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Abstract

Modularity is a compelling solution to continual learning (CL), the problem of
modeling sequences of related tasks. Learning and then composing modules to
solve different tasks provides an abstraction to address the principal challenges of
CL including catastrophic forgetting, backward and forward transfer across tasks,
and sub-linear model growth. We introduce local module composition (LMC),
an approach to modular CL where each module is provided a local structural
component that estimates a module’s relevance to the input. Dynamic module com-
position is performed layer-wise based on local relevance scores. We demonstrate
that agnosticity to task identities (IDs) arises from (local) structural learning that is
module-specific as opposed to the task- and/or model-specific as in previous works,
making LMC applicable to more CL settings compared to previous works. In addi-
tion, LMC also tracks statistics about the input distribution and adds new modules
when outlier samples are detected. In the first set of experiments, LMC performs
favorably compared to existing methods on the recent Continual Transfer-learning
Benchmark without requiring task identities. In another study, we show that the
locality of structural learning allows LMC to interpolate to related but unseen tasks
(OOD), as well as to compose modular networks trained independently on different
task sequences into a third modular network without any fine-tuning. Finally, in
search for limitations of LMC we study it on more challenging sequences of 30
and 100 tasks, demonstrating that local module selection becomes much more
challenging in presence of a large number of candidate modules. In this setting
best performing LMC spawns much fewer modules compared to an oracle based
baseline, however it reaches a lower overall accuracy. The codebase is available
under https://github.com/oleksost/LMC.

1 Introduction

The goal of continual learning (CL) is to learn efficiently from a non-stationary stream of tasks
without (catastrophically) forgetting previous tasks [62]. CL is often modeled as a trade-off between
knowledge retention (stability) and knowledge expansion (plasticity) [26, 64]. Parameter sharing can
provide control over this trade-off. For example, learning a single model shared across tasks results in
better knowledge transfer and faster learning at the expense of forgetting [46, 57]. Conversely, learning
a separate model per task eliminates forgetting but minimizes transfer and data efficiency [2, 41].

Modular learning aims at balancing transfer and forgetting by learning a set of specialized modules
that can be recomposed to solve (new) tasks while only updating a subset of relevant modules or
adding new modules [6, 47, 27]. In principle, a modular learner capable of composing modules in
meaningful structures can provide additional benefits including (i) computational gains due to only
executing modules that are relevant to a task [47, 4]; (ii) memory gains due to instantiating a sub-linear
number of modules w.r.t. the number of tasks; (iii) systematic [8] and out-of-distribution (OOD)
generalization [18] through knowledge recombination; and (iv) biological plausibility [91, 90, 96].
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Designing modular methods for CL comes with two main challenges. The first is how and when to
add new modules to ensure sufficient plasticity to learn new tasks. Existing modular methods use
greedy search variants, expanding the model when it improves validation performance [92, 63]. The
second challenge is how to compose that is, retrieve task-specific structural knowledge given a new
task (previously seen or not).

Existing methods rely on a task’s identifier (ID) to retrieve task-specific structural knowledge, which
comes either in the form of an optimal module layout [92] or as a model- and task-specific controller
network that generates modular layouts [63]. Unfortunately, in many realistic CL scenarios task
identities are unavailable at test time [23, 35, 14]. Lifting this limitation is challenging since standard
mechanisms for task inference, for example, leveraging a task-inference model, could be subject to
forgetting themselves.

To address both challenges, we equip each module with a local structural component that predicts a
score indicating how relevant the module is for a given input. In-distribution inputs result in high
scores, while out-of-distribution inputs result in low scores. In other words, modules self-determine
their relevance given an input.

This local component is used for composing modules: for each datum, modules are combined at each
layer according to their normalized scores without requiring a task’s ID (§3). The local component is
also used for module expansion: a new module is instantiated if all the current modules flag their input
as being locally out-of-distribution (§3.1). Further, new shallow modules (i.e. closer to the input) are
first trained in a projection phase to maximize the relatedness scores of subsequent, deeper, modules
(§3.2). This process projects the output of new modules into the representation space expected by the
subsequent modules and ensures the compatibility between low- and high-level modules.

In a set of studies, we explore the performance and versatility of our local structural approach, which
we call Local Module Composer (LMC). First, we show that LMC reaches superior or comparable
performance to existing modular and non-modular methods without requiring task IDs at test time
using the Continual Transfer Learning (CTrL) benchmark, designed to evaluate transfer and forgetting
in CL [92] (§4.1). Then, we demonstrate how LMC, relying on its projection phase, can solve out-of-
distribution (OOD) tasks not seen during the continual training (§4.2). We also show it is possible
to combine modules from independently trained models into a new model to solve tasks seen by
each of the independent models without any finetuning (§4.3). Finally, an analysis of longer task
sequences (30 and 100 tasks) reveals that LMC tends to spawn much fewer modules to reach good
performance than the fully task-aware MNTDP [92] counterpart. However, LMC reaches slightly
lower accuracy on longer sequences than MNTDP, which highlights the difficulty of automatic
task-ID agnostic module selection in the presence of a large number of candidate modules. In
Appendix F we demonstrate the applicability of LMC in the meta-continual learning (meta-CL)
setting, a task-agnostic setting by nature.

We highlight that by relying on a local (per-module) structural component, LMC offers a modular
CL approach that i) does not require task IDs during test in the standard task incremental settings;
ii) balances parameter sharing to yield strong CL performances compared to baselines that require
access to the task ID; iii) in our experiments instantiates a sub-linear number of modules; iv) permits
recombination of modules at test time enabling OOD generalization as well as (v) the ability to
combine independently trained models in a third model without fine-tuning. Notably, the OOD
generalization is only possible if the agent is task-agnostic in the module selection process, since
OOD tasks were not observed at training, the learner has to interpolate between the learned tasks, and
a (categorial) task ID is of no use.

2 Background: Modular Continual Learning

Let F(x; θ) : X → Y be a learner parametrized with a set of parameters θ. In task-incremental CL,
the learner is exposed to a sequence of tasks. Each task is composed of a training set Dt of (x, y)
pairs and a task identifier (ID) t [92, 46]. The goal is to learn an optimal θ∗ that minimizes the loss L
for all observed tasks:

θ∗ = arg min
θ

T∑
t=1

E(x,y)∼Dt
[L(F(x; θ), y)]. (1)
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Figure 1: Modular Layer Scheme. Each black rectangle is a module. Inside each module, the
functional component fm receives the input x(l−1) and feeds its output to the structural component s.
The output of the structural component is used to calculate the importance score γ(l)

m using Eq. 5,
which are normalized to obtain the attention vector w(l). The layer output is the weighted sum of the
functional outputs of each module. µ and σ are the running mean and variance of the scores γ(l)

m used
to detect outlier inputs and to trigger module addition.

The parameter sharing trade-off between tasks can be addressed through different architectural design
choices for F . For example, F can be a monolithic network that shares parameters θ across all tasks.
Most existing task incremental CL methods use a task-specific output head, requiring the task ID to
select the output head corresponding to the task at hand [46, 87, 1].

At the other end of the spectrum are the expert based solutions that learn an independent model, a.k.a.
expert, for each task [2, 83]. In this case, each expert trains task-specific parameters θ = {θ(t)}Tt=1.

To balance parameter sharing and transfer, modular methods organize their parameters in a series
of modules M = {m(l)

k } with parameters θ = {θ(l)
k }, where θ(l)

k denotes the parameters of module
k at layer l in F . In general, a module can be any parametric function. In our experiments, unless
otherwise stated, a module consists of a single convolutional layer followed by batch-norm, ReLU
activation, and a max-pooling operation.

Modules can be composed conditioned on a sample, a batch of samples, or a task. Let ψ denote
a specific composition of modules that gives rise to a distinct prediction function; we make this
dependence explicit: F(x; θ, ψ). Importantly, sharing modules across tasks should lead to desirable
transfer properties.

Veniat et al. [92] frames modular CL as finding an optimal layout ψ(t) for each task, where each
layout selects a single module per layer per task (hard selection):

θ∗,Ψ∗ = arg min
θ,Ψ

T∑
t=1

E(x,y)∼Dt
[L(F(x; θ, ψ(t)), y)]. (2)

In this case the set of layouts Ψ = {ψ(t)} grows with the number of tasks, while modules can be
reused across different task-specific layouts resulting in sub-linear growth pattern. They design a
method called MNTDP to search the exponentially large space of modular layouts by only considering
layouts resulting from adding a new module per layer to the best prior path (past task’s path with the
highest nearest neighbor accuracy on a new task) starting at the top layer. This solution relies on task
IDs to retrieve ψ(t) at test time.

Another way of composing modules uses dynamic routing [63, 82, 47, 65]. The module layout is
generated by a structural function ψ = s(x), hence different inputs take different routes through F . It
is standard to approximate the structural function using a neural network ψ = s(x;φ) with structural
parameters φ. This framework has been applied to CL in [63] by learning a separate structural
function per task ψ(t) = s(x;φ(t)). The task IDs are used to retrieve the correct structural function:

θ∗,Φ∗ = arg min
θ,Φ

T∑
t=1

E(x,y)∼Dt
[L(F(x; θ, s(x;φ(t))), y)], (3)

where Φ = {φ(t)} is the set of structural parameters for all tasks.
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Figure 2: Two-phase training. Each module contains a functional (rectangle) and structural (trape-
zoid) component. Their color intensity denotes the strength of their activation. Components with
dashed contours are trained, solid contours represent fixed components, arrows show the gradient
flow: black arrow — functional signal, pink — structural signal. (A) All modules are trained on task
0. (B) Task 1 arrives, a new module is added at layer 1, which is first trained to project its output into
the representation of the modules above via the structural signal (the functional signal is optional).
No module addition is allowed during the projection phase. (C) Module addition is allowed again,
both signals are used for training. (D) As task 3 arrives, a new module is added at layer 1 again,
projection phase is triggered. (E) A new module is added at the layer 2, both new modules are now
trained in the second projection phase. (F) Both new modules are trained using both signals.

The above methods require task IDs at both training and testing time. Next we introduce our modular
CL approach that only relies on task IDs during training.

3 Local Module Composer (LMC)

We propose LMC, a modular approach where each module consists of a functional component
f(x; θ

(l)
m ) and a structural component s(x;φ

(l)
m ), see Figure 1. The functional components are

responsible for learning to solve the prediction task and are trained via the usual task loss L (e.g.
cross-entropy loss for classification). The structural components receive the corresponding functional
output as their input (see Figure 1) and are responsible for dynamic routing through F . Structural
parameters φ are trained using a structural loss L(st.) computed locally at each module.

Intuitively, the structural component of a module should serve as a density estimator of the outputs
of the functional component. The module’s contribution to the layer’s output is proportional to
the likelihood of the input sample under the estimated density. In our instantiation, the structural
component produces a relatedness score: a lower score for inputs that are more likely to belong
to the distribution on which a given module was trained, and a higher score for inputs that are
out-of-distribution for the given module. Hence, the likelihood of the input sample is approximated
by the negative relatedness score.

Given an input data sample x(0) = x, the output x(l) of a layer l is defined as the weighted sum of
the functional outputs of all |M (l)| local modules and used as input to the subsequent layer l + 1:

x(l) =

|M(l)|∑
m=1

w(l)
m · f(x(l−1); θ(l)

m ). (4)

The functional output of the network is equal to the output of the final layer: F(x; θ, φ) = x(L). In
the last layer F implements a single output-head per task. At training time, the task ID is available
and we update only the output-head corresponding to the currently learned task. At test time, the task
ID is not available and we select the output head with the highest activation weight w(L)

m , i.e., the last
layer performs hard module selection.

The module activation weights w(l)
m are computed by normalizing the vector of local relatedness

scores γ(l) ∈ R|M(l)|. Each element of γ(l) is obtained from the negative structural loss which
approximates the likelihood of each module:

γ(l)
m = −L(st.)

(
s
[
f(x(l−1); θ(l)

m );φ(l)
m

])
, (5)

w(l)
m = softmax(γ(l))m. (6)

4



Modules with lower structural loss get higher activation weights. Note that in practice, it can be
useful to bias the module selection towards the expected module selection in a batch, assuming that
samples within a batch are likely to belong to the same task. We discuss this point further in § A.1.

Instead of using the softmax function, it is possible perform hard selection taking the module with
the highest score [82], or alternatively selecting top-k modules [88]. In both cases, LMC’s structural
parameters stay differentiable due to the local nature of structural learning. Note that in the case of
global structural objective, hard module selection would require applying tools for non-differentiable
learning such as Expectation Maximization [47] or reinforcement-learning based methods [82, 5].

The overall LMC objective consists of optimizing both functional and structural losses:

θ∗, φ∗ = arg min
θ,φ

T∑
t=1

E(x,y)∼Dt

[
L
(
F(x; θ, φ), y

)
+

L∑
l=0

|M(l)|∑
m=0

L(st.)
m

(
s[f(x(l−1); θ(l)

m );φ(l)
m ]
)]
.

(7)

As in [92], learning is performed w.r.t. only newly introduced modules to prevent forgetting.

Structural component. We test two instantiations of the structural component s and loss L(st.)
m . In

the first one, s is an invertible neural network [80]. Here we use the invertible architecture proposed
by Dinh et al. [21]. As shown by Hocquet et al. [37], for this invertible architecture the structural
objective can be defined as L(st.)

m (x) = ||x||2. Intuitively, an invertible architecture prevents L(st.)
m

from collapsing to an all-zeros solution.

In the second instantiation, s and f form an autoencoder and L(st.)
m (x) = ||x(l−1) − x||2 is the

reconstruction error with respect to the module’s input x(l−1). Aljundi et al. [2] used a similar idea
was for selecting the most relevant expert network conditioned on a task. Unless stated otherwise,
modules in the feature extractor use the autoencoder as their structural component, while output
heads use invertible s — these combinations worked well in practice.

3.1 Expansion strategy

It is necessary to expand F as new tasks arrive to acquire new knowledge. A new module is added
to a layer when all modules in this layer detect an outlier input. To this end, we track the running
statistics of the relatedness score γ for each module — mean µ and variance σ (see Figure 1), and
calculate a z-score for each sample in the batch and each module at a layer:

zm =
wm − µm

σm
. (8)

An input is considered an outlier if its z-score is larger than a predefined threshold z′ (see Ap-
pendix B.6 for an ablation study of z′ values). The expansion decision can be made on the per-sample
(i.e., if an outlier sample is detected) or a per-batch basis (i.e., z is averaged over the mini-batch).
Unless stated otherwise, in our experiments, the decision was made on a per-batch basis. Additionally,
at training the parameters of existing modules are fixed once the task changes. If during a forward
pass through F module addition is triggered at multiple layers, we start adding modules at the layer
closest to the input.

3.2 Training

Each module in LMC receives two types of learning signal: a structural signal resulting from
minimizing L(st.)

m , and a functional signal resulting from minimizing the global functional loss L.
All structural components s are trained only with the structural signal that is calculated locally to
each module.

The training of functional components proceeds in two phases: projection and accumulation.
Whenever the expansion strategy triggers the addition of a new module (i.e., zm > z′ ∀m ∈
{0, . . . , |M (l)|}), starting with layers closest to the input, LMC initiates the projection phase. During
this phase, the new module is trained to minimize the structural loss from all the layers above
and no new-module addition is allowed. This procedure makes the representation of new modules
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S− S+ Sin Sout Spl

MODEL A F M A F M A F M A F M A F M

HAT[87] 63.7±0.7 -1.3±0.6 24∗ 61.4±0.5 -0.2±0.2 24∗ 50.1±0.8 0.0±0.1 24∗ 61.9±1.3 -3.2±1.3 24∗ 61.2±0.7 -0.1±0.2 20∗

EWC[46] 62.7±0.7 -3.6±0.9 24∗ 53.4±1.8 -2.3±0.4 24∗ 56.3±2.5 -9.1±3.3 24∗ 62.5±0.9 -3.6±0.9 24∗ 54.2±3.1 -4.2±2.7 20∗

O-EWC[85] 62.0±0.7 -3.2±0.7 24∗ 54.6±0.7 -1.3±1.0 24∗ 54.2±3.1 -10.8±3.1 24∗ 62.4±0.6 -3.0±0.9 24∗ 52.3±1.4 -5.7±1.3 20∗

ER[81, 16] 60.6±0.7 -2.1±0.9 4∗ 63.0±0.6 3.8±0.8 4∗ 63.8±1.4 -1.9±0.6 4∗ 60.7±1.0 -1.5±0.5 4∗ 60.5±1.0 0.5±0.9 4∗

EXPERTS 62.7±0.9 0.0 24 63.2±0.8 0.0 24 63.1±0.7 0.0 24 63.1±0.7 0.0 24 63.9±0.5 0.0 20
MNTDP[92] 66.3±0.8 0.0 13.7 62.6±0.7 0.0 21.0 67.9±0.9 0.0 16.0 65.8±0.9 0.0 15.0 64.0±0.2 0.0 17.2
SG-F[63] 63.6±1.5 0.0 14.7 61.5±0.6 0.0 20.8 65.5±1.8 0.0 17.5 64.1±1.3 0.0 16.2 62.0±1.3 0.0 16.0
LMC(¬ A) 66.6±1.5 -0.0±0.1 15.3 60.1±2.7 -1.4±2.4 21.3 69.5±1.0 0.0±0.1 20.0 66.7±2.2 -0.1±0.1 15.5 61.6±4.8 -3.5±3.1 18.2

MNTDP(A) 41.9±2.5 -2.8±0.6 14.8 43.2±1.3 -10.8±2.0 20.7 32.7±13.6 -15.2±13.2 17.2 37.9±2.7 -5.8±3.5 13.3 35.1±3.6 -16.4±4.6 15.8
LMC(A) 67.2±1.5 -0.5±0.4 15.7 62.2±4.5 2.3±1.6 22.3 68.5±1.7 -0.1±0.1 19.7 55.1±3.4 -7.1±4.0 15.5 63.5±1.9 -1.0±1.5 19.0
LMC(A,H) 64.9±1.5 -0.2±0.2 16.2 55.8±2.5 -0.3±1.2 15.3 67.6±2.7 -0.8±1.0 21.5 54.2±3.6 -2.9±2.0 15.9 53.8±5.7 3.1±5.5 10.8
SG-F(A) 29.5±3.5 -35.3±4.0 14.3 20.4±4.4 -39.3±6.7 16.0 24.4±5.6 -38.7±4.0 18.7 30.5±4.5 -34.0±5.5 12.2 19.4±1.0 -41.8±1.6 15.5
ER(A,S)[81, 16] 60.4±1.0 -0.5±0.7 4∗ 65.3±0.9 6.0±1.0 4∗ 58.8±3.2 -4.2±3.7 4∗ 47.6±1.5 -7.6±1.6 4∗ 58.6±1.3 -1.2±1.5 4∗

FINETUNE 47.5±1.5 -14.9±1.4 4∗ 31.4±3.7 -29.3±3.8 4∗ 39.7±5.0 -23.9±5.7 4∗ 45.4±4.0 -15.5±3.7 4∗ 29.1±3.1 - 29.2±3.2 4∗

FINETUNE L 52.1±1.4 -15.7±1.7 24∗ 38.2±3.2 -25.8±3.3 24∗ 49.3±2.0 -18.4±2.0 24∗ 49.3±2.1 -18.4±2.0 24∗ 37.1±2.1 -26.0±2.2 20∗

Table 1: CTrL results: we report accuracy (↑ A), forgetting (↑ F ) with standard deviations calculated
over 6 different runs. We report the mean number of modules (M) over these runs, where ∗ marks
methods with fixed capacity. The first block comprises a set of standard CL baselines including
regularization and replay based methods. The second block are the modular methods, third – modular
and replay based methods that are task ID agnostic (A), and the last block are the two finetuning
baselines. (H) indicates hard module selection. (S) indicates single-head as detailed in the main text.

compatible with subsequent modules and enables their composition. This procedure “encourages”
already-learned modules to be reused, preventing over-spawning new modules. The functional signal
is optional during projection (we kept it in all experiments unless otherwise stated).

In the accumulation phase, new module addition is allowed again and all non-frozen modules are
trained with both signals. The functional components of new modules still receive a signal from
the structural components of modules above. The two-phase training is explained schematically in
Figure 2 and implementation details are provided in Appendix A.

4 Experiments

We now evaluate the performance, empirical capabilities, and properties of LMC in four different CL
settings. First, in § 4.1 we study a standard task-incremental CL setting (task-ID agnostic and aware)
using the Continual Transfer Learning Benchmark (CTrL) [92]. Next, we explore the properties of
LMC through other CL settings. In § 4.2 we evaluate the continual OOD generalization ability of
the proposed LMC. In § 4.3 we show the ability of LMC to combine modules form independently
trained models. In Appendix F, we evaluate LMC in the Continual Meta-Learning setting.

4.1 Continual transfer learning using the CTrL benchmark

The CTrL benchmark was proposed to systematically evaluate properties of CL methods with a focus
on modular architectures [92]. It consists of 5 streams of visual image classification tasks. The first
stream S− = (t+1 , t2, t3, t4, t5, t1) consists of a sequence of 6 tasks, where the first and last task are
the same except the first has an order of magnitude more training samples (“+”) than other tasks.
This stream is designed to evaluate the direct transfer ability of models, i.e. a modular learner should
be able to reuse the first task’s modules for the last task. The S+ = (t1, t2, t3, t4, t5, t

+
1 ) stream is

similar to S−, but now the last task comes with more data than the other tasks (including the first one).
Here, the modular learner should be able to update its knowledge, i.e. performance on the first task
should improve after learning the last task. In the Sin = (t1, t2, t3, t4, t5, t

′
1) stream the first t1 and

the last t′1 tasks are similar, with a slight input distribution change (e.g. different background color).
In the Sout = (t+1 , t2, t3, t4, t5, t

′′
1) stream the first task t1 and the last task t′′1 differ in the amount

of training data and the output distribution, i.e. the labels of the last task are randomly permuted.
The plasticity stream Spl = (t1, t2, t3, t4, t5) evaluates the ability to learn a stream of unrelated and
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potentially interfering tasks, i.e., transfer from unrelated tasks can harm performance. Descriptive
statistics for all datasets are in Appendix B.1.

We compare to several baselines. Finetune: trains a single model (wider model marked with L) for
all tasks. Experts: trains a model per task. We also compare with the several recently proposed
modular CL baselines, which achieve competitive results in CTrL and require task IDs at test
time. MNTDP [92]: a recent search-based module selection approach described in more detail in
§ 2. MNTDP requires the task ID to retrieve the previously found best structure for each test task.
MNTDP(A): a task ID agnostic version of MNTDP we created, which selects the path with the lowest
entropy in the output distribution. SG-F [63]: Soft-gating with fixed modules, a modular method
mentioned in § 2. It relies on a task-specific structural network that generates soft-gating vectors
for each layer of the modular learner and fixes learned modules when new tasks arrive. We slightly
adapted the original expansion strategy of SG-F in order to conform to our experimental setup; details
are in Appendix B.2. SG-F(A): a version of SG-F with a single structural network shared across tasks.
HAT[87]: learns attention masks for activations that gate the gradients to prevent forgetting. The
task ID is used to select a task-specific attention mask for inference.

We also compare to several standard CL methods. EWC [46]: trains a single model for all tasks while
applying parameter-regularization to minimize forgetting. O-EWC:[85] online version of EWC that
does not require storing a separate approximation of the Fisher information matrix per task. ER [16]:
trains a single model while replaying samples from previously seen tasks. The size of the replay
buffer corresponds to the memory size of the LMC assuming the worse case linear growth pattern
(i.e., LMC with 24 modules on a 6-task sequence). ER(A,S): task ID agnostic version of ER that uses a
single output head to classify all classes from all tasks: i.e. after learning stream S− the output head
has 50 output neurons and the output classes of the last task are considered the same as the ones of
the first task.

We use several versions of LMC. LMC(¬A) a version of LMC that uses the task ID for output head
selection (not module selection as MNTDP). LMC(A): the default version of LMC. It equips output
heads with structural components and is therefore task ID agnostic at test time. LMC(A,H): a version
of task ID agnostic LMC that performs hard module selection, i.e., taking the module with the highest
relevance score per layer. All methods use the same architecture (described in Appendix A.4) together
with the Adam [44] optimizer. HAT is the only method that uses SGD.

Similar to Veniat et al. [92], we use the following evaluation metrics: (A) average accuracy on all
seen tasks at the end of CL training; Forgetting (F ) — difference between accuracy at the end of the
training and accuracy after learning the task averaged across tasks [60]; Number of modules (M) at
the end of the continual training procedure. Formal definitions of all metrics are in Appendix B.3.

Table 1 reports performance using the CTrL benchmark. Overall, modular methods tend to outperform
ER and the regularization based methods (HAT and EWC). Among the modular methods, soft-gating
SG-F(A,F) with a single controller shared among all the tasks performed the worst. This baseline
showcases the problem of forgetting in the global structural component (a.k.a. controller) of dynamic
routing methods such as the one proposed by Mendez and Eaton [63]. A version of LMC performs
the best on the S−, Sin and Sout streams.

Notably, LMC(A), which does not rely on task IDs at test time, outperformed all other task ID agnostic
methods such as MNTDP(A) and ER(A,S) on all streams but S+, and always performed on par with task
ID aware methods. On the Sout stream low performance is expected for task-ID agnostic methods
due to output distribution shift: i.e., at test time we notice that LMC correctly assigns samples from
the last task t′′1 to the first task’s t+1 output head. However, the resulting classification accuracy is low
because the labels of the last task are randomly permuted in this stream.

The task ID agnostic LMC(A) outperforms task ID aware LMC on the S− and S+ streams. Here,
LMC(A) selects modules (and the output head) which were predominantly trained on the task that
provided more training data (e.g. t+1 in S− stream), hence transferring knowledge between the first
and the last tasks. In contrast, LMC(¬A) when tested on the last task t1 is forced to select the output
head belonging to this task, which was trained on less data than the output head of t+1 task, leading
to lower accuracy. In addition, we observed that versions of LMC often exhibit high variance (e.g.
see S+, Sout and Spl streams). This may be caused by the larger amount of trainable parameters
compared to other models and relatively small amount of training data. Finally, low performance of
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Figure 3: Continual OOD-generalization: matrices show test accuracy on seen and unseen tasks (on-
and off-diagonal tasks respectively). In each sub-figure x-axis shows the MNIST class-combination
used to build the task, y-axis gives the foreground-background colors. Only diagonal tasks are learned
continually. While non-modular EWC (a) and modular MNTDP (b) can prevent forgetting, LMC(¬A)

(c) is able to generalize to OOD tasks as well. LMC(¬A) without projection phase performs poorly as
shown in (d).

LMC(A,H) emphasizes the importance of soft modular attention for LMC. Additional results, including
a transfer metric [92], are in Appendix B.4.

4.2 Compositional OOD generalization

This second study tests the ability of LMC to recombine modules for OOD generalization. We use a
colored-MNIST dataset — a variation of the standard MNIST dataset of hand-written digits from 0 to
9 [43] in which digits are colorized. We design a simple sequence of tasks as follows. First, we define
two high-level features: the foreground-background color combination (using the colors red, black,
green, blue) and the class (0–9). Then, we create five non-overlapping tasks of two (digit) classes
each: {0-1, ..., 8-9}. At training time the model is continually trained using a sequence of
these tasks, however, each task is only seen in one of five different foreground-background combina-
tions {red-black, green-black, blue-black, black-red, black-green}. At
test time we measure the generalization ability to seen and unseen combinations of classes and colors.

In Figure 3 we present the accuracy matrices for different learners when tested on all 25 combinations
of colors and classes after it has been trained only on the 5 tasks on the diagonal.

We compare the performance of LMC(¬A) with EWC [46], MNTDP [92], and an ablated version
of LMC without the projection phase. We observe that the OOD accuracy attained by LMC is
significantly higher than EWC and MNTDP. Since the model trained with EWC is monolithic, the
digit-background color combinations are entangled with the digits’ shape for each task, hindering
OOD generalization. In contrast, modular approaches such as MNTDP and LMC learn a different
module combination for each task. In contrast to MNTDP, LMC’s module selection does not rely
on task identifiers and each module is selected in a local manner based on its compatibility with
the current input. This allows LMC to interpolate between previously seen tasks being able to
dynamically compose existing modules to adapt to tasks that have not been seen at training. Because
MNTDP’s module selection relies on a database of task-specific structures found to be optimal for the
corresponding task at training, this method must reuse the predefined module compositions based on
task IDs. This forces MNTDP to use modules that were trained using a different color combination,
and results in e.g. a 24% accuracy drop with respect to LMC on [0,1] when the foreground and
background colors are inverted w.r.t. the seen combination.

In Figure 3d we report results for LMC without applying the projection phase. The projection phase
adapts the representation of newly introduced modules to match the distribution expected by the
subsequent modules. As expected, we found that skipping it severely degrades performance. This
result validates the usefulness of the projection phase to achieve an efficient local module selection.
In Appendix E we plot the average module selection for all 25 test tasks, showing how modules are
reused for the OOD tasks.
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Figure 5: Results on Slong and Slong30 sequences for different hyperparameter values (we select
only runs with reasonably good performance, i.e. A>60%), same plots plots for all conducted runs
can be found in Appendix C).

4.3 Combining modular learners
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Figure 4: Performance of combining indepen-
dently trained LMC1 and LMC2 into LMC3.

In earlier sections we show cross-task reusabil-
ity of modules, here we test the cross-model
reusability. We motivate the practical impor-
tance of this kind of reusability with a federated
learning example: a privacy preserving training
might be required for LMC1 and LMC2, trained
on the premises of customers 1 and 2, after
which their modules can be combined in a single
central entity — LMC3, located on premises of
the cloud service provider. LMC3 is required to
perform tasks seen by both independent LMCs
but can not be finetuned as it has no access to
the original training data distributions.

In Figure 4 we test the ability of LMC to pre-
serve and transfer knowledge in such setting. To this end, we design the following tasks: fMNIST+
and fMNIST-. Both are sampled from the fashion-MNIST dataset [98] but the latter comes with an
order of magnitude less training data. cMNIST-r is a variant of the colored-MNIST dataset where the
background of 95% of the training samples is colored in red and 5% in green. For the cMNIST-g
dataset these proportions are inverted and 95% of the training samples is colored in green. The test
set contains 50% of samples with green and 50% with red background. We trained LMC1 continually
on MNIST, fMNIST+, and cMNIST-r tasks. We trained LMC2 on fMNIST-, cMNIST-g, and SVHN.
We then combined the modules of both LMCs layer-wise to obtain LMC3.

We observed positive transfer for both cMNIST and fMNIST- tasks with LMC3. We found that LMC3
selects different modules originating from different LMCs conditioned on test samples with different
background colors — LMC1’s modules were specialized on red background while LMC2’s on green
(selected paths presented in Appendix D). Notably, cross-model reusability without fine-tuning is
novel to LMC and can be attributed to the local nature of the structural component. Using a global
structural component as in [63] would require tuning a separate structural component specifically
for LMC3. In case of task-specific routing of proposed for MNTDP [92], additional search would
be needed to discover task-specific paths through the consolidated LMC3 model. In both cases the
access to the orinal training data distributions would be required and privacy would not be preserved.

4.4 Longer task sequences

Here we study the performance LMC on longer task sequences consisting of 30 – Slong30, and 100 –
Slong tasks. The Slong sequence corresponds to the one proposed by Veniat et al. [92] as part of the
CTrL benchmark. Slong30 is a 30-tasks subset of Slong (see Appendix B.1 for details).

We first report the average test accuracy (A) and the total number of modules (M) of the models
selected through cross-validation. Slong30: MNTDP A=64.58, M=64; LMC(¬A): A=62.44, M=50.
Slong: MNTDP A=68.92, M=142; LMC(¬A): A=63.88, M=32. While the gap between the accuracy
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of LMC and MNTDP on Slong30 is only 1.86%-points, in the case of Slong this gap grows to 6.58%-
points. It is important to highlight that in contrast to LMC, MNTDP’s module selection is performed
by a task ID aware oracle. We further analyze the trade-off between the number of modules and
accuracy in Figure 5, where we plot the number of modules (M) against average test accuracy (A) for
models that resulted from training with different hyperparameters. For both streams, we observe that
LMC tends to spawn much fewer modules than MNTDP. However, MNTDP shines in the presence
of large number of modules and achieves higher overall test accuracy on these streams. Interestingly,
as can be clearly observed on the Slong stream, LMC reaches higher accuracy with smaller number
of modules: e.g. ∼64% with 32 modules, while adding modules leads to lower accuracy: e.g. ∼61%
with 98 modules. This result suggests that local task ID agnostic module selection becomes more
challenging for LMC in presence of a large number of modules.

5 Related work

Modularity in neural networks is studied in the context of scalability [9], and more recently as
a way to achieve compositionality and systematic generalization [6, 47, 15, 8, 27, 19] as well as
for multi-task learning [65, 82]. From the causal point of view, a data generation process could be
thought as a composition of independent causal modules [75]. Researchers model these kinds of
systems using a set of independent modules, where each module is invariant to changes in the other
modules induced by e.g. distribution shifts [84, 76]. This idea is crystallized by Parascandolo et al.
[74], who propose a way to learn a set of causal independent mechanisms as mixture-of-experts.
Building up on this ideas, others show evidence of compositional OOD generalization [61]. Recently,
[66] argue for a more wholistic view on CL including OOD generalization as an important desiderata.

Continual learning methods typically address the problem of forgetting through parameter regu-
larization [46, 70, 99], replay [89, 78, 3, 73, 54, 12, 97, 39, 81, 13] or dynamic architectures (and
MoEs) [83, 87, 52, 85, 53, 41]. Our work falls under the umbrella of the latter and shares its advan-
tage of having the capacity to adapt to a large number of related tasks. Our focus is on improving
modular CL approaches, which despite their advantages, have only recently been studied in the CL
literature [63, 92]. The main difference with our work is that we use a local composition mechanism
instead of a global one. We detail this difference in §2 and also compare to these methods in §4.1.

Continual-meta learning focuses on fast learning and remembering [25, 35, 33, 41], often empha-
sising the online performance on OOD tasks [14]. As argued by Jerfel et al. [41] modularity can
be useful in this setting to minimize interference between tasks. They proposed a way to train a
MoE model, with each expert focusing on a cluster of tasks leveraging Bayesian nonparametrics.
LMC aims at decomposing knowledge into layer-wise composable modules further reducing modular
granularity. Continual-meta learning is often confused with its counterpart meta-continual learning
[40, 11, 93], in which algorithm are learning to continually learn.

The rapid growth of continual learning has lead researchers to work on empirical studies [20, 58, 56],
surveys [32, 42, 55, 66, 67] as well as CL-specific software [72, 22, 59].

6 Conclusion

We develop LMC, a method to learn and compose a series of modules on a continual stream of tasks
fulfilling some of the basic desiderata of modular CL such as module specialization, avoidance of
collapse, and sublinear growth. In LMC, structural information is learned and stored locally for each
module. It is the locality of the structural component that enables generalization to related but unseen
tasks, and that permits combining different LMCs without fine-tuning.

Future work could focus on achieving more efficient sub-linear model growth through OOD general-
ization and reusability of modules. Additionally, while the benefits of modularity for CL are well
understood, the implications of the CL regime on modularity and compositionality have not been
studied extensively. It is possible that providing knowledge to the learner in incremental chunks
results in the implicit supervision needed to better disentangle it into specialized and composable
modules. Another promising direction is removing the need for task boundaries during training and
developing more robust architectures for the local structural component (related discussions are in
Appendix A.3, and limitations in Appendix G).
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