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ABSTRACT

This paper studies forecasting of the future distribution of events in human action
sequences, a task essential in domains like retail, finance, healthcare, and recom-
mendation systems where the precise temporal order is often less critical than the
set of outcomes. We challenge the dominant autoregressive paradigm and inves-
tigate whether explicitly modeling the future distribution or order-invariant multi-
token approaches outperform order-preserving methods. We analyze local order
invariance and introduce a distribution-based metric to quantify temporal drift. We
find that a simple explicit distribution forecasting objective consistently surpasses
complex implicit baselines. We further analyze the emergence of mode collapse
in predicted categories, identifying and evaluating key contributing mechanisms.
This work provides a principled framework for selecting modeling strategies and
offers practical guidance for building more accurate and robust forecasting sys-
tems. The code will be released upon publication.

1 INTRODUCTION

In many real-world prediction tasks, the precise temporal ordering of events is irrelevant. Instead,
predicting the distribution of outcomes, where only the presence or absence of specific elements
matters, is sufficient and often more practical.

For instance, in retail operations, probabilistic demand forecasting enables optimal inventory man-
agement and supply chain planning by modeling the full range of possible product demands without
requiring sequence order (Nassibi et al., 2023; Larson, 2001). Similarly, in healthcare, clinical di-
agnosis systems treat disease categories as unordered sets within a single hospital admission. The
presence of certain conditions is clinically more significant than the exact order in which they were
diagnosed (Johnson et al., 2016; Mullenbach et al., 2018). Recommendation systems further exem-
plify this principle known as basket prediction (Rendle, 2020). Finally, many multi-label problems
can naturally be framed as distribution forecasting tasks.

The central focus of this paper is to model the future distribution of human actions over a fixed fu-
ture horizon. In this work we consider Event Sequences (EvS) (Osin et al., 2025; Udovichenko et al.,
2024) - temporal records of human actions which underpin a wide range of decision-making systems
across domains including healthcare (Johnson et al., 2016), financial transactions (Udovichenko
et al., 2024; Mollaev et al., 2024; Yang & Xu, 2019), e-commerce (Li et al., 2021), recommender
systems (Shevchenko et al., 2024; Klenitskiy et al., 2024; Zhelnin et al., 2025), and human action
recognition (Surkov et al., 2024). Despite its practical importance and deceptively simple formula-
tion, distribution forecasting for EvS remains significantly understudied.

Inspired by advances in Natural Language Processing (NLP), contemporary approaches to modeling
sequential behavior often default to autoregressive generation predicting the next token conditioned
on an exact prefix ordering (Karpukhin et al., 2024; Klenitskiy et al., 2024). While Next Token
Prediction (NTP) has long dominated sequential modeling, Multi-Token Prediction (MTP) has re-
cently gained traction due to its demonstrated improvements in model quality and generalization,
particularly in tasks such as planning, code generation and EvS forecasting (Nagarajan et al., 2025;
Bachmann & Nagarajan, 2024; Yu et al., 2025; Karpukhin & Savchenko, 2024).
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This raises a practical question: When should we model future event distributions explicitly, and
when is it worth preserving temporal structure through implicit order-preserving objectives methods
like NTP or Multi-Token Prediction (MTP)? To answer this, we make the following contributions:

(1) We systematically study the task of forecasting the distribution of future events over a fixed
horizon and demonstrate its importance as a viable alternative to autoregressive modeling in do-
mains where the order of events is weakly informative or irrelevant. Our results show that this task
is not only meaningful for practical applications but also enables simpler, more robust models that
avoid pitfalls such as mode collapse (see Sec. 4.1).

(2) Explicit vs. Implicit Objective Evaluation: We conduct a rigorous empirical comparison of
four training paradigms on seven public datasets: (1) Next Token Prediction , (2) Multi-Token Pre-
diction with ordered output, (3) an order-invariant set prediction approach with post-hoc alignment,
and (4) GRU-Dist - our proposed, explicit distribution forecasting objective. Our results demon-
strate that explicitly modeling the future event distribution (GRU-Dist) consistently outperforms all
order-preserving baselines across most domains. Surprisingly, when evaluated with order-invariant
metrics, this superiority holds even on textual data, where sequential structure is traditionally as-
sumed critical.

(3) Connecting Dataset Structure to Model Performance: We believe that the efficacy of se-
quential modeling is fundamentally governed by intrinsic dataset properties, since autoregressive
paradigms developed for text we attempt to re-evaluate them accounting for dataset properties.
We propose a following set of dataset characteristics and evaluations: the Staticity Index (S), a
distribution-based metric quantifying temporal drift across sequences; Local Permutation Analysis,
which measures sensitivity to event shuffling within sliding windows; Exponential Decay Parameter
λ , capturing category imbalance and Consecutive Repeat Rate (CRR), a measure to analyze ration
of consecutively repetitive tokens, which are present in some real world e-commerce datasets as
repetitive item clicks.

Our findings provide actionable guidance for informed model selection with respect to dataset prop-
erties, and demonstrate that next-token prediction is not universally optimal, even for large models
across domains.

2 RELATED WORK

Architectures for Event Sequences. Modeling user actions sequentially by conditioning on past
behavior has become an essential component of modern recommendation pipelines. These ap-
proaches effectively adapt ideas from natural language processing (NLP), particularly attention-
based architectures (Kang & McAuley, 2018; Sun et al., 2019; Klenitskiy et al., 2024; Mezent-
sev et al., 2024). However, it remains unclear whether transformer-based architectures are in-
deed the most suitable for predicting future user actions. In EBES Osin et al. (2025) and in Seq-
NAS Udovichenko et al. (2024), the authors demonstrate that RNN-based architectures outperform
transformer-based models on EvS classification tasks. Delving deeper into this issue, Karpukhin
& Savchenko (2025) investigate the limitations of transformers and proposes several modifications
that enable them to surpass RNNs in classification performance. However, as the same work further
reveals, these enhancements do not translate to improved performance in forecasting future tokens.
In this work, we focus on RNN- and GPT-based architectures, as they remain the most applicable in
this domain.

Multi-Token vs. Single-Token Prediction. Multi-Token Prediction (MTP) has recently gained
traction due to its demonstrated improvements in model quality and generalization particularly in
tasks such as planning, code generation (Nagarajan et al., 2025; Bachmann & Nagarajan, 2024; Yu
et al., 2025). However, a key challenge lies in the common assumption that predicted tokens are
conditionally independent Gloeckle et al. (2024).

Teacherless Learning Bachmann & Nagarajan (2024) offers an intermediate approach between
Next-Token Prediction (NTP) and MTP, conceptually opposing teacher forcing. Unlike MTP,
Teacherless Learning is grounded in a rigorous mathematical framework. While it does not accel-
erate inference, it addresses fundamental limitations of traditional NTP. As Nagarajan et al. (2025)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

note: “Teacherless training and diffusion models comparatively excel in producing diverse and orig-
inal output.”

Although earlier work focused primarily on text generation, Karpukhin & Savchenko (2024) ex-
tended these ideas to EvS, demonstrating that multi-token generation and diffusion-based ap-
proaches indeed outperform the single-token paradigm. In this work, we investigate NTP, a multi-
token strategy similar to that proposed in Karpukhin & Savchenko (2024) and propose a new explicit
approach for distribution forecasting.

Order Importance in EvS. It has been established that permuting sequences in EvS datasets does
not degrade performance on classification tasks (Osin et al., 2025; Moskvoretskii et al., 2024), an ob-
servation which significantly challenges the assumed sequential nature of this data type. Klenitskiy
et al. (2024) investigates whether datasets from the domain of sequential recommender systems gen-
uinely exhibit sequential structure. Specifically, the authors evaluate whether permuting sequences
leads to performance degradation in next-token prediction tasks, and find that the extent of degrada-
tion varies by dataset, some datasets are more “sequential” than others. In this work, we extend this
investigation beyond recommender systems and analyze local permutation invariance.

3 DATASETS

To evaluate the proposed methods and hypotheses, we conduct experiments on a diverse collection
of real-world sequential datasets spanning multiple domains—including financial transactions, e-
commerce, retail, music streaming, and literary text. A summary of key statistics is provided in
Table 1; full descriptions, including preprocessing steps are available in Appendix A.3.

Table 1: Dataset statistics and characteristics.

Dataset ID Domain Sequences Mean len Target Field Classes
Multimodal Banking Dataset 2024 MBD Transactions 1.5M 313 Event type 55
AgeGroup Transactions AGE Transactions 30K 888 Small group 203
X5 RetailHero Retail Retail 40K 112 Level 2 43
Alphabattle-2.0 AB Transactions 1M 213 MCC category 28
Complete Works of Shakespeare ShS Text 5K 106 Character 65
Megamarket (2024) MM E-commerce 2.73M 653 Category ID 9.8K
Zvuk (2024) Zvuk Music Streaming 380K 1020 Artist ID 210K
Taobao User Behavior Taobao E-commerce 10K 535 Item category 8K

4 DATASET DIAGNOSTIC

4.1 TEMPORAL ORDER AND MODE COLLAPSE IN EVENT SEQUENCE MODELING

In time series and natural language modeling, precise temporal ordering is crucial. However, in
domains like system logs or bank transactions, the exact micro-temporal order of events within
short windows may be ambiguous or irrelevant—e.g., two unrelated log entries milliseconds apart
could plausibly appear in either order without changing system semantics. We illustrate this effect
in Appendix 4. This motivates a formal distinction between two types of temporal structure:

• Local invariance: Within a narrow window Wt = (yt, . . . , yt+H), event order is semantically
irrelevant—permutations of the same multiset are equally plausible.

• Global structure: Across broader time intervals, dependencies between consecutive windows re-
main meaningful; e.g., p(W2 | W1) for W1 = (y0, . . . , yt−1) and W2 = (yt, . . . , yt+H) captures
genuine temporal progression.

Conventional autoregressive (AR) models are trained to predict the next token yt given its full his-
tory (y0, . . . , yt−1). To accommodate local invariance, one might relax this strict left-to-right depen-
dency by defining a prediction horizon {yt, . . . , yt+H} and training the model to predict any event
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within this window. Under the assumption of uniform uncertainty over the horizon, the training
objective becomes:

Ek∼Uniform[0,H]

[
log p(x = yt+k | y0, . . . , yt−1)

]
=

1

H + 1

H∑
m=0

log p(x = yt+m | y0, . . . , yt−1).

(1)

Critically, standard AR architectures use a single output distribution qt(·) at time t to score all
tokens in the horizon. Under local permutation invariance, the optimal qt that maximizes the above
objective is the empirical distribution over the multiset {yt, . . . , yt+H}. Consequently, the model
learns a static predictive distribution over the entire window: qt ≈ qt+1 ≈ · · · ≈ qt+H . This static
distribution becomes problematic at inference time. When generating sequences using deterministic
decoding (e.g., argmax or low-temperature sampling), the model outputs:

ŷt+k = argmax
x

qt+k(x) ≈ argmax
x

qt(x), ∀k ∈ [0,H].

Since qt is dominated by the most frequent event in the window, the model repeatedly predicts the
empirical mode of Wt, suppressing rarer—but valid—events. We term this phenomenon temporal
mode collapse.

We propose that explicitly modeling the distribution of events across entire windows, rather than
enforcing pointwise predictions, offers a principled resolution. This allows models to better capture
the stochastic nature of real-world event sequences while avoiding degenerate solutions.

4.2 STATICITY INDEX

Before fitting neural models, we quantify how the event distribution of each sequence changes over
time. Previous studies have shown that drift of the temporal distribution can strongly influence fore-
cast performance, including context-driven shift (Chen et al., 2024), seasonality-induced shifts (Liao
et al., 2025), and temporal dataset shift benchmarks (Yao et al., 2022). Motivated by these findings,
we measure the stability or dynamic of the empirical event distribution within each dataset. To this
end, we plot the Shape score drift for every dataset to reveal whether their event distributions remain
nearly static or show meaningful temporal variation.

Several datasets contain sequences with nearly static behavior; to verify this, we plot the Shape score
drift for each dataset.

4.2.1 PER-FEATURE DISSIMILARITY SCORE

Procedure. For each sequence, we fix a window length W and stride s, then slide the window across
the timeline. At every position i, we extract the feature distribution Pi within the current window
and compare it with the baseline distribution P0 computed from the first window. To compare them,
we suggest to leverage the following score:

Let P0 and Pi denote the empirical distributions in the reference window and the i-th window,
respectively.

Discrete features. For categorical attributes defined on A we employ the total variation (TV) dis-
tance, TV(P0, Pi) = 1

2

∑
a∈A

∣∣P0(a)− Pi(a)
∣∣. Because lower TV indicates higher similarity, we

report its complement (1− TV), so that higher values consistently reflect better alignment.

Continuous features. For numerical attributes we use the Kolmogorov–Smirnov statistic. Let F0

and Fi be the empirical CDFs corresponding to P0 and Pi. The KS divergence is KS(P0, Pi) =
supx∈R

∣∣F0(x)− Fi(x)
∣∣. Analogously, we report the similarity score 1−KS.

Shape score. For window i we propose to compute each feature’s distance using the appropriate
formula above and then average across all features: Shape(P0, Pi) = 1

M

∑M
j=1 dj

(
P

(j)
0 , P

(j)
i

)
,

where M is the number of features and dj is TV when the jth feature is categorical, and KS other-
wise. Plotting i 7→ shape(P0, Pi) yields the drift curves used throughout this paper.
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Figure 1: Distribution of categories in
datasets. We present normalized num-
ber of categories.

Table 2: Dataset statistics: exponential decay parame-
ter (λ), Consecutive Repeat Rate (CRR), total number
of distinct categories (TCD), Staticity index (S; aver-
age distributional similarity over time, 1 = fully station-
ary), and perplexity (PPL) increase after full shuffle.

Dataset λ CRR TCD S PPL
Banking domain

MBD 0.415 1.718 55 0.842 1.02×
AB 0.305 1.518 28 0.725 1.08×
Age 0.245 1.148 203 0.772 1.24×
Retail 0.185 1.372 43 0.782 1.27×

Text
ShS 0.118 1.019 64 0.803 5.09×

Recommender Systems
Taobao 0.016 4.492 1.9K 0.650 13.00×
MM 0.005 3.502 9.8K 0.406 10.87×
Zvuk 0.003 1.239 210K 0.363 5.05×

With these definitions we shift the window across the entire sequence and plot trajectory i 7→
shape(P0, Pi), obtaining time-resolved drift curve that summarises how the distribution evolves
over the time.

4.2.2 STATICITY IN DATASETS

Across banking datasets (MBD, Retail, Age, AlphaBattle) the majority of user sequences form static
clusters with negligible temporal drift (Figure 5, Appendix A.4). In contrast, RecSys data such as
ZVUK exhibit more diverse and volatile trajectories (Figure 6, Appendix A.4), while the Shake-
speare dataset, despite being textual, resembles banking data with largely flat drift patterns (Figure 7,
Appendix A.4). Detailed analyses for individual datasets are provided in the Appendix A.4.

Motivation. These observations motivate a prevent-level staticity index that can be computed be-
fore model training to guide the choice of modeling strategy. Unlike the single–anchor variant (first
window vs. all others), we adopt a more robust, multi–anchor formulation.

Staticity index. Fix a window length W and stride s. For each sequence u with per–window
distributions {P (u)

i }Iui=1, choose anchors Ru (uniformly at random, R = 3). The per–sequence
score is the average shape–similarity

S(u) =
1

RIu

∑
r∈Ru

Iu∑
i=1

Shape
(
P (u)
r , P

(u)
i

)
,

and the dataset–level index is Staticity = 1
N

∑N
u=1 S

(u).

Thus, the staticity index quantifies the temporal stability of a sequence’s multi-feature distribution:
higher values (close to 1) reflect stronger staticity (quasi-stationarity), whereas values near zero
indicate pronounced drift. Importantly, the conclusions derived from the computed staticity index
(Table 2) align with those previously inferred from the qualitative analysis of the plots.

4.3 LOCAL PERMUTATION OF EVENTS

To assess the importance of temporal order, we apply a local permutation operator parameterized
by a window radius w. For each position i, we construct a symmetric window [i− w, i+ w], and
the event at position i is allowed to move only within this window. Specifically, we construct a
square cost matrix filled with random values, mask out entries corresponding to positions outside
the window (and all padding tokens), and compute the constrained permutation via the Hungarian
algorithm (Kuhn, 1955). We use w ∈ {0, 1, 4, 16,−1}, where larger values correspond to stronger

5
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disruption of local order. The case w = −1 removes the positional constraint completely and allows
a global permutation of the sequence.

Importantly, even when w = −1, we strictly prevent mixing between the historical part of the se-
quence and the target part: the two segments are permuted independently. This ensures that the
model never sees target tokens reintroduced into the history during shuffling. For each window size
w, we train and evaluate the model under the corresponding level of local permutation, enabling us
to study how different datasets respond to disrupted temporal structure.

4.4 OTHER STATISTICS

We also report the exponential decay parameter λ, which quantifies how quickly category frequen-
cies decline in each dataset. Specifically, λ is the rate parameter of an exponential distribution fitted
to the empirical histogram of event categories. This fit provides a compact measure of distributional
imbalance: larger λ values indicate a steeper decay and, consequently, a stronger dominance of the
most frequent categories. Figure 1 illustrates the fitted exponential curves alongside the empirical
histograms for several datasets. The corresponding λ values for all datasets are reported in Table 2.

Additionally, we report the Consecutive Repeat Rate (CRR)—the average length of uninterrupted
runs of identical tokens. Higher CRR indicates more repetition, which can inflate short-term predic-
tion accuracy. CRR values are listed in Table 2.

5 DISTRIBUTION FORECASTING METHODS

We study the task of forecasting a distribution of a sequence over some horizon N given its history.
To this end, we consider several training objectives — autoregressive, target-based, matched, and
our order-invariant formulation. For all experiments N is fixed as 32.

5.1 AUTOREGRESSIVE LOSS

Let x1:T be a sequence with xt ∈ {1, . . . ,K}. The model parameterises conditional next–event
probabilities pθ(xt+1 | x1:t) given the preceding context x1:t. The sequence log–likelihood fac-
torises as: log pθ(x1:T ) =

∑T
t=1 log pθ

(
xt+1 | x1:t

)
.

5.2 TARGET LOSS

In this setting the model predicts an entire block of L future events in a single forward pass, using
a fixed prefix x1:T as context; no teacher forcing is applied inside the horizon. Let p̂T+1, . . . , p̂T+L

be the categorical distributions produced for positions T +1 through T +L. The target loss is the
sum of negative log-likelihoods for that block: L(L)

target =
∑T+L

i=T+1 − log p̂ i

(
xi

∣∣x1:T

)
Unlike the autoregressive objective, every term is conditioned on the same prefix x1:T ; the model
GRU-Target therefore learns to produce an entire horizon coherently without receiving the ground-
truth events xT+1:T+L−1 as intermediate inputs.

5.3 MATCHED LOSS

When the temporal order of future events is weakly informative, forcing the model to predict both
the events and their exact positions needlessly penalises near-correct outputs. The GRU-Matched
model adapts the matching idea of Karpukhin & Savchenko (2024), aligning each target event with
the nearest prediction within a tolerance window of size m, treated as a hyperparameter.

Let a fixed prefix x1:T condition a one-shot block prediction p̂T+1:T+L; let xT+1:T+L be the cor-
responding ground truth. With a permutation σ constrained by |σ(i) − i| ≤ m, the matched loss is
L(m)

match = min σ∈A
|σ(i)−i|≤m

∑T+L
i=T+1 − log p̂σ(i)

(
xi | x1:T

)
.

6
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At m = 0 it reduces to plain block cross-entropy; as m grows, the objective becomes progressively
order-invariant. The minimisation is solved with the Hungarian algorithm on the cost matrix ℓij =
− log p̂j(xi | x1:T ).

5.4 ORDER-INVARIANT DISTRIBUTION PARAMETERIZATION

When the order of future events is not informative, it is sufficient to model only the event type
distribution rather than their precise temporal arrangement. We therefore introduce the GRU-Dist
model, which represents each sequence as a bag of events and is trained to match the empirical
distribution.

Let Ht = {x1, . . . , xt} be the multiset of events observed so far. A neural encoder fθ maps Ht

to logits, which are converted to probabilities πt = softmax
(
fθ(Ht)

)
;∈ ∆K−1, where ∆K−1

is the probability simplex in RK . For a sequence of length L we form its empirical distribution
p̂k = 1

L

∑L
t=1 1{xt = k}, and minimize ℓ(θ) = DKL

(
p̂ ∥π(θ)

)
.

Unlike autoregressive objectives that require L × K logits per sequence, our order-invariant head
outputs only a single K-dimensional vector. This reduces both computational and memory costs by
a factor of L, while remaining well suited for datasets where event order carries little information.

6 EVALUATION

For each configuration Dataset×Method×LocalShuffle we perform an extensive hyperparam-
eter optimization of 100 trails, technical details are given in Appendix A.1.

6.1 BASELINES

We consider four simple baselines. (1) Ground Truth uses the original sequences as a sanity
check and reference point for metrics such as Cardinality. Repeat extends a sequence by copying
its most recent observations into the forecast horizon of the lenght N . Mode outputs the users most
frequent category for all N , illustrating the tendency of autoregressive models to collapse into trivial
mode repetition—a behavior that may be overestimated by order-dependent metrics (e.g., Accuracy,
Levenshtein distance). Finally, HistSampler generates sequences by sampling from the empirical
histogram of past users sequence, thereby preserving marginal category frequencies while discarding
temporal dependencies.

6.2 NEURAL BACKBONES

We evaluate two neural backbone architectures for sequence modeling:

• GRU: The standard Gated Recurrent Unit (GRU) Cho et al. (2014) excels in capturing
local dependencies and stationary patterns in short to moderately long time series.

• GPT: GPT-2 Radford et al. (2019), a causal Transformer-based model capable of modeling
long-range dependencies, crucial for sequences with complex contextual interactions and
implicit event relationships.

6.3 MULTI-TOKEN PREDICTION VIA SAMPLING

Sampling in the order-sensitive models: Autoregressive decoding with greedy argmax often col-
lapses to the modal category. A simple remedy is to sample from the predictive categorical distri-
bution instead of always taking the maximum, which reduces mode collapse and improves order-
invariant metrics. For autoregressive and block-prediction models this sampling is straighforward,
as logits at each step define the distribution, in our order-invariant method the distribution itself
is parameterized directly, making sampling the natural decoding mechanism. We did not analyze
more sophisticated sampling approaches such as beam search and our preliminary experiments with
temperature sampling did not provide stable improveent across datasets, so we do not use them.

Sampling in the order-invariant model: Given a predicted categorical distribution
π = (π1, . . . , πK) and a target length L, we first compute the expected fractional counts n̂k = Lπk.

7
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Table 3: Next N = 32 tokens forecasting. Matched-F1 (micro) for all datasets and methods includ-
ing baselines. † denotes sampled version of method.

Method MBD Age AB Retail ShS Taobao MM Zvuk

GT 1.000 1.000 1.000 1.000 1.000 0.926 1.000 1.000
Mode 0.520 0.331 0.380 0.219 0.158 0.117 0.156 0.113
Repeat 0.830 0.680 0.700 0.661 0.587 0.257 0.318 0.274
HistSampler 0.804 0.632 0.680 0.640 0.533 0.197 0.244 0.226
GRU 0.528 0.477 0.375 0.207 0.596 0.222 0.250 0.148
GRU† 0.771 0.628 0.641 0.609 0.596 0.146 0.171 0.126
GPT 0.524 0.476 0.373 0.212 0.594 0.223 0.250 0,192
GPT† 0.776 0.627 0.629 0.611 0.603 0.151 0.188 0,174
GRU-Target 0.541 0.370 0.403 0.398 0.299 0.196 0.267 0.143
GRU-Target† 0.808 0.633 0.670 0.641 0.572 0.154 0.201 0.140
GRU-Matched 0.847 0.704 0.676 0.708 0.688 0.203 0.272 0.202
GRU-Matched† 0.827 0.653 0.647 0.667 0.634 0.155 0.203 0.134
GRU-Dist 0.856 0.725 0.736 0.719 0.705 0.178 0.247 0.239

Since these values are not integers, we obtain discrete category counts (n1, . . . , nK) using Hamil-
ton’s method Balinski & Young (2010), (n1, . . . , nK) = Hamilton(n̂1, . . . , n̂K),

∑K
k=1 nk = L.

This method distributes L discrete slots among categories in proportion to their predicted probabili-
ties πk and ensures that the total count equals L.

6.4 METRICS

Many classical sequence metrics (e.g., Accuracy, Levenshtein distance, F1-score) are defined with
respect to a fixed token order and therefore penalize any permutation of events, even when such
reordering is irrelevant for the problem at hand. To overcome this limitation, we introduce an order-
invariant Matched-F1 score, which treats sequences as bags of events.

To avoid order dependence we redefine true-positive, false-positive and false-negative terms. Let gk
and ĝk denote the ground-truth and predicted multiplicities of class k in the window. We set

(TPk, FPk, FNk) =
(
min(gk, ĝk), max(0, ĝk − gk), max(0, gk − ĝk)

)
.

Based on this definitions, we compute our Matched-F1 with micro- and macro-averaging, anal-
ogous to the conventional F1-score formulation. Detailed definition of this metric placed in Ap-
pendix A.6.1

To assess diversity, we use Cardinality (see Appendix A.6.2), which measures the number of dis-
tinct categories generated by the model. Low values signal mode collapse, while values close to the
ground-truth indicate faithful event variety.

For completeness, we also report Levenshtein distance, an order-sensitive metric that, although less
relevant to our setting, provides a complementary reference for order preserving methods (Table 4).

7 RESULTS

Dataset-level statistics. The staticity index serve as useful diagnostics for anticipating whether
sequence order is relevant. Results are presented in Table 2. In banking datasets, a single modal
category dominates—accounting for more than 50% of all events—leading to high values of both
λ and the staticity index. This dominance is also associated with a pronounced performance drop
under local permutations, suggesting limited reliance on sequential order.

Local permutation experiments (see Section 4.3) further corroborate these findings; results are
shown in Figure 3. Shakespeare and Zvuk exhibit sharp performance degradation when sequences
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Table 4: Next N = 32 tokens forecasting. Levenshtein for all datasets and methods including base-
lines. † denotes sampled version of method.

Method MBD Age AB Retail ShS Taobao MM Zvuk

GT 1.000 1.000 1.000 1.000 1.000 0.926 1.000 1.000
Mode 0.520 0.331 0.378 0.219 0.158 0.117 0.156 0.113
Repeat 0.516 0.310 0.253 0.229 0.150 0.118 0.162 0.101
GRU 0.520 0.390 0.374 0.194 0.200 0.222 0.250 0.139
GRU† 0.491 0.292 0.316 0.211 0.166 0.104 0.125 0.067
GPT 0.520 0.390 0.371 0.195 0.216 0.223 0.250 0.167
GPT† 0.490 0.291 0.310 0.212 0.174 0.111 0.136 0.092
GRU-Target 0.527 0.344 0.385 0.256 0.192 0.175 0.236 0.119
GRU-Target† 0.507 0.275 0.322 0.223 0.134 0.083 0.122 0.053
GRU-Matched 0.519 0.309 0.332 0.245 0.138 0.162 0.230 0.105
GRU-Matched† 0.492 0.257 0.287 0.216 0.122 0.087 0.127 0.051
GRU-Dist 0.421 0.206 0.257 0.161 0.096 0.072 0.116 0.062

are shuffled, indicating strong local sequential structure. In contrast, most banking datasets show
little to no degradation, reflecting the irrelevance of event order. This trend is especially evident in
Figure 2, which illustrates minimal perplexity degradation under shuffling for these datasets.

Matched-F1 performance. Order-invariant methods achieve the best overall performance on most
datasets, significantly outperforming order-sensitive approaches (Table 3). GRU-Dist consistently
outperforms GRU-Matched. Exceptions are Taobao and Megamarket, where GRU-Dist underper-
forms. These datasets exhibit a high Consecutive Repeat Rate (CRR, Table 2), and other models
exploit this by repeating recent categories. GRU-Dist, by design, cannot leverage such local repeti-
tion. All learning methods struggle on Taobao, Megamarket, and Zvuk due to their very low expo-
nential decay parameter λ and extremely high cardinality (Table 2). Here, Repeat baseline performs
best. Sampling improves Matched-F1 for most order-sensitive models by alleviating mode collapse,
but not on Taobao, Megamarket, and Zvuk (again due to low λ and high cardinality). Even with
sampling, they remain inferior to order-invariant models.

Levenshtein performance. The Mode baseline is strong compared to order-sensitive methods in
MBD, Age, AlphaBattle and Retail, highlighting the difficulty of modeling precise order (Table 4).
As expected, order-agnostic models perform worse, since they impose no ordering constraints. Sur-
prisingly, NTP models remain competitive on Taobao and Megamarket despite severe mode collapse
(cardinality = 1): their local-mode predictions adapt better to fast distributional shifts than the static
global mode, consistent with their low Staticity index S (Table 2).

8 CONCLUSION

Our study demonstrates that model performance in event-sequence forecasting depends strongly on
dataset properties and on whether order-invariant or order-sensitive evaluation is appropriate.

When temporal order is largely irrelevant, order-sensitive methods suffer from mode collapse, per-
forming similarly to the Mode baseline. In this case, order-invariant metrics are more appropriate.
Under these metrics, GRU-Dist is generally the best, except when the category distribution is highly
skewed (low λ) or the repetition is high (high CRR), where the Repeat baseline dominates.

When temporal structure is strong (low Staticity index S, high Consecutive Repeat Rate (CRR),
significant Perplexity increase under local permutation), order-sensitive metrics become more ap-
propriate, and autoregressive models are preferable, often outperforming other baselines even in the
presence of severe mode collapse.
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Figure 2: Next N = 32 tokens forecasting. Perplexity results.

Figure 3: Effect of Local Event Shuffling on Model Performance. We report Matched-F1 score and
Carnality for four datasets. Results for other datasets and metrics can be found in Appendix A.8

Cardinality also proves to be a useful diagnostic of mode collapse: in datasets like Shakespeare,
shuffling removes structural cues and autoregressive models degenerate to the modal category. More
broadly, when no meaningful local ordering exists, models tend to collapse to the mode (Figure 3).

Taken together, these results highlight the value of simple dataset-level diagnostics for anticipating
model behavior, and demonstrate the advantages of order-invariant objectives in domains such as
retail and banking, where event presence matters more than sequence order.

Indeed, it is worth noting that the proposed GRU-Dist method can be extended from single-category
forecasting to multi-feature prediction through cascade modeling.

Acknowledgment on LLM assisted writing: This paper used open access Qwen3-Max, in some
parts of the paper, for proofreading and text rephrasing in accordance with formal style.
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A APPENDIX

A.1 HPO DETAILS

For hyperparameter optimization (HPO), we use Optuna (Akiba et al., 2019) with the Tree-structured
Parzen Estimator (TPE) sampler. For each model–dataset pair, we allocate an HPO budget of 100
training runs, capping the total computational cost at 18 NVIDIA A100 GPU-days. We reserve 15%
of the training set as a validation subset for early stopping and hyperparameter selection. The best-
performing hyperparameters are then used to train the final model for evaluation and all subsequent
study experiments.

A.2 LOCAL GLOBAL TEMPORAL INVARIANCE

In Figure 4 we illustrate local / global invariance.

Figure 4: Example how order importance differs in different types of data. Even though in both cases
horizon distribution doesnt change, event sequence still make sence after permut inside intervals.

A.3 DATASETS DESCRIPTION AND PREPROCESSING

MBD 1 is a multimodal banking dataset introduced in Mollaev et al. (2024). The dataset contains
an industrial-scale number of sequences, with data from more than 1.5 million clients in 2 year
period. Each client corresponds to a sequence of events. This multi-modal dataset includes card
transactions, geo-position events, and embeddings of dialogs with technical support. For our analy-
sis, we use only card transactions. We use a temporal train–test split: transactions from the first year
form the training set, and those from the second year form the test set.

Age dataset2 consists of 44M anonymized credit card transactions representing 50K individuals.
The target is to predict the age group of a cardholder that made the transactions. Each transaction
includes the date, type, and amount being charged. The dataset was first introduced in scientific
literature in work Babaev et al. (2022). We perform a user-based split: 80% of sequences are
assigned to the training set, and the remaining 20% of sequences are held out for testing.

Retail dataset3 comprises 45.8M retail purchases from 400K clients, with the aim of predicting
a client’s age group based on their purchase history. Each purchase record includes details such
as time, item category, the cose, and loyalty program points received. The age group information
is available for all clients, and the distribution of these groups is balanced across the dataset. The
dataset was first introduced in scientific literature in work Babaev et al. (2022). We perform a user-
based split: 80% of sequences are assigned to the training set, and the remaining 20% of sequences
are held out for testing.

1https://huggingface.co/datasets/ai-lab/MBD
2https://ods.ai/competitions/sberbank-sirius-lesson
3https://ods.ai/competitions/x5-retailhero-uplift-modeling
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Alphabattle-2.0 datase 4 The AlfaBattle 2.0 dataset contains bank customers’ transaction records
over two years, with the goal of predicting loan default based on behavioral history. Each record in-
cludes 18 features (3 numeric, 15 categorical) per transaction. We use the official test split provided
by the dataset creators.

Shakespeare Dataset consists of character-level text extracted from Shakespeare’s works, prepro-
cessed into individual speech segments. Each speech is tokenized using a vocabulary of unique
characters mapped to integer codes based on frequency. The final dataset is split into train and test
sets (80/20). The dataset is designed for character-level language modeling and was selected due to
it obvious temporal importance.

Zvuk dataset5 is introduced in 2024 and contains 244.7M music listening events grouped into
12.6M sessions from 382K users, recorded during the same five-month period (January–May 2023).
In total, it spans 1.5M unique tracks. Each record includes a user ID, session ID, track ID, times-
tamp, and play duration (considering only plays covering at least 30% of track length). The dataset
is tailored to music consumption, excluding podcasts and audiobooks, and enables evaluation of rec-
ommendation models in domains with stronger sequential dynamics. We use a temporal train–test
split: transactions from the first two months form the training set, and other two month form the test
set.

MegaMarket dataset6 is introduced in 2024 and comprises 196.6M user interactions collected
over a five-month period (January–May 2023). It covers 2.7M users, 3.56M items, and 10,001
product categories, with events including views, favorites, cart additions, and purchases. Each record
contains a user ID, item ID, event type, category ID, timestamp, and normalized price. The dataset
represents large-scale e-commerce behavior and is intended for sequential recommendation tasks.
This dataset follows the same temporal train/test split as Zvuk.

Taobao 7 The dataset comprises user behaviors from Taobao, including clicks, purchases, adding
items to the shopping cart, and favoriting items. These events were collected between November 18
and December 15. The training set encompasses data from November 18 to December 1, while the
test set includes clicks from December 2 to December 15.

A.4 STATICITY INDEX PLOTS FOR KEY DATASETS

For each dataset, we compute drift trajectories for all sequence and cluster them into a small number
of groups with internally consistent dynamics (Figure 5–7). Across banking datasets (MBD, Retail,
Age, Alphabattle) the dominant clusters are static, as exemplified for MBD (Figure 5c), these clus-
ters exhibit negligible temporal drift. For such sequences, learning the user’s category distribution
suffices to forecast the next block of events. Trajectories with pronounced drift are rare. In MBD
specifically, such sequences are observed in fewer than 6% of users (Figure 5b).

In contrast to banking datasets, recommender–system data exhibit much greater variability. In
ZVUK (Figure 6), two characteristic regimes dominate: one cluster shows a sharp initial drop from
the baseline followed by persistent high-variance fluctuations, while another appears quasi-static yet
remains noisy around its trend. Such patterns reflect the broader nature of recommender logs: users
interact with a large and diverse sets of items, and their behavior shifts more frequently than in retail
domains where event types are limited and highly regular. And as a consequence, their later-window
distributions are more clearly separated from the first-window distribution.

The outlier in this collection is the Shakespeare text dataset (Figure 7). Although it is non-
transactional, its dynamics resemble banking data more than recommender logs: drift trajectories
are mostly flat and volatility remains low. At the same time, weak periodic or gradual shifts are
observable, indicating that the sequences are not fully static but display a modest degree of temporal
variation.

4https://www.kaggle.com/datasets/mrmorj/alfabattle-20
5https://www.kaggle.com/datasets/alexxl/zvuk-dataset
6https://www.kaggle.com/datasets/alexxl/megamarket?select=megamarket.

parquet
7https://tianchi.aliyun.com/dataset/46
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Figure 5: Shape score drift for MBD dataset

Figure 6: Shape score drift for ZVUK dataset

A.5 FEATURES IMPACT IN CATEGORY FORECASTING QUALITY

We investigated whether predicting a target feature benefits more from incorporating the full feature
vector or from relying exclusively on its own historical values.

On the MBD dataset, experiments in the All-to-One and One-to-One modes reveal that the autore-
gressive model’s performance degrades when exposed to complete with the complete feature vector.
The additional inputs act as noise, impeding the model’s ability to reproduce the mode of the tar-
get distribution. In the One-to-One mode—where the model sees only the history of the target
feature—it easily learns the mode and reports a formal increase in accuracy; however, this gain is
illusory, as the generated sequences become overly uniform and lack realism 5.

Table 5: Effect of training with all tokens vs. event type only (Matched-F1 micro).

Dataset Change (%)
MBD +2.85
AGE −24.94
MM +13.66

By contrast, on datasets with a strong sequential structure, such as Megamarket, the opposite pattern
emerges. The autoregressive mechanism leverages ordering information and, when augmented with
additional features, predicts beyond mere modal values, resulting in a significant improvement in
performance metrics.
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Figure 7: Shape score drift for Shakespeare dataset

A.6 METRICS

A.6.1 MATCHED-F1 MICRO

Precision and recall.

Preck =
TPk

TPk + FPk
, Reck =

TPk

TPk + FNk
.

Macro averaging.

F1macro =
1

K

K∑
k=1

2 Preck Reck
Preck + Reck

.

Each class contributes equally; the score is sensitive to rare categories.

Micro averaging. Aggregating counts over classes,

TP =
∑
k

TPk, FP =
∑
k

FPk, FN =
∑
k

FNk, (2)

F1micro =
2TP

2TP + FP + FN
. (3)

This variant weights categories by frequency and reflects overall throughput.

A.6.2 CARDINALITY METRIC.

Let Gi =
(
x
(i)
t+1, . . . , x

(i)
t+L

)
denote the L-step segment generated for sequence i and C(Gi) =

{
x ∈

Gi

}
the set of distinct categories appearing in that segment. We define the per-sequence cardinality

as
Ci =

∣∣C(Gi)
∣∣.

The dataset-level score is the average

Cardinality =
1

N

N∑
i=1

Ci,

where N is the number of sequences under evaluation. An overall variant first concatenates all
generated segments, G̃ =

⋃
i Gi, and reports Coverall = |C(G̃)|.

Purpose. Cardinality captures the category diversity produced by a model: low values signal mode
collapse, whereas values close to the ground-truth cardinality indicate faithful reproduction of event
variety. We compute the metric for both generated (Cgen) and reference (Corig) sequences, allowing
direct comparison of a model’s diversity against empirical data.
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Table 6: Comparison of autoregressive baselines under the original one-to-one setup and the all-to-
all variant. Metrics are computed only on the target event category.

Metric MBD AGE AB Retail ShS Taobao MM Zvuk
Matched F1 (one-to-one) 0.528 0.476 0.375 0.208 0.596 0.222 0.250 0.148
Matched F1 (all-to-all) 0.440 0.474 0.375 0.006 0.612 0.176 0.026 0.004
Levenshtein (one-to-one) 0.520 0.390 0.374 0.194 0.200 0.222 0.250 0.139
Levenshtein (all-to-all) 0.440 0.391 0.373 0.005 0.203 0.176 0.026 0.004

A.7 EFFECT OF INPUT SPECIFICATION FOR AUTOREGRESSIVE BASELINES

In the main experiments, multi-token prediction models (GRU-Dist, GRU-Matched, and GRU-Tar-
get) are trained in an all-to-one setting, where the model predicts the entire future window of tar-
get categories given the history with all features in datasets including timestamps. Autoregressive
models, however, cannot be trained in an all-to-one formulation: their training objective requires
predicting a single event at a time and conditioning each step on the previously generated outputs.
Therefore, all autoregressive baselines are trained in the standard one-to-one setting. This architec-
tural restriction leads to a mild asymmetry in the input setup.

To verify that this asymmetry does not influence our conclusions, we conducted an additional ex-
periment in which the autoregressive baselines were trained in an all-to-all setting. In this variant,
the model is provided with all future features in the prediction window, while the evaluation metrics
(Matched-F1 and Levenshtein) are computed only on the target category, keeping the evaluation
protocol unchanged.

Table 6 reports the comparison between the original one-to-one setup and the all-to-all variant.
Across datasets, the all-to-all formulation does not improve autoregressive models. Crucially, the
relative ranking between autoregressive and multi-token prediction approaches remains unchanged.
This confirms that the advantages of GRU-Dist and related models are robust to the choice of input
formulation.

A.8 ADDITIONAL RESULTS

For completeness, we report all evaluation metrics across datasets. Levenshtein distance is included
as an order-sensitive measure to quantify degradation under local shuffling (Figure 8), while the
effect of shuffling on category diversity is illustrated by cardinality (Figure 9). The main text focuses
on the order-invariant Matched-F1 (micro) (Figure 10), which we adopt as the primary evaluation
metric throughout the study.
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Figure 8: Levenshtein score on all datasets.

Figure 9: Effect of local shuffle on cardinality.
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Figure 10: Next N tokens forecasting. Matched-F1 (micro) results.
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