these high-dimensional feature vectors are combined with some blank vectors 
and fed into the decoder. The decoder utilizes these high-dimensional feature vectors to make predictions on the blank vectors and 
generate the reconstructed erased parts.

• In summary, the encoder captures the essential information from the non-erased blocks, and the decoder leverages this information to infer 
and reconstruct the erased portions, ultimately restoring the complete image.
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Erase and squeeze
• Our approach involves first dividing the image patch into several square sub-blocks, which we 

refer to as "erase blocks," forming an N*N grid. We then proceed to erase m sub-blocks in each 
row or column, ensuring that the erased blocks are not adjacent horizontally or vertically. 
Afterwards, we reassemble the image by combining the remaining sub-blocks horizontally or 
vertically.

• Both horizontal and vertical erase and squeeze methods are viable, and they may slightly 
influence the subsequent image compression results, depending on the shape of the image. We 
will discuss these differences in the experimental section.

Random, T=1 Random, T=2 Random, T=3 Org image Squeezed

Zero filled Neighbor filled
(b)

Proposed, T=1 Proposed, T=2 Proposed, T=3
(a)

(a) (b) (c)

Figure 3: (a) The proposed method outperforms random masking in terms of JPEG impact and
reconstruction, resulting in a higher file-saving ratio and lower MSE on Kodak dataset. The variable p
represents patch size. (b) Proposed erase methods compared with random erase methods. T indicates
an erased item in each row. (c) Reconstruction process.

rows from sampling nearby columns, ensuring that the selection process avoids redundancy across
rows.

Under these constraints, the row-based random sampler can be formalized as:

Gr =

g0r(i) = i, g1r(i, t+ 1) =


clip (Uniform(0,W − 1)) subject to
|g1r(i, t+ 1)− g1r(i, t)| > δ

|g1r(i, t+ 1)− g1r(i− 1, T )| > ∆


where the random column selection g1r(i, t+ 1) is adjusted dynamically to satisfy both the intra-row
and inter-row constraints. This ensures a well-distributed sampling process across the entire matrix,
balancing randomness with structured diversity.

3.2.3 ERASE AND SQUEEZE

To handle the unsampled locations in the downsampled image X̂, we define a binary mask M of the
same size as X̂ where each entry is set as follows:

M[i, j] = 1 if (i, j) is sampled, else 0

The mask ratio, which determines the proportion of the image that is sampled, is controlled by the
patch size p and the sampled size T . Specifically, the choice of patch size influences the granularity of
the sampling, while the sampled size T dictates how many patches are included in the reconstruction
for each row. By tuning these parameters, the framework can effectively balance the level of
reconstruction difficulty and the computational load, enhancing model performance across various
datasets. The mask will be sent with the compressed image for the receiver to decode.

The next step is to squeeze the non-zero (sampled) locations together to form a smaller image
Xsqueezed ∈ Rh′×w′×C , where h′ < h and w′ < w represent the dimensions of the squeezed image.
This can be achieved by filtering out the zero entries from X:

Xsqueezed[i
′, j′] = X[i, j] for all (i, j) where M[i, j] = 1

After erase-and-squeeze process, the squeezed image Xsqueezed would be encoded using existing
compressors like JPEG, BPG, etc to get a compressed form X̂squeezed, as illustrated in Fig. 2.

3.2.4 FLEXIBILITY ANALYSIS

By relaxing the uniform sampling assumption outlined in §3.1, Easz can no longer utilize a super-
resolution method for reconstruction, as the low-level continuous information becomes fragmented.
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However, this shift creates new opportunities for flexibility. By controlling the sample size T , Easz
can provide a more adaptable and fine-grained compression level compared to directly applying
super-resolution techniques.

Erase level. Given an image with dimensions H ×W × C, the overall compression ratio can be
understood as comprising two components: 1) The ratio achieved through image size reduction. 2)
The ratio obtained from the subsequent compression algorithm. The image size reduction is primarily
controlled by the sampling size T applied to each row. Thus, the reduction ratios can be expressed as
1
W , 2

W , 3
W , . . .. It’s important to note that this proposed method can be similarly transposed to other

axes, such as the columns.

So far, our discussion has focused on pixel-level sampling. However, the sample-erase-squeeze unit
can be extended to operate on patches. By adopting this extension, we introduce another parameter
that influences the reduction ratio: the patch size p. Consequently, experiments conducted with
varying patch sizes will be detailed in §4.4. Under this patch-level sampling framework, the reduction
ratios would be expressed as p2

W , 2p2

W , 3p2

W , . . .. In contrast to traditional super-resolution methods,
which typically offer a single reduction pattern for a model, our sampler provides significant flexibility,
enabling adaptation to various real-world applications.

Model switching and mask transferring. Switching models and transferring masks might be
burdensome. As would introduced in §3.3.2, we present a lightweight transformer-based process
capable of performing direct pixel-level reconstruction. This process is designed to handle any erase
ratio since it is trained under this setting. Consequently, there is no need to prepare a separate model
for each erase ratio or to switch models during compression ratio adjustments.

Another consideration is mask transferring. In our design, the mask is applied to small sub-patches
(discussed in §3.3.2) created through a proposed two-stage image patching process. For instance, if
the sub-patch size is 32× 32, then the corresponding mask size would be 128 bytes. This same mask
is used for all sub-patches. Thus, the transmission of this size is not a concern.

As mentioned in the beginning, by utilizing the proposed erase-and-squeeze technique, the blur-
kernel-based super-resolution method is no longer suitable for reconstruction. We then introduce a
lightweight transformer architecture to directly conduct pixel prediction to address this issue.

3.3 RECONSTRUCTION

Given the squeezed compressed image X̂squeezed, we introduced a Masked-Image-Modeling process
to perform the pixel-level reconstruction on the receiver side. The reconstruction of the squeezed
image back to the original image is approached through a framework reminiscent of masked image
modeling (MIM). Specifically, the input is X̂squeezed. Y = T (X̂squeezed). The autoencoder model G(·)
takes the corrupted images X̂squeezed as input and aims to generate a prediction Ŷ, optimizing the
model by minimizing the difference between the prediction and the target:

Ŷ = G(X̂squeezed), L = D(X, Ŷ)

This paper focuses on parametric target generation strategies utilizing a transformer structure for
image reconstruction tasks. A significant challenge arises from directly predicting pixel values using
transformers due to the quadratic complexity of attention mechanisms.

3.3.1 COMPLEXITY ANALYSIS.

Predicting pixel values for each element in the image, particularly in high-resolution images, proves
to be computationally expensive. Let the transformer model’s attention mechanism operate with
complexity O(n2 · d), where n is the number of tokens (patches or pixels) and d is the dimensionality
of the token embeddings. This results in costly computation when n is large, especially for pixel-level
operations.

For example, a 256x256 grayscale image would require 4, 294, 967, 296 × dmodel calculations if
each pixel were treated as a token. By employing the two-stage patchify process (with n = 32 and
b = 1), this number is reduced by 256 times to 16, 777, 216× dmodel calculations. Detailed analysis
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would be in Appendix B. The reduction in complexity comes from performing attention operations
within each patch rather than across the whole image.

3.3.2 TWO-STAGE PATCHIFYING AND LIGHTWEIGHT RESTORATION.

Motivated by this observation, we adopt a two-stage patchifying process followed by a lightweight
transformer to improve computational efficiency.

1. First Stage: Initial Image Patchifying: Given the image X ∈ Rh×w×C , we divide the image into
non-overlapping patches of size ph × pw. For each patch Pm,n, the extraction follows:

Pm,n = X[m · ph : (m+ 1) · ph − 1, n · pw : (n+ 1) · pw − 1, :]

where m = 0, . . . ,
⌊

h
ph

⌋
− 1 and n = 0, . . . ,

⌊
w
pw

⌋
− 1.

2. Second Stage: Subdividing into Sub-Patches: Each patch Pm,n is further divided into sub-patches
of size Sh × Sw to facilitate fine-grained prediction:

Pm,n,k,l = Pm,n[k · Sh : (k + 1) · Sh − 1, l · Sw : (l + 1) · Sw − 1, :]

where k = 0, . . . ,
⌊
ph

Sh

⌋
− 1 and l = 0, . . . ,

⌊
pw

Sw

⌋
− 1.

3. Lightweight Transformer for Sub-Patch Restoration: A lightweight transformer model, denoted
as Tlight(·), with complexity O(m2 · d) (where m is the number of sub-patches), is employed for
restoring the missing pixel values within each sub-patch. Fig. 3(c) illustrates the architecture of our
efficient transformer-based network on the server side. The encoder and decoder are composed of
two transformer blocks, each containing three layernorms, one attention layer, and one feedforward
layer. The model size is significantly reduced to 8.4MB. Given the downsampled input sub-patch
Pm,n,k,l, the predicted sub-patch P̂m,n,k,l is generated as:

P̂m,n,k,l = Tlight(Pm,n,k,l)

Through this reconstruction process, the original content of the image is effectively restored from the
masked and squeezed representation. We adopt LPIPS (Zhang et al., 2018), a well-known perceptual
loss, along with L1 loss as training loss as L. Note that the encoder and decoder can work with a
variety of input erase ratios, which is controlled by p and T (See §3.2.4), and hence, we do not need
to train a separate model for each erase ratio. Sub-patches can execute in parallel both for encoder
and decoder due to the nature of transformer block (Vaswani et al., 2017).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Training setting. The experiments consist of two phases: offline pretraining and online testing. In
the pretraining phase, a specific loss function is used with these hyperparameters: learning rate of
2.8e-4, erase ratio of 0.25, batch size of 4096, and weight decay of 0.05. Randomly generated erase
masks are applied for model robustness during this stage. A consistent mask is utilized for online
testing on both edge and server sides.

Hardware platforms. Our framework is implemented with ∼1000 lines of Python. We use an
NVIDIA Jetson TX2 as the edge device and a desktop with Intel i7-9700K CPU and RTX 2080Ti
GPU as the server, which are connected to a Wi-Fi router and communicate via TCP.

Datasets. During the offline pretraining phase, the CIFAR-10 (Alex and Geoffrey, 2009) dataset
is employed to pre-train the model, enabling it to acquire generative capabilities. In the testing
phase, two common image compression datasets, Kodak (Company, 1993) and CLIC (Workshop
and on Learned Image Compression, 2022), are utilized to assess the generative performance of the
proposed method.

Metrics. Since removing content would negatively impact reference-based metrics such as PSNR and
SSIM (a trend also observed in other downsampled-and-super-resolution methods), we employ non-
reference perceptual metrics for comparison with different compression techniques: Brisque (Mittal
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et al., 2012), Pi (Blau et al., 2018), and Tres (Golestaneh et al., 2022). To benchmark against other
super-resolution approaches, we include PSNR and SSIM to demonstrate the superiority of our
method. Furthermore, we have conducted image classification experiments on the reconstructed
images to showcase the proposed compression method’s robustness in handling image analytic tasks.
Compression performance is evaluated by bits per pixel (BPP).

Baselines. We use four compression methods as baselines to demonstrate the effectiveness of the
proposed method: JPEG, BPG, MBT(Minnen et al., 2018), and Cheng-Anchor. Among these, MBT
and Cheng-Anchor are two neural-network-based compression methods.

4.2 LATENCY ANALYSIS AND RESOURCE CONSUMPTION

0 5000 10000 15000 20000

Easz

MBT

Cheng
Erase&Squeeze
Compression
Transmit
Decomp
Recon

(a) End-to-End Latency Breakdown(ms).

Easz MBT Cheng0

1

2

3

Po
we

r (
W

)

GPU Power
CPU Power

(b) Encode Power consumption.

Easz MBT Cheng0

1

2

M
em

or
y 

(G
B)

1.05

1.93 1.98

(c) Encode Memory footprint.

Figure 4: Efficiency Evaluation on NVIDIA Jetson TX2.

We first report the latency breakdown of Easz with other neural network-based compression methods,
using a Jetson TX2 for compression and a server for decompression. We repeat the runs 24 times
and report the average on Fig. 4a. We observe that Erase-and-Squeeze only takes up 0.7% of the
end-to-end latency, which induces minimal overhead on the edge device and proves the efficiency of
Easz’ design. While both MBT and Cheng-Anchor are too compute-intensive to run the compression
on the edge side. As expected, the reconstruction in Easz takes the longest time, accounting for 74%
of the latency. We argue that it can be significantly improved by upgrading to a datacenter-class GPU,
such as the A100, instead of the RTX 2080Ti.

Resource consumption is another critical consideration when it comes to resource-constrained edge
devices. To assess this, we measure three key metrics – CPU power, GPU power, and memory
footprint – using the Tegrastats Utility (teg, 2023) on the Jetson TX2. As illustrated in Fig. 4, our
findings reveal that Easz excels in all metrics compared to other NN-based compression methods.
Specifically, in contrast to MBT and Cheng-Anchor, Easz achieves a remarkable 71.3% and 59.9%
reduction in total power consumption. It’s noteworthy that Easz does not utilize any GPU power on
the edge device, attributed to its lightweight yet effective erase-and-squeeze design. Furthermore,
Easz reduces memory footprint by 45.8% and 47.1%, respectively. These results underscore the
advantage of deploying Easz on wimpy edge devices.

4.3 COMPARISON WITH SUPER-RESOLUTION METHODS

We compare the reconstruction effect of Easz with state-of-the-art super-resolution methods to
demonstrate Easz’s effectiveness. As shown in Tab. 1, Easz outperforms super-resolution in pixel-
level reconstruction metrics while having a much more flexible reduction ability. Note that Easz uses
a model of only 8.7MB, while other models are 67MB.

Table 1: Comparison with Super-Resolution on Kodak Dataset.

Metrics Easz SwinIR realESRGAN BSRGAN
PSNR 28.96 24.86 24.85 25.35

MS_SSIM 0.96 0.94 0.93 0.94
Recon Model Size 8.7MB 67MB 67MB 67MB

Experimental results demonstrate that Easz surpasses traditional super-resolution in terms of PSNR
and SSIM metrics when reducing pixel count equivalently. Figure 5 illustrates a comparison of image
detail reconstruction, where Easz and other super-resolution all perform 2x reconstruction. It is
evident that Easz better preserves image details; the children’s faces are clearer, and the characters
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Figure 5: Reconstruction comparison of Easz with super-resolution methods. Easz better preserves
image details due to its direct pixel value prediction, resulting in improved PSNR and SSIM.

are more recognizable. In contrast, the super-resolution reconstructed image is unsatisfactory. More
quantitative results are shown in Appendix E

4.4 ABLATION STUDY

Effectiveness of proposed sampler. Fig. 6a and Fig. 6b compares the proposed erase mask generation
method, the random erase mask method, and the baseline(JPEG and BPG) throughout the entire
pipeline. It can be observed that the proposed erase mask generation method achieves better BPP at
the same quality level on both JPEG and BPG, further substantiating the effectiveness of the proposed
method.
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Figure 6: (a)(b): Comparison between Easz with proposed mask strategy, Easz with random mask
strategy, and conventional compression baselines (JPEG and BPG). (c) Patch size and erase ratio’s
impact on MSE(↓ better). (d) MSE(↓ better) during Easz fine-tuning process with patch size=1,2,4
on Kodak dataset.

Patch size selection. Fig. 6c examines the effects of two hyperparameters, erase block size (1, 2,
and 4) and erase ratio (10% to 50%), on compression rate and quality. As the erase ratio increases,
MSE rises, indicating lower reconstruction quality. Smaller patch sizes yield better reconstruction
due to higher local correlations. Patch size=2 offers a balance between speed—being six times faster
than size=1—and quality—with only a slight difference in MSE. Doubling the patch size from 2 to 4
also doubles both speed and MSE. The recommendation is to use smaller patch sizes for practical
applications but consider size=2 for additional speed needs.

Effectiveness of fine-tuning. Our model, after pretraining on the CIFAR dataset for 5000 epochs,
can be applied to various image compression tasks due to its ability to recognize similarities in
local image features. Typically, models are first pre-trained on a large dataset and then fine-tuned
for specific tasks. We tested if fine-tuning our pretrained model with the Kodak dataset would be
beneficial and found that it indeed improves performance by reducing losses across different patch
sizes (1x1, 2x2, and 4x4), as shown in Fig. 6d. This suggests that online fine-tuning of pre-trained
models could further enhance compression effectiveness in real-world applications.
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4.5 IMPROVEMENT ON EXISTING COMPRESSORS

To evaluate how well Easz works with leading compressors, we incorporated it into four established
methods: JPEG and BPG (traditional compressors), as well as MBT and Cheng-anchor (neural
network-based compressors). We used two datasets, Kodak and CLIC, to test the resilience of Easz
across different types of image data. For the Kodak dataset, we aimed for a bit-per-pixel (BPP) rate
of approximately 0.4; for the CLIC dataset, we targeted a BPP of around 0.3 to gauge Easz’s efficacy
at varying levels of compression. The results showing how each baseline method performs on its own
and when combined with Easz —are detailed in Tables 2.

Table 2: Compression Performance Enhancement on Kodak Dataset and Clic Dataset.

Metrics JPEG BPG MBT Cheng-anchor
Org +Proposed Org +Proposed Org +Proposed Org +Proposed

BPP 0.412 0.411 0.382 0.410 0.433 0.389 0.418 0.402

Kodak
Brisque 43.06 22.34 30.675 23.27 28.13 18.63 29.16 20.51

Pi 4.84 3.33 3.07 3.04 3.01 3.00 3.11 3.05
Tres 77.62 86.26 83.55 85.88 84.14 88.03 88.53 89.80
BPP 0.306 0.307 0.308 0.293 0.308 0.292 0.287 0.267

Clic
Brisque 60.51 23.63 39.95 25.27 32.20 18.37 35.42 21.55

Pi 8.51 5.02 4.85 4.66 4.33 4.35 4.58 4.50
Tres 50.65 63.69 65.14 67.08 73.54 78.30 82.91 83.95

4.6 END-TO-END COMPRESSION PERFORMANCE
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Figure 7: Compression performance of Easz, JPEG, MBT and Cheng on three perceptual metrics
(a-c). Fig. 7d evaluates the end-to-end latency on our testbed.

In this experiment, we use JPEG+Easz as the baseline and observe changes in three perceptual
metrics at different bitrates (BPP). Notably, JPEG alone underperforms compared to two deep-
learning compression methods at all compression levels. However, with Easz enhancement, JPEG
shows a marked improvement. For the BRISQUE metric specifically, JPEG+Easz exceeds both
deep-learning methods. Regarding the Pi metric, JPEG+Easz matches the performance of these
methods. With the Tres metric, while JPEG+Easz outdoes MBT, it falls short of Cheng-anchor’s
results. Overall, Easz boosts JPEG to compete effectively with other state-of-the-art deep-learning
compression techniques in each perceptual measure. Easz also outperforms two neural network-based
methods in latency, with an average end-to-end latency of 2568ms across different bitrates per pixel,
marking an 89% reduction compared to MBT and Cheng’s methods.

5 CONCLUSION

This paper proposes Easz, which addresses the challenges of edge image compression and trans-
mission latency by introducing a novel erase-and-squeeze technique that enhances flexibility and
efficiency. By relaxing the conventional requirement for uniform downsampling, Easz allows for
adaptable compression levels tailored to dynamic real-world applications. The implementation of a
lightweight transformer architecture on the receiver side ensures high-quality reconstruction of erased
image patches without imposing significant computational demands. Moreover, Easz’s compatibility
with existing compression algorithms makes it a versatile solution for modern edge devices. Our
real-world evaluation in an edge-server testbed demonstrates Easz’s improvement in compression
performance and efficiency, emphasizing its potential for real-world applications.
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A DETAILED EFFICIENCY REPORT FOR NN-BASED COMPRESSORS

To further illustrate the challenges faced when deploying current neural network-based compressors
on edge devices, this section provides a detailed report on the performance of the four compression
methods: b-facDailan et al. (2017), b-hyperBallé et al. (2018), MBTMinnen et al. (2018), Cheng-
AnchorCheng et al. (2020) on actual edge devices. This area has been seldom explored in previous
research. Table 3 shows the Edge FLOPs per image (512x768), model size for a single compression
level, and loading time for five deep learning compression methods on NVIDIA Jetson TX2. It is
important to note that the model size is only for one compression level; therefore, actual storage
requirements are calculated by multiplying the given number by the number of compression levels.
For example, Cheng-Anchor has six levels of compression, thus requiring a total storage space
of 110MB*6=660MB. It’s worth mentioning that although quantization can improve both space
occupancy and operational efficiency of models, this approach involves performance, and it’s well-
known that quantization presents issues: its deployment on edge devices is complex and difficult to
standardize. In contrast, Easz offers an easily deployable framework.
Table 3: Details of representative NN-based compression methods. Note that the loading and
compression times are measured on an NVIDIA Jetson TX2, and FLOPs are evaluated with (512×768)
image size.

NN-based methods b-fac b-hyper MBT Cheng-Anchor
Edge-FLOPs 36G 36G 36G 145G

Model size (MB) 28 46 118 110
Loading time (ms) 286 552 1361 1600

Compression time (ms) 374 413 17952 18015

B TWO-STAGE IMAGE PATCHIFYING ANALYSIS

Consider a grayscale image of size 256× 256 with a patch size of 1× 1. This results in 256× 256 =
65, 536 pixels. In an attention-based model, treating each pixel as a token, the computational
complexity for self-attention is given by:

O((h× w)2 × dmodel)

where h and w are the height and width of the image, and dmodel is the model dimension. For a
256× 256 image, the calculation becomes:

O(655362 × dmodel) = O(4, 294, 967, 296× dmodel)

This level of computation is prohibitively expensive on modern hardware, and the complexity
increases rapidly for higher-resolution images.

To reduce the computational load, we employ a two-stage patchify process. The first stage divides
the image into non-overlapping patches of size n× n. The number of patches is:

h× w

n2

Each patch is treated as a token, and the complexity of attention at this stage is reduced to:

O

((
h× w

n2

)2
)

= O

(
(h× w)2

n4

)
This reduces the number of tokens, thus lowering the complexity. However, further refinement can be
achieved with a second stage of patchification.
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Each n×n patch is subdivided into b× b sub-patches in the second stage. The number of sub-patches
is:

n2

b2

This results in a total of:

h× w

b2

sub-patches, and the attention complexity at this stage becomes:

O

(
h× w

n2
× n4

b4

)
= O

(
(h× w)× n2

b4

)
Thus, the complexity is much lower than the original full-image attention, even for very small
sub-patches (e.g., when b = 1). The final complexity is:

O(h× w × n2)

For the example of a 256× 256 image, where n = 32 and b = 1, the complexity reduces from:

O(655362 × dmodel) = O(4, 294, 967, 296× dmodel)

to:

O(16, 777, 216× dmodel)

This represents a 256-fold reduction in computational complexity compared to the original.

C INFERENCE FOR EASZ

During the inference stage, the procedure starts from receiving a set of un-erased sub-patches
U = {u1, u2, . . . , um}, and a set of zero sub-patches Û = {û1, û2, . . . , ûk} is firstly added. {U, Û}
is then mapped to corresponding position using M . Afterward, we project this combined set {U, Û}
into the embedding space {F, F̂}, feed it into the encoder to obtain feature representations and
reconstruct P̂ .

The mapping timing is the critical difference between the training and inference stages. The mapping
is applied to the feature representations F in the training stage. However, during the inference stage,
the mapping is performed on the sub-patches before they are sent into the encoder. This difference is
due to the use of positional embedding. In the training process, the positional embedding is applied
before the erase operation because the sub-patches remain in their original positions at that stage. On
the other hand, during the inference phase, the received un-erased sub-patches need to be mapped
back to their original positions to incorporate the positional embedding effectively.

D LOSS

To minimize the difference between the original image P and the reconstructed image P̂ , we adopt
LPIPS Zhang et al. (2018), a well-known perceptual loss, and L1 loss as training loss. The final loss
function is shown as follows:
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L1(x, y) =
1

N

N∑
i=1

|xi − yi| (1)

LPIPS(x, y) =
N∑
i=1

wi · di(x, y) (2)

Loss(x, y) = L1(x, y) + λ ∗ LPIPS(x, y) (3)

Where x and y are two images being compared, N is the number of layers in the feature extraction
model, which is decided as VGG Simonyan and Zisserman (2015), di(x, y) is the distance between
the feature maps of the two images at layer i, and wi is a layer-dependent weighting factor. λ is
chosen as 0.3 in our experiments.

E ADDITIONAL QUANTITIVE RESULTS

E.1 COMPARISON WITH OTHER SUPER-RESOLUTION METHOD

This section provides additional quantitive results for Easz compared with other super-resolution
methods. From Fig. 8, it is evident that compared to the super-resolution method, Easz and the
original image share more similar details, whereas super-resolution introduces more imaginative
elements. The sys’s-attributed to sys’s direct pixel generation feature, making it better suited for use
in conjunction with compression.

E.2 QUANTITIVE RESULT OF EASZ ENHANCED COMPRESSOR

In this section, we provide additional quantitive results for the Easz enhanced compressor and the
original decompressed image to show its effectiveness.

F DISCUSSION AND LIMITATIONS

F.1 ADDITIONAL OPPORTUNITIES

Online Finetuning.In the edge-server scenario, conducting online training using real data presents
practical challenges due to the server’s unavailability of the original images. To enable online
training on the server-side model with real data, it is crucial to meticulously choose the images for
transmission and devise an efficient and well-designed method to maximize effectiveness.

Consequently, these features aid traditional compressors in improving the performance of subsequent
image analysis tasks, particularly in scenarios with low-quality transmission. This observation opens
an intriguing avenue for future research: How can we generate erased blocks more effectively to
assist traditional compression methods better? This question could lead to exciting developments in
the context of this paper.

Semantic erase mask generation for specific scenarios. A more promising direction for generating
erase masks is to consider the semantic information of the image. This involves erasing only less
significant regions. In this paper, such methods were not adopted to avoid additional computation on
the edge. However, we still believe this is a viable direction for future research.

F.2 LIMITATIONS

A fundamental assumption of Easz is that the server needs to be equipped with GPUs for efficient
neural network processing. While common, these accelerators can increase costs and energy consump-
tion. Moreover, if the reconstruction model is not well-trained, it may impact the overall performance
of Easz. Additionally, on extremely low-power edge devices where other compression methods are
not available, sys’s compression capabilities, while still usable, might have limitations compared to
more specialized alternatives.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Ground Truth Easz BSRGAN Real-ESRGAN SwinIR

Figure 8: Quantitive result for Easz and other super-resolution methods.
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Figure 9: Quantitive result for Jpeg and Easz+Jpeg under compression ratio 20, erase ratio 20%.

17


	Introduction
	Related Work
	System Design
	Implicit Assumption in Previous Methods
	Erase-and-Squeeze Algorithm
	Problem Formulation
	Conditional Uniform-based Sampler
	Erase and Squeeze
	Flexibility Analysis

	Reconstruction
	Complexity Analysis.
	Two-Stage Patchifying and Lightweight Restoration.


	Experiments
	Experimental Setting
	Latency Analysis and Resource Consumption
	Comparison with Super-Resolution Methods
	Ablation Study
	Improvement on Existing Compressors
	End-to-End Compression Performance

	Conclusion
	Detailed Efficiency Report for NN-based Compressors
	Two-Stage Image Patchifying Analysis
	Inference for Easz
	Loss
	Additional Quantitive Results
	Comparison with other super-resolution method
	Quantitive Result of Easz Enhanced Compressor

	Discussion and Limitations
	Additional Opportunities
	Limitations


