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Abstract

Leveraging network information for prediction tasks has become a common prac-
tice in many domains. Being an important part of targeted marketing, influencer de-
tection can potentially benefit from incorporating dynamic network representation.
In this work, we investigate different dynamic Graph Neural Networks (GNNs) con-
figurations for influencer detection and evaluate their prediction performance using
a unique corporate data set. We show that using deep multi-head attention in GNN
and encoding temporal attributes significantly improves performance. Furthermore,
our empirical evaluation illustrates that capturing neighborhood representation is
more beneficial that using network centrality measures.

NeurIPS 2022 Temporal Graph Learning Workshop held in New Orleans, United States



1 Introduction

Advances in data collection and processing have enhanced the use of automated data workflows for
decision-making. A primary source of data comes in the form of networks that capture connections
between people. When relational information is leveraged, it is assumed that people in the network
influence each other’s behavior and decisions, which has been shown to be true in many domains
such as fraud detection [Baesens et al., 2015] or e-commerce recommendations [Sun et al., 2015].

A common way information flows through a network is by the Word-of-Mouth effect which is seen
as a powerful tool for spreading influence among customers in marketing [Puigbo et al., 2014].
Customers who succeed in utilizing this effect in order to change others perspectives are considered
influencers [Rogers and Cartano, 1962]. It is possible to model such scenarios as a network, in which
its topology plays a crucial role in identifying influencers. This is a large area of study with many
standard approaches for encoding the network topology, such as neighborhood and centrality metrics
as well as collective inference algorithms [Baesens et al., 2015]. Due to the rising popularity of deep
learning, graph neural networks (GNNs) are extensively used for end-to-end tasks of graph learning
[Rhee et al., 2017, Guo et al., 2019]. However, the research on influencer detection with GNNs is
limited, especially when it comes to networks that evolve in time and when there exist several types
of connections in a network. To the best of our knowledge, there exists no research about influencer
detection on dynamic attributed edge-colored networks with GNNs.

The main purpose of this paper is to add to the body of research on influencer detection by evaluating
different dynamic GNNs configurations and to investigate whether encoding network topology using
GNNs together with capturing its dynamic evolution have an added value for performance. By doing
so, the following contributions are made. Firstly, we adapt dynamic GNNs for ex-post influencer
detection, that is, identifying current users of the product or service who influence neighboring non-
users to acquire it in the future. Secondly, we evaluate different GNN configurations in combination
with different RNN configurations for our problem1. Finally, we compare the results to baseline static
graph neural networks and dynamic non-GNN approaches.

2 Related work

Puigbo et al. [2014] highlight the importance of influencer detection since the rise of the Internet.
However, most of the traditional approaches lack more advanced indicators of the relationships
between network actors. Due to the rising popularity of GNNs and the demand for improved
relationship extraction techniques, the graph influence network framework has been proposed by Shi
et al. [2022]. The framework is aimed at finding the influential neighbors of a node. However, it is
not designed for detecting global influencers and can be applied on static networks only.

Networks can be seen as an unstructured data source, requiring specific methods in order to extract
network topology and be able to incorporate it into prediction models. Some approaches to learning
on networks are based on matrix factorization including spectral clustering [Von Luxburg, 2007]
and learning with modularity matrix [Tang and Liu, 2009]. More advanced methods are based on
learning by performing random walks on a networks, e.g., DeepWalk [Perozzi et al., 2014] and
node2vec [Grover and Leskovec, 2016]. Network topology can be incorporated into the model by
extracting centrality information using PageRank-like algorithms which have been proved to be
beneficial for, e.g., credit risk prediction in multilayer networks [Óskarsdóttir and Bravo, 2021].
The enhancements in deep learning have brought GNNs to the forefront of the field where they
demonstrate cutting-edge performance [Zhou et al., 2020]. The general design pipeline of GNNs
includes the steps of specifying the network type and scale, deciding on the task type and building
the model using carefully designed computational modules [Zhou et al., 2020].

3 Influencer detection with Discrete Time Dynamic Graphs

Following the design pipeline of Zhou et al. [2020], we define the task of future influencer detection
in this paper as a supervised node-level learning problem on a dynamic heterogeneous undirected
network. A typical network learning process consists of an encoder and decoder [Hamilton et al.,

1The code is available at https://github.com/Banking-Analytics-Lab/DynamicGraphLearning
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2017b]. The encoder part of the model is aimed at learning node embeddings while the decoder
part is used to solve a prediction task, e.g., node classification. Zhu et al. [2022] survey different
encoder-decoder architectures that exist for supervised dynamic graph learning and classify them
into Discrete Time Dynamic Graph (DTDG) learning that uses network snapshots and Continuous
Time Dynamic Graph (CTDG) learning that deals with an updating event stream in a network, e.g.,
the Temporal Graph Networks framework for deep learning on dynamic network represented as
sequences of timed events [Rossi et al., 2020]. Following their taxonomy, we capture the network
topology at each timestamp by applying the DTDG encoder for attributed static networks, namely,
Graph Convolutional Networks (GCNs) [Kipf and Welling, 2017] and Graph Attention Networks
(GATs) [Veličković et al., 2018]. We capture the dynamic nature of the networks by employing the
models from the RNN family as a DTDG decoder. We also compare these models with baseline
models, namely, the PageRank+RNN, static GNNs and dynamic non-GNN models.

3.1 GNN + RNN

In order to deal with complex data structures and arbitrary size of neighborhood, Kipf and Welling
[2017] propose Graph Convolutional Networks that can learn on non-euclidean data such as networks.
A GCN model learns node embeddings by aggregating information from a node’s neighborhood.
However, it assigns the same importance to all the neighboring nodes which is rarely the case in
practice. Hence, Veličković et al. [2018] introduce Graph Attention Networks where nodes follow
a self-attention mechanism and assign an importance to each connection by attending over their
neighbors.

The disadvantage of both GCN and GAT architectures is that they are static and do not take into
account the dynamic changes in the network that happen over time. To take into account the time
dimension, we use the GNN models mentioned above together with Recurrent Neural Networks,
namely the Long Short-Term Memory (LSTM) model [Hochreiter and Schmidhuber, 1997] and
Gated Recurrent Units (GRUs) model [Cho et al., 2014]. The LSTM model is capable of learning
long-term dependencies by storing long-term memory in a cell state while capturing the most recent
information in its hidden states. The GRU model is a less complex version of LSTMs as it does not
have a cell state and stores long-term memory directly in its hidden states. In both the LSTM and
GRU models, the output embeddings of a GNN model are used as an input.

Considering all the above, we investigate four different model configurations, i.e., GCN+LSTM,
GCN+GRU, GAT+LSTM, and GAT+GRU. Their architecture is displayed in Figure 1.
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Figure 1: Models’ architecture

3.2 PageRank + RNN & Features + RNN

Following the strategy used in the research by Óskarsdóttir et al. [2017, 2022], we can enrich non-
relational classifiers with network features using feature engineering [Verdonck et al., 2021]. One
of such network features that can summarize node importance is PageRank [Brin and Page, 1998].
As the PageRank value represents the relative importance of the node within one component, we
calculate the value for PageRank separately within each of the connected components. PageRank
values are used as an additional node feature and subsequently utilized for dynamic node classification
with LSTMs and GRUs (Figure 1b).
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4 Experiments

We utilize data from one city of a Super-App company operating in Latin America that has both
a delivery app and issues credit cards to its customers. We construct monthly snapshots based
on different types of connections between the users (Figure 2), resulting in a dynamic attributed
undirected network with implicit time and colored edges. The nodes in the network represent the
customers and are attributed with the features that characterize the customer’s credit card usage in
each monthly snapshot. The edges in the network are colored by different types of connections
between network actors as displayed in Appendix A, Table A.1. Coloring the edges is performed by
creating edge features (transformed to edge weights in the GCN+RNN models): three binary edge
features for credit card, geohash and contacts edge types with the last one being enriched with the
references edges created in the network snapshot the month following the month of referral. We note
that existing connections never disappear from the network while it is possible that new connections
are established (Appendix A, Figure A.2). The network is labelled: customers who referred (i.e.,
extended an invitation to the Super-App’s services to someone they are connected to) other customers
in the past at least once are labelled as influencers while the remaining customers are labelled as
non-influencers (see Figure 2).

Figure 2: Network

The network is imbalanced, as being an in-
fluencer is less common than being a non-
influencer (imbalance ratio is ∼13%). We check
if oversampling helps to handle the data imbal-
ance during the model validation step and ap-
ply the Synthetic Minority Oversampling TEch-
nique (SMOTE) [Chawla et al., 2002] to the
embeddings generated by the RNN model. We
follow the oversampling strategy of Zhao et al.
[2021] and oversample the nodes in the embed-
dings generated by the RNN model or by the
GNN encoder in static GNN models. We gen-
erate synthetic nodes of the minority class of
different quantities that we set as a hyperparam-
eter (Appendix A, Table A.2).

The data splits, a general pipeline of training, validating and testing the models as well as the best
hyperparameter specifications found by grid search are displayed in Appendix A, Figure A.1 and
Table A.2, respectively. The type of resources used is displayed in Appendix A, Table A.3.

5 Results and Discussion

Table 1: Models’ performance (models are implemented using the pytorch geometric library [Fey and
Lenssen, 2019]). Confidence intervals of AUC values are obtained from bootstrapping AUC values.

Model Test AUC seen nodes Test AUC unseen nodes Total time (seconds)

GCN+LSTM 0.756±0.006 0.786±0.014 12747.2
GCN+GRU 0.843±0.005 0.730±0.015 12752.5
GAT+LSTM 0.842±0.005 0.831±0.012 58919.6
GAT+GRU 0.864±0.004 0.823±0.013 58801.3
PageRank+LSTM 0.672±0.007 0.685±0.009 2844.3
PageRank+GRU 0.801±0.004 0.665±0.015 4637.8
Features+LSTM 0.673±0.006 0.686±0.009 2275.4
Features+GRU 0.799±0.006 0.673±0.009 4635.3
Static GAT 0.639±0.005 0.700±0.016 40142.5
Static GCN 0.635±0.006 0.663±0.024 1742.3

As can be seen from Table 1, GNN+RNN models in general outperform baseline models with the
GAT+GRU configuration being the best one on both seen and unseen nodes and the GAT+LSTM
being statistically identical to GAT+GRU over unseen nodes. A notable improvement over baseline
models is obtained on unseen nodes with an AUC increase of 0.13 obtained on the best GAT+LSTM
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model. We also note that the models with GAT as an encoder outperform the models with a network
topology encoded by GCN.

The best GCN+RNN configurations consist of 200 embeddings generated by GCN with one hidden
layer and 200 hidden dimensions in both GCN and RNN (LSTM or GRU). In contrast, the best
GAT+RNN configurations are deep GATs with 4 layers and 4 heads generating 200 embeddings
and 100 hidden layers in GAT and RNN (Appendix A, Table A.2). Also, we note that upsampling
does not increase the performance meaning that most of the models can deal with the data imbalance.
Therefore, using deep multi-head attention mechanism helps to better capture network topology than
just aggregating information from a node’s neighborhood over both balanced and unbalanced sets.

Among the baseline models, non-GNN dynamic models consistently outperform non-dynamic GNNs
on seen nodes while the static GAT model being the best over unseen nodes. Hence, capturing
time-evolving patterns plays an important role in predicting future influencers among seen nodes
while the network typology encoding is crucial for generalizing to unseen nodes. Moreover, adding
PageRank as an additional feature does not result in a significant performance improvement. Thus,
neighbor feature representations captured by GNNs are more important for influencer detection than
using centrality measures such as PageRank.

6 Conclusion

Early detection and targeting of influencers allows for efficient spread of information through the
network. Hence, different model architectures for influencer detection with networks should be
evaluated. For these reasons, we researched different dynamic GNNs configurations and investigated
whether encoding network topology with GNNs and capturing the dynamic evolution of the network
have an added value to the prediction performance.

First, neighbor feature representations captured by GNNs are more important than centrality measures
such as PageRank especially when it comes to generalizing to unseen nodes where using multi-
head attention in the encoder boosts the performance. Second, we conclude that dynamics of the
network plays an important role; thus, the decoder of the model should capture time. As the use
of the influencer detection model is intended for marketing, we foresee the best models will allow
optimizing the frequency and tenor of targeted marketing actions some users can be subjected to.

Our work has a few limitations. First, there could exist other connections in the network that
are not captured by a current network setup. Moreover, the way edges are created based on the
Geohash 7 (Appendix A, Table A.1) proximity can affect the connectivity strength of the network.
Future improvements include unsupervised learning algorithms for influencer detection including
anomaly detection methods for dynamic networks. Next, we can evaluate models from a profit-driven
perspective that will enable us to bring more business context into the results. Furthermore, we can
explore behavioral node features from the delivery app which can potentially increase predictive
power. Moreover, we can expand the network to more than one city to study how generalizable
the results are in a larger geographical area. The future research avenues also include exploring
more encoder configurations such as GraphSAGE [Hamilton et al., 2017a] or Graph Isomorphism
Networks [Xu et al., 2018].
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Figure A.1: Train-validation-test split and model training. Windows are obtained by 1-month shift.
Backpropagation happens at the end of the time window, and the prediction is made for the last month
of the window.
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Figure A.2: Network growth characteristics

Table A.1: Edge types

Type Description Data source

Credit card There exist an edge between users who used the same credit card in the
app.

Delivery app

References There exist an edge between users who referenced/got referenced. This
type of edge is created in the network snapshot of the month following
the month of referral.

Credit card usage

Geohash There exist an edge between users who ordered more than 4 times in the
close geographical proximity (Geohash 7 - 152.9m x 152.4m).

Delivery app

Contacts There exist an edge between users if at least one of them have the other
one in the phone contacts.

Delivery app

Table A.2: Best hyperparameter settings found by grid search: the best model has a maximal average
AUC on seen and unseen nodes. Static hyperparameters: epochs = 500 (early stop = 50), learning
rate = 0.0001, optimizer = ADAM [Kingma and Ba, 2014]

Model Val. AUC
seen nodes

Val. AUC
unseen
nodes

#hidden
dimen-
sions
GNN/RNN

#emb.
GNN

#layers
GNN

SMOTE
sample
rate

#heads
GAT

dropout
rate
GNN

GCN+LSTM 0.774±0.004 0.825±0.015 200 200 1 0 \ 0.5
GCN+GRU 0.862±0.004 0.769±0.016 200 200 1 0.75 \ 0.5
GAT+LSTM 0.860±0.003 0.871±0.013 100 200 4 0 4 0.5
GAT+GRU 0.880±0.003 0.860±0.013 100 200 4 0 4 0.5
PageRank+LSTM 0.676±0.002 0.725±0.017 100 \ \ 0 \ \
PageRank+GRU 0.818±0.003 0.726±0.012 200 \ \ 0 \ \
Features+LSTM 0.678±0.003 0.725±0.018 100 \ \ 0 \ \
Features+GRU 0.815±0.004 0.721±0.018 200 \ \ 0 \ \
Static GAT 0.650±0.004 0.720±0.011 \ 200 4 0 4 0.5
Static GCN 0.633±0.005 0.665±0.016 \ 200 1 0 \ 0.5

Table A.3: Resource types

Resource Specification

Memory per CPU 8G
CPU cores per task 2
Processor Intel E5-2683 v4 Broadwell @ 2.1GHz
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