
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EXTENDING FLEXIBILITY OF IMAGE CODING EN-
HANCEMENT FRAMEWORK FOR IOTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural image compression, necessary in various edge-device scenarios, suffers
from its heavy encode-decode structures and inflexible compression level switch.
The primary issue is that the computational and storage capabilities of edge devices
are weaker than those of servers, preventing them from handling the same amount
of computation and storage. One solution is to downsample images and reconstruct
them on the receiver side; however, current methods uniformly downsample the
image and limit flexibility in compression levels. We take a step to break up
this paradigm by proposing a conditional uniform-based sampler that allows for
flexible image size reduction and reconstruction. Building on this, we introduce
a lightweight transformer-based reconstruction structure to further reduce the
reconstruction load on the receiver side. Extensive evaluations conducted on a
real-world testbed demonstrate multiple advantages of our system over existing
compression techniques, especially in terms of adaptability to different compression
levels, computational efficiency, and image reconstruction quality.

1 INTRODUCTION

The need for advanced lossy image compression is raised by the explosive development of edge
devices equipped with high-resolution cameras, such as industrial-inspections (George et al., 2019),
wildlife observation (wil, 2023), and autonomous driving (Ananthanarayanan et al., 2017). Neural-
Network (NN) based compressor can satisfy this need, which outperform traditional image com-
pression techniques like JPEG (Group, 1986) and BPG (Bellard, 2014). However, due to its heavy,
symmetric encoding and decoding structure and inflexible compression rate adjustment, current
NN-based methods have not yielded practical use on resource-constrained edge devices (Dasari et al.,
2022).

Given the paucity of computational ability on edge devices in general (Fut, 2020; ope, 2018; aws,
2023; Li et al., 2023a;b), a huge gap would exist in the edge compression/decompress and transmission
latency. As shown in Fig. 1a, encoding an image can take as long as 18 seconds on high-end devices
like the NVIDIA Jetson TX2. Downsampling image size at the sender and restoring it on the receiver
is one way to alleviate this problem (Yin et al., 2023; Cheng et al., 2024). However, these solutions
usually employ super-resolution, which uniformly downsample and restore images to fixed sizes,
lacking flexibility for dynamic and complex compression needs in real-world applications.

We take a fresh look at this problem and introduce Easz, a lightweight compression enhancement
framework that operates efficiently at the edge-sender with near-zero computational demand, while
also maintaining efficiency on the receiver. Easz is compatible with all existing compression al-
gorithms. The intuition of Easz is an implicit assumption undermined in current solutions: the
image need to be uniformly downsampled. Easz includes an erase-and-squeeze process, which
relaxes this assumption by designing a conditional uniform-based sampler. This technique provides
a more adaptable and fine-grained compression level but also loses the chance to employ efficient
reconstruction through convolution or the fast Fourier transform techniques. We then propose a
receiver-side lightweight transformer architecture for efficient, high-quality reconstruction of erased
patches. This involves a two-stage image patchify process to limit the scope of attention correlation
calculations and a four-layer transformer model for pixel-level local image reconstruction. As shown
in Figure 1b, Easz surpasses both the NN-based compressor and the traditional compressor.

The key contributions of this paper are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Transmission Latency (ms) Load Latency (ms) Edge Encode Latency (ms)

103

104

Va
lu

es
 (l

og
 sc

al
e)

151

286
374

162

552
413

163

1361

17952

152

11600

18015

Gap

Balle et al.
Balle et al.
Minnen et al.
Cheng et al.

(a)

Easz

JPEG

WEBP

BPG

Bmshj-factorized

Bmshj-hyperprior

MBT

Cheng-Anchor

C
om

pr
es

si
on

 R
at

io

Edge Encoding Time(ms)

103 104
15

20

30

(b)

Figure 1: (a) NN-based compressors face challenges on edge devices like the Jetson TX2, where
loading and encoding an image can take over 10 seconds compared to a transmission latency of about
0.1 seconds. (b) Easz is more efficient than other methods under the same image quality. Memory
consumption is indicated by circle size; green circles represent GPU execution, while others indicate
CPU execution.

• Generalized Erase-and-Squeeze Process: A new paradigm is introduced that offers more
refined and flexible image reduction ratios;

• Receiver-Side Lightweight Transformer Architecture: A lightweight(8.7MB) transformer
architecture is designed for efficient and high-quality reconstruction of erased patches;

• Compatibility with Existing Algorithms: Easz is compatible with all existing image com-
pression algorithms and can also function independently;

• Enhanced Compression Flexibility and Efficiency: Easz offers significant compression
flexibility and efficiency improvements. For the sender-side, Easz requires almost no
additional computational cost with a controllable compression ratio, and on the reciever-
side, Easz’s reconstruction model is also lightweight, making it well-suited for real-world
applications with varying and complex compression needs.

2 RELATED WORK

Learned-based image compression is experiencing significant growth, with advancements in end-
to-end training, hyperprior structures, entropy models, and encoder-decoder improvements Notable
developments include the introduction of auto-regressive components (Minnen et al., 2018), Gaussian
Mixture Models for probability estimation (Cheng et al., 2020), and a general-purpose lossless
compression paradigm using lightweight neural networks (Mao et al., 2022b;a; 2023). Attention
mechanisms have been incorporated through Informer (Jun-Hyuk et al., 2022), while Transformers
and Swin architectures are replacing traditional CNNs in encoding/decoding tasks (Yinhao Zhu and
Cohen, 2022; He et al., 2021).

Despite progress, real-world applications still face challenges such as inflexibility in switching models
and high latency at the edge. Deep-learning-based compression methods take about 1∼20 second per
image (512x768) on NVIDIA Jetson TX2, and many real-life endpoints are less potent than the TX2
(considering Raspberry Pi 4) but still need to compress images. A primary issue is that most NN-
based image compressors require a model switch when changing compression levels. One approach
involves downsampling images at the edge and using super-resolution techniques to reconstruct them
on the server (Yin et al., 2023; Cheng et al., 2024). These methods reduce computational load at the
edge, but applying super-resolution directly in this context results in an inflexible downsizing rate
and can degrade reconstruction performance (Laroche et al., 2023; Jin et al., 2022).

3 SYSTEM DESIGN

The paper presents Easz, a novel edge-optimized image compression framework. It applies the
erase-and-squeeze technique at the sender with a lightweight transformer-powered reconstruction

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Whole structure

Decompressor

nxn nx(n-b)

nx(n-b) nxn

When compress, we transmit a “partially erased” image, which will lead to directly compression ratio increase.
When decompress, we recover the erased components utilizing auto-encoder.
This will enhance all kinds of current compressors, with no extra computational costs during compression stage.

Compressor

Encoder

Decoder

Un-erased sub-patch vector

Zero vector

nxn

Erase Squeeze

Erase-and-squeeze

ReconstructionServer

EdgeImage Patch Squeezed Image Patch

Erased Sub-Patch(bxb)

Decompressed Squeezed
Image Patch

Reconstructed
Image Patch

Un-erased Sub-Patch (bxb)

Figure 2: Easz system overview.

on the receiver side, outperforming conventional codecs like JPEG and other neural network-driven
compressors. The default compressor used is JPEG due to its common use and prevalence. The
whole framework is illustrated in Fig. 2. Next, we’ll present our design step-by-step following the
dataflow shown in Fig. 2. A detailed flexibility analysis is presented in §3.2.4.

3.1 IMPLICIT ASSUMPTION IN PREVIOUS METHODS

Previous image enhancement frameworks usually employ super-resolution as the downsample-
reconstruction technique (Yin et al., 2023; Cheng et al., 2024). We point out that this introduces an
implicit assumption and limits its flexibility.

The standard super-resolution (SR) model with multiple degradations typically posits that the low-
resolution image is a degraded representation of a high-resolution image, characterized explicitly as a
blurry, noisy, and sub-sampled version of the original.

y = (x⊛ k) ↓s +ϵ with ϵ ∼ N (0, σ2)

In this formulation, let x denote the high-resolution image, y represent its low-resolution counterpart,
k be the blur kernel, ↓s signify the subsampling operator with scale factor s, and ϵ denote the additive
noise. This model operates under the assumption that the blur kernel is uniform across the entire
image, allowing for efficient computation of the low-resolution image through convolution or fast
Fourier transform techniques, as highlighted in recent studies (Laroche et al., 2023; Jin et al., 2022).
However, when this model is directly implemented within an edge image-enhancement framework,
the implicit assumption of uniformity introduces a constraint on the downsampling ratio, which in
turn restricts the framework’s flexibility. This limitation underscores the need for more adaptable
techniques to accommodate varying degradation patterns, limiting the framework’s flexibility.

Next, we will explain how to relax this assumption. The uniformly downsampled assumption is
critical for applying efficient super-resolution-based reconstruction through convolution or fast Fourier
transform techniques. By challenging this assumption, direct random pixel prediction becomes costly
(see §3.3.2). We then propose a two-stage patchify process with a lightweight transformer to solve
this problem.

3.2 ERASE-AND-SQUEEZE ALGORITHM

3.2.1 PROBLEM FORMULATION

Let X ∈ RH×W×C be a high-resolution image of an arbitrary size H,W,C. A sampler G takes X
as input and computes a downsampled image X̂ = G(X), where X̂ ∈ Rh×w×C .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Consider a coordinate system such that X[u, v] is the pixel value of X where u, v ∈ [0, H − 1] and
[0,W − 1], respectively. X̂[i, j] is the pixel value of X̂ at coordinates (i, j) for i ∈ {1, 2, . . . h}, j ∈
{1, 2, . . . w}. Essentially, the sampler G computes a mapping between (i, j) and (u, v). Practically,
sampler G contains two functions

{
g0, g1

}
such that:

X̂[i, j] := X
[
g0(i, j), g1(i, j)

]
The uniform approach will have a sampler

Gu =
{
g0u(i, j) = (i− 1)/(h− 1), g1u(i, j) = (j − 1)/(w − 1)

}
.

3.2.2 CONDITIONAL UNIFORM-BASED SAMPLER

In this section, we aim to propose an effective sampler that challenges the implicit assumption
discussed in Section 3.1. We treat each pixel as a sampling unit, though this can also be extended
to patches (See §3.2.4). We initially introduce a Uniform-based sampler for row-based random
sampling and subsequently impose constraints on it. Row-based sampling is employed to ensure that
the sampled image can be reassembled into a rectangular format.

Random Sampler Definition. The random sampler Gr computes a mapping between the coordinates
(i, j) of the downsampled image X̂ and the relative coordinates (u, v) of the original image X. In
this sampler, each row i of the image is processed sequentially, and within each row, the column
coordinate j is selected using a uniform random sampler. The sampler is defined by two functions,
g1r , which governs the random column selection from X, while g0r(i) represents the current row:

X̂[i, j] = X[g0r(i), g
1
r(i, j)]

where g0r(i) is a deterministic function representing row selection, and g1r(i, j) is a random mapping
for the column coordinate within row i.

Uniform Random Selection in Each Row. To ensure uniform random sampling within each row
of the original image X, the row coordinate g0r(i) is fixed as i, and the column selection function
g1r(i, j) samples a pixel uniformly from the width W for each row i. The random sampler Gr is
described as follows:

Gr =
{
g0r(i) = i, g1r(i, j) = Uniform(0,W − 1)

}
Here, the row index i remains fixed for each row, and the uniform random sampler g1r(i, j) selects
random column coordinates for each pixel j in row i. This ensures uniform random selection across
columns within each row while maintaining a structured row-based approach.

Applying this sampler directly results in poor compression ratios and reconstruction performance,
as shown in Fig. 3(a). Quantitative analysis reveals that this issue stems from the adjacent sampled
areas (see Fig. 3(b)). To address this problem, we introduce two constraints on the sampler.

Constraints for Row-based Random Sampling. When sampling from a matrix X ∈ RH×W , where
each row is sampled T times, the new sample xi,t+1 is subject to the following conditions:

1. Intra-row constraint (avoid proximity to previous samples in the same row):

g1r(i, t+ 1) ∼ Uniform(0,W − 1) subject to
∣∣g1r(i, t+ 1)− g1r(i, t)

∣∣ > δ

Here, δ is a threshold distance that ensures the newly sampled column g1r(i, t + 1) is sufficiently
distant from the previously selected columns {g1r(i, 0), . . . , g1r(i, t)}. This constraint guarantees a
diverse selection of columns within each row, preventing the samples from clustering too closely
together.

2. Inter-row constraint (minimize adjacency to prior samples from the preceding row):

g1r(i, t+ 1) ∼ Uniform(0,W − 1) subject to
∣∣g1r(i, t+ 1)− g1r(i− 1, T)

∣∣ > ∆

Similarly, ∆ represents a minimum separation between the newly sampled column in row i and the
previously selected columns {g1r(i− 1, 0), . . . , g1r(i− 1, T)} from row i− 1. This prevents adjacent

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Auto-encoder structure on decoding stage

• After decompressing and retaining the squeezed portion, we proceed to reconstruct the erased parts to restore the entire image.

• The model we utilize consists of two main components: an encoder and a decoder. The encoder takes the existing non-erased blocks and
encodes them into a high-dimensional feature space. Then, these high-dimensional feature vectors are combined with some blank vectors
and fed into the decoder. The decoder utilizes these high-dimensional feature vectors to make predictions on the blank vectors and
generate the reconstructed erased parts.

• In summary, the encoder captures the essential information from the non-erased blocks, and the decoder leverages this information to infer
and reconstruct the erased portions, ultimately restoring the complete image.

En
co

de
r b

lo
ck

De
co

de
r b

lo
ck

n

Attention

FeedForward

Layernorm

Layernorm

Layernorm

Un-erased sub-
patch vector

Zero vector

n

b

b

Patchify
Mapping

n

n-b n

n

De
co

de
r b

lo
ck

En
co

de
r b

lo
ck

Erase and squeeze
• Our approach involves first dividing the image patch into several square sub-blocks, which we

refer to as "erase blocks," forming an N*N grid. We then proceed to erase m sub-blocks in each
row or column, ensuring that the erased blocks are not adjacent horizontally or vertically.
Afterwards, we reassemble the image by combining the remaining sub-blocks horizontally or
vertically.

• Both horizontal and vertical erase and squeeze methods are viable, and they may slightly
influence the subsequent image compression results, depending on the shape of the image. We
will discuss these differences in the experimental section.

Random, T=1 Random, T=2 Random, T=3 Org image Squeezed

Zero filled Neighbor filled
(b)

Proposed, T=1 Proposed, T=2 Proposed, T=3
(a)

(a) (b) (c)

Figure 3: (a) The proposed method outperforms random masking in terms of JPEG impact and
reconstruction, resulting in a higher file-saving ratio and lower MSE on Kodak dataset. The variable p
represents patch size. (b) Proposed erase methods compared with random erase methods. T indicates
an erased item in each row. (c) Reconstruction process.

rows from sampling nearby columns, ensuring that the selection process avoids redundancy across
rows.

Under these constraints, the row-based random sampler can be formalized as:

Gr =

g0r(i) = i, g1r(i, t+ 1) =

clip (Uniform(0,W − 1)) subject to
|g1r(i, t+ 1)− g1r(i, t)| > δ

|g1r(i, t+ 1)− g1r(i− 1, T)| > ∆

where the random column selection g1r(i, t+ 1) is adjusted dynamically to satisfy both the intra-row
and inter-row constraints. This ensures a well-distributed sampling process across the entire matrix,
balancing randomness with structured diversity.

3.2.3 ERASE AND SQUEEZE

To handle the unsampled locations in the downsampled image X̂, we define a binary mask M of the
same size as X̂ where each entry is set as follows:

M[i, j] = 1 if (i, j) is sampled, else 0

The mask ratio, which determines the proportion of the image that is sampled, is controlled by the
patch size p and the sampled size T . Specifically, the choice of patch size influences the granularity of
the sampling, while the sampled size T dictates how many patches are included in the reconstruction
for each row. By tuning these parameters, the framework can effectively balance the level of
reconstruction difficulty and the computational load, enhancing model performance across various
datasets. The mask will be sent with the compressed image for the receiver to decode.

The next step is to squeeze the non-zero (sampled) locations together to form a smaller image
Xsqueezed ∈ Rh′×w′×C , where h′ < h and w′ < w represent the dimensions of the squeezed image.
This can be achieved by filtering out the zero entries from X:

Xsqueezed[i
′, j′] = X[i, j] for all (i, j) where M[i, j] = 1

After erase-and-squeeze process, the squeezed image Xsqueezed would be encoded using existing
compressors like JPEG, BPG, etc to get a compressed form X̂squeezed, as illustrated in Fig. 2.

3.2.4 FLEXIBILITY ANALYSIS

By relaxing the uniform sampling assumption outlined in §3.1, Easz can no longer utilize a super-
resolution method for reconstruction, as the low-level continuous information becomes fragmented.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

However, this shift creates new opportunities for flexibility. By controlling the sample size T , Easz
can provide a more adaptable and fine-grained compression level compared to directly applying
super-resolution techniques.

Erase level. Given an image with dimensions H ×W × C, the overall compression ratio can be
understood as comprising two components: 1) The ratio achieved through image size reduction. 2)
The ratio obtained from the subsequent compression algorithm. The image size reduction is primarily
controlled by the sampling size T applied to each row. Thus, the reduction ratios can be expressed as
1
W , 2

W , 3
W , It’s important to note that this proposed method can be similarly transposed to other

axes, such as the columns.

So far, our discussion has focused on pixel-level sampling. However, the sample-erase-squeeze unit
can be extended to operate on patches. By adopting this extension, we introduce another parameter
that influences the reduction ratio: the patch size p. Consequently, experiments conducted with
varying patch sizes will be detailed in §4.4. Under this patch-level sampling framework, the reduction
ratios would be expressed as p2

W , 2p2

W , 3p2

W , In contrast to traditional super-resolution methods,
which typically offer a single reduction pattern for a model, our sampler provides significant flexibility,
enabling adaptation to various real-world applications.

Model switching and mask transferring. Switching models and transferring masks might be
burdensome. As would introduced in §3.3.2, we present a lightweight transformer-based process
capable of performing direct pixel-level reconstruction. This process is designed to handle any erase
ratio since it is trained under this setting. Consequently, there is no need to prepare a separate model
for each erase ratio or to switch models during compression ratio adjustments.

Another consideration is mask transferring. In our design, the mask is applied to small sub-patches
(discussed in §3.3.2) created through a proposed two-stage image patching process. For instance, if
the sub-patch size is 32× 32, then the corresponding mask size would be 128 bytes. This same mask
is used for all sub-patches. Thus, the transmission of this size is not a concern.

As mentioned in the beginning, by utilizing the proposed erase-and-squeeze technique, the blur-
kernel-based super-resolution method is no longer suitable for reconstruction. We then introduce a
lightweight transformer architecture to directly conduct pixel prediction to address this issue.

3.3 RECONSTRUCTION

Given the squeezed compressed image X̂squeezed, we introduced a Masked-Image-Modeling process
to perform the pixel-level reconstruction on the receiver side. The reconstruction of the squeezed
image back to the original image is approached through a framework reminiscent of masked image
modeling (MIM). Specifically, the input is X̂squeezed. Y = T (X̂squeezed). The autoencoder model G(·)
takes the corrupted images X̂squeezed as input and aims to generate a prediction Ŷ, optimizing the
model by minimizing the difference between the prediction and the target:

Ŷ = G(X̂squeezed), L = D(X, Ŷ)

This paper focuses on parametric target generation strategies utilizing a transformer structure for
image reconstruction tasks. A significant challenge arises from directly predicting pixel values using
transformers due to the quadratic complexity of attention mechanisms.

3.3.1 COMPLEXITY ANALYSIS.

Predicting pixel values for each element in the image, particularly in high-resolution images, proves
to be computationally expensive. Let the transformer model’s attention mechanism operate with
complexity O(n2 · d), where n is the number of tokens (patches or pixels) and d is the dimensionality
of the token embeddings. This results in costly computation when n is large, especially for pixel-level
operations.

For example, a 256x256 grayscale image would require 4, 294, 967, 296 × dmodel calculations if
each pixel were treated as a token. By employing the two-stage patchify process (with n = 32 and
b = 1), this number is reduced by 256 times to 16, 777, 216× dmodel calculations. Detailed analysis

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

would be in Appendix B. The reduction in complexity comes from performing attention operations
within each patch rather than across the whole image.

3.3.2 TWO-STAGE PATCHIFYING AND LIGHTWEIGHT RESTORATION.

Motivated by this observation, we adopt a two-stage patchifying process followed by a lightweight
transformer to improve computational efficiency.

1. First Stage: Initial Image Patchifying: Given the image X ∈ Rh×w×C , we divide the image into
non-overlapping patches of size ph × pw. For each patch Pm,n, the extraction follows:

Pm,n = X[m · ph : (m+ 1) · ph − 1, n · pw : (n+ 1) · pw − 1, :]

where m = 0, . . . ,
⌊

h
ph

⌋
− 1 and n = 0, . . . ,

⌊
w
pw

⌋
− 1.

2. Second Stage: Subdividing into Sub-Patches: Each patch Pm,n is further divided into sub-patches
of size Sh × Sw to facilitate fine-grained prediction:

Pm,n,k,l = Pm,n[k · Sh : (k + 1) · Sh − 1, l · Sw : (l + 1) · Sw − 1, :]

where k = 0, . . . ,
⌊
ph

Sh

⌋
− 1 and l = 0, . . . ,

⌊
pw

Sw

⌋
− 1.

3. Lightweight Transformer for Sub-Patch Restoration: A lightweight transformer model, denoted
as Tlight(·), with complexity O(m2 · d) (where m is the number of sub-patches), is employed for
restoring the missing pixel values within each sub-patch. Fig. 3(c) illustrates the architecture of our
efficient transformer-based network on the server side. The encoder and decoder are composed of
two transformer blocks, each containing three layernorms, one attention layer, and one feedforward
layer. The model size is significantly reduced to 8.4MB. Given the downsampled input sub-patch
Pm,n,k,l, the predicted sub-patch P̂m,n,k,l is generated as:

P̂m,n,k,l = Tlight(Pm,n,k,l)

Through this reconstruction process, the original content of the image is effectively restored from the
masked and squeezed representation. We adopt LPIPS (Zhang et al., 2018), a well-known perceptual
loss, along with L1 loss as training loss as L. Note that the encoder and decoder can work with a
variety of input erase ratios, which is controlled by p and T (See §3.2.4), and hence, we do not need
to train a separate model for each erase ratio. Sub-patches can execute in parallel both for encoder
and decoder due to the nature of transformer block (Vaswani et al., 2017).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Training setting. The experiments consist of two phases: offline pretraining and online testing. In
the pretraining phase, a specific loss function is used with these hyperparameters: learning rate of
2.8e-4, erase ratio of 0.25, batch size of 4096, and weight decay of 0.05. Randomly generated erase
masks are applied for model robustness during this stage. A consistent mask is utilized for online
testing on both edge and server sides.

Hardware platforms. Our framework is implemented with ∼1000 lines of Python. We use an
NVIDIA Jetson TX2 as the edge device and a desktop with Intel i7-9700K CPU and RTX 2080Ti
GPU as the server, which are connected to a Wi-Fi router and communicate via TCP.

Datasets. During the offline pretraining phase, the CIFAR-10 (Alex and Geoffrey, 2009) dataset
is employed to pre-train the model, enabling it to acquire generative capabilities. In the testing
phase, two common image compression datasets, Kodak (Company, 1993) and CLIC (Workshop
and on Learned Image Compression, 2022), are utilized to assess the generative performance of the
proposed method.

Metrics. Since removing content would negatively impact reference-based metrics such as PSNR and
SSIM (a trend also observed in other downsampled-and-super-resolution methods), we employ non-
reference perceptual metrics for comparison with different compression techniques: Brisque (Mittal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

et al., 2012), Pi (Blau et al., 2018), and Tres (Golestaneh et al., 2022). To benchmark against other
super-resolution approaches, we include PSNR and SSIM to demonstrate the superiority of our
method. Furthermore, we have conducted image classification experiments on the reconstructed
images to showcase the proposed compression method’s robustness in handling image analytic tasks.
Compression performance is evaluated by bits per pixel (BPP).

Baselines. We use four compression methods as baselines to demonstrate the effectiveness of the
proposed method: JPEG, BPG, MBT(Minnen et al., 2018), and Cheng-Anchor. Among these, MBT
and Cheng-Anchor are two neural-network-based compression methods.

4.2 LATENCY ANALYSIS AND RESOURCE CONSUMPTION

0 5000 10000 15000 20000

Easz

MBT

Cheng
Erase&Squeeze
Compression
Transmit
Decomp
Recon

(a) End-to-End Latency Breakdown(ms).

Easz MBT Cheng0

1

2

3

Po
we

r (
W

)

GPU Power
CPU Power

(b) Encode Power consumption.

Easz MBT Cheng0

1

2

M
em

or
y

(G
B)

1.05

1.93 1.98

(c) Encode Memory footprint.

Figure 4: Efficiency Evaluation on NVIDIA Jetson TX2.

We first report the latency breakdown of Easz with other neural network-based compression methods,
using a Jetson TX2 for compression and a server for decompression. We repeat the runs 24 times
and report the average on Fig. 4a. We observe that Erase-and-Squeeze only takes up 0.7% of the
end-to-end latency, which induces minimal overhead on the edge device and proves the efficiency of
Easz’ design. While both MBT and Cheng-Anchor are too compute-intensive to run the compression
on the edge side. As expected, the reconstruction in Easz takes the longest time, accounting for 74%
of the latency. We argue that it can be significantly improved by upgrading to a datacenter-class GPU,
such as the A100, instead of the RTX 2080Ti.

Resource consumption is another critical consideration when it comes to resource-constrained edge
devices. To assess this, we measure three key metrics – CPU power, GPU power, and memory
footprint – using the Tegrastats Utility (teg, 2023) on the Jetson TX2. As illustrated in Fig. 4, our
findings reveal that Easz excels in all metrics compared to other NN-based compression methods.
Specifically, in contrast to MBT and Cheng-Anchor, Easz achieves a remarkable 71.3% and 59.9%
reduction in total power consumption. It’s noteworthy that Easz does not utilize any GPU power on
the edge device, attributed to its lightweight yet effective erase-and-squeeze design. Furthermore,
Easz reduces memory footprint by 45.8% and 47.1%, respectively. These results underscore the
advantage of deploying Easz on wimpy edge devices.

4.3 COMPARISON WITH SUPER-RESOLUTION METHODS

We compare the reconstruction effect of Easz with state-of-the-art super-resolution methods to
demonstrate Easz’s effectiveness. As shown in Tab. 1, Easz outperforms super-resolution in pixel-
level reconstruction metrics while having a much more flexible reduction ability. Note that Easz uses
a model of only 8.7MB, while other models are 67MB.

Table 1: Comparison with Super-Resolution on Kodak Dataset.

Metrics Easz SwinIR realESRGAN BSRGAN
PSNR 28.96 24.86 24.85 25.35

MS_SSIM 0.96 0.94 0.93 0.94
Recon Model Size 8.7MB 67MB 67MB 67MB

Experimental results demonstrate that Easz surpasses traditional super-resolution in terms of PSNR
and SSIM metrics when reducing pixel count equivalently. Figure 5 illustrates a comparison of image
detail reconstruction, where Easz and other super-resolution all perform 2x reconstruction. It is
evident that Easz better preserves image details; the children’s faces are clearer, and the characters

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

ESRGAN BSRGAN SwinIR Easz

Figure 5: Reconstruction comparison of Easz with super-resolution methods. Easz better preserves
image details due to its direct pixel value prediction, resulting in improved PSNR and SSIM.

are more recognizable. In contrast, the super-resolution reconstructed image is unsatisfactory. More
quantitative results are shown in Appendix E

4.4 ABLATION STUDY

Effectiveness of proposed sampler. Fig. 6a and Fig. 6b compares the proposed erase mask generation
method, the random erase mask method, and the baseline(JPEG and BPG) throughout the entire
pipeline. It can be observed that the proposed erase mask generation method achieves better BPP at
the same quality level on both JPEG and BPG, further substantiating the effectiveness of the proposed
method.

1 2 3 4 5
BPP

5

10

15

20

25

Br
isq

ue

JPEG
+Easz
+random

(a) JPEG, Brisque(↓ bet-
ter).

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

BPP

10
15
20
25
30
35
40
45

Br
isq

ue

BPG
+Easz
+random

(b) BPG, Brisque(↓ bet-
ter).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Infer Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
se

1e 3

Patch4
Patch2
Patch1

(c) Mean-Square-Error(↓
better).

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

Epochs
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Lo
ss

 v
al

ue
1e 2

Patch=4
Patch=2
Patch=1

(d) Mean-Square-Error(↓
better)

Figure 6: (a)(b): Comparison between Easz with proposed mask strategy, Easz with random mask
strategy, and conventional compression baselines (JPEG and BPG). (c) Patch size and erase ratio’s
impact on MSE(↓ better). (d) MSE(↓ better) during Easz fine-tuning process with patch size=1,2,4
on Kodak dataset.

Patch size selection. Fig. 6c examines the effects of two hyperparameters, erase block size (1, 2,
and 4) and erase ratio (10% to 50%), on compression rate and quality. As the erase ratio increases,
MSE rises, indicating lower reconstruction quality. Smaller patch sizes yield better reconstruction
due to higher local correlations. Patch size=2 offers a balance between speed—being six times faster
than size=1—and quality—with only a slight difference in MSE. Doubling the patch size from 2 to 4
also doubles both speed and MSE. The recommendation is to use smaller patch sizes for practical
applications but consider size=2 for additional speed needs.

Effectiveness of fine-tuning. Our model, after pretraining on the CIFAR dataset for 5000 epochs,
can be applied to various image compression tasks due to its ability to recognize similarities in
local image features. Typically, models are first pre-trained on a large dataset and then fine-tuned
for specific tasks. We tested if fine-tuning our pretrained model with the Kodak dataset would be
beneficial and found that it indeed improves performance by reducing losses across different patch
sizes (1x1, 2x2, and 4x4), as shown in Fig. 6d. This suggests that online fine-tuning of pre-trained
models could further enhance compression effectiveness in real-world applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

4.5 IMPROVEMENT ON EXISTING COMPRESSORS

To evaluate how well Easz works with leading compressors, we incorporated it into four established
methods: JPEG and BPG (traditional compressors), as well as MBT and Cheng-anchor (neural
network-based compressors). We used two datasets, Kodak and CLIC, to test the resilience of Easz
across different types of image data. For the Kodak dataset, we aimed for a bit-per-pixel (BPP) rate
of approximately 0.4; for the CLIC dataset, we targeted a BPP of around 0.3 to gauge Easz’s efficacy
at varying levels of compression. The results showing how each baseline method performs on its own
and when combined with Easz —are detailed in Tables 2.

Table 2: Compression Performance Enhancement on Kodak Dataset and Clic Dataset.

Metrics JPEG BPG MBT Cheng-anchor
Org +Proposed Org +Proposed Org +Proposed Org +Proposed

BPP 0.412 0.411 0.382 0.410 0.433 0.389 0.418 0.402

Kodak
Brisque 43.06 22.34 30.675 23.27 28.13 18.63 29.16 20.51

Pi 4.84 3.33 3.07 3.04 3.01 3.00 3.11 3.05
Tres 77.62 86.26 83.55 85.88 84.14 88.03 88.53 89.80
BPP 0.306 0.307 0.308 0.293 0.308 0.292 0.287 0.267

Clic
Brisque 60.51 23.63 39.95 25.27 32.20 18.37 35.42 21.55

Pi 8.51 5.02 4.85 4.66 4.33 4.35 4.58 4.50
Tres 50.65 63.69 65.14 67.08 73.54 78.30 82.91 83.95

4.6 END-TO-END COMPRESSION PERFORMANCE

0.2 0.4 0.6 0.8 1.0 1.2

BPP

20

30

40

50

60

Br
isq

ue

JPEG
Easz
MBT
Cheng

(a) Brisque (↓ better).

0.2 0.4 0.6 0.8 1.0 1.2

BPP

3

4

5

6

7

Pi

JPEG
Easz
MBT
Cheng

(b) Pi (↓ better).

0.2 0.4 0.6 0.8 1.0 1.2

BPP

60

65

70

75

80

85

90

Tr
es

JPEG
Easz
MBT
Cheng

(c) Tres (↑ better).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BPP

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

1e4

MBT
Cheng
Easz

(d) End-to-end Latency.

Figure 7: Compression performance of Easz, JPEG, MBT and Cheng on three perceptual metrics
(a-c). Fig. 7d evaluates the end-to-end latency on our testbed.

In this experiment, we use JPEG+Easz as the baseline and observe changes in three perceptual
metrics at different bitrates (BPP). Notably, JPEG alone underperforms compared to two deep-
learning compression methods at all compression levels. However, with Easz enhancement, JPEG
shows a marked improvement. For the BRISQUE metric specifically, JPEG+Easz exceeds both
deep-learning methods. Regarding the Pi metric, JPEG+Easz matches the performance of these
methods. With the Tres metric, while JPEG+Easz outdoes MBT, it falls short of Cheng-anchor’s
results. Overall, Easz boosts JPEG to compete effectively with other state-of-the-art deep-learning
compression techniques in each perceptual measure. Easz also outperforms two neural network-based
methods in latency, with an average end-to-end latency of 2568ms across different bitrates per pixel,
marking an 89% reduction compared to MBT and Cheng’s methods.

5 CONCLUSION

This paper proposes Easz, which addresses the challenges of edge image compression and trans-
mission latency by introducing a novel erase-and-squeeze technique that enhances flexibility and
efficiency. By relaxing the conventional requirement for uniform downsampling, Easz allows for
adaptable compression levels tailored to dynamic real-world applications. The implementation of a
lightweight transformer architecture on the receiver side ensures high-quality reconstruction of erased
image patches without imposing significant computational demands. Moreover, Easz’s compatibility
with existing compression algorithms makes it a versatile solution for modern edge devices. Our
real-world evaluation in an edge-server testbed demonstrates Easz’s improvement in compression
performance and efficiency, emphasizing its potential for real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

2018. AI and Compute. https://openai.com/blog/ai-and-compute/

2020. The Future of Computing is Distributed. https://www.datanami.com/2020/02/
26/the-futureof-computing-is-distributed/ [Accessed on October 14, 2023].

2023. AWS Outposts. https://aws.amazon.com/outposts/

2023. Bringing Cutting-Edge Technology to Wildlife Conservation. https://www.
wildlifeinsights.org/.

2023. Tegrastats Utility. https://docs.nvidia.com/drive/drive_os_5.1.6.1L/
nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_
tegrastats.html.

Krizhevsky Alex and Hinton Geoffrey. 2009. Learning multiple layers of features from tiny images.
2009 (2009).

Ganesh Ananthanarayanan, Victor Bahl, Peter Bodik, Krishna Chintalapudi, Matthai Philipose,
Lenin Ravindranath Sivalingam, and Sudipta Sinha. 2017. Real-Time Video Analytics - The Killer
App for Edge Computing. IEEE Computer (October 2017).

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. 2018. Varia-
tional image compression with a scale hyperprior. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Fabrice Bellard. 2014. BPG. https://bellard.org/bpg/.

Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-Manor. 2018. The 2018
PIRM challenge on perceptual image super-resolution. In Proceedings of the European Conference
on Computer Vision (ECCV) Workshops. 0–0.

Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang, Qizheng Zhang, Yuhan Liu,
Kuntai Du, Xu Zhang, Francis Y Yan, et al. 2024. {GRACE}:{Loss-Resilient}{Real-Time}
Video through Neural Codecs. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 509–531.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. 2020. Learned Image Compression
with Discretized Gaussian Mixture Likelihoods and Attention Modules. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Eastman Kodak Company. 1993. Kodak Lossless True Color Image Suite. https://r0k.us/
graphics/kodak/.

He Dailan, Zheng Yaoyan, Sun Baocheng, Wang Yan, and Qin Hongwei. 2017. Checkerboard
context model for efficient learned image compression. In International Conference on Learning
Representations. 1–27.

Mallesham Dasari, Kumara Kahatapitiya, Samir R Das, Aruna Balasubramanian, and Dimitris
Samaras. 2022. Swift: Adaptive video streaming with layered neural codecs. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). 103–118.

Shilpa George, Junjue Wang, Mihir Bala, Thomas Eiszler, Padmanabhan Pillai, and Mahadev
Satyanarayanan. 2019. Towards Drone-Sourced Live Video Analytics for the Construction Industry.
In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications.
ACM, 3–8.

S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani. 2022. No-reference image quality assess-
ment via transformers, relative ranking and self-consistency. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 1220–1230.

JPEG Group. 1986. JPEG. https://jpeg.org/.

11

https://openai.com/blog/ai-and-compute/
https://www.datanami.com/2020/02/26/the-futureof-computing-is-distributed/
https://www.datanami.com/2020/02/26/the-futureof-computing-is-distributed/
https://aws.amazon.com/outposts/
https://www.wildlifeinsights.org/
https://www.wildlifeinsights.org/
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html
https://bellard.org/bpg/
https://r0k.us/graphics/kodak/
https://r0k.us/graphics/kodak/
https://jpeg.org/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Dailan He, Yaoyan Zheng, Baocheng Sun, Yan Wang, and Hongwei Qin. 2021. Checkerboard context
model for efficient learned image compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14771–14780.

Chen Jin, Ryutaro Tanno, Thomy Mertzanidou, Eleftheria Panagiotaki, and Daniel C Alexander.
2022. Learning to downsample for segmentation of ultra-high resolution images. ICLR (2022).

Kim Jun-Hyuk, Heo Byeongho, and Lee Jong-Seok. 2022. Joint global and local hierarchical priors
for learned image compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 5992–6001.

Charles Laroche, Andrés Almansa, and Matias Tassano. 2023. Deep model-based super-resolution
with non-uniform blur. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision. 1797–1808.

Jingzong Li, Yik Hong Cai, Libin Liu, Yu Mao, Chun Jason Xue, and Hong Xu. 2023a. Moby:
Empowering 2D Models for Efficient Point Cloud Analytics on the Edge. In Proc. ACM MM.

Jingzong Li, Libin Liu, Hong Xu, Shudeng Wu, and Chun Jason Xue. 2023b. Cross-Camera Inference
on the Constrained Edge. In Proc. IEEE INFOCOM.

Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. 2022a. Accelerating General-Purpose
Lossless Compression via Simple and Scalable Parameterization. In Proceedings of the 30th ACM
International Conference on Multimedia. 3205–3213.

Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. 2022b. TRACE: A Fast Transformer-
based General-Purpose Lossless Compressor. In Proceedings of the ACM Web Conference 2022.
1829–1838.

Yu Mao, Jingzong Li, Yufei Cui, and Jason Chun Xue. 2023. Faster and Stronger Lossless Com-
pression with Optimized Autoregressive Framework. In 2023 60th ACM/IEEE Design Automation
Conference (DAC). 1–6.

David Minnen, Johannes Ballé, and George Toderici. 2018. Joint Autoregressive and Hierarchical
Priors for Learned Image Compression. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 10794–10803.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. 2012. No-reference image quality
assessment in the spatial domain. IEEE Transactions on image processing 21, 12 (2012), 4695–
4708.

K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations (ICLR 2015). 1–14.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems 30 (2017).

Workshop and Challenge on Learned Image Compression. 2022. Challenge on Learned Image
Compression. https://compression.cc/.

Guanghao Yin, Zefan Qu, Xinyang Jiang, Shan Jiang, Zhenhua Han, Ningxin Zheng, Xiaohong Liu,
Huan Yang, Yuqing Yang, Dongsheng Li, et al. 2023. Online Streaming Video Super-Resolution
with Convolutional Look-Up Table. arXiv preprint arXiv:2303.00334 (2023).

Yang Yang Yinhao Zhu and Taco Cohen. 2022. Transformer-based transform coding. In International
Conference on Learning Representations. 1–35.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The unreason-
able effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 586–595.

12

https://compression.cc/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A DETAILED EFFICIENCY REPORT FOR NN-BASED COMPRESSORS

To further illustrate the challenges faced when deploying current neural network-based compressors
on edge devices, this section provides a detailed report on the performance of the four compression
methods: b-facDailan et al. (2017), b-hyperBallé et al. (2018), MBTMinnen et al. (2018), Cheng-
AnchorCheng et al. (2020) on actual edge devices. This area has been seldom explored in previous
research. Table 3 shows the Edge FLOPs per image (512x768), model size for a single compression
level, and loading time for five deep learning compression methods on NVIDIA Jetson TX2. It is
important to note that the model size is only for one compression level; therefore, actual storage
requirements are calculated by multiplying the given number by the number of compression levels.
For example, Cheng-Anchor has six levels of compression, thus requiring a total storage space
of 110MB*6=660MB. It’s worth mentioning that although quantization can improve both space
occupancy and operational efficiency of models, this approach involves performance, and it’s well-
known that quantization presents issues: its deployment on edge devices is complex and difficult to
standardize. In contrast, Easz offers an easily deployable framework.
Table 3: Details of representative NN-based compression methods. Note that the loading and
compression times are measured on an NVIDIA Jetson TX2, and FLOPs are evaluated with (512×768)
image size.

NN-based methods b-fac b-hyper MBT Cheng-Anchor
Edge-FLOPs 36G 36G 36G 145G

Model size (MB) 28 46 118 110
Loading time (ms) 286 552 1361 1600

Compression time (ms) 374 413 17952 18015

B TWO-STAGE IMAGE PATCHIFYING ANALYSIS

Consider a grayscale image of size 256× 256 with a patch size of 1× 1. This results in 256× 256 =
65, 536 pixels. In an attention-based model, treating each pixel as a token, the computational
complexity for self-attention is given by:

O((h× w)2 × dmodel)

where h and w are the height and width of the image, and dmodel is the model dimension. For a
256× 256 image, the calculation becomes:

O(655362 × dmodel) = O(4, 294, 967, 296× dmodel)

This level of computation is prohibitively expensive on modern hardware, and the complexity
increases rapidly for higher-resolution images.

To reduce the computational load, we employ a two-stage patchify process. The first stage divides
the image into non-overlapping patches of size n× n. The number of patches is:

h× w

n2

Each patch is treated as a token, and the complexity of attention at this stage is reduced to:

O

((
h× w

n2

)2
)

= O

(
(h× w)2

n4

)
This reduces the number of tokens, thus lowering the complexity. However, further refinement can be
achieved with a second stage of patchification.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Each n×n patch is subdivided into b× b sub-patches in the second stage. The number of sub-patches
is:

n2

b2

This results in a total of:

h× w

b2

sub-patches, and the attention complexity at this stage becomes:

O

(
h× w

n2
× n4

b4

)
= O

(
(h× w)× n2

b4

)
Thus, the complexity is much lower than the original full-image attention, even for very small
sub-patches (e.g., when b = 1). The final complexity is:

O(h× w × n2)

For the example of a 256× 256 image, where n = 32 and b = 1, the complexity reduces from:

O(655362 × dmodel) = O(4, 294, 967, 296× dmodel)

to:

O(16, 777, 216× dmodel)

This represents a 256-fold reduction in computational complexity compared to the original.

C INFERENCE FOR EASZ

During the inference stage, the procedure starts from receiving a set of un-erased sub-patches
U = {u1, u2, . . . , um}, and a set of zero sub-patches Û = {û1, û2, . . . , ûk} is firstly added. {U, Û}
is then mapped to corresponding position using M . Afterward, we project this combined set {U, Û}
into the embedding space {F, F̂}, feed it into the encoder to obtain feature representations and
reconstruct P̂ .

The mapping timing is the critical difference between the training and inference stages. The mapping
is applied to the feature representations F in the training stage. However, during the inference stage,
the mapping is performed on the sub-patches before they are sent into the encoder. This difference is
due to the use of positional embedding. In the training process, the positional embedding is applied
before the erase operation because the sub-patches remain in their original positions at that stage. On
the other hand, during the inference phase, the received un-erased sub-patches need to be mapped
back to their original positions to incorporate the positional embedding effectively.

D LOSS

To minimize the difference between the original image P and the reconstructed image P̂ , we adopt
LPIPS Zhang et al. (2018), a well-known perceptual loss, and L1 loss as training loss. The final loss
function is shown as follows:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

L1(x, y) =
1

N

N∑
i=1

|xi − yi| (1)

LPIPS(x, y) =
N∑
i=1

wi · di(x, y) (2)

Loss(x, y) = L1(x, y) + λ ∗ LPIPS(x, y) (3)

Where x and y are two images being compared, N is the number of layers in the feature extraction
model, which is decided as VGG Simonyan and Zisserman (2015), di(x, y) is the distance between
the feature maps of the two images at layer i, and wi is a layer-dependent weighting factor. λ is
chosen as 0.3 in our experiments.

E ADDITIONAL QUANTITIVE RESULTS

E.1 COMPARISON WITH OTHER SUPER-RESOLUTION METHOD

This section provides additional quantitive results for Easz compared with other super-resolution
methods. From Fig. 8, it is evident that compared to the super-resolution method, Easz and the
original image share more similar details, whereas super-resolution introduces more imaginative
elements. The sys’s-attributed to sys’s direct pixel generation feature, making it better suited for use
in conjunction with compression.

E.2 QUANTITIVE RESULT OF EASZ ENHANCED COMPRESSOR

In this section, we provide additional quantitive results for the Easz enhanced compressor and the
original decompressed image to show its effectiveness.

F DISCUSSION AND LIMITATIONS

F.1 ADDITIONAL OPPORTUNITIES

Online Finetuning.In the edge-server scenario, conducting online training using real data presents
practical challenges due to the server’s unavailability of the original images. To enable online
training on the server-side model with real data, it is crucial to meticulously choose the images for
transmission and devise an efficient and well-designed method to maximize effectiveness.

Consequently, these features aid traditional compressors in improving the performance of subsequent
image analysis tasks, particularly in scenarios with low-quality transmission. This observation opens
an intriguing avenue for future research: How can we generate erased blocks more effectively to
assist traditional compression methods better? This question could lead to exciting developments in
the context of this paper.

Semantic erase mask generation for specific scenarios. A more promising direction for generating
erase masks is to consider the semantic information of the image. This involves erasing only less
significant regions. In this paper, such methods were not adopted to avoid additional computation on
the edge. However, we still believe this is a viable direction for future research.

F.2 LIMITATIONS

A fundamental assumption of Easz is that the server needs to be equipped with GPUs for efficient
neural network processing. While common, these accelerators can increase costs and energy consump-
tion. Moreover, if the reconstruction model is not well-trained, it may impact the overall performance
of Easz. Additionally, on extremely low-power edge devices where other compression methods are
not available, sys’s compression capabilities, while still usable, might have limitations compared to
more specialized alternatives.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Ground Truth Easz BSRGAN Real-ESRGAN SwinIR

Figure 8: Quantitive result for Easz and other super-resolution methods.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

JPEG Easz+JPEG

Figure 9: Quantitive result for Jpeg and Easz+Jpeg under compression ratio 20, erase ratio 20%.

17

	Introduction
	Related Work
	System Design
	Implicit Assumption in Previous Methods
	Erase-and-Squeeze Algorithm
	Problem Formulation
	Conditional Uniform-based Sampler
	Erase and Squeeze
	Flexibility Analysis

	Reconstruction
	Complexity Analysis.
	Two-Stage Patchifying and Lightweight Restoration.

	Experiments
	Experimental Setting
	Latency Analysis and Resource Consumption
	Comparison with Super-Resolution Methods
	Ablation Study
	Improvement on Existing Compressors
	End-to-End Compression Performance

	Conclusion
	Detailed Efficiency Report for NN-based Compressors
	Two-Stage Image Patchifying Analysis
	Inference for Easz
	Loss
	Additional Quantitive Results
	Comparison with other super-resolution method
	Quantitive Result of Easz Enhanced Compressor

	Discussion and Limitations
	Additional Opportunities
	Limitations

