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Abstract

We introduce RL4CO, an extensive reinforcement learning (RL) for combina-1

torial optimization (CO) benchmark. RL4CO employs state-of-the-art software2

libraries as well as best practices in implementation, such as modularity and con-3

figuration management, to be efficient and easily modifiable by researchers for4

adaptations of neural network architecture, environments, and RL algorithms.5

Contrary to the existing focus on specific tasks like the traveling salesman prob-6

lem (TSP) for performance assessment, we underline the importance of scala-7

bility and generalization capabilities for diverse CO tasks. We also systemati-8

cally benchmark zero-shot generalization, sample efficiency, and adaptability to9

changes in data distributions of various models. Our experiments show that some10

recent SOTA methods fall behind their predecessors when evaluated using these11

metrics, suggesting the necessity for a more balanced view of the performance12

of neural CO (NCO) solvers. We hope RL4CO will encourage the exploration13

of novel solutions to complex real-world tasks, allowing the NCO community to14

compare with existing methods through a standardized interface that decouples15

the science from software engineering. We make our library publicly available at16

https://github.com/kaist-silab/rl4co.17

1 Introduction18

Combinatorial optimization (CO) is a mathematical optimization area that encompasses a wide va-19

riety of important practical problems, such as routing problems and hardware design, whose so-20

lution space typically grows exponentially to the size of the problem (also often referred to as21

NP-hardness). As a result, CO problems can take considerable expertise to craft solvers and raw22

computational power to solve. Neural Combinatorial Optimization (NCO) [7; 44; 56] provides23

breakthroughs in CO by leveraging recent advances in deep learning, especially by automating the24

design of solvers and considerably improving the efficiency in providing solutions. While conven-25

tional operations research (OR) approaches [17; 23; 69] have achieved significant progress in CO,26

they encounter limitations when addressing new CO tasks, as they necessitate extensive expertise.27

In contrast, NCO trained with reinforcement learning (RL) overcomes the limitations of OR-based28

approaches (i.e., manual designs) by harnessing RL’s ability to learn in the absence of optimal so-29

lutions.2 NCO presents possibilities as a general problem-solving approach in CO, handling chal-30

∗Equal contribution authors
2Supervised learning approaches also offer notable improvements; However, their use is restricted due to

the requirements of (near) optimal solutions during training.
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lenging problems with minimal dependent (or even independent) of problem-specific knowledge31

[6; 38; 40; 36; 24; 5; 4; 2].32

Among CO tasks, the routing problems, such as Traveling Salesman Problem (TSP) and Capacitated33

Vehicle Routing Problem (CVRP), serve as one of the central test suites for the capabilities of NCO34

due to the extensive NCO research on that types of problems [49; 38; 40; 36] and also, the applica-35

bility of at-hand comparison of highly dedicated heuristic solvers investigated over several decades36

of study by the OR community [17; 23]. Recent advances [20; 42; 30] of NCO achieve comparable37

or superior performance to state-of-the-art solvers on these benchmarks, implying the potential of38

NCO to revolutionize the laborious manual design of CO solvers [69; 63].39

However, despite the successes and popularity of RL for CO, the NCO community still lacks unified40

implementations of NCO solvers for easily benchmarking different NCO solvers. Similar to the41

other ML research, in NCO research, a unified open-source software would serve as a cornerstone42

for progress, bolstering reproducibility, and ensuring findings can be reliably validated by peers.43

This would provide a flexible and extensive RL for CO foundation and a unified library can thus44

bridge the gap between innovative ideas and practical applications, enabling convenient training and45

testing of different solvers under new settings, and decoupling science from engineering. In practice,46

this would also serve to expand the NCO area and make it accessible to researchers and practitioners.47

Another problem that NCO research faces is the absence of standardized evaluation metrics that,48

especially account for the practical usage of CO solvers. Although most NCO solvers are custom-49

arily assessed based on their performance within training distributions [38; 40; 36], ideally, they50

should solve CO problems from out-of-training-distribution well. However, such out-of-distribution51

evaluation is overlooked in the literature. Furthermore, unlike the other ML research that already52

has shown the importance of the volume of training data, in NCO, the evaluation of the methods53

with the controls on the number of training samples is not usually discussed (e.g., state-of-the-art54

methods can underperform than the other methods). This also hinders the use of NCO in the real55

world, where the evaluation of solutions becomes expensive (e.g., evaluation of solutions involves56

the physical dispatching of goods in logistic systems or physical design problems) [14; 35; 2].57

Contributions. In this work, we introduce RL4CO, a new reinforcement learning (RL) for com-58

binatorial optimization (CO) benchmark. RL4CO is first and foremost a library of several en-59

vironments, baselines and boilerplate from the literature implemented in a modular, flexible, and60

unified way with what we found are the best software practices and libraries, including TorchRL61

[47], PyTorch Lightning [18], TensorDict [46] and Hydra [74]. Through thoroughly tested unified62

implementations, we conduct several experiments to explore best practices in RL for CO and bench-63

mark our baselines. We demonstrate that existing state-of-the-art methods may perform poorly on64

different evaluation metrics and sometimes even underperform their predecessors. We also intro-65

duce a new Pareto-optimal, simple-yet-effective sampling scheme based on greedy rollouts from66

random symmetric augmentations. Additionally, we incorporate real-world tasks, specifically hard-67

ware design, to highlight the importance of sample efficiency in scenarios where objective evalua-68

tion is black-box and expensive, further validating that the functionally decoupled implementation69

of RL4CO enhances accessibility for achieving better performance in a variety of tasks.70

2 Preliminaries71

The solution space of CO problems generally grows exponentially to their size. Such solution space72

of CO hinders the learning of NCO solvers that generate the solution in a single shot3. As a way73

to mitigate such difficulties, the constructive (e.g., [49; 70; 38; 40; 36]) methods generate solutions74

one step at a time in an autoregressive fashion, akin to language models [13; 68; 50]. In RL4CO we75

focus primarily on benchmarking autoregressive approaches for the above reasons.76

3Also known as non-autoregressive approaches (NAR) [21; 31; 39; 66]. Imposing the feasibility of NAR-
generated solutions is also not straightforward, especially for CO problems with complicated constraints.
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Solving Combinatorial Optimization with Autoregressive Sequence Generation Autoregres-77

sive (or constructive) methods assume the autoregressive solution construction schemes, which de-78

cide the next “action" based on the current (partial) solution, and repeat this until the solver generates79

the complete solution (e.g., in TSP, the next action is deciding on a city to visit). Formally speaking,80

π(a|x) ≜
T−1∏
t=1

π(at|at−1, ...a1,x), (1)

where a = (a1, ..., aT ), T is the solution construction steps, is a feasible (and potentially optimal)81

solution to CO problems, x is the problem description of CO, π is a (stochastic) solver that maps x82

to a solution a. For example, for a 2D TSP with N cities, x = {(xi, yi)}Ni=1, where (xi, yi) is the83

coordinates of ith city vi, a solution a = (v1, v2, ...vN ).84

Training NCO Solvers via Reinforcement Learning The solver πθ parameterized with the pa-85

rameters θ can be trained with supervised learning (SL) or RL schemes. In this work, we focus on86

RL-based solvers as they can be trained without relying on the optimal (or high-quality) solutions87

Under the RL formalism, the training problem of NCOs becomes as follows:88

θ∗ = argmax
θ

[
Ex∼P (x)

[
Ea∼πθ(a|x)R(a,x)

]]
, (2)

where P (x) is problem distribution, R(a,x) is reward (i.e., the negative cost) of a given x.89

To solve Eq. (2) via gradient-based optimization method, calculating the gradient of the objective90

function w.r.t. θ is required. However, due to the discrete nature of the CO, the computation of91

the gradient is not straightforward and often requires certain levels of approximation. Even though92

few researchers show breakthroughs for solving Eq. (2) with gradient-based optimization, they are93

restricted to some relatively simpler cases of CO problems [58; 60; 72]. Instead, it is common to94

rely on RL-formalism to solve Eq. (2). In theory, value-based methods [33] and policy gradient95

methods [38; 40; 36; 53], and also actor-critic methods [52; 75] are applicable to solve Eq. (2).96

However, in practice, it is shown that the policy gradient methods (e.g., REINFORCE [73] with97

proper baselines), generally outperform the value-based methods [38] in NCO.98

General Structure of Autoregressive Policies The autoregressive NCO solver (i.e., policy) en-99

codes the given problem x and auto-regressively decodes the solution. This can be seen as a pro-100

cessing input problem with the encoder and planning (i.e., computing a complete solution) with the101

decoder. To maximize the solution-finding speed, a common design of the decoder is to fuse the102

RL environment (e.g., TSP solution construction schemes that update the partial solutions and con-103

straints of CO as well) into the decoder. This aspect of NCO policy is distinctive from the other RL104

tasks, which maintains the environment separately from the policy. As a result, most competitive au-105

toregressive NCO solver implementations show significant coupling with network architecture and106

targeting CO problems. This can hinder the reusability of NCO solver implementation to the new107

types of CO problems. Furthermore, this design choice introduces difficulties for the fairer compar-108

ison among the trained solvers, especially related to the effect of encoder/decoder architectures and109

training/evaluation data usage on the solver’s solution qualities.110

3 RL4CO111

In this paper, we present RL4CO, an extensive reinforcement learning (RL) for Combinatorial Op-112

timization (CO) benchmark. RL4CO aims to provide a modular, flexible, and unified code base that113

addresses the challenges of autoregressive policy training/evaluation for NCO (discussed in Section114

2) and performs extensive benchmarking capabilities on various settings.115

3.1 Unified and Modular Implementation116

As shown in Fig. 3.1, RL4CO decouples the major components of the autoregressive NCO solvers117

and its training routine while prioritizing reusability. We consider the five major components, which118

are explained in the following paragraphs.119
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Figure 3.1: An overview of RL4CO. Our goal is to provide a unified framework for RL-based CO algorithms,
and to facilitate reproducible research in this field, decoupling the science from the engineering.

Policy This module is responsible for constructing solutions for CO problems autoregressively.120

Our initial investigation into various autoregressive NCO solvers, such as AM, POMO, Sym-NCO,121

across CO problems like Traveling TSP, Capacitated Vehicle Routing Problem (CVRP), Orienteer-122

ing Problem (OP), Prize-collecting TSP (PCTSP), among others, has revealed a common structural123

pattern. The policy network πθ follows an architecture that combines an encoder fθ and a decoder124

gθ as follows:125

πθ(a|x) ≜ gθ(fθ(x)) (3)
Upon analyzing encoder-decoder architectures, we have identified components that hinder the en-126

capsulation of the policy from the environment. To achieve greater modularity, RL4CO modu-127

larizes such components in the form of embeddings: InitEmbedding, ContextEmbedding and128

DynamicEmbedding 4.129

The encoder’s primary task is to encode input x into a hidden embedding h. The structure of fθ130

comprises two trainable modules: the InitEmbedding and encoder blocks. The InitEmbedding131

module typically transforms problem features into the latent space and problem-specific compared132

to the encoder blocks, which often involve plain multi-head attention (MHA):133

h = fθ(x) ≜ EncoderBlocks(InitEmbedding(x)) (4)

The decoder autoregressively constructs the solution based on the encoder output h. Solution de-134

coding involves iterative steps until a complete solution is constructed:135

qt = ContextEmbedding(h, at−1:0), (5)
q̄t = MHA(qt,W

g
kh,W

g
v h), (6)

π(at) = MaskedSoftmax(q̄t ·Wvh,Mt), (7)
where the ContextEmbedding is tailored to the specific problem environment, qt and q̄t represent136

the query and attended query (also referred to as glimpse in Mnih et al. [45]) at the t-th decoding137

step, W g
k , W g

v and Wv are trainable linear projections computing keys and values from h, and Mt138

denotes the action mask, which is provided by the environment to ensure solution feasibility. It is139

noteworthy that we also modularize the DynamicEmbedding, which dynamically updates the keys140

and values of MHA and Softmax during decoding. This approach is often used in dynamic routing141

settings, such as split delivery VRP. For the details, please refer to Appendix A.4.142

From Eqs. (4) and (5), it is evident that creating embeddings demands problem-specific handling,143

often trigger coherence between the policy and CO problems. In RL4CO, we offer pre-coded envi-144

ronment embeddings investigated from NCO literature [35; 38; 41] and, more importantly, allow a145

drop-in replacement of pre-coded embedding modules to user-defined embedding modules to attain146

higher modularity. Furthermore, we accommodate various decoding schemes (which will be further147

discussed in § 4) proposed from milestone papers [38; 40; 36] into a unified decoder implementation148

so that those schemes can be applied to the different model, such as applying greedy multi-starts to149

the Attention Model from Kool et al. [38].150

Environment This module fully specifies the problem, updates the problem construction steps151

based on the input action and provides the result of updates (e.g., action masks) to the policy152

4Also available at: https://rl4co.readthedocs.io/en/latest/_content/api/models/env_embeddings.html

4

https://rl4co.readthedocs.io/en/latest/_content/api/models/env_embeddings.html


module. When implementing the environment, we focus on parallel execution of rollouts (i.e.,153

problem-solving) while maintaining statelessness in updating every step of solution decoding. These154

features are essential for ensuring the reproducibility of NCO and supporting "look-back" decoding155

schemes such as Monte-Carlo Tree Search. Our environment designs and implementations are flex-156

ible enough to accommodate various types of NCO solvers that generate a single action at at each157

decision-making step [3; 33; 52; 53; 75]. Additionally, our framework is extensible beyond routing158

problems. We investigate the use of RL4CO for electrical design automation in Appendix B.159

Our environment implementation is based on TorchRL [10], an open-source RL library for PyTorch160

[54], which aims at high modularity and good runtime performance, especially on GPUs. This de-161

sign choice makes the Environment implementation standalone, even outside of RL4CO, and162

consistently empowered by a community-supporting library – TorchRL. Moreover, we employ163

TensorDicts [46] to move around data which allows for further flexibility.164

RL Algorithm This module defines the routine that takes the Policy, Environment, and prob-165

lem instances and computes the gradients of the policy (and possibly the critic for actor-critic meth-166

ods). We intentionally decouple the routines for gradient computations and parameter updates to167

support modern training practices, which will be explained in the next paragraph.168

Trainer Training a single NCO model is typically computationally demanding, especially since169

most CO problems are NP-hard. Therefore, implementing a modernized training routine becomes170

crucial. To this end, we implement the Trainer using Lightning [18], which seamlessly sup-171

ports features of modern training pipelines, including logging, checkpoint management, automatic172

mixed-precision training, various hardware acceleration supports (e.g., CPU, GPU, TPU, and Apple173

Silicon), multi-GPU support, and even multi-machine expansion. We have found that using mixed-174

precision training significantly decreases training time without sacrificing NCO solver quality and175

enables us to leverage recent routines such as FlashAttention [16; 15].176

Configuration Management Optionally, but usefully, we adopt Hydra [74], an open-source177

Python framework that enables hierarchical config management. It promotes modularity, scala-178

bility, and reproducibility, making it easier to manage complex configurations and experiments with179

different settings and maintain consistency across different environments.180

3.2 Availability and Future Support181

RL4CO can be installed through PyPI [1]5and we adhere to continuous integration, deployment,182

and testing to ensure reproducibility and accessibility.6183

184
1 $ pip install rl4co185186

Listing 1: Installation of RL4CO with PyPI

Our goal is to provide long-term support for RL4CO. It is actively maintained and will continue to187

update to accommodate new features and contributions from the community. Ultimately, our aim188

is to make RL4CO the to-go library in the RL for CO research area that provides encompassing,189

accessible, and extensive boilerplate code.190

4 Benchmark Experiments191

Our focus is to benchmark the NCO solvers under controlled settings, aiming to compare all bench-192

marked methods as closely as possible in terms of network architectures and the number of training193

samples consumed.194

5Listed at https://pypi.org/project/rl4co/
6Documentation is also available on ReadTheDocs: https://rl4co.readthedocs.io/en/latest/
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Table 4.1: In-domain benchmark results. Gurobi † [22] results are reproduced from [38]. As the non-learned
heuristic baselines, we report the results of LKH3 [23] and algorithm-specific methods. For TSP, we used
Concorde [48] as the classical method baseline. For CVRP, we used HGS [69] as the classical method baseline.
The gaps are measured w.r.t. the best classical heuristic methods.

Method TSP (N = 20) TSP (N = 50) CVRP (N = 20) CVRP (N = 50)

Cost ↓ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time Cost ↓ Gap Time

Gurobi† 3.84 − 7s 5.70 − 2m 6.10 − − − − −
Concorde 3.84 0.00% 1m 5.70 0.00% 2m N/A
HGS N/A 6.13 0.00% 4h 10.37 0.00% 10h
LKH3 3.84 0.00% 15s 5.70 0.00% (<5m) 6.14 0.00% 5h 10.38 0.00% 12h

Greedy One Shot Evaluation

AM-critic 3.86 0.64% (<1s) 5.83 2.22% (<1s) 6.46 5.00% (<1s) 11.16 7.09% (<1s)
AM 3.84 0.19% (<1s) 5.78 1.41% (<1s) 6.39 3.92% (<1s) 10.95 5.30% (<1s)
POMO 3.84 0.18% (<1s) 5.75 0.89% (<1s) 6.33 3.00% (<1s) 10.80 3.99% (1s)
Sym-NCO 3.84 0.05% (<1s) 5.72 0.47% (<1s) 6.30 2.58% (<1s) 10.87 4.61% (1s)
AM-XL 3.84 0.07% (<1s) 5.73 0.54% (<1s) 6.31 2.81% (<1s) 10.84 4.31% (1s)

Sampling with width M = 1280

AM-critic 3.84 0.15% 20s 5.74 0.72% 40s 6.26 2.08% 24s 10.70 3.07% 1m24s
AM 3.84 0.04% 20s 5.72 0.40% 40s 6.24 1.78% 24s 10.60 2.22% 1m24s
POMO 3.84 0.02% 36s 5.71 0.18% 1m 6.20 1.06% 40s 10.54 1.64% 2m3s
Sym-NCO 3.84 0.01% 36s 5.70 0.14% 1m 6.22 1.44% 40s 10.58 2.03% 2m3s
AM-XL 3.84 0.02% 36s 5.71 0.17% 1m 6.22 1.46% 40s 10.57 1.91% 2m3s

Greedy Multistart (N )

AM-critic 3.85 0.36% (<1s) 5.80 1.81% 2s 6.33 3.04% 3s 10.90 4.86% 6s
AM 3.84 0.12% (<1s) 5.77 1.21% 2s 6.28 2.27% 3s 10.73 3.39% 6s
POMO 3.84 0.05% (<1s) 5.71 0.29% 3s 6.21 1.27% 4s 10.58 2.04% 8s
Sym-NCO 3.84 0.03% (<1s) 5.72 0.36% 3s 6.22 1.48% 4s 10.71 3.17% 8s
AM-XL 3.84 0.05% (<1s) 5.72 0.42% 3s 6.22 1.38% 4s 10.68 2.88% 8s

Greedy with Augmentation (1280)

AM-critic 3.84 0.01% 20s 5.71 0.18% 40s 6.22 1.35% 24s 10.63 2.49% 1m24s
AM 3.84 0.00% 20s 5.70 0.07% 40s 6.20 1.07% 24s 10.53 1.56% 1m24s
POMO 3.84 0.00% 36s 5.70 0.06% 1m 6.18 0.84% 45s 10.55 1.72% 2m30s
Sym-NCO 3.84 0.00% 36s 5.70 0.01% 1m 6.17 0.71% 45s 10.53 1.54% 2m30s
AM-XL 3.84 0.00% 36s 5.70 0.01% 1m 6.17 0.68% 45s 10.52 1.47% 2m30s

Greedy Multistart with Augmentation (N × 16)

AM-critic 3.84 0.01% 9s 5.72 0.41% 32s 6.20 1.12% 48s 10.67 2.81% 1m
AM 3.84 0.00% 9s 5.71 0.21% 32s 6.18 0.78% 48s 10.55 1.73% 1m
POMO 3.84 0.00% 13s 5.70 0.05% 48s 6.16 0.50% 1m 10.48 1.11% 2m
Sym-NCO 3.84 0.00% 13s 5.70 0.03% 48s 6.17 0.61% 1m 10.54 1.63% 2m
AM-XL 3.84 0.00% 13s 5.70 0.04% 48s 6.16 0.44% 1m 10.53 1.50% 2m

TL; DR Here is a summary of the benchmark results.195

• AM [38], with minor encoder modifications and trained with a sufficient number of samples,196

can at times outperform or closely match state-of-the-art (SOTA) methods such as POMO and197

Sym-NCO for TSP and CVRP with 20 and 50 nodes. (See § 4.1)198

• The choice of decoding schemes has a significant impact on the solution quality of NCO solvers.199

We introduce a simple-yet-effective decoding scheme based on greedy augmentations that sig-200

nificantly enhances the solution quality of the trained solver. (See § 4.1)201

• We find that in-distribution performance trends do not always match with out-of-distribution202

ones when testing with different problem sizes. (See § 4.2)203

• When the number of samples is limited, the ranking of baseline methods can significantly204

change. Actor-critic methods can be a good choice in data-constrained applications. (See § 4.3)205

• We find that in-distribution results may not easily determine the downstream performance of206

pre-trained models when search methods are used, and models that perform worse in-distribution207

may perform better during adaptation. (See § 4.4)208

Benchmarked Solvers We evaluate the following NCO solvers:209
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(a) Greedy (b) Sampling (c) Augmentation (d) Multistart

Figure 4.1: Decoding schemes of the autoregressive NCO solvers evaluated in this paper.

• AM [38] employs the multi-head attention (MHA) encoder and single-head attention decoder210

trained using REINFORCE and the rollout baseline.211

• AM-Critic evaluates the baseline using the learned critic.212

• POMO [40] is an extension of AM that employs the shared baseline instead of the rollout baseline.213

• Sym-NCO [36] introduces a symmetric baseline to train the AM instead of the rollout baseline.214

• AM-XL is AM that adopts POMO-style MHA encoder, using six MHA layers and InstanceNorm215

instead of BatchNorm. We train AM-XL on the same number of samples as POMO.216

For all benchmarked solvers, we schedule the learning rate with MultiStepLinear, which seems217

to have a non-negligible effect on the performances of NCO solvers - for instance, compared to218

the original AM implementation and with the same hyperparameters, we can consistently improve219

performance, i.e. greedy one-shot evaluation on TSP50 from 5.80 to 5.78 and on CVRP50 from220

10.98 to 10.95. In addition to the NCO solvers, we compare them to SOTA classical solvers that221

specialize in solving specific types of CO problems.222

Decoding Schemes The solution quality of NCO solvers often shows large variations in perfor-223

mances to the different decoding schemes, even though using the same NCO solvers. Regarding224

that, we evaluate the trained solvers using five schemes:225

• Greedy elects the highest probabilities at each decoding step.226

• Sampling concurrently samples N solutions using a trained stochastic policy.227

• Multistart Greedy, inspired by POMO, decodes from the first given nodes and considers the228

best results from N cases starting at N different cities. For example, in TSP with N nodes, a229

single problem involves starting from N different cities.230

• Augmentation selects the best greedy solutions from randomly augmented problems (e.g., ran-231

dom rotation and flipping) during evaluation.232

• Multistart Greedy + Augmentation combines the Multistart Greedy with Augmentation.233

We emphasize that our work introduces the new greedy Symmetric Augmentation during evalu-234

ation, a simple-yet-effective scheme. POMO utilized the ‘x8 augmentation’ through the dihedral235

group of order 8. However, we found that generalized symmetric augmentations - even without236

multistarts - as in Kim et al. [36] can perform better than other decoding schemes. For a visual237

explanation of the decoding scheme, please refer to Fig. 4.1.238

4.1 In-distribution Benchmark239

We first measure the performances of NCO solvers on the datasets on which they are trained on.240

The results are summarized in Table 4.1. We first observe that, counter to the commonly known241

trends that AM < POMO < Sym-NCO, the trend can change to the selection of decoding schemes.242

Especially when the solver decodes the solutions with Augmentation or Greedy Multistart243

+ Augmentation, the performance differences among the benchmarked solvers on TSP20/50,244

CVRP20/50 become insignificant. That implies we can improve the solution qualities by increasing245

the computational budget. These observations lead us to the requirements for an in-depth investiga-246

tion of the sampling methods and their efficiency.247
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Figure 4.2: Pareto front of decoding schemes vs. number of samples on TSP50
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Figure 4.3: Pareto front of decoding schemes vs. number of samples on CVRP50

More Sampling, which Decoding Scheme? Based on our previous findings, we anticipate that by248

investing more computational resources (i.e., increasing the number of samples), the trained NCO249

solver can discover improved solutions. In this investigation, we examine the performance gains250

achieved with varying numbers of samples on the TSP50 dataset. As shown in Fig. 4.2, all solvers251

demonstrate that the Augmentation decoding scheme achieves the Pareto front with limited sam-252

ples and, notably, generally outperforms other decoding schemes. We observed a similar tendency253

in CVRP50 (see Fig. 4.3). Additional results on OP and PCTSP are available in Appendix E.254

4.2 Out-of-distribution Benchmark255

In this section, we evaluate the out-of-distribution performance of the NCO solvers by measuring the256

optimality gap compared to the best-known tractable solver. The evaluation results are visualized in257

§ 4.2. Contrary to the in-distribution results, we find that NCO solvers with sophisticated baselines258

(i.e., POMO and Sym-NCO) tend to exhibit worse generalization when the problem size changes,259

either for solving smaller or larger instances. This can be seen as an indication of "overfitting" to the260

training sizes. On the other hand, the variant of AM shows relatively better generalization results261

overall. We also evaluate the solvers in two canonical public benchmark instances (TSPLib and262

CVRPLib) in Appendix F, which exhibit both variations in the number of nodes as well as their263

distributions and find a similar trend.264

4.3 Sample Efficiency Benchamrk265

We evaluate the NCO solvers based on the number of training samples (i.e., the number of reward266

evaluations). As shown in Fig. 4.5, we found that actor-critic methods (e.g., AM trained with PPO267

detailed in Appendix D.7 or AM Critic) can exhibit efficacy in scenarios with limited training sam-268

ples, as demonstrated by the TSP50/100 results in Fig. 4.5. This observation suggests that NCO269

solvers with control over the number of samples may exhibit a different trend from the commonly270

recognized trends. In the extension of this viewpoint, we conducted additional benchmarks in a271

different problem domain: electrical design automation (EDA) where reward evaluation is resource-272
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Figure 4.4: Out-of-distribution generalization results.
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Figure 4.5: Validation cost over the number of training samples (i.e., number of reward evaluations).

intensive, due to the necessity of electrical simulations. Therefore, sample efficiency becomes even273

more critical. For more details, please refer to Appendix B.274

4.4 Search Methods Benchmark275

One viable and prominent approach of NCO that mitigates distributional shift (e.g., the size of276

problems) is the (post) search methods which involve training (a part of) a pre-trained NCO solver277

to adapt to CO instances of interest.278

Benchmarked Search Methods We evaluate the following search methods:279

• Active Search (AS) from Bello et al. [6] finetunes a pre-trained model on the searched280

instances by adapting all the policy parameters.281

• Efficient Active Search (EAS) from Hottung et al. [25] finetunes a subset of parameters (i.e.,282

embeddings or new layers) and adds an imitation learning loss to improve convergence.283
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Table 4.2: Search Methods Benchmark results of models pre-trained on 50 nodes. We apply the search methods
with default parameters from the literature. Classic refers to Concorde [17] for TSP and LKH3 [23] for CVRP.
OOM denotes "Out of Memory", which occurred with AS on large-scale instances.

Type Metric TSP CVRP

POMO Sym-NCO POMO Sym-NCO
200 500 1000 200 500 1000 200 500 1000 200 500 1000

Classic Cost 10.17 16.54 23.13 10.72 16.54 23.13 27.95 63.45 120.47 27.95 63.45 120.47

Zero-shot
Cost 13.15 29.96 58.01 13.30 29.42 56.47 29.16 92.30 141.76 32.75 86.82 190.69
Gap[%] 29.30 81.14 150.80 24.07 77.87 144.14 4.33 45.47 17.67 17.17 36.83 58.29
Time[s] 2.52 11.87 96.30 2.70 13.19 104.91 1.94 15.03 250.71 2.93 15.86 150.69

AS
Cost 11.16 20.03 OOM 11.92 22.41 OOM 28.12 63.98 OOM 28.51 66.49 OOM
Gap[%] 4.13 21.12 OOM 11.21 35.48 OOM 0.60 0.83 OOM 2.00 4.79 OOM
Time[s] 7504 10070 OOM 7917 10020 OOM 8860 21305 OOM 9679 24087 OOM

EAS
Cost 11.10 20.94 35.36 11.65 22.80 38.77 28.10 64.74 125.54 29.25 70.15 140.97
Gap[%] 3.55 26.64 52.89 8.68 37.86 67.63 0.52 2.04 4.21 4.66 10.57 17.02
Time[s] 348 1562 13661 376 1589 14532 432 1972 20650 460 2051 17640

Results We extend RL4CO and apply AS and EAS to POMO and Sym-NCO pre-trained on TSP284

and CVRP with 50 nodes from § 4.1 to solve larger instances having N ∈ [200, 500, 1000] nodes.285

As shown in Table 4.2, solvers with search methods improve the solution quality. However, POMO286

generally shows better improvements over Sym-NCO. This may again imply the "overfitting" of287

sophisticated baselines that can perform better in-training but eventually worse in downstream tasks.288

5 Discussion289

5.1 Future Directions in RL4CO290

The utilization of symmetries in learning, such as by POMO and Sym-NCO, has its limitations in291

sample efficiency and generalizability, but recent studies like Kim et al. [34] offer promising results292

by exploring symmetries without reward simulation. There is also a trend toward few-shot learning,293

where models adapt rapidly to tasks and scales; yet, the transition from tasks like TSP to CVRP still294

requires investigation [43; 65]. Meanwhile, as AM’s neural architecture poses scalability issues,295

leveraging architectures such as Hyena [59] that scale sub-quadratically might be key. Furthermore,296

the emergence of foundation models akin to LLMs, with a focus on encoding continuous features297

and applying environment-specific constraints, can reshape the landscape of NCO [68; 50]. Efficient298

finetuning methods could also be pivotal for optimizing performance under constraints [26; 67].299

5.2 Limitations300

We identify some limitations with our current benchmark. In terms of benchmarking, we majorly301

focus on training the solvers on relatively smaller sizes, due to our limited computational budgets.302

Another limitation is the main focus on routing problems, even if RL4CO can be easily extended303

for handling different classes of CO problems, such as scheduling problems. Moreover, we did304

not benchmark shifts in data distributions for the time being (except for the real-world instances of305

TSPLib and CVRPLib), which could lead to new insights. In future works, we plan to implement306

new CO problems that stretch beyond the routing and tackle even larger instances, also owing to the307

capability of RL4CO library.308

5.3 Conclusion309

This paper introduces RL4CO, a modular, flexible, and unified software library for Reinforcement310

Learning (RL) for Combinatorial Optimization (CO). Our benchmark library aims at filling the gap311

in a unified implementation for the NCO area by utilizing several best practices with the goal provide312

researchers and practitioners with a flexible starting point for NCO research. With RL4CO, we313

rigorously benchmarked various NCO solvers in the measures of in-distribution, out-of-distribution,314

sample-efficiency, and search methods performances. Our findings show that a comparison of NCO315

solvers across different metrics and tasks is fundamental, as state-of-the-art approaches may in fact316

perform worse than predecessors under these metrics. We hope that our benchmark library will317

inspire NCO researchers to explore new avenues and drive advancements in this field.318
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