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Abstract

Differences in staining and imaging procedures can cause significant color variations in
histopathology images, leading to poor generalization when deploying deep-learning mod-
els trained from a different data source. Various color augmentation methods have been
proposed to generate synthetic images during training to make models more robust, elimi-
nating the need for stain normalization during test time. Many color augmentation methods
leverage domain labels to generate synthetic images. This approach causes three signifi-
cant challenges to scaling such a model. Firstly, incorporating data from a new domain
into deep-learning models trained on existing domain labels is not straightforward. Sec-
ondly, dependency on domain labels prevents the use of pathology images without domain
labels to improve model performance. Finally, implementation of these methods becomes
complicated when multiple domain labels (e.g., patient identification, medical center, etc)
are associated with a single image. We introduce ContriMix, a novel domain label free
stain color augmentation method based on DRIT++, a style-transfer method. ContriMix
leverages sample stain color variation within a training minibatch and random mixing to
extract content and attribute information from pathology images. This information can be
used by a trained ContriMix model to create synthetic images to improve the performance
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of existing classifiers. ContriMix outperforms competing methods on the Camelyon17-
WILDS dataset. Its performance is consistent across different slides in the test set while
being robust to the color variation from rare substances in pathology images. We make
our code and trained ContriMix models available for research use.

Keywords: Synthetic data, Domain Generalization, Digital Pathology

1 Introduction

Recent advancements in Machine Learning and slide digitization have transformed digital
pathology by offering high-throughput, accurate analysis on large whole-slide images (WSI)
Madabhushi and Lee (2016); Ehteshami Bejnordi et al. (2017). However, pathology images
often have large color variations across different labs and even within the same lab. This
variation leads to poor performance of algorithms developed on certain domains (labs,
scanners) when deployed on others.

Stain color normalization is often used to align the distribution of stain color of the
test set to that of the training set. One way to do this is by extracting the color vectors
of each stain from both sets, either from raw pixels Ruifrok et al. (2001), using Singular
Value Decomposition in Optical Density space Macenko et al. (2009), or Non-negative
Matrix Factorization Vahadane et al. (2016). Additionally, style-transfer methods have
been proposed to perform stain normalization, leveraging frameworks such as pix2pix Salehi
and Chalechale (2020), StainGAN Shaban et al. (2019), StainNet Kang et al. (2021), and
contrastive unpaired translation Gutiérrez Pérez et al. (2022).

Stain color augmentation is another method to address the generalization problem,
which can lead to better performance than stain normalization Tellez et al. (2019a). Aug-
mentation generates several variations of input images with the same content but varied
coloring to encourage the network to learn color-invariant features Tellez et al. (2019b).
These methods can be divided into two groups.

Most color augmentation methods in the first group rely on domain labels. For example,
HistAuGAN Wagner et al. (2021), an application of DRIT++ to pathology, learns a one-
to-many mapping based on disentangling the domain-invariant content (tissue morphology)
in each image from the stain color attribute of each domain. Recently, Khamankar et al
Khamankar et al. (2023) suggested using adaptive instance normalization to create style-
augmented synthetic images by mixing the style feature statistics of different images. These
methods are dependent on domain labels and need to be retrained with every new domain,
making scaling to new domains challenging. Additionally, these methods cannot take ad-
vantage of a large volume of unlabeled histopathology data to improve model performance.

Without domain labels, one way to do color augmentation is to leverage the stain color
vector extraction Macenko et al. (2009); Vahadane et al. (2016) to extract stain vectors
in Hematoxylin-Eosin (H&E) images and use them to generate synthetic images by color
transfer for training. Recently, deep-learning methods like STRAP Yamashita et al. (2021)
use style transfer to synthesize images with styles from medically irrelevant images while
preserving the original high-level semantic content of pathology images.

We propose a novel color augmentation technique, ContriMix, an improvement over
DRIT++ that does not require any domain labels. Like DRIT++, ContriMix disentangles
the content of a pathology image (tissue morphology) from the stain color attributes (style).
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ContriMix: Stain color augmentation without domain labels

Table 1: ContriMix vs other stain augmentation methods

Method
Deep-
learning

based method

Doesn’t need
test data at
training time

Doesn’t need
domain labels at
training time

Doesn’t need
retraining when

new domain added

Stain color
normalization

✗ ✓ ✓ ✓

StainGAN ✓ ✗ ✗ ✗

DRIT++ ✓ ✓ ✗ ✗

HistAuGAN ✓ ✓ ✗ ✗

ContriMix ✓ ✓ ✓ ✓

In contrast with DRIT++, ContriMix leverages the color difference between random pairs
of training samples to train encoders for decoupling the content from the color attribute.
Once trained, ContriMix can be used as a stain color augmentation technique to generate
synthetic images to train other task-specific networks. See Table 1 for a comparison.

On Camelyon17-WILDS dataset, we demonstrate that backbone networks trained with
ContriMix augmentation are capable of achieving color-invariant properties and outper-
form competing methods in a classification setting. Clustering of ContriMix representa-
tions shows that the content encodings are domain-invariant, while the attribute encodings
capture color differences across different domains (hospitals). We further perform an in-
depth subgroup analysis on slides from the test set and find that backbones trained with
ContriMix augmentation have robust performance in presence of tissue patches contain-
ing a significant amount of red blood cells, lymphocytes, and low fractional tissue area.
We make the source code available for research use, along with ContriMix models trained
on Camelyon17-WILDS and 2.5 million images from the Cancer Genome Atlas (TCGA)
dataset.

2 Method

2.1 Model architecture

Figure 1A shows the architecture of ContriMix. It consists of a content encoder Ec that
extracts different tissue content such as cell nuclei, connecting tissue etc and an attribute
encoder Ea that encodes the color appearance. It also includes an image generator G that
takes a content encoding zc (Figure 1B) and an attribute encoding za to generate a synthetic
image. The image generator does not need the one-hot encoded domain to generate the
output like DRIT++ Lee et al. (2020).

In ContrixMix, all images from the training batch are passed to both encoders to extract
the content encodings and attribute encodings. Next, randomly mixed combinations of the
content and attribute encodings within the training minibatch are created and fed into the
image generator G to create synthetic images. For simplicity, we will use Ijk to denote the
synthetic image created from the content encoding zcj of the jth image, Ij , and attribute
encoding zak of Ik, namely Ijk = G(zcj , z

a
k), z

c
j = Ec(Ij), and zak = Ea(Ik).

3



Figure 1: A) Overview of ContriMix - Content and attribute encodings are extracted, ran-
domly mixed, and then combined to generate synthetic images without any do-
main labels. B) Three example content channels from input images. Different
channels highlight different features in the tissue images.

The objective function of ContriMix is

LContriMix = λaLattr. + λcLcont. + λsLself−recon., (1)

where Lattr., Lcont., and Lself−recon. are the attribute consistency loss, content consistency
loss, and the self-reconstruction loss with respective weights λa, λc, λs. Note that this ob-
jective function is much simpler than that of DRIT++ Lee et al. (2020) which requires
adversarial losses for content and domain attribute encodings, latent space reconstruction
loss, and KL divergence loss on the attribute encodings to enforce the attribute space to
be distributed according to the standard normal distribution. Here, Lattr. measures the
difference between the extracted attribute of the synthetic image Ea(Ijk) and that of the
self-reconstructed image Ea(Ikk) to the expected attribute encoding zak . Lcont. measures the
difference between the extracted content from the synthetic image Ec(Ijk) and that of the
self-reconstructed image Ec(Ijj) to the expected content encoding zcj . Finally, Lself−recon.

quantifies the difference between the self-reconstructed images Ijj and the input image Ij .
We use L1 losses in all of these loss terms.

2.2 Comparison with other methods

We limit our comparison to other stain color augmentation methods, leaving out those that
perform stain normalization to transfer the stain color of the test domain to the training
domain. Competing methods include

• Reported methods from https://wilds.stanford.edu/leaderboard/: ERM Sagawa et al.
(2021), LISA Yao et al. (2022), IRMX (PAIR Opt) Zhou et al. (2023), and ERM with
targeted augmentation Gao et al. (2022).
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ContriMix: Stain color augmentation without domain labels

• HistAuGAN Wagner et al. (2021): We modified ERM training workflow to feed train-
ing images into the trained HistAuGAN networks to generate synthetic images with a
probability of 0.5. HisAuGAN networks were frozen when training the backbone. The
weights of HistAuGAN networks are provided by Wagner et al. (2021). For attribute
sampling, we explored two options 1) Sampling with attributes from 3 training do-
mains only and 2) Sampling with attributes from all 5 domains. The first one mimics
a practical scenario where no data from the validation set and the test set are avail-
able during training, while better performance is expected in the second. We note
that the HistAuGAN model from Wagner et al. (2021) was trained on all 5 domains
using whole-slide images from Camelyon-17, giving it an advantage in terms of data
diversity compared to ContriMix. For each option, we trained the backbone for 40
epochs using the AdamW Loshchilov and Hutter (2017) optimizer with a learning rate
of 1e-4 for 5 random seeds.

• Recent methods: STRAP Yamashita et al. (2021) and FuseStyle Khamankar et al.
(2023). Due to the lack of publicly available trained models train for Camelyon17-
WILDS (STRAP) or source code (FuseStyle), we were unable to compare validation
accuracy . The test accuracy comparison is provided in Table 2.

3 Training, Results and Discussion

3.1 Dataset

The Camelyon17-WILDS dataset contains 450,000 H&E stained 96 x 96 image patches
from 5 hospitals. The objective is to classify them to either tumor or normal. The training
dataset consists of patches from the first 3 hospitals, while the validation and test datasets
are from the 4th and 5th hospitals, see Fig. 2 A.

3.2 ContriMix training

To evaluate the effect of ContriMix, we train a DenseNet121 backbone from scratch on
the binary classification task using the training split and compared the performance on
the out-of-domain test split following the protocol in Koh et al. (2021). We modified the
baseline ERM workflow to insert the two ContriMix encoders and image generator between
the input and the backbone. We used a weighted sum of the binary cross-entropy loss and
the component losses from ContriMix,

Ltotal = λBCELBCE + λsLself−recon. + λaLattr. + λcLcont. (2)

where λBCE=0.5, λs=0.1, λa=0.1, λc=0.3. We explored different combinations of weights
and found that they mainly impact the speed of convergence and not the backbone per-
formance. Moreover, training ContriMix networks separately or jointly with the backbone
yielded no significant difference in the backbone performance while joint training was more
convenient and slightly faster. Therefore, we used joint training. We used the AdamW
Loshchilov and Hutter (2017) optimizer with a learning rate of 1e-4 and an L2-regularization
of 1e-4 for all 10 random seeds. Input images are randomly rotated by multiples of 90 de-
grees, randomly flipped, and passed to ContriMix encoders. The training time was 12
GPU-hours (RTX8000).
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Table 2: Performance comparison on Camelyon17-WILDS.

# Method OOD Val Acc. (%) Test Acc. (%)

ERM (rand search) Sagawa et al. (2021) 85.8 ± 1.9 70.8 ± 7.2
HistAuGAN (3 dom.) Wagner et al. (2021) 85.8 ± 1.1 71.4 ± 7.4
IRMX (PAIR Opt) Zhou et al. (2023) 84.3 ± 1.6 74.0 ± 7.2
LISA Yao et al. (2022) 81.8 ± 1.4 77.1 ± 6.9
FuseStyle Khamankar et al. (2023) - 90.49 (-)
ERM w/ targeted aug Gao et al. (2022) 92.7 ± 0.7 92.1 ± 3.1
HistAuGAN (5 dom.) Wagner et al. (2021) 87.9 ± 2.3 92.6 ± 0.7
STRAP Yamashita et al. (2021) - 93.7 ± 0.15
ContriMix 91.9 ± 0.6 94.6 ± 1.2

Table 3: Ablation experiments for number of training centers. We study the impact
of dropping entire domains on ContriMix.

# Train Centers OOD Val Acc.(%) Test Acc.(%)

3 91.9 ± 0.6 94.6 ± 1.2
2 87.2 ± 1.3 88.8 ± 1.8
1 85.6 ± 1.4 86.9 ± 4.0

3.3 Benchmarking results

Table 2 reports the performance of DenseNet121 backbones trained with different color
augmentation methods. ContriMix outperformed other methods in terms of average accu-
racy on the test set while being second to the ERM with targeted augmentation on the
validation set. The test accuracy of ContriMix augmentation is significantly higher than
that of HistAuGAN (3-domains augmentation) by 23.2% while being trained on the same
data. Interestingly, ContriMix augmentation trained on 3 hospitals also surpasses other
augmentation methods trained from data-abundant sources such as HistAuGAN 5-domains
and STRAP.

Figure 2B compares the test accuracy of ContriMix against HistAuGAN 3-domains and
5-domains at a WSI level, with error bars denoting the ±1 standard deviation from mean
accuracy. We observed significant performance gaps of mean accuracy on slides 23 (37.1%),
28 (29.2%), and 29 (42.3%) between ContriMix and HistAuGAN 3-domains while both are
trained using data from the same domains. Upon further inspection, we discovered that the
observed gaps were due to the presence of patches with significant amount of red blood cells,
patches that are located near tissue margin, or a high number of lymphocytes with dark
stained nuclei causing significant color variation. Supplementary section contains examples
of such image patches.

To visualize the dependency between the encodings from ContriMix and domains, we
pass encodings of 7200 patches to UMAP McInnes et al. (2018). Figure 3 shows that
the attribute tensors contain the differences across patches from different domains, while
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Figure 2: A) Histopathology images from different hospitals in Camelyon-17-WILDS exhibit
significant color variation. B) Performance comparison of DenseNet121 backbones
trained with ContriMix augmentation, HistAuGAN 3-domains and 5-domains
augmentation on 10 different test slides.

Figure 3: UMAP plot for ContriMix content (left) and attribute (right) encodings colored
by different centers in Camelyon17-WILDS.

the content encoder learns center-invariant features. This happens even though there is no
access to domain supervision during training.

3.4 Ablation study - Diversity of training domains

In this ablation, we remove data belonging to different training domains and study its
impact on ContriMix. This serves to simulate the real-world setting where we are starved
of domain-diverse data. We choose to keep the centers with the least number of samples
in the train set - for training with one center, we keep only center 0, while for training
with two centers, we keep centers 0 and 3. While there is a drop in performance (Table 3),
ContriMix (1 center) is still able to outperform other methods trained on 3 centers. The
results indicate that ContriMix is better able to utilize the intra-dataset variations even in
the presence of a single domain.
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3.5 Qualitative evaluation by a board-certified pathologist

We conducted an expert evaluation of the synthetic images generated by ContriMix (Supple-
mentary section). Eighty patches were randomly selected and shared with a board-certified
pathologist, with the following question - ‘Please evaluate the quality of the synthetic im-
ages. Please label the quality as ’NOT SATISFACTORY’ if the synthetic image includes
any artifact that was not present in the original image, or changes any biological details in
the original image’. The pathologist’s feedback is as follows - ‘All the synthetic images are
free of artifacts or changes that would hinder pathologic interpretation’. The supplementary
section additionally contains examples of ContriMix’s robustness to image artifacts (ink,
blur), ablations around mixing parameters and pseudocode.

4 Limitations

At present, there is no systematic way to determine the optimum number of content and
attribute channels for ContriMix. A larger than necessary number of attributes may lead
to an encoding of redundant information, longer training time but marginal gains in terms
of representing true data diversity. In our experiments, a simple hyper-parameter search
sufficed, however running this on other image modalities like immunohistochemistry may
yield different results.

5 Conclusion

In summary, we introduce ContriMix, a scalable technique for stain color augmentation for
histopathology images. Through simple mixing of content and attribute within training
minibatch along with consistency-based losses, ContriMix can synthesize realistic images
with different color appearances while preserving tissue morphology. ContriMix does not
require any information about the domain of training patches. This key advantage allows
using a trained ContriMix model to extract the stain color (style) from a vast body of un-
labeled images and use them to further increase the diversity of synthetic images for color
augmentation. We demonstrate that backbones trained with ContriMix color augmenta-
tion have a better out-of-domain accuracy compared to other color augmentation methods
on Camelyon WILDS-17. Our ablation studies suggest the effectiveness of ContriMix for
generating domain-invariant representations without needing domain labels, along with de-
sirable properties such as robustness to color variation from rare substances and learning
meaningful representations even in data-diversity starved regimes. We release our code and
trained models for research use.
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Supplementary Section for ContriMix: Scalable
stain color augmentation for domain

generalization without domain labels in digital
pathology

1 Additional ablation studies

1.1 Number of mixes

Here, we investigate different numbers of mixes which the combination of content
and attribute tensors to get a synthetic image with the same content, ranging
from 1 to 5, with all other hyperparameters fixed. The results in Table 1 indicate
that increasing the number of mixes beyond a certain limit (in this case, 4) on
Camelyon17-WILDS dataset has no significant effect on the model performance.
This finding enables us to use a lower number of mixes and larger minibatch size
at training time.

Table 1: Ablation experiments for the number of mixes. Mean ± standard
deviation accuracies from 10 random seeds are reported.

# Mixes OOD Val Acc. (%) Test Acc. (%)

1 92.0 ± 0.7 92.4 ± 3.0
2 92.2 ± 0.9 90.8 ± 6.1
3 91.8 ± 1.1 93.9 ± 1.7
4 91.9 ± 0.6 94.6 ± 1.2
5 92.4 ± 0.8 93.2 ± 2.3

1.2 Random vs. targeted mixing

ContriMix augmentation uses a default method of attribute selection that in-
volves randomly selecting attributes from a minibatch to combine with an im-
age’s content. This mixing algorithm does not take into account the domain
identifiers when selecting attributes. We ran an experiment to investigate the
effect of targeted mixing versus random mixing. In targeted mixing, the domain
identifiers of the attributes and content are mutually exclusive. For example, if
the content is from domain 1, the attribute can only be chosen from images in
domain 2 or 3. Table 2 shows the comparison of random vs targeted mixing on
the Camelyon17-WILDS dataset. The number of mixes for this experiment was



2

4. The experiments are run on 10 random seeds. All other hyper-parameters are
the same. Even though there exists a domain imbalance ratio of approximately
1:3 across the training domains, unsupervised random mixing still performs on
par with targeted mixing.

Table 2: Ablation experiments for random vs. targeted mixing. Mean ±
standard deviation accuracies from 10 random seeds are reported.

Mixing method OOD Val Acc.(%) Test Acc.(%)

Random mixing 91.9 ± 0.6 94.6 ± 1.2
Targeted mixing 91.9 ± 0.8 93.7 ± 1.3

1.3 Number of attributes

We vary the number of attributes to study the effect of additional representa-
tional capacity in the ContriMix. The results are reported in Table 3. Increasing
the number of attributes helps the model learn until a certain point, beyond
which performance starts to saturate.

Table 3: Ablation experiments for varying the number of attributes .
Mean ± standard deviation accuracies from 10 random seeds are reported.

# Attributes OOD Val Acc.(%) Test Acc.(%)

3 92.1 ± 1.1 92.8 ± 2.2
5 92.4 ± 0.9 93.8 ± 1.1
7 91.9 ± 0.6 93.1 ± 0.9
9 92.7 ± 1.0 94.1 ± 1.4
11 92.5 ± 0.8 93.4 ± 2.5
13 92.0 ± 1.3 94.1 ± 1.3

1.4 Content tensors

Another qualitative study is conducted to gain insights into what the content
channels are learning by visualizing the content channels for 100 patches. These
content maps were shared with a board-certified pathologist, who was asked to
determine whether any biological details were being encoded in each channel.
If so, the pathologist was asked to identify what concept(s) they correspond to.
An example is shown in Fig. 1, which has 3 rows, one for each image. The left-
most column shows the original images. The next 3 columns show the extracted
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Fig. 1: Content channels of ContriMix for three different input images. The left
most column contains the original images. The next three columns show three
different content channels. ContriMix learns to encode biological information in
different channels. Table 4 outlines the biological details in the channels.

content maps. According to the evaluation, different content channels appear
to learn various kinds of details, which are tabulated in Table 4. We emphasize
that no annotations were used in training to teach the model to identify these
structures specifically.

Table 4: Expert evaluation of ContriMix content channels and the biological
details captured by them.

Content channel Details

1 Cytoplasm, background, connecting tissue
2 Acellular area (Lumen, blood vessel, background)
3 Nuclei, adipose tissue

2 The image generator of ContriMix

In all of our experiments, we use a dot product for the image generator G.
This is inspired by the physics of histochemistry image formation. Following
the derivation in [1], the optical density can be written as OD = −log(I/Io) =
CM . Here, C is a concentration matrix with each row containing the stain
concentration at each pixel. M is a stain color vector matrix where rows are
the color vectors. I is the raw intensity image obtained from the camera, Io is
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Fig. 2: Six false positive patches (left) and six false negative patches (right) from
HistAuGAN 3-domains correctly classified by ContriMix

the background intensity. One can associate content tensor zc and the attribute
tensor za extracted by ContriMix with the stain concentration C and the stain
vector matrix M respectively in the optical density equation. Moreover, this
model also suggests that a tensor dot product can be used for the image generator
G(zc, za) = zc · za.

3 Examples synthetic images generated by ContriMix
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Fig. 3: Different examples of synthetic images generated by ContriMix. Con-
triMix attribute tensors learn to ignore artifacts (e.g.- marker ink, black spots)
while the content tensors preserve relevant information without introducing hal-
lucinations. Apart from artifacts, ContriMix is able to account for the presence
of background pixels in the input images.
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4 ContriMix pseudocode (PyTorch-style)

# N: Size of the minibatch

# L: Number of attributes

# M: Number of mixings per image

# E_c: Content encoder

# E_a: Attribute encoder

# G: Image generator

# lambda_s: Self-reconstruction loss weight

# lambda_a: Attribute consistency loss weight

# lambda_c: Content consistency loss weight

# Load a batch with N samples

for b in loader:

target_idxs = torch.randint(0, N, size=(N, M))

zc = E_c(b)

za = E_a(b)

l1_loss = torch.nn.L1Loss()

b_sr = G(zc, za) #Batch self-reconstruction

sr_loss = l1_loss(b_sr, b) #Self-reconstruction loss

attr_cons_losses = [l1_loss(E_a(b_sr), z_a)] #Attribute consistency losses

cont_cons_losses = [l1_loss(E_c(b_sr), z_c)] #Content consistency losses

for mix_idx in range(M):

za_tgt = za[target_idxs[:, mix_idx]] #Target attribute for mixing

b_ct = G(zc, za_target) # Synthetic image

attr_cons_losses.append(l1_loss(E_a(b_ct), za_target))

cont_cons_losses.append(l1_loss(E_c(b_ct), zc))

# Avergage over the mixing dimension

attr_loss = torch.mean(torch.stack(attr_cons_losses, dim=0))

cont_loss = torch.mean(torch.stack(cont_cons_losses, dim=0))

# Loss

loss = lambda_s * self_recon_loss + lambda_a * attr_loss + lambda_c * cont_loss

# Optimization step

loss.backward()

optimizer.step()
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