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ABSTRACT

Adam (Kingma & Ba, 2015) is the de facto optimizer in deep learning, yet its
theoretical understanding remains limited. Prior analyses show that Adam favors
solutions aligned with ¢.,-geometry, but these results are restricted to the full-batch
regime. In this work, we study the implicit bias of incremental Adam (using one
sample per step) for logistic regression on linearly separable data, and show that its
bias can deviate from the full-batch behavior. To illustrate this, we construct a class
of structured datasets where incremental Adam provably converges to the /5-max-
margin classifier, in contrast to the /,-max-margin bias of full-batch Adam. For
general datasets, we develop a proxy algorithm that captures the limiting behavior
of incremental Adam as S, — 1 and characterize its convergence direction via
a data-dependent dual fixed-point formulation. Finally, we prove that, unlike
Adam, Signum (Bernstein et al., 2018) converges to the ¢.,-max-margin classifier
for any batch size. Overall, our results highlight that the implicit bias of Adam
crucially depends on both the batching scheme and the dataset, while Signum
remains invariant.

1 INTRODUCTION

The implicit bias of optimization algorithms plays a crucial role in training deep neural net-
works (Vardi, 2023). Even without explicit regularization, these algorithms steer learning toward
solutions with specific structural properties. In over-parameterized models, where the training data
can be perfectly classified and many global minima exist, the implicit bias dictates which solutions are
selected. Understanding this phenomenon has become central to explaining why over-parameterized
models often generalize well despite their ability to fit arbitrary labels (Zhang et al., 2017).

A canonical setting for studying implicit bias is linear classification on separable data with logistic
loss. In this setup, achieving zero training loss requires the model’s weights to diverge to infinity,
making the direction of convergence—which defines the decision boundary—the key object of study.
Seminal work by Soudry et al. (2018) establishes that gradient descent (GD) converges to the ¢o-

Cosine Similarity with £,-Max-Margin Solution Cosine Similarity with £,-Max-Margin Solution

1.00

0.95 " =
£0.90
o
Eo.85
wn
9] —— Ty
£0.80
8 —— GD —— GD

0.75 Full-batch Adam Full-batch Adam

—=— With-replacement Stochastic Adam —=— With-replacement Stochastic Adam
0.70 —+— Random Reshuffling Stochastic Adam —+— Random Reshuffling Stochastic Adam
<4— Incremental Adam <4— Incremental Adam
5
0-657153 107 105 10° 10 10° 105 10°
Iterations Iterations

Figure 1: Mini-batch Adam loses the /.,-max-margin bias of full-batch Adam. Cosine similarity
between the weight vector and the /5-max-margin (left) and /.,-max-margin (right) solutions in
a linear classification task on 10 data points drawn from the 50-dimensional standard Gaussian.
Full-batch Adam with (51, 82) = (0.9,0.95) converges to the /,,-max-margin solution, whereas
mini-batch variants with batch size 1 converge closer to the /5-max-margin direction. See Appendix C
for experimental details.
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max-margin solution. This foundational result has inspired extensive research extending the analysis
to neural networks, alternative optimizers, and other loss functions (Gunasekar et al., 2018b; Ji &
Telgarsky, 2019; 2020; Lyu & Li, 2020; Chizat & Bach, 2020; Yun et al., 2021). In this work, we
revisit the simplest setting—Ilinear classification on separable data—to examine how the choice of
optimizer shapes implicit bias.

Among modern optimization algorithms, Adam (Kingma & Ba, 2015) is one of the most widely used,
making its implicit bias particularly important to understand. Zhang et al. (2024a) show that, unlike
GD, full-batch Adam converges in direction to the /,-max-margin solution. This behavior is closely
related to sign gradient descent (SignGD), which can be interpreted as normalized steepest descent
in the ¢,-norm and is also known to converge to the {.,-max-margin direction (Gunasekar et al.,
2018a; Fan et al., 2025). Xie et al. (2025) further attribute Adam’s empirical success in language
model training to its ability to exploit the favorable /.,-geometry of the loss landscape.

Yet, prior work on implicit bias in linear classification has almost exclusively focused on the full-batch
setting. In contrast, modern training relies on stochastic mini-batches, a regime where theoretical
understanding remains limited. Notably, Nacson et al. (2019) show that SGD preserves the same
{5-max-margin bias as GD, suggesting that mini-batching may not alter an optimizer’s implicit bias.
But does this extend to adaptive methods such as Adam?

Does Adam’s characteristic {,-bias persist under the mini-batch setting?

Perhaps surprisingly, we find that the answer is no. Our experiments (Figure 1) illustrate that when
trained on Gaussian data, full-batch Adam converges to the ¢,,-max-margin direction, whereas
mini-batch Adam variants with batch size 1 converge closer to the /5-max-margin direction. To
explain this phenomenon, we develop a theoretical framework for analyzing the implicit bias of
mini-batch Adam, focusing on the batch size 1 case as a representative contrast to the full-batch
regime. To the best of our knowledge, this work provides the first theoretical evidence that Adam’s
implicit bias is fundamentally altered in the mini-batch setting.

Our contributions are summarized as follows:

* We analyze incremental Adam, which processes one sample per step in a cyclic order. Despite
its momentum-based updates, we show that its epoch-wise dynamics can be approximated by a
recurrence depending only on the current iterate, which becomes a key tool in our analysis (see
Section 2).

* We demonstrate a sharp contrast between full-batch and mini-batch Adam using a family of
structured datasets, Generalized Rademacher (GR) data. On GR data, we prove that incremental
Adam converges to the £o-max-margin solution, while full-batch Adam converges to the /,,-max-
margin solution (see Section 3).

* For general dataset, we introduce a uniform-averaging proxy that predicts the limiting behavior of
incremental Adam as 85 — 1. We characterize its convergence direction as the primal solution of
an optimization problem defined by a dual fixed-point equation (see Section 4).

* Finally, we prove that Signum (SignSGD with momentum; Bernstein et al. (2018)), unlike Adam,
maintains its bias toward the /,-max-margin solution for any batch size when the momentum
parameter is sufficiently close to 1 (see Section 5).

2 How CAN WE APPROXIMATE WITHOUT-REPLACEMENT ADAM?

Notation. For a vector v, let v[k] denote its k-th entry, v; its value at time step ¢, and v Ly, Nes
unless stated otherwise. For a matrix M, let M([i, 5] denote its (i, j)-th entry. We use AN~ to denote
the probability simplex in R, Let [N] = {0, 1, --- , N —1} denote the set of the first N non-negative
integers. For a PSD matrix M, define the energy norm as ||x||nr = vVx T Mx. For vectors, /-, (+)2,
and - operations are applied entry-wise unless stated otherwise. Given two functions f(t), g(t), we
denote f(t) = O(g(t)) if there exist C, T > 0 such that ¢t > T implies |f(t)| < C|g(t)|. For two
vectors v and w, we denote v o« w if v = ¢ - w for a positive scalar ¢ > 0. Let r = a mod b denote
the remainder when dividing a by b,i.e., 0 < r < b.

Algorithms. We focus on incremental Adam (Inc-Adam), which processes mini-batch gradients
sequentially from indices 0 to N — 1 in each epoch. Studying Inc-Adam provides a tractable way
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Algorithm 1 Det -Adam Algorithm 2 ITnc-Adam
Hyperparams: Learning rate schedule {7, };_,', Hyperparams: Learning rate schedule {n;}/_',
momentum parameters 31, 82 € [0, 1) momentum parameters 31, 32 € [0, 1)
Input: Initial weight wyo, dataset {X; };c[n] Input: Initial weight wo, dataset {X; };c[n]
1: Initialize momentumm_; =v_; =0 1: Initialize momentumm_; =v_; =0
2: fort=0,1,2,..., T —1do 2: fort=0,1,2,..., T — 1do
3: gt — Vﬁ(Wt) 3: g — V/Jit (Wt), iy =t mod N
4 my < fimy_g + (1 - Br)gy 40 my < fimy_q + (1 - f51)gy
S: 0 v Poviir + (1 — Bo)g? 50 v+ Bovisi 4 (1 — Bo)g?
6: Wil <= Wy — 1) \r}‘l‘% 6: Wil < W — 1 %
7: end for 7: end for
8: return wp 8: return wp

to understand the implicit bias of mini-batch Adam: our experiments show that its iterates converge
in directions closely aligned with mini-batch Adam of batch size 1 under both with-replacement and
random-reshuffling sampling. Sharing the same mini-batch accumulation mechanism, Inc—-Adam
serves as a faithful surrogate for theoretical analysis. Pseudocodes for Inc—Adam and full-batch
deterministic Adam (Det -Adam) are given in Algorithms 1 and 2.

Stability Constant e. In practice we often consider an additional e term for numerical stability and
update with w1 = Wy — ) = \/7 In fact, when investigating the asymptotic behavior of Adam,
the stability constant 51gn1ﬁcantly affects the converging direction, since vy — 0 as ¢ — oo and €
dominates v;. Wang et al. (2021) investigate RMSprop and Adam with the stability constant, yielding
their directional convergence to ¢5-max-margin solution. More recent approaches, however, point
out that analyzing Adam without the stability constant is more suitable for describing its intrinsic
behavior (Xie & Li, 2024; Zhang et al., 2024a; Fan et al., 2025). We adopt this view and consider the
version of Adam without e.

Problem Settings. We primarily focus on binary linear classification tasks. To be specific, training
data are given by {(x;, yi) }ie[n], Where x; € R%, y; € {—1,+1}. We aim to find a linear classifier

w which minimizes the loss
¥ 3 v = 3 o

where ¢ : R — R is a surrogate loss for classification accuracy and £;(w) = ¢(y;(w, x;)) denotes
the loss value on the ¢-th data point. Without loss of generality, we assume y; = +1, since we
can newly define X; = y;x;. In this paper, we consider two loss functions ¢ € {lexp, liog }, Where
Lexp(2) = exp(—2z) denotes the exponential loss and (15, (2) = log(1 + e~ *) denotes the logistic loss.

To investigate the implicit bias of Adam variants, we make the following assumptions.
Assumption 2.1 (Separable data). There exists w € R such that w'x; > 0, Vi € [N].
Assumption 2.2. x;[k] # 0 forall i € [N], k € [d].

Assumption 2.3 (Learning rate schedule). The sequence of learning rates, {n; }$2,, satisfies

(a) {m}2, is decreasingint, > o, m = 0o, and limy_,oc 7y = 0.

(b) Forall 3 € (0,1),c; > 0, there exist t; € N, ¢ > 0 such that Z::O BT (e =1 Me—r' —
1) < comy forall t > ¢.

Assumption 2.1 guarantees linear separability of the data. Assumption 2.2 holds with probability 1
if the data is sampled from a continuous distribution. Assumption 2.3 originates from Zhang et al.
(2024a) and it takes a crucial role to bound the error from the movement of weights. We note that
a polynomial decaying learning rate schedule 7; = (t 4+ 2)~%,a € (0, 1] satisfies Assumption 2.3,
which is proved by Lemma C.1 in Zhang et al. (2024a).

The dependence of the Adam update on the full gradient history makes its asymptotic analysis
largely intractable. We address this challenge with the following propositions, which show that the
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epoch-wise updates of Inc—Adam and the updates of Det ~Adam can be approximated by a function
that depends only on the current iterate. This result forms a cornerstone of our future analysis.

Proposition 2.4. Let {w,}{° be the iterates of Det—Adam with 81 < [5. Then, under Assump-

1/2
tions 2.2 and 2.3, if lim;_, o % = 0, then the update of k-th coordinate wy1[k] — wy[k]
can be represented by
w1 [k] — wilk] = = (sign(VL(w)[k]) + &) (D

for some lim;_,  €; = 0.

Proposition 2.5. Let {w.}:° be the iterates of Inc—Adam with 31 < [5. Then, under Assump-
tions 2.2 and 2.3, the epoch-wise update w° 11— w can be represented by

L A7V (w))
WB+1 — Wg = —1NrN Cinc(ﬂla 52) Z SR ) !
i€[N] \/Zje[N] By 'V Li(wi)?
where B;i,j) _ Y—j) mod N,62i7j) _ éi_j) mod N) Cine(B1, Ba) = 11:51{, 11—_/;;: is a function of
B, Ba, and lim, o €, = 0. If n; = (t + 2)~% for some a € (0, 1], then ||€,||c0 = O(r~/2).

+e |, (@)

Discrepancy between Det—Adam and Inc—Adam. Propositions 2.4 and 2.5 reveal a fundamental
discrepancy between the behavior of Det —~Adam and one of Inc-Adam. Proposition 2.4 demon-
strates that Det —~Adam can be approximated by SignGD, which has been reported by previous works
(Balles & Hennig, 2018; Zou et al., 2023). Note that the condition is not satisfied when V.L(w)[k]

decays at a rate on the order of ntl / 2£(wt), which often calls for a more detailed analysis (see Zhang
et al. (2024a, Lemma 6.2)). Such an analysis establishes that Det —Adam asymptotically finds an ¢ -
max-margin solution, a property that holds regardless of the choice of momentum hyperparameters
satisfying 81 < B2 (Zhang et al., 2024a).

In stark contrast, our epoch-wise analysis illustrates that Inc—Adam’s updates more closely follow
a weighted, preconditioned GD. This makes its behavior highly dependent on both the momentum
parameters and the current iterate. The discrepancy originates from the use of mini-batch gradients;
the preconditioner tracks the sum of squared mini-batch gradients, which diverges from the squared
full-batch gradient. This discrepancy results in the highly complex dynamics of Inc—-Adam, which
are investigated in subsequent sections.

3  WARMUP: STRUCTURED DATA

Eliminating Coordinate-Adaptivity. To highlight the fundamental discrepancy between
Det-Adam and Inc-Adam, we construct a scenario that completely nullifies the coordinate-wise
adaptivity of Inc—-Adam’s preconditioner by introducing the following family of structured datasets.

Definition 3.1. We define Generalized Rademacher (GR) data as a set of vectors {x; };c[n] Which

satisfy |x;[k]| = |x;[]]|,Vk,l € [d], for each i € [N]. We also assume that GR data satisfy
Assumptions 2.1 and 2.2, unless otherwise specified.

Applying Proposition 2.5 to the GR dataset, we obtain the following corollary.

Corollary 3.2. Consider Inc-Adam iterates {w:}{2, on GR data. Then, under Assumptions 2.2
and 2.3, the epoch-wise update w° 11— w0 can be approximated by weighted normalized GD, i.e.,

W9+1 - wg = —NrN <Ziem ai(r)Vﬁi(wg) + er> )
IVLWD)[2
where lim, o €, = 0 and ¢ < a;(r) < co for some positive constants c1, co only depending on
B, Ba, {XiYiein)- If me = (8 +2) 7 for some a € (0, 1), then ||e,[|oc = O(r=/2).

(€)

Although the using a structured dataset simplifies the denominator in Equation (2), the dynamics are
still governed by weighted GD, which requires careful analysis. Prior work studies the implicit bias of
weighted GD, particularly in the context of importance weighting (Xu et al., 2021; Zhai et al., 2023),
but these analysis typically assume that the weights are constant or convergent. In our setting, the
weight a;(r) varies with the epoch count r. We address this challenge and characterize the implicit
bias of Inc-Adam on the GR data as follows.
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Figure 2: Mini-batch Adam converges to the />-max-margin solution on the GR dataset. We train
on the dataset xo = (1,1,1,1), x1 = (2,2,2,-2), x2 = (3,3,-3,-3), and x; = (4,—4,4,—4).
Variants of mini-batch Adam with batch size 1 consistently converge to the ¢5-max-margin direction,
while full-batch Adam converges to the /..-max-margin direction.

Theorem 3.3. Consider Inc-Adam iterates {w;}2, with 1 < B2 on GR data under Assump-
tions 2.1 to 2.3. If (a) L(wy) — 0 ast — oo and (b) ny = (t + 2)° for a € (2/3,1], then it
satisfies

lim = Wy,,

t—00 ||Wt||2

where W, denotes the (unique) {o-max-margin solution of GR data {xi}ie[ N

The analysis in Theorem 3.3 relies on Corollary 3.2, which ensures that the weights a;(r) are bounded
by two positive constants, c; and cs. This condition is crucial to prevent any individual data from
having a vanishing contribution, which could cause the Inc-Adam iterates to deviate from the
{5-max-margin direction. Furthermore, the controlled learning rate schedule is key to bounding the
€, term in our analysis. The proof and further discussion are deferred to Appendix E. As shown in
Figure 2, our experiments on GR data confirm that mini-batch Adam with batch size 1 converges in
direction to the /5-max-margin classifier, in contrast to the ¢,-bias of full-batch Adam.

Notably, Theorem 3.3 holds for any choice of momentum hyperparameters satisfying 81 < (32; see
Figure 9 in Appendix B for empirical evidence. This invariance of the bias arises from the structure of
GR data, which removes the coordinate adaptivity that momentum hyperparameters would normally
affect. For general datasets, the invariance no longer holds; the adaptivity persists and varies with the
choice of momentum hyperparameters, as discussed in Appendix A. In the next section, we introduce
a proxy algorithm to study the regime where (5 is close to 1 and characterize its implicit bias.

4 GENERALIZATION: ADAMPROXY

Uniform-Averaging Proxy. A key challenge in characterizing the limiting predictor of Inc-Adam
for a general datasets is that its approximated update (Proposition 2.5) is difficult to analyze directly.
To address this, we study a simpler uniform-averaging proxy, derived in Proposition 4.1 under the
limit B2 — 1. This approximation is well-motivated, as 35 is typically chosen close to 1 in practice.

Proposition 4.1. Let {w,}:°, be the iterates of Inc—-Adam with 31 < [5. Then, under Assump-
tions 2.2 and 2.3, the epoch-wise update w? 11— w! can be expressed as

1By

0 0 _
Wiep1 — W = —TIrN + 6[32 ,

=5 \/z VLi(w)2

where lim sup,._, . ||€3, ()| 0o < €(B2) and limg,_,1 €(B2) = 0.
Definition 4.2. We define an update of AdamProxy as

(St = PI'X(Wt) £ vc(Wt) s

SN VLi(w)? )

Wit = Wy — 10y
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Proposition 4.3 (Loss convergence). Under Assumptions 2.1 and 2.2, there exists a positive constant
n > 0 depending only on the dataset {xi}ie[ N1, such that if the learning rate schedule satisfies
n < nand Ztoio N = 00, then AdamProxy iferates minimize the loss, i.e., lim;_, . L(w;) = 0.

To characterize the convergence direction of AdamProxy, we further assume that the weights
{w:}22, and the updates {d;}$°, converge in direction.

Assumption 4.4. We assume that: (a) learning rates {n; } 32, satisfy the conditions in Proposition 4.3,

(0) iy o0 o= £ W, and (¢) 3imys o0 ot £ 6

Lemma 4.5. Under Assumptions 2.1, 2.2 and 4.4, there exists ¢ = (cg,- -+ ,en_1) € AN~ such
that the limit direction W of AdamP roxy satisfies

L e GiXi

W o ,
/ 2.2
Zie[N] X

and c; = 0 fori ¢ S, where S = arg min, ey W | x; is the index set of support vectors of W.

&)

Prior research on the implicit bias of optimizers has predominantly focused on characterizing the
convergence direction through the formulation of a corresponding optimization problem. For example,
the solution to the £,,-max-margin problem,

max 1HWH2 subjectto w'x; —1 >0, Vi € [N],
weRd 2 p

describes the implicit bias of the steepest descent algorithm with respect to the £,-norm in linear
classification tasks (Gunasekar et al., 2018a). However, Equation (5) does not correspond to the KKT
conditions of a conventional optimization problem. To address this, we introduce a novel framework
to describe the convergence direction, based on a parametric optimization problem combined with
fixed-point analysis between dual variables.

Definition 4.6. Given c € AN~!, we define a parametric optimization problem Ppg.n(c) as

1
Pagam(c) : min —

Inin o ||W||i/l(c) subjectto w'x; —1>0, Vi € [N], (6)

where M(c) = diag(y/>;e(n c?x?) € R?¥4, We define p(c) as the set of global optimizers of

Pagam(c) and d(c) as the set of corresponding dual solutions. Let S(w) = {i € [N] | w 'x; = 1}
denote the index set for the support vectors for any w € X (c).

Assumption 4.7 (Linear Independence Constraint Qualification). For any c € AN~! and w € p(c),
the set of support vectors {X; };c5(w) is linearly independent.

Assumption 4.7 ensures the uniqueness of the dual solution for Pag,m(c), which is essential for our
framework. This assumption naturally holds in the overparameterized regime where the dataset
{Xi}ie[ny consists of linearly independent vectors.

Theorem 4.8. Under Assumptions 2.1 and 4.7, Pgam(c) admits unique primal and dual solutions,
so that p(c) and d(c) can be regarded as vector-valued functions. Moreover, under Assumptions 2.1,
2.2, 4.4 and 4.7, the following hold:

(a) p: ANt — R? is continuous.

(b) d: AN~ — RY\{0} is continuous. Consequenly, the map T (c) = dle) s continuous.

~ d(e)h
(c) The map T : AN=1 — AN=1 admits at least one fixed point.

(d) There exists c* € {c € AN71 : T(c) = c} such that the convergence direction W of
AdamProxy is proportional to p(c*).

Theorem 4.8 shows how the parametric optimization problem Pag,m(c) captures the characterization
from Lemma 4.5. The central idea is to treat the vector ¢ from Equation (5) in a dual role: as both
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Algorithm 3 Fixed-Point Iteration

Input: Dataset {X;};cn), initialization co € AN, threshold €, > 0
1: repeat
2: Solve Padam(co) : min 3 [|w]|a(c,) Subjectto w'x; — 1> 0,Vi € [N]
W — Primal(PAdam)
C1 < Dual(PAdam)
§ ¢ [ler — coll2
Cp < C1
until § < e,
return w

AN A

the parameter of Pagam(c) and as its corresponding dual variable. The convergence direction is then
identified at the point where these two roles coincide, leading naturally to the fixed-point formulation.

To computationally identify the convergence direction of AdamProxy based on Theorem 4.8, we
introduce the fixed-point iteration described in Algorithm 3. Numerical experiments confirm that the
resulting solution accurately predicts the limiting directions of both AdamProxy and Inc-Adam
(see Example 4.10). However, the complexity of the mapping 7" makes it challenging to establish a
formal convergence guarantee for Algorithm 3. A rigorous analysis is left for future work.

Data-dependent Limit Directions. We illustrate how structural properties of the data shape the
limit direction of AdamP roxy through three case studies. These examples demonstrate that both
AdamProxy and Inc-Adam converge to directions that are intrinsically data-dependent.

Example 4.9 (Revisiting GR data). For GR data {x; };c[n1, the matrix M(c) reduces to a scaled

identity for every c € AV ~!. Hence, the parametric optimization problem Pjgam(c) narrows down
to the standard SVM formulation

1
min §||w||§ subjectto w'x; —1>0, Vi € [N].

Therefore, Theorem 4.8 implies that AdamProxy converges to the {s-max-margin solution. This
finding is consistent with Theorem 3.3, which establishes the directional convergence of Inc—Adam
on GR data. Together, these results indicate that the structural property of GR data that eliminates
coordinate adaptivity persists in the limit S5 — 1.

Example 4.10 (Revisiting Gaussian data). We next validate the fixed-point characterization in
Theorem 4.8 using the Gaussian dataset from Figure 1. The theoretical limit direction is given by
the fixed point of T' defined in Theorem 4.8, which we compute via the iteration in Algorithm 3. As
shown in Figure 3, both AdamProxy and mini-batch Adam variants with batch size 1 converge to
the predicted solution, confirming the fixed-point formulation and the effectiveness of Algorithm 3.
Furthermore, this demonstrates that, depending on the dataset, the limit direction of mini-batch Adam
may differ from both the conventional /- and ¢,-max-margin solutions.

Example 4.11 (Shifted-diagonal data). Consider N' = d and {x;};c[q) € R with x; = z;e; +
52;‘# e; forsome § > 0and 0 < zg < --- < x4—1. Then, the {,,-max-margin problem

1
minEHWHgo subjectto  w'x; > 1, Vi € [N]

has the solution W, = (x0+(}i—1)67 s $0+(;_1)5) € R%. Notice that c* = (1,0,--- ,0) € A1
is a fixed point of 7' in Theorem 4.8, and W, = p(c*); detailed calculations are deferred to
Appendix F. Consequently, the ¢,,-max-margin solution serves a candidate for the convergence
direction of AdamProxy as predicted by Theorem 4.8. To verify this, we run AdamProxy and
mini-batch Adam variants with batch size 1 on shifted-diagonal data given by xo = (1,6, 9, d),
x1 = (6,2,6,9), xo = (4,0,4,6), and x3 = (6,6,0,8) with § = 0.1. As shown in Figure 4, all
mini-batch Adam variants converge to the /.,-max-margin solution, consistent with the theoretical
prediction.

A key limitation of our analysis is that it assumes 52 — 1 and a batch size of 1. In Appendix A, we
provide a preliminary analysis of how batch size and momentum hyperparameters affect the implicit
bias of mini-batch Adam. In particular, Appendix A.2 explains why our fixed-point framework does
not directly extend to finite (5.
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Figure 3: Mini-batch Adam converges to the fixed-point solution on Gaussian data. We train on
the same Gaussian data as in Figure 1 and plot the cosine similarity of the weight vector with the
£5-max-margin solution (left) and the fixed-point solution (right). The results show that variants of
mini-batch Adam with batch size 1 converge to the fixed-point solution obtained by Algorithm 3,
consistent with our theoretical prediction (Theorem 4.8).
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Figure 4: Mini-batch Adam converges to the /., -max-margin solution on a shifted-diagonal
dataset. We train on the dataset xg = (1,4,4,0), x1 = (4,2,4,9), x2 = (6,4,4,9), and x3 =
(6,6,0,8) with 6 = 0.1. Variants of mini-batch Adam with batch size 1 converge to the £,-max-
margin direction.

5 SIGNUM CAN RETAIN /,,-BIAS UNDER MINI-BATCH REGIME

In the previous section, we showed that Adam loses its £,,-max-margin bias under mini-batch updates,
drifting toward data-dependent solutions. This motivates the search for a SignGD-type algorithm
that preserves /,-geometry even in the mini-batch regime. We prove that Signum (Bernstein et al.,
2018) satisfies this property: with momentum close to 1, its iterates converge to the £,-max-margin
direction for arbitrary mini-batch sizes.

Theorem 5.1. Let & > 0. Then there exists € > 0 such that the iterates {w;}{2 of Inc-Signum
(Algorithm 4) with batch size b and momentum 3 € (1 — €, 1), under Assumptions 2.1 and 2.3, satisfy

3 T
min;e [N] X, Wt

lim inf > Yoo — 6, @)
=00 Wl oo

where

Yoo £ max min w'x;, D 2 max ||x[|,

[wlloo <1i€[N] i€[N]

and 1

e=——— min{§,%) fb<N, =1 ifb=N.
3y T /

Theorem 5.1 demonstrates that, unlike Adam, Signum preserves ¢.,-max-margin bias for any batch
size, provided momentum is sufficiently close to 1. This generalizes the full-batch result of Fan et al.
(2025). Moreover, the requirement 5 = 1 is not merely technical but necessary in the mini-batch
setting to ensure convergence to the ¢,,-max-margin solution; see Figure 10 in Appendix B for
empirical evidence. As shown in Figure 5, our experiments on the Gaussian dataset from Figure 1
show that Inc—Signum (8 = 0.99) maintains ¢,-bias, regardless of the choice of batch size. Proofs
and further discussion are deferred to Appendix G.
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Figure 5: Mini-batch Signum converges to the /. -max-margin solution. We train on the same
Gaussian data (N = 10, d = 50) as in Figure 1, using full-batch Signum and incremental Signum
with 8 = 0.99, for batch sizes b € {5, 2, 1}. Across all batch sizes, incremental Signum consistently
converges to the £,,-max-margin solution, in sharp contrast to incremental Adam.

6 RELATED WORK

Understanding Adam. Adam (Kingma & Ba, 2015) and its variant AdamW (Loshchilov &
Hutter, 2019) are standard optimizers for large-scale models, particularly in domains like language
modeling where SGD often falls short. A significant body of research seeks to explain this empirical
success. One line focuses on convergence guarantees. The influential work of Reddi et al. (2018)
demonstrates Adam’s failure to converge on certain convex problems, which motivates numerous
studies establishing its convergence under various practical conditions (Défossez et al., 2022; Zhang
et al., 2022; Li et al., 2023; Hong & Lin, 2024; Ahn & Cutkosky, 2024; Jin et al., 2025). Another line
investigates why Adam outperforms SGD, attributing its success to robustness against heavy-tailed
gradient noise (Zhang et al., 2020), better adaptation to ill-conditioned landscapes (Jiang et al., 2023;
Pan & Li, 2023), and effectiveness in contexts of heavy-tailed class imbalance or gradient/Hessian
heterogeneity (Kunstner et al., 2024; Zhang et al., 2024b; Tomihari & Sato, 2025). Ahn et al. (2024)
further observe that this performance gap arises even in shallow linear Transformers.

Implicit Bias and Connection to /.,-Geometry. Recent work increasingly examines Adam’s
implicit bias and its connection to ¢,,-geometry. This link is motivated by Adam’s similarity to
SignGD (Balles & Hennig, 2018; Bernstein et al., 2018), which performs normalized steepest descent
under the /,-norm. Kunstner et al. (2023) show that the performance gap between Adam and SGD
increases with batch size, while SignGD achieves performance similar to Adam in the full-batch
regime, supporting this connection. Zhang et al. (2024a) prove that Adam without a stability constant
converges to the £,,-max-margin solution in separable linear classification, later extended to multi-
class classification by Fan et al. (2025). Complementing these results, Xie & Li (2024) show that
AdamW implicitly solves an ¢,,-norm-constrained optimization problem, connecting its dynamics
to the Frank-Wolfe algorithm. Exploiting this {,,-geometry is argued to be a key factor in Adam’s
advantage over SGD, particularly for language model training (Xie et al., 2025).

7 DISCUSSION AND FUTURE WORK

We studied the convergence directions of Adam and Signum for logistic regression on linearly
separable data in the mini-batch regime. Unlike full-batch Adam, which always converges to the
{--max-margin solution, mini-batch Adam exhibits data-dependent behavior, revealing a richer
implicit bias, while Signum consistently preserves the ¢.,-max-margin bias across all batch sizes.

Toward understanding the Adam-SGD gap. Empirical evidence shows that Adam’s advan-
tage over SGD is most pronounced in large-batch training, while the gap diminishes with smaller
batches (Kunstner et al., 2023; Sreckovic et al., 2025). Our results suggest a possible explanation:
the /-adaptivity of Adam, proposed as the source of its advantage (Xie et al., 2025), may vanish in
the mini-batch regime. An important direction for future work is to investigate whether this loss of
¢ -adaptivity extends beyond linear models and how it interacts with practical large-scale training.

Limitations. Our analysis for general dataset relies on the asymptotic regime 2 — 1 and on
incremental Adam as a tractable surrogate. Extending the framework to finite 35, larger batch sizes,
and common sampling schemes (e.g., random reshuffling) would make the theory more complete.
See Appendix A for further discussion. Relaxing technical assumptions and developing tools that
apply under broader conditions also remain important directions.
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A FURTHER DISCUSSION

A.1 EFFECT OF HYPERPARAMETERS ON MINI-BATCH ADAM

Effect of Batch Size. To investigate how the choice of batch size affects the limiting behavior
of mini-batch Adam, we run incremental Adam on the same Gaussian data with N = 10,d = 50,
varying batch sizes among 1, 2, 5, and 10. Figure 6 shows that as the batch size increases, the cosine
similarity between ¢,,-max-margin solution increases. This result suggests that the choice of batch
size do affect the limiting behavior of Adam. Investigating the exact characterization of the implicit
bias of mini-batch Adam with practical batch sizes is left as a promising future direction.

Effect of Momentum Hyperparameters. Theorem 4.8 characterizes the limit direction of
AdamProxy, which approximates mini-batch Adam with a batch size of one in the high-£
regime. We investigate how this approximation fails in the different choice of momentum hy-
perparameters. Revisiting the Gaussian data with N = 10,d = 50, we run mini-batch Adam
with batch size 1 using LR schedule 7; = O(t~%%), varying the momentum hyperparameters
(81, B2) € {(0.1,0.95), (0.5,0.95), (0.9,0.95), (0.1,0.1), (0.1,0.5), (0.1,0.9) }.

The first experiment investigates the influence of 51 by varying 8; € {0.1,0.5,0.9} while maintaining
a high choice of 83 = 0.95. The results, presented in Figure 7, demonstrate that 5; does not affect
the convergence direction. This finding validates Proposition 4.1, which posits that our AdamProxy
framework accurately models the high-3, regime, regardless of the choice of ;.
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Figure 6: The choice of batch size influences the limit direction of mini-batch Adam. We train
on the same Gaussian data (N = 10,d = 50) as in Figure 1 and plot the cosine similarity of the
weight vector with the ¢»-max-margin solution (left) and the ¢,-max-margin solution (right), varying
batch sizes in {1, 2,5, 10}. As the choice of batch size becomes closer to 10 (full-batch), the limit
direction aligns closer to {.,-max-margin solution.
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Figure 7: 31 does not affect the convergence direction of mini-batch Adam for large 55. We train
on the same Gaussian data as in Figure 1, varying 8; € {0.9,0.5,0.1} with fixed S = 0.95, and
plot the cosine similarity between the weight vector and the fixed-point solution (Algorithm 3). All
mini-batch Adam variants with batch size 1 consistently converge to the fixed-point solution.
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Figure 8: (3 affects the convergence direction of mini-batch Adam. We train on the same Gaussian
data as in Figure 1, varying 55 € {0.9,0.5,0.1} with fixed 5; = 0.1, and plot the cosine similarity
between the weight vector and the fixed-point solution (Algorithm 3). Mini-batch Adam variants
with batch size 1 deviate increasingly from the fixed-point solution as 3> decreases.

Conversely, the choice of 35 shows to be critical. Figure 8 shows that for choices of 82 € {0.1,0.5},
the trajectory of mini-batch Adam deviates from the fixed-point solution of Theorem 4.8. It indicates
that the high-f, condition is crucial for the approximation via AdamP roxy and characterizing the
limit direction of mini-batch Adam in the low-/32 regime remains an important future direction.

A.2 CAN WE DIRECTLY ANALYZE INC—ADAM FOR GENERAL (357

As empirically demonstrated in Appendix A.1, the selection of 35 alters the limiting behavior of
Inc-Adam. This observation motivates an inquiry into whether our fixed-point formulation can be
directly generalized to accommodate general choices of 55. We proceed by outlining the technical
challenges that prevent such a direct application of our framework.

To begin with, let {w;} be the Inc-Adam iterates for 3; = 0 and we only consider the epoch-wise
update for simplicity. We denote w,, = w?, 1, = Cinc(0, 82)n,n as an abuse of notation. By
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Proposition 2.5, w,. can be written by
VLi(w:)

1€[N] \/ZJG[N] 5(1 ) ( )2

Wr+1 — W, = *777*67"

6 A

+ €,

for some €, — 0. Then, under the similar assumptions to Assumption 4.4, we characterize the limit
direction of Inc—Adam as follows.

Lemma A.1. Suppose that (a) L(w,) — 0, (b) Flim,_, o ”‘:’,"ﬁ 2 W, and (¢) Ilim,_ o0 Hs‘sﬁ 25

Then, there exists ¢ = (co, -+ ,cn—_1) € ANT1 such that the limit direction W of Inc—Adam with
B1 = 0 satisfies

~ CiX;

woo ) @®)
i€[N] \/ZJG[N] 522]) 3 ?

and c; = 0 fori ¢ S, where S = arg min; ey W | x; is the index set of support vectors of W.

The fixed-point formulation in Theorem 4.8 arises from constructing an optimization problem whose
KKT conditions are given by Equation (5) fixing the ¢;’s in the denominator. Therefore, to enable
similar fixed-point type characterization, the following question should be answered:

Given c € AN, can we construct an optimization problem whose solution is given by
* dixi . . . . . R
w* = Zie[N] —Z- s with dual variables d; > 0 satisfying that d; = 0 for
JE[N] 72 ]
J €5 =argmin, ¢y w* ' x;?

However, the answer is no. The index set S indicates support vectors with respect to x;, while our
X = %;(c), which disables formulation via KKT

dual variables are multiplied to #
/ZJE (N] B 23) 2252

conditions of an optimization problem. Thus, generalizing the proposed methodology for arbitrary
values of 3, is a notable direction for future work.

B ADDITIONAL EXPERIMENTS

Supplementary Experiments in Section 3. To investigate the universality of Theorem 3.3 with
respect to the choice of the momentum hyperparameters, we run mini-batch Adam (with batch size 1)
on GR dataset xo = (1,1,1,1), x; = (2,2,2,-2), x5 = (3,3,—3,—3), and x3 = (4, —4, 4, —4),
varying the momentum hyperparameters (51, 32) € {(0.1,0.1),(0.5,0.5),(0.9,0.95)}. Figure 9
demonstrates that its limiting behavior toward /5-max-margin solution consistently holds on the
broad choices of (1, 82).

Supplementary Experiments in Section 5. Theorem 5.1 demonstrates that Tnc—Signum main-
tains its bias to £,,-max-margin solution, while the momentum hyperparameter /3 should be close
enough to 1 depending on the choice of batch size; the gap between 8 and 1 should decrease as
batch size b decreases. To investigate this dependency, we run Inc-Signum on the same Gaus-
sian data as in Figure 1, varying batch size b € {1,2,5,10} and the momentum hyperparameter
B €{0.5,0.9,0.95,0.99}. Figure 10 shows that to maintain the ¢.-bias, the choice of 3 should be
closer to 1 as the batch size decreases.

C EXPERIMENTAL DETAILS

This section provides details for the experiments presented in the main text and appendix.

We generate synthetic separable data as follows:

* Gaussian data (Figures 1, 3, 5, 6 to 8 and 10): Samples are drawn from the standard Gaussian

distribution V' (0, ). We set the dimension d = 50 and sample N = 10 points, ensuring a positive
margin so that the data is linearly separable.
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Figure 9: Mini-batch Adam converges to the max /;-margin solution for GR data. We train
on GR dataset xo = (1,1,1,1), x; = (2,2,2,-2), x5 = (3,3,—-3,-3), and x3 = (4, —4, 4, —4),
varying the momentum hyperparameters. In all tested configurations, the family of mini-batch Adam
algorithms with batch size 1 converge to the /5 max-margin solution, which deviate significantly
from the ¢, bias of full-batch Adam.
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Figure 10: Effect of Batch Size on Inc-Signum. We run Inc-Signum on the same Gaussian
data (N = 10,d = 50) as in Figure 1 and plot the cosine similarity of the weight vector with
the /5-max-margin solution (left) and the ¢.,-max-margin solution (right), varying batch size b €
{1,2,5,10} and the momentum hyperparameter 5 € {0.5,0.9,0.95,0.99}. As the batch size
decreases, we should choose 3 closer to 1 to maintain the limit direction toward /.,-max-margin

solution.
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* Generalized Rademacher (GR) data (Figures 2 and 9): We use xo = (1,1,1,1), x; =
(2,2,2,-2), x5 = (3,3,—3,—3), and x5 = (4, —4,4, —4).

* Shifted-diagonal data (Figure 4): We use xo = (1,6, 9,9),x1 = (4,2,4,9), x2 = (4,6,4,6), and
x3 = (6,0,0,8) with 6 = 0.1.

We minimize the exponential loss using various algorithms. Momentum hyperparameters are
(81, P2) = (0.9,0.95) for Adam and 3 = 0.99 for Signum unless specified otherwise. For Adam
and Signum variants, we use a learning rate schedule 7, = no(t + 2)~* with 79 = 0.1 and a = 0.8,
following our theoretical analysis. Gradient descent uses a fixed learning rate 1, = 70 = 0.1. Margins
with respect to different norms are computed using CVXPY (Diamond & Boyd, 2016).

The fixed-point solution (Theorem 4.8) is obtained via fixed-point iteration (Algorithm 3) for Figures 3,
7 and 8. We initialize ¢y = (1/N,...,1/N) € AN~ set the threshold e, = 10~%, and converge
to the fixed-point solution within 20 iterations in all settings.

D MISSING PROOFS IN SECTION 2

In this section, we provide the omitted proofs in Section 2, which describes asymptotic behaviors of
Det-Adamand Inc—-Adam. We first introduce Lemma D.1 originated from Zou et al. (2023, Lemma
A.2), which gives a coordinate-wise upper bound of updates of both Det—Adam and Inc-Adam.
Then, we prove Propositions 2.4 and 2.5 by approximating two momentum terms.

Notation. In this section, we introduce the proxy function G : R? — R defined as

w) = —% Z 0 (w'x;).

1€[N]

Lemma D.1 (Lemma A.2 in Zou et al. (2023)). Assume 31 < By and let o = %
(1=B2)(B2—57)

Then, for both Det —Adam and Inc—Adam iterates, my[k] < a+/v:[k] for all k € [d]

Proof. Following the proof of Zou et al. (2023, Lemma A.2), we can easily show that the given
upper bound holds for both Det ~Adam and Inc—Adam. We prove the case of Inc-Adam, while it
naturally extends to Det —~Adam. By Cauchy-Schwartz inequality, we get

Iy (k]| = | Y B7(1 = B1) VL, (W) [K]
7=0

<3 BT B)IVL, (wir K]

t 1/2 5 (1- 4) 1/2
< (Z B3 (1 _BQ)VEitT(WtT)[k“Q) (Z *52 ) (CS inequality)

7=0 7=0
< an/vilk].

The last inequality is from

BI(1-p1)2 _ (1-5)? = <5%>7_ Bo(1—B1)%
;) 7(1—f2) = 152 Z B2 7(1—52)(52—5@7@'

7=0

O
Proposition 2.4. Let {w;}S° be the iterates of Det—Adam with 31 < 5. Then, under Assump-
1/2
tions 2.2 and 2.3, if limy_, o, ﬁ = 0, then the update of k-th coordinate wy1[k] — w[k]
can be represented by
w1 [k] — wi[k] = —ne (sign(VL(we)[K]) +e) (1

Sfor some lim;_, ., €, = 0.
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Proof. We recall Lemma 6.1 in Zhang et al. (2024a), stating that

my[k] — (1= BT VL(W)[K]| < cnmeG(we),

]Jka] 1= A v tw) | < coyiG(we)

forall ¢ > t; and k € [d]. Based on these results, we can rewrite m?[k] and /vZ[k] as

my[k] = (1= B ) VL(W)[k] + em ()G (W),
Vvilk] = \/1 = B [V L(w)[K]| + ey (8)G (W),

Note that ﬁgwtg < 1 from Lemma I.1 and

+ |% . %2| for positive numbers €, €5, b. Therefore,

a+te€q a
b+eo b +

where e (t) = O(ne),ev(t) = OG/m).
|

e
fal
+

N

[

€1
b+eo

o 1/2 W
if limy_ oo ﬁ = 0, then we get

m; [k] t+1

Vvilk] \/1 g+

sign (VL(wy)[k])

o+l
< €m(t)G (W) " 1 -0 sign (V.L(we)[k]) - ev(t)G(we)
1= B [VL(w)[K]| | |y/1— 85" 1— By [VL(wy)[K]|
—0 bounded —0
—0
From 5, 5 — 0, we get wi [K] — wilk] = —n 2l = o (sign (VL(w0)[K) + ) for some
1imt_>oo € — 0. ’ O]

Proposition 2.5. Let {w,}{2 be the iterates of Inc—Adam with 81 < [5. Then, under Assump-

tions 2.2 and 2.3, the epoch-wise update w? - wV can be represented by

Y iep BV L (W)

Wi — W) = =8 | Cine(B1, B2) Z = +e |, )
e /D B VL (w)?
where B{7) = glim) med N g(Lg) _ glim)med N oo (3, 8)) = 1 = % is a function of

b1, Ba, and lim, o0 €, = 0. If ny = (t + 2)~* for some a € (0, 1], then He,«Hoo = O(r—%/?).
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Proof. First, we characterize two momentum terms m; and v, with respect to the current iterate wy.
Consider t = rN + s and the gradient at time ¢ is sampled from data with index s in r-th epoch.

(k] Z BV L (wl) K]

r jE[N]

v Y BTIVL (WO K|

JE[N]

t
<1 B - BVL:,_ (wer )[H] 2/311—/31 Lo (w) K]
=0

=| Zﬂf(l — BV L, (Wi—r)[K] - 5
7=0

(A): error from movement of weights

t
+1Y BT = B)VL,_( Z& 1— B)VL;,  (wO)[K]|
7=0
(B): error between w and w
t
1— i
IS AT = VL ) - e 3 AL Wl
7=0 L jelN]

(C): error from infinite-sum approximation

Note that

t
A) <Y AA =B (Wl oxi,,) = (W] xi, )|, K]

7=0
t
E/(WT TXH T
=S s1 = ) | s T ]
=0 Wy Xiy_ .

< (1 - Vﬁ T aBlZ/lThT -1
< (1= B1) max [VL;(wi)l IZB )l

Hk )
< (1- VL; kll,
< (1= Bi)ean: jﬂelﬁ\)[ﬁ\ (W) K]

(k%)

< (1= Bu)eN BN ey max VL, (wy) k]|
JelN]
for some ¢y > 0 and ¢t > ¢;. Here, (%) is from Lemma 1.3 and
el(Wt—Wt—r)Txit,,l —1< ellwe=we—rlloolxi,_ llv _ 4 < eOBIT iy 1,

where By = max ey ||x;[|1. Also, () is from Assumption 2.3, and (%) is from

Vﬁ'(“’t)[k]
< : YL (WO Kl
max [VL; (wi) [R]] < max [V (w?)[H] ;gf‘gf‘w: (w)[H]
/ T
= max |VL;(w))[k]| - max M
FE[N] JENT |0/ (w " x;)
< N Bunen max VL, (w?) K],

jenN
where the last inequality is from

'(wi x))

ST XD | < max el e x| < gV By
K/(WOT x;)| -

JE[N]

max
J G
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Also, observe that

t
B) < Zﬂm — BN (Wi x4, ) — € (W0 X, )i, K]

—251 1-p)

7=0

(W;rxlt 7—) o

el( 1f ‘r)
*)

t
<(1- 61)}2% VL (W Rl (e NPy —1) Y 7 5]

-
110wy i, I, [K]]

—

()
< (enNBIN 1) max [V.L; (w k],
JE[N]
where () is from Lemma 1.3 and
T
[’(thXi,,_T) —1l< el(w‘_WS)Tx%th —1< 6HWt—W2H00Hxit7.,-H1 < eONBinen 1,
e(w) xi, )
and (%) is from Zizo B < ﬁ
Furthermore,
t
=D _BT(1=B)VL;,_( 2/31 1= 1) VL, . (w))[K]
=0
< Z BT =) [VLi,_, (w))[K]|
T=t+1
< gt max [VL;(w m[E]]
JE[N]

Therefore, we can conclude that

(k] —

L (wO) k)|

’B JE[N]
< ((1 = Br)e*NPyIN oy (NP1 — 1) it ma VL (w)[K]l,
JjeE

éem(if)
and e, (t) — 0 as t — oo.

Similarly,

vy

Z B L (w) k|

JEIN

=| Zﬁ%(l — B2)VLi,_ (Wi )[K]* -
7=0

1—52

1—32
- By

S BEIVL (W) [k

JE[N]

t
<Y B3(1 = B2)VLi, ., (Wir) Zﬁg 1= Bo)VLi,_, (wy) k]|
T7=0

(D): error from movement of weights

t
130870 - BV L, Zﬁz 1= B VL, (WO
=0
(E): error between w and w?
t
1- .
FIY B0 = )V (WP~ 222 S AL (wh) K.
=0 b jem

(F): error from infinite-sum approximation
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Observe that

D)<Y B3 =)l (Wi, )* = (W xi,_ )i, K]

7=0
U(wl %)
E'(W;rxif ‘r)

t
= B5(1—pa)
7=0
< (1—ﬂ2)max|vc we)[K]|? Zgr (2B ST _ 1))

2
110w xi, )P |, (K]

—

*)

(x5)
< (1= Bo)chym max [VL;(wy) K],
JE[N]

(k)

< (1-Ba)e QO‘NB”T”C’meaX VL (wy) K]

for some ¢}, > 0 and ¢ > ¢}, where (x), (%), (**x) can be derived similarly. Also, we get

t

E) <" B5 (1= o)l (w) xi, )% — (w0 xi, )i, (K]

=0
< (NP 1) ma [ (WK
Zﬁg (1= B2)VLi,_ (WK =D B3 (1= B2)VLi,_, (w))[K]”
7=0

< Z B3 (1~ Ba) [VLi,_ (WO)[K][?

T=t+1
< pEtt VL (w)[k]]?
< By jnel[%l i (w2 [E]7,

which can also be derived similarly to the previous part. Therefore, we can conclude that

2N BV (wO) k)

_62 JE[N]
< ((1 = Bo)e® N BN chypy 4 (2N Briw — 1) +B§+l)}2f}fﬁ IVLj (W) K],

vrlk] =

éﬁ\I(t)

and €, (t) — 0 as t — oo. Since both v[k] and = gj%, > el BV L (w0)[k]? are positive and
la? — b?| = |a — b||a + b| > |a — b|? holds for two positive numbers a and b, we get

|Vvﬂkl— 1_&\/2&”)% (WKT?| < Ve 6] mave [V, (w?) ]

€[N]

Based on these results, we can rewrite m?[k] and \/v3[k] as

1-— s, ’
ms[k] = 51 DY B TL (W) K] + e (t) rmacs [V L5 (w)) ]

JE[N]

) (1)

ST = 1— P55 Z BT L (wO)[ _|_\/7max\Vﬁ DI,

1_ﬂ2 JE[N]

(b)

(e2)
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for some error terms e, (t), €, () such that |e, (t)] < em(t),|e,(t)] < ev(t). Note that

ZIZ; -7 | T s S | | + |b 62| for positive numbers €1, €2,b. Thus, we
can conclude that
mill @] [, [@ @], o
va[k]  (b) (b) (b) (b

since
()]
(®) [f;@ N

@
F
(b)‘ F \ﬁ 0.

Now consider the epoch-wise update. From above results, we get

m; |k
W, K] - Z s Vs[wl

e B VL (W) K]
Ve B8V (w) )2

= - Z TNirn+s Omc Blaﬂ ) + erN-i—s[k] 5

(10)

for some €; — 0. Since lim;_,o, 1 = 0, the difference between 7, for different s € [N]
converges to 0, which proves the claim.

Now consider the case 1, = (¢t + 2)~* for some a € (0, 1]. Then it is clear that

em(t) = (1 — B ) aNBinrN 2" + (eaNerN _ )+Bt+1 ( fa)’
€v(t) — (1 _ﬂ ) 2aNB1nrN /n +< 2aNBin,N _ )+ﬁt+1 ( _a).

Therefore, from Equation (9), we get

> jein BT VL (w0 (K]

—— — Cinc(B1, B2) 4 = O(t~v?),
Vvilh] VS e BV L (w0 2
which implies €;[k] = O(t~*/?) in Equation (10). Note that
>je 5 SN L5 (w0) k)
Z Nrn+s | Cinc ﬂ17ﬁ2 L ) -‘rerN.:,_S[kJ]
@jem BV L (wO) k]2
£p(s)
- n U n
rN+s — IIrN rN+s
=1 p(s) + ——pl(s) + €-Nislk
77N§ (s) o (s) o N+s[k]
Ae;z\urs[k]
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Furthermore,
NIrN — N(r+1)N N - —1
’I]TN < + T‘N + 2) (r )7
from Bernoulli’s inequality. Since p(s) is upper bounded by CS inequality, we get €/,  [k] =
O(r~%/?), which ends the proof. O

E MISSING PROOFS IN SECTION 3

In this section, we provide the omitted proofs in Section 3. We first introduce the proof of Corollary 3.2
describing how GR datasets eliminate coordinate-adaptivity of Inc-Adam. In Appendix E.1, we
review previous literature on the limit direction of weighted GD and prove Theorem 3.3.

Corollary 3.2. Consider Inc—-Adam iterates {w;}{2, on GR data. Then, under Assumptions 2.2
and 2.3, the epoch-wise update w® 11— wY can be approximated by weighted normalized GD, i.e.,

> N] ai(r)VL(w )
0 _ w0 . i€ ‘
Vi1 W, MrN < ||V,C( 9)”2 + €],

where lim, o, €, = 0 and ¢; < a;(r) < co for some positive constants c1, co only depending on
B1, Bas {xiYieiny- If e = (t +2) = for some a € (0, 1], then ||€, | o = O(r=/2).

3

Proof. Given GR data {x;};c[n1. let 2; = |x;[0]|. Notice that
S Sie B VL (WD) > e B VL (w?)
i,j i,l
e BV L (W02 ER) /Dy B8 10w, 1)) 227

5(1‘»1)
=> > VL;(w?)

€56 Siep B0 10 (w0, x1)) 2

Z ﬁyd) 0

> — = | VL)
s \oetm) f Saepm 55710 (w0, %)) 22

- BUV LW VL (w?)
B 1, L(w)]o"
J i€ /T A0l ((w, i) Paz ) VAW 2

a;(r)

Therefore, it is enough to show that a;(r) is bounded. Note that
N IVLW)|2 1 e (w0, xa)) |2
T~ =
\/ﬂév_l \/Zle[N] |€/(<W9axl>)‘2xl2 \/ﬁév_l \/Zle[N] |€/ W07X1>)‘2x2
Vd  Die 1wl xi) | _ _VaN

< \/,32 \/Zle[N] |0 (w0, %)) |22} = \/F

To find lower bound of a;(r), we use Assumption 2.1. Take v € R? such that ||v||z = 1 and
vix; >0,Vi € [N]. Lety = min; e[y v x; > 0. Note that

(V) TVLWD) = 5 3 (e xa) Vx> S ()

lE[N] le[N]
and by CS inequality,
VLW 2 = || = vIIVLW) 2 = (—v, VL(w Z €' ((w,x1)) (11)
le[N
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Therefore, we can conclude that

0 () (w9, x
as(r) > NAY- IV LWl D N Diepn 10wy xi))|
Ve 1w xi))2a] Ve 1w xi)) 2
S B
max;e[N] Zi
N-—-1
where (x) is from Equation (11). Now we can take ¢; = %{Mm, and cg = \/‘;% only depending
on B, B2, {xi} O

E.1 PROOF OF THEOREM 3.3

Related Work. We now turn to the proof of Theorem 3.3, building upon the foundational work of
Ji et al. (2020), who characterized the convergence direction of GD via its regularization path. Sub-
sequent research has extended this characterization to weighted GD, which optimizes the weighted
empirical risk Lg() (W) = 3¢ ¢;()0(wTx;). Xu et al. (2021) proved that weighted GD con-
verges to £o-max-margin direction on the same linear classification task when the weights are fixed
during training. This condition was later relaxed by Zhai et al. (2023), who demonstrated that the
same convergence guarantee holds provided the weights converge to a limit, i.e., 3lim; o, q(t) = §.

Our setting, however, introduces distinct technical challenges. First, the weights are bounded but not
guaranteed to converge. The most relevant existing result is Theorem 7 in Zhai et al. (2023), which
establishes the same limit direction but requires the stronger combined assumptions of lower-bounded
weights, loss convergence, and directional convergence of the iterates. A further complication in
our analysis is an additional error term, €, in Corollary 3.2, which must be carefully controlled.
Our fine-grained analysis overcomes these issues by extending the methodology of Ji et al. (2020),
enabling us to manage the error term under the sole, weaker assumption of loss convergence.

Definition E.1. Given a = (aj, -+ ,ay) € R, we define a-weighted loss as £%(w) =

> iev) @iLi(w). We denote the regularized solution as w*(B) 2 arg min ., <p £4(W).

By introducing a-weighted loss, we can regard weighted GD as vanilla GD with respect to weighted
loss. To follow the line of Ji et al. (2020), we show that the regularization path converges in direction
to {3-max-margin solution, regardless of the choice of the weight vector a if it is bounded by two
positive constants, and such convergence is uniform; we can take sufficiently large B to be close the
{4 solution for any a € [cy, ca]™

Lemma E.2 (Adaptation of Proposition 10 in Ji et al. (2020)). Ler 1 =
arg max||y |, <1 Min;e [N (v,x;) be the (unique) ls-max-margin solution and ci,cy be two
positive constants. Then, for any a € [c1, ca]™

w(B)

li =1.

Bgnoo B "
Furthermore, given € > 0, there exists M (c1, c2,¢, N) > 0 only depending on ¢y, ca, €, N such that
B > M implies || & éB) — 1| < eforany a € [c1,ca)”.

Proof. We first have to show the uniqueness of /5-max-margin solution. This proof was given by Ji
et al. (2020, Proposition 10), but we provide it for completeness. Suppose that there exist two distinct
unit vectors u; and u, such that both of them achieve the max-margin 4. Take us = % asa
middle point of u; and us. Then we get

1 N
ug x; = 5 (ulx; +ugx;) > 9,
for all i € [N], which implies that min;¢ ] ug x; > 4. Since u; # up, we get |lus|| < 1, implying
that m achieves a larger margin than 4. This makes a contradiction.

Now we prove the main claim. Let ¥ = min;e[y1(1, X;) be the margin of . Then, it satisfies
cM(m{in}(W“(B),xﬁ) < L%(wW(B)) < L*(B1) < Neol(BY). (12)
i€[N
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N
c

For £ = leyp, we get min;e(n)(W?(B), x;) > BY — log =2, which implies

we(B 1 N
w( ),xi>2’yf—1og£.

5 o (13)

52[11{71] B

Since f,-max-margin solution is unique, éB) converges to i. Note that the lower bound in

Equation (13) does not depend on @ € [cy, c2]™. Therefore, the choice of M in Lemma E.2 only
depends on ¢y, co, €, N.

For £ = {104, Equation (12) implies that £(min;cn)(W*(B),X;)) < N??K(B&). Notice that ]\i—? >1
and min;e (W (B),x;) > 0, BY > 0 hold for sufficiently large B. From Lemma L.4, we get

©a(B

min w(B)

i€[N] B

Neco

a —1).

1
xi) 24— 7 log(2

Following the proof of the previous part, we can easily show that the statement also holds in this
case. O

Lemma E.3 (Adaptation of Lemma 9 in Ji et al. (2020)). Let o, c1,co > 0 be given. Then, there
exists p(a) > 0 such that |w||s > p(a) = L2((1 + a)||wl|l21) < L2(w) for any a € [c1, ca]Y

Proof. Let 1 be the /o-max-margin solution and 4 = max;c|y)(Q1, X;) be its margin. From the
uniform convergence in Lemma E.2, we can choose p(«) large enough so that

< ay,

xr
[
2

forany a € [c1,co]N. For 1 < i < n, we get
(W([lwll2),x:) = (W*([[wll2) = [[w]l2t,x;) + {[|w|[21,%;)
< affwll2 + ([lwl21,x;)
< (1 +a)[[wll2(t,x;).
This implies that
LA((1+ a)[[wl2q) < LYW ([[w]2)) < L*(W),
for any a € [c1, o). O

Theorem 3.3. Consider Inc-Adam iterates {w:}{2, with 1 < B2 on GR data under Assump-
tions 2.1 to 2.3. If (a) L(wy) — O ast — oo and (b) ny = (t + 2)° for a € (2/3,1], then it
satisfies

i Vg
e [Ilwe]l2 Wez

where Wy, denotes the (unique) l2-max-margin solution of GR data {X;};c|n)-

Proof. From Corollary 3.2, we can rewrite the update as

0 0 NrN 0
Wy — W, =~ a;(r)VL(w,) — nyne;
. Ll 2
TlrN

—__ N Ea(r) 0y _ . .
WL, V£ (W)~ tever,

where ¢; < a;(r) < co for some positive constants ¢1, ¢o and lim, o, €, = 0.

€
1—e¢
that H% = 1 — e. Since ||w¢||2 — oo, we can choose ry such that ¢t > roN = |wyll2 >
max{p(«), 1}, where p(«) is given by Lemma E.3. Then for any r > r(, we get

(VL (W), wy = (1 + o) [[wll2) > £2(w)) — £2((1 + a)||w)]|21) > 0,

0
First, we show that lim,_, oo H\:/VW = Wy,. Let € > 0 be given. Then, we can take o = )
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which implies
(VL (W), W)

v

(1+ a)[[wl2(VLH (W), i)
Therefore, we get
<WE+1 - WS? ﬁ>

= oz, VT D)+ (e, @)
1 <_ IrN
IVL(WD)l2

Z (]_ + « V‘Ca(r)(wg)?W9> + <_n7'N€7'7 ﬁ>

1
= w0 w9 WO s 0 . N
(1 + o)|[wO|; (W — W, wp) + T+ )W (Mrne, wy) + (—nrN €, Q)

(31wl = 512l = 3w wB) + ¢ am W
= ([ Z||w — = — —||w €, 01— —F
(14 a)[lwifls \ 2" 712 2 ? i e TN BT ) [wlle
1 1
S S (I JTP BT 1P B w0 _9
- (1+a ||W9||2 (2||Wr+1||2 2” ||2 ||Wr+1 ||2 777N||6T||27
0
where the last inequality is from (1, y€,, 0 m) < nenll€r||2 Hu — #ﬂw?” ‘2 <
277TNH€7‘||2~
Note that
0
sIwliills = 3wl | 0
> [[wyqll2 = [[wy |2
[Wll2 i "
Furthermore,
[wpi1 — w3 < [wii1 — will3 -1 ( 2 VL) (w)|? o lle ||§)
— — T I
2(1+ a)|[w2ll2 2 2\ IVL(wO)lI3
< cgr e,
a(r)

for some c3 > 0 and sufficiently large r, since 1,y = O(r~%), ||€.|| = O(r~*/?), and e (w)I”

. VLWl
is upper bounded from

2
VL) (w9)]|3 ) (CQ\fmaXze[N] Ti Zie[N] |f/(<Wg7Xl>)|) B c%dNQ(maxie[N] x;)?

2 . i
(3 Licrm 12w, x)1) v

IVLwIE
with v = min;e[n)(Wy,,X;) > 0. Note that (x) is from

)

I

o IwRlle — w2 -
(wy — wgo,u> 2 Hrl_’_—a - Z c3s 2 —2 Z Nsn[|€s]l2

s=To s=To

_2a _3,4
(1= ) (Iwlllz — 1w I2) - (Z 201 3" eps )

S=To S=To

v

=c5<00

since ||€,|| = O(r~%/?) and a € (2/3,1]. As a result, we can conclude that

0 1 —€)(||w? w ,a) +c
( WOT ) > (1 —e)(Iwlla — Iw? [l2) + (W) , @) + s
w2 ||Wr||2

)
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which implies

0
,a) > 1 —e.

lim inf
W,

=]

Since we choose € > 0 arbitrarily, we get lim, _, Hv‘:ﬁ = Wy,.

. . ~ . wg w o
Second, we claim that lim;_, - Hv“’,"ﬁ = Wy,. It suffices to show that lim,_, HW ~ il |l
0 for all s € [N]. Note that
e - ), = Lo ~ e, * e - e
[w2llz [[will2 ], ||W°H2 [will2fly [l flws ||2 [will2 1]
< Iwill2 = [Iw?ll2 s = w;l2
[wll2 w2
S _ 0
olwi=wil
w2
which ends the proof. O

F MISSING PROOFS IN SECTION 4

Proposition 4.1. Let {w,}:°, be the iterates of Inc—Adam with 31 < [5. Then, under Assump-

tions 2.2 and 2.3, the epoch-wise update w° 41— w! can be expressed as

1- 5y

0 0 _
W, — W, = —TrN 1 _ 62

N + €, (T) )
> iz VLi(wD)?

where limsup,._, . ||€3, () |loc < €(B2) and limg, .1 €(f2) = 0.

Proof. Note that

Z > e 51 L;(w)[k] - 2 el <Ei€[N] Biiyj)v‘cj(wg)[k])

ie[N] \/Zjem VL (wR? \/zje[N] VL;(wO)[k]?
18 VLW
SN v

Furthermore,

Siem AIVL W] e BV (wh)[K]
Ve BEIVE WORE /e VE (WK

S e SVE O[]V e B VE (e
Ve B VL (wO) )2 et VL (W) kP2

5(1] ~
Z EE ( -V 5“)<

IA

29



Under review as a conference paper at ICLR 2026

where limg, .1 €(82) = 0. Substituting to Equation (2), we get

1-pY  VL(w)[K]

0 1kl — wOlk = -, Cine (81,
B S TN S =y wre

+ €p, (’f‘) [k]

L k
—TIrN proxy 62 v ( )[ } + €8, (’I“)[k‘] )
VN, VLW [k
where Croxy (52) = \/ hmsupr_>C>O lles, (r)]loo < Ne(B2), and limg, 1 €(B2) = O

We now turn to the proof of Proposition 4.3. Note that AdamProxy can be regarded as normal-
ized steepest descent with respect to an energy norm, where the inducing matrix depends on the
current iterate and the dataset. This view takes a crucial role to make the convergence guarantee of
AdamProxy.

Lemma F.1. Consider AdamProxy iterates {wy} under Assumption 2.1. Then, it satisfies

(a) Prx(w) = argmin (VL(w), V), where P(w) = diag (\/ZiE[N] V,Ci(W)2) and P(w) =

[IvVlle@w)=1

ez P (W)

P—l(w)

(b) There exist positive constants ci, ¢z depending only on the dataset {X;},c|n) such that ¢, ||v||2 <
[V][pw) < callvllz forall v,w € R%
Proof. (a) Note that Prx(w) = —P(w)~'VL(w) = argmin, (VL(w), V) + There-

)
fore, normalizing by || V.L(w) ||%,1(w),

LI -
we get Prx(w) = argmin (VL(w), V)
[[vilp@)=1

(b) It is enough to show that every element of P(w) is bounded for some ¢, co > 0. For simplicity,

we denote [¢/(wx;)| = i, mingepn e I%:[j]l = B > 0 and max;eqny jea [%:ilj]| =
By > 0.
Note that
1
P(w > rixilk S T )
e J€ld) /5 o O
1
2
Z i X gy riB2)?

€[N] Zje[dlm
_ B 1 Xiew? 1 B
B% d(Zz‘e[N]ri)Q — Nd Bg.

Letv € Rist |v||g = 1land v x; > O Vi € [N] (since {x;} is linearly separable). Let
min;e(n) v' x; =7 > 0. Then, we get v VL'(W) 2ieV] VX >y, e[n] > Which

2
implies V|2 IVEW)IIZ ) = (v, VEW)? > 52 (Sicn 7i)

Note that Hv||P(W =2 el (Eie[N] 2 |x;[4])? ~V[j]2) < dBay/> e(n) i To wrap up, we

get

and therefore,

30



Under review as a conference paper at ICLR 2026

) 2x.[k]2 /ST 2
ZzE[N]r Xl[] < Z 5 Z[k]Q@ ElE[N] r; < dB%

?

P(w)lk, k] = rExX < .
( )[ ] HVAC( )”P(w) 1 i€[N] 72 (ZiE[N]Ti)Q 72

As a result, we can conclude that
2

1
dB2ZN

dB2
VIl < IVlpw) < —2|Ivll, ¥v,w €R%
(w) 2

dB2
v

and ¢co =

B?
and take ¢c; = TN
2

O

Proposition 4.3 (Loss convergence). Under Assumptions 2.1 and 2.2, there exists a positive constant
n > 0 depending only on the dataset {X;};c[ny, such that if the learning rate schedule satisfies

e < nand Zfio N = 00, then AdamProxy iferates minimize the loss, i.e., lim;_, ., L(w;) = 0.

Proof. First, we start with the descent lemma for AdamProxy. We follow the standard techniques
in the analysis of normalized steepest descent.

Let D = supy cga Max;e(n] |[Xi||p-1(w). Notice that D < ¢z max;e[n [|Xil|2 < oo by Lemma F.1.
Also, we define

Tw = min v ' x;
HVHP<w)<1 i€[N]

be the || - ||p(w)-max-margin. Also notice that y £ Supy,cps Yw < 00, since

ax min vTxi< max min vTxi

m
Vil (w) <1i€[N] vl <2 i€[N]

for any w € R? by Lemma F.1. Then, we get

L(Wip1) = L(we) + e (VL(wy), Prx(we)) + % Prx(wy) ' V2L(wy + B(wWii1 — wy)) Prx(wy)

(%) n2D?
< L(we) = e[ VLWl [p-1(w,) + sup{G(w), G(Wi11}
(%) 2 D2em0 D

< L(wi) = | VL) o1 ey + G lwi)

(k%) 21)26"]0D

< oton) = (= 20, ) IV L)1

< L(wy) = TIVL®llp- v

for n; < W Note that (x) is from
Prx(wy) " V2L(W) Prx(wy) Z 0" (w)(Prx(w;) " x;)?
lE [NV]
<< Z ()| Prx(we) |15 [1xil[T < D*G(w),
1€[N

where the last inequality is from Lemma 1.1, and (#x), (*+x) are also from Lemma I.1. Telescoping
this inequality, we get

T
1
3 D VLW [P (wy) < L(Wao) = L(wr) < L{wy,),

t=to
which implies Y2, n/|VL(Wy)|lp-1(w,) < ©oo.  Since ZtT:tO 7 = o0, we get
IVL(W¢)||p-1(w;) — 0. From (b), we get VL(w;) — 0, and consequently, £(w;) — 0. O
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To prove Lemma 4.5, we first establish the following lemma.
Lemma F.2. Let (a(t));>0 be a sequence of real vectors in RY, and {x;}ics C R? be the dataset

Dics @i(t)xi .
—=ies L ' satisfies ||by||o >
ST Satisf [bell2 =
ey CiXi

C > O0forallt > 0. Then every limit point ofm is positively proportional to Wfor
some ¢ € AN satisfying ¢; = 0 fori ¢ S.

with nonzero entries for an index set S C [N]. Suppose that b; =

Proof. Define a function F : AlSI=1 — R? as
Dies dixi
Z’LES d12 12

Since {x;}ics has nonzero entries, F' is continuous. Let A = {d € AlSI=1 . ||[F(d)|. > C}.

Since F is continuous, A is a closed subset of AlSI=1, Furthermore, since ||d; ||z > C for all t > 0,
{a(t)}i>0 € A.

Now let & be a limit point of H(;sﬁ. Define a function G : A C AlSI=1 5 R9 a4
Yies diXi
EZES d? 3

F(d) =

755‘
\/ i€S dl’&

Notice that G is continuous on A and § = limy_, . G (a(t)). Since A is bounded and closed, Bolzano-
Weierstrass Theorem tells us that there exists a subsequence a(t,,) such that 3lim,, ,~ a(t,) =c €
A. Therefore, we get

0 = lim G(a(t,)) = G(lim a(t,)) = G(c).

n—oo n— o0

Dies CiXi

N Then we regard c € AN~ by taking ¢; = 0
i€S Xy

Hence, the limit point b is proportional to

fori ¢ S. O
Lemma 4.5. Under Assumptions 2.1, 2.2 and 4.4, there exists ¢ = (co, -+ ,cN—1) € AN such
that the limit direction W of AdamProxy satisfies

. C; X,

1/ Zie[N] cix;

and ¢; = 0 for i ¢ S, where S = arg min; ey W | x; is the index set of support vectors of W.

Proof. We start with the case of £ = (. First step is to characterize 5 , the limit direction of é;. To
begin with, we introduce some new notations.

- From Assumption 4.4, let w, = g(t)W + p(t) where g(t) = ||w]|2 — oo, p(t) € R? and
ﬁp(t) — 0.

- Lety = ming(X;, W),%; = (X4, W),7 = mingg(x;, ). Then it satisfies S = {i € [N] :
(x;, W) = v}. Here, note that 5 > ~v > 0.

- Let a(t) € RN be oy (t) = exp(—p(t) Tx;).
- Let B = max; [|x;]|2 and Cy = min;e g, |x, [x]|20 |%: (k]| > 0.
Since ||p(t)||/g(t) — 0 and ~y,7 > 0, there exist ¢, , te, > 0 such that

p(0)Tx; < |p(t) 2B < e1vg(t), ¥t > to,, Vi € [N],
p(1)Tx; = ~ (D)1 B = —ex7g(t), Yt > Loy, Vi € [N,
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for all €1, €2 > 0. Then, we can decompose dominant and residual terms in the update rule.

Dics exP(—79(t)) exp(—p(t) "xi)xi 4 Diese exp(—7ig(t)) exp(—p(t) "xi)x;
\/Zle exp(—27:9(t)) exp(—2p(t) Tx;)x \/ZZE[N exp(—27;9(t)) exp(—2p(t) Tx;)x;
2d(t) +r(t).
r(0)ll2 _

To investigate the limit direction of d;, we first show that d(¢) dominates r(t), i.e., lim; o0 I‘\ld(w
0. To do so, we bound the ratio of each coordinate

r(O)k]] _ Yiese exp(—g(t)) exp(—p(t) "xi) | k]|
[d@OEI > ses exp(—g(t)) exp(—p(t) T xq)xi[k]|

Notice that
> exp(—g(t)) exp(—p(t) "x)|xilK]| > Y- i exp(—g(t)) (1)
ics =
> Cy, exp(—yg(t)) exp(—e1yg(t))
= Crexp(—(1+ €1)vg(t)),

> exp(—7ig(t)) exp(—p(t) "x;)|xi[k]| < NBexp(—7g(t)) exp(e27g(t))
€St
= NBexp(—(1 —e2)79(t)).

Therefore, we conclude that

r(t)| Z ) Z r(t)[K]| Dicse exp(—g(t)) exp(—p(t) "xi)[xi[k]|
d®)llz = o 1d@®)ll2 — 2 14 ()] k\ oyt ZieS exp(—7g(t)) exp(—p(t) "xi)[x;[k]|
< Z O exp(- (W —7)g(t)) = 0.
keld]
Next, we claim that every limit point of % is positively proportional to %c};z for some
ie[N] G X
c=(co, - ,cn—1) € AN1satisfying ¢; = 0 for i ¢ S. Notice that
()] = —2mies XP(9(1) exp(—p(t) "x;)x; k]
V/Esein ©p(=279(1)) exp(=2p(t) T, )[R
Dics exp(—7g(t)) exp(—p(t) " x:)xi[k]
V Y ies exp(=279()) exp(=2p(t) Txi)x7 [K] + 3 c 50 exp(—27ig(t)) exp(—2p(t) Tx:)x? K]
_ Yiesexp(—g(t)) exp(—p(t) Txi)xi[k] 1
ies exp(—27g(t)) exp(—2p(t) Tx;)x2 [k 350 exP(—=27ig(t)) exp(—2p(t) T x:)x} K]
\/E & ( (®) ( () i k] 1+ Zfesexp(—2’yg(t))exp(—2p(t)TXi)X?[k]
Let b, = Dics exp(—vg(t)) exp(—p(t) " x;)x; B dics exp(—p(t) "x;)x; Since

ses €xp(—27g(t)) exp(—2p(t) Tx;)x3 es €xp(—2p(t) Tx;)x?
> (—279(t)) exp(—2p(t) Tx;)x} > (—2p(t) Tx;)x7
Diese exp(—27ig(t)) exp(=2p(t) " x;)x} [K]
> ics exp(— 279( ) exp(—2p(t) Tx;)x} k]
limit point of ”b i . Notice that by is an update of AdamP roxy under the dataset {x; };cs, which

implies ||b,||2 is lower bounded by a positive constant from Lemma F.1. Therefore, Lemma F.2
proves the claim.

— 0, every limit point of % is represented by a

33



Under review as a conference paper at ICLR 2026

Hence, we can characterize 6 as

§=lim 2y QDX
S ol s (D) +

125 [[d(F) +

d(t i CiX;
= lim ®) x Z cIN]
t=oc [|d(t)]|2

for some ¢ € AN~ satisfying ¢; = 0 fori ¢ S.

Second step is to connect the limiting behavior of §; to the limit direction W using Stolz-Cesaro
theorem. From the first step, we can represent

8, = h(t)d + o (1),

where h(t) = ||0¢]|2 and h(t) o(t) — 0. Notice that w; — wqo = ZZ;B nsh(s)(8 + h(ls)a'(t)). Since
6+ 75y () is bounded, we get St msh(s) — oco. Then we take

a; = Z’% )(d + ia(t))

h(s)
= Z nsh(s)

Then, {b;}$°, is strictly monotone and diverging. Also, lim;_, 'z:::g: = 4. Then, by Stolz-
Cesaro theorem, we get

This implies w; = b,d + 7(t) where = ( ) —5 0. Also notice that w; = g(t)W + p(t). Dividing by
g(t), we get

wzlimwzhmﬁ 3_|_T(t) ]
t—o00 g(t) t—o00 g(t) by
Since /5 norm is continuous, we get
b t b
1= |[|w]2 = lim —— H5 () = lim ——,
t— g(t) bt 9 10 g(t)

which implies w = 4.

Then we move on to the case of £ = £)og. This kind of extension is possible since the logistic loss has
a similar tail behavior of the exponential loss, following the line of Soudry et al. (2018). We adopt
the same notation with previous part, and we decompose dominant and residual terms as follows:

5, = LieslO9W) + PO Siesn [€Cg(t) + () Tx0)Ixs
Vi [ Gig(t) + (O Tx) P2 /S 1€ (g (0) + (1) T 23
2d(t) +r(t).

Notice that lim,_, o lj‘%z))‘ =lim, o H% = 1. Therefore, the limit behavior of d(¢) and r(¢) is
Cexp .

identical to the previous £ = {e,, case. This implies the same proof also holds for the logistic loss,
which ends the proof. O

Theorem 4.8. Under Assumptions 2.1 and 4.7, Pagam(c) admits unique primal and dual solutions,
so that p(c) and d(c) can be regarded as vector-valued functions. Moreover, under Assumptions 2.1,
2.2, 4.4 and 4.7, the following hold:
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(a) p: AN~1 = R? is continuous.

& _d(c)

COI Is continuous.

() d: AN~ R]ZVO {0} is continuous. Consequently, the map T'(c)

(c) The map T : AN=1 — AN=1 admits at least one fixed point.

(d) There exists c* € {c € AN71 . T(c) = c} such that the convergence direction W of
AdamProxy is proportional to p(c*).

Proof. We first show that Pagan (c) has a unique solution and p(c) can be identified as a vector-valued
function. Since M(c) is positive definite for every ¢ € AN~ 1||w||pp(c) is strictly convex. Since
the feasible set is convex, there exists a unique optimal solution of Pag,m(c) and we can redefine
p(c) as a vector-valued function.

Since the inequality constraints are linear, Pagam(c) satisfies Slater’s condition, which implies that
there exists a dual solution. From Assumption 4.7, such dual solution is unique.

(a) Let f(w,c) = 3||w|[m(c) be the objective function of Pagam(c) and F = {w € R : w'x; —
1 > 0,Vi € [N]} be the feasible set. It is clear that such f is continuous on w and c. Let
¢ € AN~1! and assume p is not continuous on €. Then there exists {c;} € AN~! such that
limy_,o0 ¢ = € but |p(cx) — p(€)||]2 > € for some ¢ > 0. We denote w;, = p(cy) and
w = p(c).

First, construct {uy} C F such that limy_,, ux = Ww. Then we get a natural relationship
between wy, and uy, as
1

1
iw;—M(ck)wk < iugM(ck)uk.

Second, consider the case when {wy, } is bounded. Then we can take a subsequence wy,, — Wy.
Since {wy,, } C F and F is closed, we get wy € F'. Also, since f is continuous, f(wy, ,Cp, ) —
f(wyq, ¢). Therefore,

f(wk,”ckn) § f(wvckn) — (Wo,é) S f(waé)v

n— oo
which implies wo = w. This makes a contradiction to ||p(c;) — p(€)[|2 = ||wi — Wl]2 > €.

Lastly, consider the case when {wy } is not bounded. By taking a subsequence, we can assume

that ||wg||2 — oo without loss of generality. Define v, = ”v“’,"% Since v, is bounded, we can

take a convergent subsequence and consider limy_, ., v = v without loss of generality. Then,

"
1+ 1+ 1 + 1 ug ug
SwiM <-uM SviM <= M .
g Ml we < gufMiceus = o Miee < 3 (0t ) e ()

Since f is continuous and {uy} is bounded, we get

1 1
—v M(e)v = f(v,¢) = lim f(vg,cx) = lim v} M(ci)vs

e () e (1) -

< limsup =

Note that M(c) is positive definite and v " M(c)v = 0 implies v = 0, which makes a
contradiction.

(b) Letcy € AN~! be given and take w* = p(c). From KKT conditions of Pagam(co), the dual
solution d(cyp) is given by

M(co)w* = Y di(co)x;

and such d;(cg) > 0 is uniquely determined since {x;};c g(w+) is a set of linearly independent
vectors by Assumption 4.7.
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()

(d)

Now we claim that d(c) is continuous at ¢ = cg. Notice that min;g¢ g(w=) w*'x; > 1. Since

p is continuous at ¢y, there exists § > 0 such that p(c)'x; — 1 > 0 for i ¢ S(w*) and
c € AN=1 N Bjs(cp). Therefore, S(p(c)) € S(w*) onc € AN~ N Bs(co).

Let X be a matrix whose columns are the support vectors of w*. On ¢ € AN~1 N Bs(cp), KKT
conditions tells us that

Mepe)= > dilei € S dile)xi = Xd(e)
ieS(p(c)) ieS(w*)

@ d(e) = (X xr )~ "M(c)p(c),

where (x) is from S(p(c)) C S(w™) and (*x) is from the linear independence of columns of X.
Notice that M(c) and w*(c) are continuous on ¢ = cg, which implies that d(c) is continuous
on ¢ = ¢y.

Since at least one of the dual solutions is strictly positive, d is a continuous map from AN~ to

RZ;\{0}. This implies that 7" is continuous, since d ﬁ is continuous on RY;\{0}.

i€[N]

Since AV~ is a nonempty convex compact subset of R™, there exists a fixed point of T" by
Brouwer fixed-point theorem.

From Lemma 4.5, there exists ¢* € AN~! such that w o 2‘51701*’;’2 with ¢f = 0 fori ¢ S
i=1Ci " X§
% for some k£ > 0. We claim
ies i "X

that such ¢* becomes a fixed point of 7" and w o p(c*).

where S’ = argmin; ¢y W x;. Then we take W =

Consider the optimization problem Pagam(c*) and its unique primal solution w* = p(c*).
Notice that min;e|y w'x; = v > 0 since AdamProxy minimizes the loss. Therefore,

w* = “wand d;(c*) = k% satisfy the following KKT condition

M(c")w* = > dix;,d; > 0,
i€S*
w*'x; —1>0,Vi e [N],

where S* = {i € [N]: w* " x; — 1 = 0} is the index set of support vectors of w*. This implies
that T(c*) = ¢* and w = yw* o w* = p(c*), which proves the claim.

Detailed Calculations of Example 4.11. Consider N = d and {x;};c[q) € R? where x; =
T;e; + 52#1. ejforsome 0 < dand 0 < zp < -+ < x4—1. {sc-max-margin problem is given by

min ||w]|« subject to wix; >1,Vie [N].

(For the convenience of calculation, we use the objective ||/ rather than 1||w]|%.) Its KKT
conditions are given by

Owloo > D Aixi,

€[N

Z )\i(WTXi — 1) = 0,

i1€[N]
A >0, w'x;—1>0,Vi€[N].
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* 1 1 d * 1 d :
NOte that W = (Io+(d71)57. Ty :Eo+(d71)5) € R and A = (m,o,' . ,0) S R Satlsfy
the KKT conditions since
1
Owloo| =2 s = 3 Ak
w=w* o + (d - 1)(5 (€[]
d—1)6
3 A(w? xz—1)_A*($0+(d 1>5—1)=0,
i€[N] o+ ( )
Af>0,w" 'x; —1>0,Vi € [N].
Now we show that ¢* = (1 0,---,0) € A% !isafixed point of T in Theorem 4.8 and w* = p(c*).
Note that for &k = W > O 1t satisfies

M(c*)w* = diag(zo,d, - ,0)w* = kxo =k Z crx;
i€[N]

> w xi—1)=0,

1€[N]

¢ >0,w'x; —1>0,Vi € [N],

which implies T'(c*) = ¢* and w* = p(c*).

G MISSING PROOFS IN SECTION 5

Algorithm 4 Tnc-Signum

Hyperparams: Learning rate schedule {nt}zﬂ:_ol, momentum parameter 5 € [0, 1), batch size b
Input: Initial weight wy, dataset {X; };c[n]

1: Initialize momentumm_; = 0

2: fort=0,1,2,..., 7T —1do

32 By« {(t-b+1) (mod N)}=}

4 g < VLp, (W) = % ZieBt f’(W;Xi)Xi

5. my <+ Bmy g+ (1-B)g:

6:  Wip1 < Wy — 7 sign(my)

7: end for

8: return wp

Related Work. Our proof of Theorem 5.1 builds on standard techniques from the analysis of the
implicit bias of normalized steepest descent on linearly separable data (Gunasekar et al., 2018a;
Zhang et al., 2024a; Fan et al., 2025). The most closely related result is due to Fan et al. (2025),
who showed that full-batch Signum converges in direction to the maximum /¢,,-margin solution.
Theorem 5.1 extends this result to the mini-batch setting, establishing that the mini-batch variant
of Inc—Signum (Algorithm 4) also converges in direction to the maximum ¢,-margin solution,
provided the momentum parameter is chosen sufficiently close to 1.

Technical Contribution. The key technical contribution enabling the mini-batch analysis is
Lemma G.2. Importantly, requiring momentum parameter 3 close to 1 is not merely a techni-
cal convenience but intrinsic to the mini-batch setting (b < N), as formalized in Lemma G.2 and
supported empirically in Appendix B.

Implicit Bias of SignSGD. We note that as an extreme case, Inc—-Signum with § = 0 and batch

size 1 (i.e., SignSGD) has a simple implicit bias: its iterates converge in direction to | iE[N] sign(x;),
which corresponds to neither the ¢5- nor the ¢,,-max-margin solution.

37



Under review as a conference paper at ICLR 2026

Notation. We introduce additional notation to analyze Inc—Signum (Algorithm 4) with arbitrary
mini-batch size b. Let B; C [N] denote the set of indices in the mini-batch sampled at iteration ¢.
The corresponding mini-batch loss Lg, (w) is defined as

Zﬁw X;).

1€B:

Lp, (W

! \tl

We define the maximum normalized ¢.,-margin as

A
Yoo = Mmax min WTXZ > 0,
lWlloo <1 i€[N]

and again introduce the proxy G : R? — R defined as
1
(w) £ - >l (w ).
1€[N]

As before, we consider ¢ to be either the logistic loss 105 (2) = log(1 + exp(—z)) or the exponential
loss lexpp () = exp(—z). Finally, let D be an upper bound on the ¢;-norm of the data, i.e., ||x;|1 < D
forall i € [N].

Lemma G.1 (Descent inequality). Inc-Signum iterates {w.} satisfy
L(Wi1) < L(we) = 7:(VLW), Ag) + CrniG(we), Ay = sign(my),

where Cy = %Dze"UD.
Proof. By Taylor’s theorem,

L(weyr) = LWy =) = L(we) = m(VL(Wr), Ar) + mATVQE( — () A
for some ¢ € (0, 1). Note that for any w € R9,

1 1
AfVIL(W)A, = Y W) (A %) < i D w I AE il < D*G(w),

1€[N] 1€[N]

where we used G(w) > & 37, vy ¢ (W x;) from Lemma L.1. Then,
L(wig1) < L(we) = ni(VL(W), Ag) + Ut PAVEL(We = () Ay
< L) ~ VLW, D) + 1mD Glw, — i)
< L(wy) = ne(VL(W), Ag) + §Tlt2D2€ng(W)7

where we used G(w') < eDHW/*WHOOQ(W) for all w,w’ from Lemma I.1. Finally, choosing
Cp = 3D?¢™P, we obtain the desired inequality. O

Lemma G.2 (EMA misalignment). We denote e, := m; — VL(w¢). Suppose that 3 € ({2, 1).
Then, there exists to € N such that for all t > t,

ledls = lmy = VL(wy)[l1 < [(1 = B)DE(F = 1) + Cume + C28] G(wy)
where C1,Csy > 0 are constants determined by 3, N, b, and D.

Proof. The momentum m; can be written as:

—B)Y BTgi—r=(1-B)> BVLs,_ (Wi_s),
7=0

7=0

and the full-batch gradient V£(w;) can be written as:

VL(wy) =B VEL(we) + (1= )Y B7VL(wy),

=0
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Consequently, the misalignment e; = m; — V.L(w;) can be decomposed as:

)Y (VL (Wir) = VL, (W)

7=0

—8)) BT(VLs, ,(Wi) = VL(Wy))
=0

— BV L(wy),
and thus

—B)Y B (VLs, (Wir) = VLs, (W)

7=0

el =

1

=:(A)

= B) Y BT (VLs, . (wWi) = VL(wy))

1

=:(B)
+ |8V LWy, -
N————

= (0
We upper bound each term separately.

First, the term (A) represents the misalignment by the weight movement, which can be bounded as:

(A) = ZBT VLp, (Wir) = VLp,_ . (W)
7=0 1
t
—B)Y _B7IVLs,_, (Wir) = VLs,_. (W)l
7=0
]‘ ! !/
ZﬂT =Y (wlxi) = (w/ x:))x;
zEBt - 1
‘. D
43)2573 S el x) — € (wl x|
= 1EBL_+
O(wl . x;)
BT (W x)| | = —
Z le;T t [I(W;I—XZ)
(1 - T gl(w;l‘rxi)
S Wt Z:ﬂ Z [I(WTXZ') -1 9
= ZEBt—T t
where we used NG(w) = — ZiG[N] O(wix;) = > ie[N] [0'(w ;)| > max;eqny [€/(wx;)] in

the last inequality. For all ¢ € [N,
U (wixi)
o (w]x;)
By Assumption 2.3, there exists ty € N and constant ¢; > 0 determined by 5 and D such that

ZZZO BT (el 2o Mt 1) < eymy forall ¢ > ¢g. Then, for all ¢ > ¢y, we have

t
< LDV Gy S praerimmer 1)
7=0

—1l< e\(Wt—Wt—r)Txi\ —1< elwe=—wi—rlloollxilli _ 1 <eP o Mt 1.

t
= (1—-B)DNG(wy) ZﬁTeDZ:’:l M

=0

< (1= B)DNeymG(wy).
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Second, the term (B) represents the misalignment by mini-batch updates. Denote the number of
mini-batches in a single epoch as m := £'. Since B; = {(t-b+1) (mod N) b=, note that B; = B;
if and only if i = j (mod m). Now, the term (B) can be upper bounded as

t

B)=|[(1=8)>_ B (VLs, ,(wi)— VL(w;))

7=0

1

m

_ ZBT VﬁBt T(wt) — %ZVEBJ' (Wt)

=0 j=1 1
m 1 t

=0-8)2 BT ——> 87| VLg,(wi)

j=1 \7<t:(t—7)=j (mod m) 7=0 1

1 t
<@-pmome| Y 5 LS max Ve (ol
J€lm] 7<t:(t—7)=j (mod m) m 7=0 J€lm]
1 t
< (1-B)Dm*G(w,) - max > BT ——=>"p,
J€ml 7<t: (t—7)=j (mod m) m =0

where the last inequality holds since

N
max IVLs, (W)|1 = 5 max Z O (wx)x; ll)z_: |0/(wx;)|-D = ?g(w) = DmgG(w),

1

for all w € R%. It remains to upper bound max;e ] ‘ZTQ: (t—7)=j (mod m) B — 1 Zi:o B87.
Fix arbitrary j € [m]. Note that

T 1 ; T
(1-8) > BT ——>8
7<t: (t—7)=j (mod m) 7=0

=

DI e 3y
7=0

k=0
L] L)1 [ mo ) ¢
=1=-p)> B -(1-5) Y (mﬁmk ZﬂT> —1=-pH— > 7
k=0 k=0 7=0 r=m(l £ -1)+1
J 1 1
( - m|_ J+ Z ﬁMk|: _ _m(l_ﬁm)]
LtJ 1
() X - B)*
S (1_ 5t m+ Z #
k=0
t—m 1 (m = 1)(1 = )
<U-P "+ g
(%) . 2 (m—1)(1—-pB)?
m—1

=(1-8)p""+ T(l - B),

where the inequalities (%) and (*x) hold since (1 — €)™ < 1 — me + Wez <1 — Feforall
0<e< 1andchoosee—l—ﬂ
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Similarly, we have

t

1
(=8| > 8 - > B
7=0 7<t: (t—7)=j (mod m)
L 15—
SA=H— T -(1-p prE
7=0 k=0
R L 1By
— (1 — B) Z <5mk' Z IBT> + (1 _ 5)7 Z /87' _ (1 _ 6) Z Bm(k-‘rl)—l
=0\ =0 m | L k=0
1 t L%J—l 1
SU-pn Y X |l a-pn
m T:§n+2 kZ:O m
15 -1
_ 1 -m+271 _ gm—1 N mk i _pmy _ _ m—1
i S B DI RO R
15— )
< l6t7m+2(175m71)+ ﬂmk (mil)(lfﬂ)
m P 2
1 —m+2 m—1 1 (m — 1)(1 — 6)2
< g1 B )+175m- 5

m—1

<(1-p)Br™m 4+ ——(1 - 7).

<SU-B)BT+ (1 B)
Combining the bounds, we get

B) < (1 —B)Dm(B""™m +m — 1)G(wy).
Finally,
(C) = BV L(W)[ly < BT DG(wy).
Therefore, we conclude
lleflr < [(1 —B)Dm(m — 1) + Cin: + C2ﬁt] G(wy)

where C, Cs > 0 are constants determined by 3, m, and D. O

Corollary G.3. Suppose that € (Nbe, 1). Then, there exists to € N such that for all t > t,
Inc-Signum iterates {w;} satisfy

L(Wii1) < LWe) = (ve0 — 2(1 = B)DF (5 = 1) = (201 + Cr)ne — 2C25°)G(wy),
where Cy, C1,Cy > 0 are constants in Lemmas G.1 and G.2.

Proof. By Lemma 1.1, we get
(VL(wWy), Ay = (my, Ay) — (e, A¢)
ey = llelllAdlloo
(IVL(w)[lr = lleellr) — lletllx
IVL(we)ll1 — 2let]lx
Voo G(We) — 2le]1.
Now using Lemma G.1 and Lemma G.2, we conclude
L(Wi1) < L(we) = 1:(VLW), Ar) + CrniG(we)
< L(wi) = (Yoo G (W) = 2[lec]l1) + CrnfG(we)
< L(We) = (oo — 2(1 = B)DF (5 — 1) = (2C1 + Cr)ne — 2C28")G(wy),
which ends the proof. ]

v vl

Y
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Proposition G.4 (Loss convergence). Suppose that 3 € (1 — ZTQCO’ 1)ifb< Nand g € (0,1) if
b= N, where Co := DE (X —1). Then, L(w;) — 0 ast — cc.

Proof. Note that 8 € (%, 1) since Yoo = MaX|w| . <1 MiNje[n] w'x; < D. By Corollary G.3,
there exists to € N such that for all ¢t > ¢,

1 (Yoo — 2C0(1 = B) — (201 + Cr)ne — 2C2")G(wy) < L(wy) — L(Wig1).

Since 7;, 3 — 0 as t — oo, there exists ¢; > ¢, such that for all ¢ > ¢,
(2C) + Cp )y + 2058" < 12

Then,

23 mG(wi) £ 3 (9200 (1=8) = 201+ ) —2C28')G < 3 Lw)L(wirn) < oo,

t=t1 t=t1 t=t1
Thus, -2, 7:G(w¢) < oo and since Y ;°, 7; = oo, this implies G(w;) — 0 and therefore
L(w;) > 0ast — oo. O
Proposition G.5 (Unnormalized margin lower bound). Suppose that € (1 — Z%, 1) ifb < N and
B € (0,1)ifb= N, where Co := DX (4 — 1). Then, there exists t, € N such that for all t > t,

t—1

QC1+CH Zn

T=ts

G(w,

) 202770
L(w;)

i€[N]

-1
min w' x; < (Yoo — 2Co(1 — B)) Z -
T=t4

where Cqy := D%(% — 1) and Cy, Cy,Cy > 0 are constants in Lemmas G.1 and G.2.

Proof. By Proposition G.4, there exists time step ¢; € N such that £(w;) < 1"]%,2 for all t > t,.
Then, /(w/ x;) < %E(Wt) <log2 < 1, and thus min,¢|y) w, x; > 0for all ¢ > t,. Then, for all
t >,

N
exp(— min w, x;) = max exp(—w, x;) < max log(1 + exp(—w ' x;)) < NL(w:)

i€[N] i€[N] ~ log 2 ig[N] log 2

)

) NE( t)

for logistic loss, and exp(— min;e(n] W, x;) < NL(w for exponential loss.

Using Corollary G.3 and G(w) < £(w) from Lemma I.1, we get

G(wi_1)

m + (201 + CH)ntQ_1 + QCQﬂtlnt—1>

L£(w)) < Lwi_s) (1 — (oo = 2Co(1 = By

< L(wir) exp (—woc ~9Co(1 — B))ms E ; (20, + Cr)i_, + 2026“%—1)
_ g t—1 t—1
§£(Wts)exp< (Yoo —2C(1 — Z +(2C1 + Chr) ZWT+2CZZB 777)
=t T=ts T=ts
log 2 — = 20
< ]%7 exp( (Yoo — 2Co(1 — B Z + (2C1 + Ch) Zn3+127§>-
=t T=ts
Thus, we get
Nﬁ(wt)
T et a7
exp(= 112[1151] Wi Xi) log 2
— t—1 20!
<exp< ('700—200 1— Z 201+CH)Z773+ _277()):
=tq T=1g

which gives the desired inequality.
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Theorem 5.1. Let & > 0. Then there exists € > 0 such that the iterates {w;}{2 of Inc-Signum
(Algorithm 4) with batch size b and momentum 3 € (1 — €, 1), under Assumptions 2.1 and 2.3, satisfy

3 T
min;e [N] X, Wt

lim inf > Yoo — 6, @)
t=o0 [Welloo
where
Yoo & max minw'x;, D2 max|x;||,
[wlloo <1 4€[N] i€[N]
and
1
€= ———————min{J, L= ifb <N, e=1 ifb=N.
TR R ¢

Proof. Let Co := D4 (5 — 1) so that e := min{52-, J&=} if b < N and e := 1if b = N. Note
that Cy = 0if b = N. Suppose that 8 € (1 —¢,1).

Let ¢y be a time step that satisfy Corollary G.3. By Proposition G.4, there exists t* > ¢, such that
(201 + Cy)ne + 2028t < I and L(w;) < 101%2 for all ¢ > t*. Then, for each t > t*, we get
ig:’;g >1— Nﬁéwt) > 1. By Corollary G.3, for all ¢ > t*,

G(wi_1)

L(wi) < L(we 1) (1 ™ (oo =260 =AY 0 7y

+(2C, +Cy)nt_, + 2026“%1)

1 1
< L(Wi—1) (1 = 3 eell-1 + 8%077t1>

1
< L(wi_1)exp (’yoom_1>

8
5 t—1
S ﬁ(Wt*)eXp <—87;n7>
log 2 Yoo
< N eXP<8§UT .

Consequently, by Lemma 1.1, we have

G(wy) NL(wy) Yoo
T 21— zl-ew (82717 :

forall t > t*.
Finally, using Proposition G.5, we get
min;e () Wthi
[willoo
*_ o xt—1 —
(10 = 2C0o(1 = 8)) (Iwoll + 45! e + S mre™ 8 Zimie 17) 4 (21 + Ciy) TiT 2 + 2o
t—1
[woll + 327 2o 7-
t*—1 t — oo yri—l t—1
_ O ZT:() Uk + Z‘r:t* e 8 =t 17 + ZT:t* 7772'
- t—1
ZT:O 777'

VYoo — 200(1 - B) -

<

I'herefore, we conclude
. T,.
min;e [N} Wy X;

lim inf;_, Wil
t]loo

2700_200(1_6)27_6
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H MISSING PROOFS IN APPENDIX A

Lemma A.1. Suppose that (a) L(w,.) — 0, (b) Flim, n\a‘szW £ W, and (¢) Flim, _ o0 Ht;sﬁ L5

Then, there exists ¢ = (cg, -+ ,cn—1) € AN~ such that the limit direction W of ITnc—Adam with
81 = 0 satisfies
CiX;

ES B ) J
i€[N] \/Zje[zv] By e2x?

and ¢; = 0 fori ¢ S, where S = arg min, ey W x; is the index set of support vectors of W.

w

®)

Proof. We follow the proof of Lemma 4.5. The only difference is that the update direction d,- has an
additional 5;” ) term in the denominator. In case of £ = £.p, by following the line of Lemma 4.5,
we can easily show that § can be characterized by

@ C; X,

d x =
i€[N] \/ZjG[N] By 3x?

for some ¢ € AN~ satisfying ¢; = 0 fori ¢ S. Using the same technique based on Stolz-Cesaro

theorem, we can also deduce that w = §. Since we can extend this result to £ = £, following the
line of Lemma 4.5, the statement is proved. O

I TECHNICAL LEMMAS

1.1 PROXY FUNCTION

Lemma I.1 (Proxy function). The proxy function G satisfy the following properties: for any given
weights w, w’ € R? and any norm || -

>

(a) v 9(w) < [[VLWw)[. < DG(w), where D = maxien|xil« and v =

MaX||w(j<1 Min;e[n] w ' x; is the || - ||-normalized max margin,

(b) 1 HEM < Fw) <,

L(w

~—

(C) g(W) 2 % 276[1\7] gll(WTX,L‘),
(d) G(w') < eBIW'=wIG(w), where D = max; e[y |[Xil[+

Proof. This lemma (or a similar variant) is proved in Zhang et al. (2024a) and Fan et al. (2025).
Below, we provide a proof for completeness.

(a) First, by duality we get
1
IVL(W)||« = max (g, —VL(w)) > max —— Z O(wx)g %

lel<1 ~ lell<1 Nie[N]
> G(w) max min g' x;
( )I\g\léliE[N]g
Second, we can obtain the lower bound as
1 1
Vel == 5 D2 fwTxxill < -5 D £wTx)xill. < DG(w).
i€[N] 1E€[N]
(b) For exponential loss, % = 1. For logistic loss, the lower bound % >1-— %(w) follows

from Zhang et al. (2024a, Lemma C.7). The upper bound follows from the elementary inequality

U, (2) = li%p—(i) < log(1 + exp(—2)) = liog(2) forall z € R.
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(c) For exponential loss, the equality holds. For logistic loss, the elementary inequality ﬂlog( z) =

1_(;;;;))(;(2)2) > (H:fé( Sy = élog( z) for all z € R, which results in
:——Zﬁ’w X;) E—ZE”W X;).
i€[N] i€[N]
(d) First, for exponential loss, —f¢,,(2") = —exp(z —2")lix, (2) < —exp(|2’ —z|){ey, (2), and for
logistic loss, —],,(2') == %E{Og( ) < —exp(|2’ — 2])f},,(2) hold for any z, 2 € R.

By duality, we get
1 1
N ! Ty ) — & U T, . ’ T,
g(w)fff (w'x;) = N‘Zz(w x; + (W —w) %)
1€[N] 1€[N]

¥ 3 T exp (- w) i)

1€[N]

IN

IA

1
—~ 2w exp(w = wllxi]l-)

i€[N]
1
-~ D U(wx;)exp(D]|w' — wl))
1€[N]

— eDHW’fW\Ig(W).

IN

1.2 PROPERTIES OF LOSS FUNCTIONS

Lemma 1.2 (Lemma C.4 in Zhang et al. (2024a)). For { € {lup,lig}, either G(w) < 35— or
L(w) < 1°g2 implies w'x; > 0 forall i € [N].

Lemma I.3 (Lemma C.5 in Zhang et al. (2024a)). For £ € {ley, liog} and any z1, zo € R, we have
U'(z1)
U'(z2)

Lemma I4. Fora > 1and z1,z5 > 0, if Li5(21) < alipg(22), then z1 > zo — log(2* — 1).

- 1‘ <elmz=l g

Proof. Note that

log(1+e ) <alog(l4+e ™) = e ™ < (1+e )" -1,

and define f(z) = % Since f is an increasing function on the interval (0,1), we get
Sup,e(o,1y f(z) = f(1) = 2% — 1. This implies (1 + z)* —1 < (2% — 1)z forz € (0,1). Since
21, 22 > 0, it satisfies e~ #1 e~ *2 € (0, 1). Therefore, we get

6—21 S (1 _|_ e—z2)a _ 1 S (2a _ 1)6_22.

By taking the natural logarithm of both sides, we get the desired inequality. O

1.3 AUXILIARY RESULTS

Lemma I.5 (Lemma C.1 in Zhang et al. (2024a)). The learning rate n; = (t + 2)~* with a € (0, 1]
satisfies Assumption 2.3.

Lemma 1.6 (Bernoulli’s Inequality). (a) Ifr > landx > —1, then (1 + )" > 1+ ra.
(b) f0<r<landx > —1,then (1+z)" <1+ ra.
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Lemma L.7 (Stolz-Cesaro Theorem). Let (ay,)n>1 and (by,)n>1 be the two sequences of real numbers.
Assume that (by,),>1 is strictly monotone and divergent sequence and the following limit exists:

.a —a
lim =ptl— %
Then it satisfies that

. (275
lim — =1.
n— oo n

Lemma L.8 (Brouwer Fixed-point Theorem). Every continuous function from a nonempty convex
compact subset of R? to itself has a fixed point.
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